JP5127220B2 - Slurry viscosity control method with coal type switching in fluidized bed boiler - Google Patents

Slurry viscosity control method with coal type switching in fluidized bed boiler Download PDF

Info

Publication number
JP5127220B2
JP5127220B2 JP2006347088A JP2006347088A JP5127220B2 JP 5127220 B2 JP5127220 B2 JP 5127220B2 JP 2006347088 A JP2006347088 A JP 2006347088A JP 2006347088 A JP2006347088 A JP 2006347088A JP 5127220 B2 JP5127220 B2 JP 5127220B2
Authority
JP
Japan
Prior art keywords
slurry
viscosity
coal
fluidized bed
bed boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006347088A
Other languages
Japanese (ja)
Other versions
JP2008157546A (en
Inventor
隆 前本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006347088A priority Critical patent/JP5127220B2/en
Publication of JP2008157546A publication Critical patent/JP2008157546A/en
Application granted granted Critical
Publication of JP5127220B2 publication Critical patent/JP5127220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

本発明は、流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法に関し、特に炭種切替に伴いスラリの粘度が変化した場合に、迅速かつ的確な対応操作を行うことにより、流動床ボイラを安定して運転することが可能な技術に関する。   The present invention relates to a method for managing the viscosity of a slurry accompanying the change of coal type in a fluidized bed boiler, and in particular, when the viscosity of the slurry changes due to the change of coal type, the fluidized bed boiler is controlled by performing a quick and accurate response operation. The present invention relates to a technology capable of stable operation.

流動床ボイラの一種である加圧流動床ボイラは、コンプレッサからの燃焼空気でボイラ内を加圧状態に保ちながら、石灰石を流動媒体(BM:ベッドマテリアル)とする流動層内にCWP(Coal Water Paste:石炭と石灰石と水とを混ぜた燃料)を投入することにより、CWPを燃焼させるようにしたボイラである。   A pressurized fluidized bed boiler, which is a type of fluidized bed boiler, is a CWP (Coal Water) in a fluidized bed using limestone as a fluidized medium (BM: bed material) while keeping the boiler pressurized with combustion air from a compressor. Paste: a boiler in which CWP is burned by introducing a fuel (a mixture of coal, limestone and water).

従来、このような加圧流動床ボイラを備えた火力発電所等では、環境に対する負荷を極力軽減するとともにエネルギー効率を高めて安定した操業を行うため、複数種類の原料炭を切り替えながら使用している。この際、原料炭の炭種毎に、含水量、発熱量、含有成分等が異なるため、加圧流動床ボイラへ供給される原料炭の炭種に応じて加圧流動床ボイラの運転を適切に管理する必要があった。   Conventionally, in a thermal power plant equipped with such a pressurized fluidized bed boiler, in order to reduce the environmental load as much as possible and to increase the energy efficiency and perform stable operation, it is necessary to use multiple types of coking coal while switching. Yes. At this time, since the water content, calorific value, contained components, etc. are different for each coal type of the raw coal, the operation of the pressurized fluidized bed boiler is appropriate depending on the coal type of the raw coal supplied to the pressurized fluidized bed boiler. There was a need to manage.

このような炭種管理方法として「バンカへの石炭供給方法および装置」(特開平8−258960号公報:特許文献1)に、異なる種類の石炭を混合させて燃料として使用する場合に、予め混炭ホッパで異なる種類の石炭を混合する工程をなくすことにより、省力化を図るようにした技術が開示されている。   As such a coal type management method, when a different type of coal is used as a fuel by mixing it with “a method and apparatus for supplying coal to a bunker” (Japanese Patent Laid-Open No. 8-258960: Patent Document 1), a mixed coal is previously used. There has been disclosed a technique for saving labor by eliminating the step of mixing different types of coal in a hopper.

この特許文献1に記載された「バンカへの石炭供給方法および装置」は、バンカユニットに石炭を供給するにあたって、複数系統設けたコンベアからそれぞれ異種類の石炭を予め定めた比率でバンカ別に供給し、各バンカからボイラへ投入する時点で総合的に燃料石炭を所定比率に混合することにより、混炭ホッパで石炭を混合する工程を省略するものである。   The “coal supply method and apparatus to a bunker” described in Patent Document 1 supplies different types of coal to bunker units at a predetermined ratio from a conveyor provided in a plurality of systems when supplying coal to a bunker unit. The process of mixing the coal in the coal hopper is omitted by comprehensively mixing the fuel coal at a predetermined ratio when the bunker is introduced into the boiler.

