JP5448858B2 - Oxy-combustion power plant and its operation method - Google Patents

Oxy-combustion power plant and its operation method Download PDF

Info

Publication number
JP5448858B2
JP5448858B2 JP2010001655A JP2010001655A JP5448858B2 JP 5448858 B2 JP5448858 B2 JP 5448858B2 JP 2010001655 A JP2010001655 A JP 2010001655A JP 2010001655 A JP2010001655 A JP 2010001655A JP 5448858 B2 JP5448858 B2 JP 5448858B2
Authority
JP
Japan
Prior art keywords
exhaust gas
line
combustion
boiler
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010001655A
Other languages
Japanese (ja)
Other versions
JP2011141075A (en
Inventor
豊 武田
隆弘 丸本
建三 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2010001655A priority Critical patent/JP5448858B2