特開平8−258960号公報JP-A-8-258960

ところで、加圧流動床ボイラへ供給する炭種が切り替わると、スラリの粘度が変化することが知られている。そして、炭種切替に伴いスラリの粘度が変化した場合には、安定した操業を行うために、スラリの粘度が適切な管理値となるような対応操作を行う必要があった。   By the way, it is known that the viscosity of the slurry changes when the coal type supplied to the pressurized fluidized bed boiler is switched. Then, when the viscosity of the slurry changes with the change of the coal type, it is necessary to perform a corresponding operation so that the viscosity of the slurry becomes an appropriate management value in order to perform stable operation.

従来、スラリの粘度を適切な管理値とするための対応操作に明確な基準はなく、熟練したオペレータの経験と勘に頼っている面があった。すなわち、炭種切替時に安定した操業を行うための監視項目および対応操作がオペレータにより異なることがあった。このようにオペレータ毎に異なった対応操作を行ったとしても、結果的に安定した操業を行うことができるが、さらに一層安定した操業を行うために、明確な基準を定めることが望まれていた。また、明確な基準に基づかずにオペレータの経験と勘に頼って操業を行った場合には、オペレータの監視負担や対応操作負担が増加するという問題があった。   Conventionally, there is no clear standard for the handling operation for setting the viscosity of the slurry to an appropriate control value, and there is a side that relies on the experience and intuition of a skilled operator. That is, monitoring items and corresponding operations for performing stable operation at the time of switching coal types may differ depending on the operator. As described above, even if different handling operations are performed for each operator, stable operation can be performed as a result, but in order to perform even more stable operation, it was desired to set a clear standard. . In addition, when the operation is performed based on the experience and intuition of the operator without being based on a clear standard, there is a problem that the monitoring burden on the operator and the corresponding operation burden increase.

なお、上記特許文献1に記載された「バンカへの石炭供給方法および装置」は、複数の炭種を混合して使用する際の省力化を目的としたものであり、安定操業を行うための明確な基準については何ら言及されていない。   In addition, the "coal supply method and apparatus to a bunker" described in the above-mentioned Patent Document 1 is for the purpose of saving labor when using a mixture of a plurality of coal types, and for performing stable operation. There is no mention of clear criteria.

本発明は、上述した事情に鑑み提案されたもので、流動床ボイラにおいて投入する原料炭の種類を切り替えた際に、スラリの粘度の管理基準を明確なものとすることにより、迅速かつ適切な対応操作を行って安定した操業を図ることができるとともに、オペレータの負担を軽減することが可能な流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法を提供することを目的とする。   The present invention has been proposed in view of the above-described circumstances, and when the type of raw coal to be charged in a fluidized bed boiler is switched, the management standard for the viscosity of the slurry is clarified, so that it can be quickly and appropriately performed. An object of the present invention is to provide a method for managing the viscosity of a slurry accompanying the change of coal types in a fluidized bed boiler capable of performing a corresponding operation to achieve a stable operation and reducing the burden on the operator.

本発明に係る流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法は、上述した目的を達成するため、以下の特徴点を備えている。
すなわち、本発明に係る流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法は、流動床ボイラにおいて投入する原料炭の種類を切り替えた際に、スラリの粘度を適切に管理するための方法であって、スラリの粘度を判断するステップと、スラリの粘度の判断結果に基づいて、スラリの粘度を適切な値に修正するステップと、を含むことを特徴とするものである。なお、スラリとは、微粉砕機を用いて、粗粉砕機で粉砕された石炭粉に水を混入しながら粉砕された石炭ペーストのことである。
In order to achieve the above-described object, the slurry viscosity management method associated with the coal type switching in the fluidized bed boiler according to the present invention has the following features.
That is, the viscosity management method of the slurry accompanying the coal type switching in the fluidized bed boiler according to the present invention is a method for appropriately managing the viscosity of the slurry when the type of the raw coal supplied in the fluidized bed boiler is switched. Thus, the method includes a step of determining the viscosity of the slurry, and a step of correcting the viscosity of the slurry to an appropriate value based on the determination result of the viscosity of the slurry. The slurry is a coal paste pulverized using a fine pulverizer while mixing water into the coal powder pulverized by the coarse pulverizer.

ここで、前記スラリの粘度を適切な値に修正するステップは、スラリの粘度に応じて水分補正を行うことにより、スラリの粘度を適切な値に修正することが好ましい。   Here, it is preferable that the step of correcting the viscosity of the slurry to an appropriate value corrects the viscosity of the slurry to an appropriate value by performing moisture correction according to the viscosity of the slurry.

また、前記スラリの粘度を適切な値に修正するステップは、スラリの粘度が所定値の範囲を下回った場合に含有水分量を減少させ、スラリの粘度が所定値の範囲を上回った場合に含有水分量を増加させることにより、スラリの粘度を適切な値に修正することが好ましい。   The step of correcting the viscosity of the slurry to an appropriate value includes reducing the water content when the slurry viscosity falls below a predetermined value range, and containing the slurry when the slurry viscosity exceeds a predetermined value range. It is preferable to correct the slurry viscosity to an appropriate value by increasing the amount of moisture.

また、前記スラリの粘度の所定値V(Pa・S)の範囲は、110<V<130であることが好ましい。
また、前記スラリの粘度を適切な値に修正するステップにおいて、水分補正許容値はプラスマイナス1%以内であることが好ましい。
The range of the predetermined value V (Pa · S) of the viscosity of the slurry is preferably 110 <V <130.
In the step of correcting the viscosity of the slurry to an appropriate value, the moisture correction allowable value is preferably within plus or minus 1%.

本発明に係る流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法では、混練機へ供給するスラリの粘度を判断し、この判断結果に基づいてスラリの粘度を適切な値に修正する。具体的には、スラリの粘度が所定値の範囲を下回った場合に含有水分量を減少させ、スラリの粘度が所定値の範囲を上回った場合に含有水分量を増加させることにより、スラリの粘度を適切な値に修正する。これにより、スラリの粘度の管理基準が明確なものとなり、流動床ボイラにおける炭種切替に応じて、迅速かつ適切な対応操作を行って安定した操業を図ることができるとともに、オペレータの負担を軽減することができる。   In the method for managing the viscosity of the slurry accompanying the switching of the coal type in the fluidized bed boiler according to the present invention, the viscosity of the slurry supplied to the kneader is determined, and the viscosity of the slurry is corrected to an appropriate value based on the determination result. Specifically, the viscosity of the slurry is decreased by decreasing the water content when the slurry viscosity falls below a predetermined value range and by increasing the water content when the slurry viscosity exceeds a predetermined value range. Correct to an appropriate value. As a result, the management standard of slurry viscosity becomes clear, and stable operation can be achieved by promptly and appropriately responding operations according to the coal type switching in the fluidized bed boiler, while reducing the burden on the operator. can do.

以下、図面を参照して、本発明に係る流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法の実施形態を説明する。
本発明の実施形態に係る流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法は、例えば、加圧流動床複合発電方式(PFBC:Pressurized Fluidized Bed Combustion)を採用した発電プラントに適用される。
Hereinafter, with reference to the drawings, an embodiment of a slurry viscosity management method associated with coal type switching in a fluidized bed boiler according to the present invention will be described.
The slurry viscosity management method associated with coal type switching in the fluidized bed boiler according to the embodiment of the present invention is applied to, for example, a power plant that employs a pressurized fluidized bed combined power generation (PFBC) system.

この発電プラントは、コンプレッサからの燃焼空気でボイラ内を加圧状態に保ちながら、石灰石を流動媒体(BM:ベッドマテリアル)とする流動層内にCWP(Coal Water Paste:石炭と石灰石と水とを混ぜた燃料)を投入することにより、CWPを効率よく燃焼させることができる。また、流動媒体に石灰石を採用することにより火炉内で脱硫することができるので、硫黄酸化物(SOx)の発生を低く抑えることができる。さらに、流動層燃焼は、燃焼温度が低く抑えられる(約870℃)ため、窒素酸化物(NOx)の発生を低く抑えることができる。   In this power plant, CWP (Coal Water Paste: coal, limestone, and water) is placed in a fluidized bed using limestone as a fluid medium (BM: bed material) while the boiler is kept pressurized with combustion air from the compressor. CWP can be burned efficiently by introducing the mixed fuel). Moreover, since it can desulfurize in a furnace by employ | adopting limestone as a fluid medium, generation | occurrence | production of sulfur oxide (SOx) can be suppressed low. Furthermore, in fluidized bed combustion, the combustion temperature is kept low (about 870 ° C.), so that the generation of nitrogen oxides (NOx) can be kept low.

<加圧流動床ボイラを備えた発電プラント>
図2は、本発明の実施形態に係る流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法を適用する発電プラントの概略構成を示す模式図である。
本実施形態に係る流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法を適用する発電プラントは、図2に示すように、2つのボイラ10,20を備えており、ボイラ10,20の火炉11,21内にCWPを投入して燃焼させ、熱交換により発生した蒸気を高圧タービン31、中圧タービン32、および低圧タービン33に導いて各タービンを回転させることにより、発電機41を駆動して電力を発生させる。低圧タービン33を回転させた後の蒸気は、復水器50により復水され、再びボイラ10,20内へ導かれる。
<Power plant with pressurized fluidized bed boiler>
FIG. 2 is a schematic diagram illustrating a schematic configuration of a power plant to which a slurry viscosity management method associated with coal type switching in a fluidized bed boiler according to an embodiment of the present invention is applied.
As shown in FIG. 2, the power plant to which the slurry viscosity management method associated with the coal type switching in the fluidized bed boiler according to the present embodiment includes two boilers 10 and 20, and a furnace for the boilers 10 and 20. The CWP is injected into the cylinders 11 and 21 and combusted, and steam generated by heat exchange is guided to the high-pressure turbine 31, the intermediate-pressure turbine 32, and the low-pressure turbine 33 to rotate the turbines, thereby driving the generator 41. To generate power. The steam after rotating the low-pressure turbine 33 is condensed by the condenser 50 and guided again into the boilers 10 and 20.

また、ボイラ10,20内で発生した燃焼ガスをガスタービン34に導いてガスタービン34を回転させることにより、発電機42を駆動して電力を発生させる。さらに、燃焼ガスは、ガスタービン34に同軸に連結されたコンプレッサ35を駆動して、燃焼空気をボイラ10,20へ供給するようになっている。   Further, the combustion gas generated in the boilers 10 and 20 is guided to the gas turbine 34 to rotate the gas turbine 34, thereby driving the generator 42 to generate electric power. Further, the combustion gas drives a compressor 35 connected coaxially to the gas turbine 34 to supply combustion air to the boilers 10 and 20.

ボイラ10,20へ燃料を供給する燃料供給系統は、石炭を供給する石炭ホッパ61と、石炭ホッパ61から供給される石炭を粗粉砕する粗粉砕機62と、粗粉砕機62で粉砕された石炭粉を分級する分級機63と、分級機63で分級された石炭粉を中継する中継ホッパ64と、粗粉砕機62で粉砕された石炭粉に水を混入しながらさらに粉砕する微粉砕機65と、石灰石を供給する石灰石ホッパ66と、水、粗粉砕機62で粉砕された石炭粉、微粉砕機65で水を混入しながら粉砕された石炭ペースト、および石灰石を混練する混練機67と、混練機67で混練されたCWPを一時貯留する燃料タンク68と、燃料タンク68から火炉11,21内へCWPを送出する燃料ポンプ69とを備えている。   The fuel supply system that supplies fuel to the boilers 10 and 20 includes a coal hopper 61 that supplies coal, a coarse pulverizer 62 that roughly pulverizes the coal supplied from the coal hopper 61, and coal pulverized by the coarse pulverizer 62. A classifier 63 for classifying the powder, a relay hopper 64 for relaying the coal powder classified by the classifier 63, and a fine pulverizer 65 for further pulverizing the coal powder pulverized by the coarse pulverizer 62 while mixing water. A limestone hopper 66 for supplying limestone, a kneader 67 for kneading water, coal powder pulverized by the coarse pulverizer 62, coal paste pulverized while mixing water by the fine pulverizer 65, and limestone; A fuel tank 68 for temporarily storing the CWP kneaded by the machine 67 and a fuel pump 69 for sending the CWP from the fuel tank 68 into the furnaces 11 and 21 are provided.

2機のボイラ10,20は、それぞれ圧力容器12,22と、圧力容器12,22内に収容された火炉11,21とを備えており、火炉11,21内には水・蒸気管71が挿通されている。復水器50からの水・蒸気管71は、まずB火炉21内に導かれ、続いてA火炉11内へ導かれて熱交換が行われ、汽水分離器72へ導かれて蒸気と水とが分離される。汽水分離器72からの水・蒸気管71は、A火炉11、B火炉21、A火炉11の順で引き回された後、高圧タービン31へ導かれる。   The two boilers 10 and 20 include pressure vessels 12 and 22 and furnaces 11 and 21 accommodated in the pressure vessels 12 and 22, respectively, and a water / steam pipe 71 is provided in the furnaces 11 and 21. It is inserted. The water / steam pipe 71 from the condenser 50 is first led into the B furnace 21 and then into the A furnace 11 for heat exchange, and is led to the brackish water separator 72 for steam and water. Are separated. The water / steam pipe 71 from the brackish water separator 72 is led in the order of the A furnace 11, the B furnace 21, and the A furnace 11, and then led to the high pressure turbine 31.

高圧タービン31は、水・蒸気管71から供給される蒸気により回転する。高圧タービン31を回転させた後の蒸気は、再びB火炉21に導かれて再熱され、中圧タービン32に導かれて中圧タービン32を回転させ、さらに低圧タービン33に導かれて低圧タービン33を回転させる。高圧タービン31、中圧タービン32、および低圧タービン33には、同軸に発電機41が接続されており、各タービン31,32,33が回転することにより発電機41が駆動されて発電が行われる。   The high-pressure turbine 31 is rotated by the steam supplied from the water / steam pipe 71. The steam after rotating the high-pressure turbine 31 is guided again to the B furnace 21 and reheated, guided to the intermediate-pressure turbine 32 to rotate the intermediate-pressure turbine 32, and further guided to the low-pressure turbine 33 to be low-pressure turbine. 33 is rotated. A generator 41 is coaxially connected to the high-pressure turbine 31, the intermediate-pressure turbine 32, and the low-pressure turbine 33, and the generator 41 is driven by the rotation of the turbines 31, 32, and 33 to generate power. .

低圧タービン33を回転させた蒸気は、復水器50に導かれて復水される。復水器50内には、冷却水配管51が配設されている。この冷却水配管51には、深層取水した海水が導かれ、この海水は復水器50内で熱交換を行った後に、再び海中に放流される。   The steam that has rotated the low-pressure turbine 33 is led to the condenser 50 to be condensed. A cooling water pipe 51 is disposed in the condenser 50. The cooling water pipe 51 is guided by deep-sea water, and the sea water is subjected to heat exchange in the condenser 50 and then discharged again into the sea.

復水器50の下流側には、復水ポンプ73、第1給水加熱器74a、第2給水加熱器74b、第3給水加熱器74c、脱気器75、給水ポンプ76、第5給水加熱器74d、第6給水加熱器74eが配設されており、復水の加熱および脱気を行うようになっている。また、復水器50とボイラ10,20との間の給水配管77は、後に詳述する排ガス系統に設けられた2つの排熱回収熱交換器91,93を通過し、排ガスとの間で熱交換を行うようになっている。   On the downstream side of the condenser 50, a condensate pump 73, a first feed water heater 74a, a second feed water heater 74b, a third feed water heater 74c, a deaerator 75, a feed pump 76, and a fifth feed water heater. 74d and the 6th feed water heater 74e are arrange | positioned, and the condensate is heated and deaerated. A water supply pipe 77 between the condenser 50 and the boilers 10 and 20 passes through two exhaust heat recovery heat exchangers 91 and 93 provided in an exhaust gas system, which will be described in detail later. Heat exchange is performed.

A火炉11およびB火炉21の上部には排ガス配管81が連通接続されており、各火炉11,21内で発生した燃焼ガスをガスタービン34へ供給するようになっている。また、各火炉11,21とガスタービン34との間には、脱硝を行うための無触媒脱硝装置82a,82b、煤塵を除去するための1次サイクロン83a,83bおよび2次サイクロン84a,84bが配設されている。なお、1次サイクロン83a,83bおよび2次サイクロン84a,84bで収集した煤塵は、灰クーラ85a,85b,86a,86bを経て灰処理装置へ送出される。   An exhaust gas pipe 81 is connected to the upper parts of the A furnace 11 and the B furnace 21 so that the combustion gas generated in each of the furnaces 11 and 21 is supplied to the gas turbine 34. Further, between each furnace 11, 21 and the gas turbine 34, there are non-catalytic denitration devices 82a, 82b for performing denitration, primary cyclones 83a, 83b and secondary cyclones 84a, 84b for removing dust. It is arranged. The dust collected by the primary cyclones 83a and 83b and the secondary cyclones 84a and 84b is sent to the ash treatment apparatus via the ash coolers 85a, 85b, 86a, and 86b.

ガスタービン34には、発電機42およびコンプレッサ35が同軸に接続されており、ガスタービン34が回転することにより、発電機42を駆動して発電を行うとともに、コンプレッサ35を駆動して燃焼空気をボイラ10,20内へ送り込むようになっている。
コンプレッサ35には、プラント起動時にコンプレッサ35を駆動してボイラ10,20へ燃焼空気を送るための起動用モータ43が取り付けられている。
ガスタービン34を回転させた後の排ガスは、第1の排熱回収熱交換器91、脱硝を行うための脱硝装置92、第2の排熱回収熱交換器93、バグフィルタ94を経て、煙突95より大気中へ放散される。
A generator 42 and a compressor 35 are coaxially connected to the gas turbine 34. When the gas turbine 34 rotates, the generator 42 is driven to generate power, and the compressor 35 is driven to generate combustion air. It feeds into the boilers 10 and 20.
A starter motor 43 for driving the compressor 35 and sending combustion air to the boilers 10 and 20 when the plant is started is attached to the compressor 35.
The exhaust gas after rotating the gas turbine 34 passes through a first exhaust heat recovery heat exchanger 91, a denitration device 92 for performing denitration, a second exhaust heat recovery heat exchanger 93, and a bag filter 94, and then a chimney. 95 is released into the atmosphere.

A火炉11およびB火炉21には、循環するBMを一時貯留するためのBMタンク13,23が連通接続されている。なお、図2に示す例では、BMタンク13,23を各ボイラ10,20毎に1機ずつ設けているが、BMタンク13,23を各ボイラ10,20毎に2機ずつ設けてもよい。また、ボイラ10,20の上部には非常用温水タンク14が配設されている。この非常用温水タンク14は、ボイラ給水系統が停止した際に、ボイラ10,20内の残燃料が燃焼することにより水壁管等が損傷することを防止するための装置で、水頭圧によりボイラ10,20へ給水するようになっている。   BM tanks 13 and 23 for temporarily storing BM to be circulated are connected to A furnace 11 and B furnace 21 in communication. In the example shown in FIG. 2, one BM tank 13, 23 is provided for each boiler 10, 20, but two BM tanks 13, 23 may be provided for each boiler 10, 20. . An emergency hot water tank 14 is disposed above the boilers 10 and 20. This emergency hot water tank 14 is a device for preventing water wall pipes and the like from being damaged by combustion of residual fuel in the boilers 10 and 20 when the boiler water supply system is stopped. Water is supplied to 10 and 20.

A火炉11およびB火炉21の下部には、各火炉11,21内に析出した塵芥を回収するための塵芥回収管111,121が接続されており、回収された塵芥は灰クーラ112,122を経て灰処理装置へ送出される。また、A火炉11およびB火炉21には、ボイラ10,20の起動時等に各火炉11,21内を加熱するための軽油が供給されるようになっている。   Dust collection pipes 111 and 121 for collecting the dust deposited in each of the furnaces 11 and 21 are connected to the lower part of the A furnace 11 and the B furnace 21, and the collected dust passes through the ash coolers 112 and 122. Then, it is sent to the ash treatment device. The A furnace 11 and the B furnace 21 are supplied with light oil for heating the furnaces 11 and 21 when the boilers 10 and 20 are started.

<スラリの粘度管理方法>
次に、本発明の実施形態に係る流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法について説明する。図1は、本発明の実施形態に係る流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法の手順を示すフローチャートである。
<Slurry viscosity control method>
Next, a description will be given of a slurry viscosity management method associated with coal type switching in a fluidized bed boiler according to an embodiment of the present invention. FIG. 1 is a flowchart showing a procedure of a slurry viscosity management method associated with coal type switching in a fluidized bed boiler according to an embodiment of the present invention.

図1に示すように、炭種切替に伴って変化するスラリの粘度を管理するには、まず初めにスラリの粘度に関する情報を取得する(S1)。
そして、スラリの粘度が所定の下限値(例えば110Pa・s)を下回っているか否かを判断し(S2)、スラリの粘度が所定の下限値(例えば110Pa・s)を下回っている場合には、スラリの含有水分量を減少させて水分補正を行うことにより、スラリの粘度を適切な値に修正して(S3)、継続監視を行う。
As shown in FIG. 1, in order to manage the viscosity of the slurry that changes as the coal type is switched, information on the viscosity of the slurry is first acquired (S1).
Then, it is determined whether or not the viscosity of the slurry is below a predetermined lower limit value (for example, 110 Pa · s) (S2), and if the viscosity of the slurry is below a predetermined lower limit value (for example, 110 Pa · s) Then, by correcting the water content by reducing the water content of the slurry, the viscosity of the slurry is corrected to an appropriate value (S3), and continuous monitoring is performed.

一方、スラリの粘度が所定の下限値(例えば110Pa・s)を下回っていない場合には、スラリの粘度が所定の上限値(例えば130Pa・s)を上回っているか否かを判断し(S4)、スラリの粘度が所定の上限値(例えば130Pa・s)を上回っている場合には、スラリの含有水分量を増加させて水分補正を行うことにより、スラリの粘度を適切な値に修正して(S5)、継続監視を行う。   On the other hand, if the viscosity of the slurry is not lower than a predetermined lower limit (for example, 110 Pa · s), it is determined whether the viscosity of the slurry is higher than a predetermined upper limit (for example, 130 Pa · s) (S4). If the slurry viscosity exceeds a predetermined upper limit (for example, 130 Pa · s), the slurry viscosity is corrected to an appropriate value by increasing the moisture content of the slurry and performing moisture correction. (S5) Continuous monitoring is performed.

なお、スラリの粘度V(Pa・s)が所定の範囲内(例えば110<V<130)である場合には、適正な運転状態であるため、上述した操作を行うことなく継続監視を行う。   In addition, when the viscosity V (Pa · s) of the slurry is within a predetermined range (for example, 110 <V <130), the operation is in an appropriate state, and therefore continuous monitoring is performed without performing the above-described operation.

<監視項目>
次に、本実施形態における具体的な監視項目について説明する。
本実施形態では、スラリの粘度目標値V(Pa・s)を110<V<130の範囲とする。すなわち、スラリの粘度目標値Vが下限値を下回った場合には、燃焼効率が低下する。一方、スラリの粘度目標値Vが上限値を上回った場合には、CWPの搬送効率が低下する。
この際、急激な変化によるボイラ運転管理の攪乱を防止するという点で、水分補正許容値はプラスマイナス1%以内であることが好ましい。なお、スラリの粘度に関する値は、例えばサンプリング調査を行うことにより取得することができる。また、上述した監視項目における具体的な数値は一例であり、流動床ボイラの規模や運転状況等に応じて適宜変更して実施できることは勿論である。
<Monitor item>
Next, specific monitoring items in the present embodiment will be described.
In the present embodiment, the target viscosity value V (Pa · s) of the slurry is in the range of 110 <V <130. That is, when the slurry viscosity target value V falls below the lower limit value, the combustion efficiency decreases. On the other hand, when the target viscosity value V of the slurry exceeds the upper limit value, the CWP conveyance efficiency decreases.
At this time, it is preferable that the moisture correction allowable value is within plus or minus 1% in order to prevent disturbance of boiler operation management due to a sudden change. In addition, the value regarding the viscosity of slurry can be acquired by conducting a sampling survey, for example. Moreover, the specific numerical value in the monitoring item mentioned above is an example, and of course, it can change and implement suitably according to the scale of the fluidized bed boiler, the operating condition, etc.

本発明に係る流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法は、例えば、発電プラント等に用いる加圧流動床ボイラにおいて炭種を切り替えることによりスラリの粘度が変化した場合に、流動床ボイラを安定して運転する際に使用することができる。   The slurry viscosity management method associated with the coal type switching in the fluidized bed boiler according to the present invention is, for example, when the viscosity of the slurry is changed by switching the coal type in a pressurized fluidized bed boiler used in a power plant or the like. It can be used when the boiler is operated stably.

本発明の実施形態に係る流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the viscosity management method of the slurry accompanying the coal type switching in the fluidized bed boiler which concerns on embodiment of this invention. 本発明の実施形態に係る流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法を適用する発電プラントの概略構成を示す模式図である。It is a mimetic diagram showing the schematic structure of the power plant which applies the viscosity management method of the slurry accompanying the coal type change in the fluidized bed boiler concerning the embodiment of the present invention.

符号の説明Explanation of symbols

10,20 ボイラ
11,21 火炉
12,22 圧力容器
13,23 BMタンク
14 非常用温水タンク
31 高圧タービン
32 中圧タービン
33 低圧タービン
34 ガスタービン
35 コンプレッサ
41,42 発電機
43 起動用モータ
50 復水器
51 冷却水配管
61 石炭ホッパ
62 粗粉砕機
63 分級機
64 中継ホッパ
65 微粉砕機
66 石灰石ホッパ
67 混練機
68 燃料タンク
69 燃料ポンプ
71 水・蒸気管
72 汽水分離器
73 復水ポンプ
74a〜74e 給水加熱器
75 脱気器
76 給水ポンプ
77 給水配管
81 排ガス配管
82a,82b 無触媒脱硝装置
83a,83b 1次サイクロン
84a,84b 2次サイクロン
85a,85b,86a,86b 灰クーラ
91,93 排熱回収熱交換器
92 脱硝装置
94 バグフィルタ
95 煙突
111,121 塵芥回収管
112,122 灰クーラ
DESCRIPTION OF SYMBOLS 10,20 Boiler 11,21 Furnace 12,22 Pressure vessel 13,23 BM tank 14 Emergency hot water tank 31 High pressure turbine 32 Medium pressure turbine 33 Low pressure turbine 34 Gas turbine 35 Compressor 41, 42 Generator 43 Start motor 50 Condensate Equipment 51 Cooling water piping 61 Coal hopper 62 Coarse pulverizer 63 Classifier 64 Relay hopper 65 Fine pulverizer 66 Limestone hopper 67 Kneading machine 68 Fuel tank 69 Fuel pump 71 Water / steam pipe 72 Brackish water separator 73 Condensate pumps 74a-74e Feed water heater 75 Deaerator 76 Feed water pump 77 Feed water pipe 81 Exhaust gas pipe 82a, 82b Non-catalytic denitration device 83a, 83b Primary cyclone 84a, 84b Secondary cyclone 85a, 85b, 86a, 86b Ash cooler 91, 93 Waste heat recovery Heat exchanger 92 Denitration equipment 4 bag filter 95 chimney 111, 121 dust collecting pipe 112,122 ash cooler

Claims (2)

流動床ボイラにおいて投入する原料炭の種類を切り替えた際に、スラリの粘度を適切に管理するための方法であって、
スラリの粘度を判断するステップと、
スラリの粘度の判断結果に基づいて、スラリの粘度を適切な値に修正するステップとよりなり、
前記スラリの粘度を適切な値に修正するステップは、
スラリの粘度が所定値V(Pa・S)として、110<V<130の範囲を下回った場合に含有水分量を減少させ、スラリの粘度が所定値の範囲を上回った場合に含有水分量を増加させることにより、スラリの粘度を適切な値に修正することを特徴とする流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法。
A method for appropriately managing the viscosity of a slurry when the type of coking coal to be input in a fluidized bed boiler is switched.
Determining the viscosity of the slurry;
Based on the determination result of the viscosity of the slurry, the step of correcting the viscosity of the slurry to an appropriate value,
The step of correcting the slurry viscosity to an appropriate value includes:
When the viscosity of the slurry is less than the range of 110 <V <130 as the predetermined value V (Pa · S), the water content is decreased, and when the viscosity of the slurry exceeds the range of the predetermined value, the water content is decreased. A method for managing the viscosity of a slurry accompanying a change in coal type in a fluidized bed boiler , wherein the viscosity of the slurry is corrected to an appropriate value by increasing the viscosity.
前記スラリの粘度を適切な値に修正するステップにおいて、水分補正許容値はプラスマイナス1%以内であることを特徴とする請求項1に記載の流動床ボイラにおける炭種切替に伴うスラリの粘度管理方法。   2. The slurry viscosity management according to the change of coal type in a fluidized bed boiler according to claim 1, wherein in the step of correcting the slurry viscosity to an appropriate value, a moisture correction allowable value is within ± 1%. Method.
JP2006347088A 2006-12-25 2006-12-25 Slurry viscosity control method with coal type switching in fluidized bed boiler Active JP5127220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006347088A JP5127220B2 (en) 2006-12-25 2006-12-25 Slurry viscosity control method with coal type switching in fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006347088A JP5127220B2 (en) 2006-12-25 2006-12-25 Slurry viscosity control method with coal type switching in fluidized bed boiler

Publications (2)

Publication Number Publication Date
JP2008157546A JP2008157546A (en) 2008-07-10
JP5127220B2 true JP5127220B2 (en) 2013-01-23

Family

ID=39658646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006347088A Active JP5127220B2 (en) 2006-12-25 2006-12-25 Slurry viscosity control method with coal type switching in fluidized bed boiler

Country Status (1)

Country Link
JP (1) JP5127220B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5202560B2 (en) * 2010-03-15 2013-06-05 中国電力株式会社 Operation method and operation management device for pressurized fluidized bed combined power plant during multi-coal combustion test
JP5399457B2 (en) * 2011-10-21 2014-01-29 中国電力株式会社 Coal / water paste manufacturing method at power generation unit startup

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185815U (en) * 1984-05-18 1985-12-09 三菱重工業株式会社 Slurry fuel combustion equipment
JP3616110B2 (en) * 1992-09-30 2005-02-02 バブコック日立株式会社 Pasty fuel manufacturing method and apparatus

Also Published As

Publication number Publication date
JP2008157546A (en) 2008-07-10

Similar Documents

Publication Publication Date Title
Komaki et al. Operation experiences of oxyfuel power plant in Callide oxyfuel project
EP2431579B1 (en) Multipurpose thermal power plant system
CN102016241A (en) Oxyfuel combusting boiler system and a method of generating power by using the boiler system
US20090297993A1 (en) Method of and System For Generating Power By Oxyfuel Combustion
EP2304366A2 (en) Method of and system for generating power by oxyfuel combustion
US20120276492A1 (en) Method of and Arrangement for Recovering Heat From Bottom Ash
JP4771865B2 (en) Furnace bed temperature and bed height management method associated with coal type switching in a fluidized bed boiler
JP5448858B2 (en) Oxy-combustion power plant and its operation method
JP5092114B2 (en) In-furnace fluidity management method for fluidized media accompanying coal type switching in fluidized bed boiler
EP2990617A1 (en) Apparatus and method for controlling at least one operational parameter of a plant
CN101713334A (en) Peak load management by combined cycle power augmentation using peaking cycle exhaust heat recovery
JP5127220B2 (en) Slurry viscosity control method with coal type switching in fluidized bed boiler
Tumsa et al. Effects of coal characteristics to performance of a highly efficient thermal power generation system based on pressurized oxy‐fuel combustion
JP4443481B2 (en) Fluid medium clogging diagnosis system
JP2008014505A (en) Viscosity management method of cwp (coal water paste) accompanying change of kind of coal in fluidized bed boiler
JP5094043B2 (en) Management method of fly ash ash quantity by changing coal type in fluidized bed boiler
JP4514684B2 (en) Stop control method for pressurized fluidized bed plant
JP5465747B2 (en) Start-up method of pressurized fluidized bed combined power plant
JP4794472B2 (en) How to deal with cyclone clogging
JP4919635B2 (en) Bed density optimization method and bed density optimization system of fluidized medium in pressurized fluidized bed boiler
JP2006266259A (en) Fluidized bed combined power generation system
JP5807903B2 (en) Heat recovery utilization method and heat recovery utilization system of intermittent operation type waste incineration facility
JP5202560B2 (en) Operation method and operation management device for pressurized fluidized bed combined power plant during multi-coal combustion test
JP2006070872A (en) System and method for operation control of thermal power generation plant
DE102004050465B3 (en) Fluid heating/vaporizing method for driving gas turbine`s power generation device, involves passing hot gas with dust via regenerators to hold dust in one regenerator, and passing cold and pure gas via other regenerator to form hot pure gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121030

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5127220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250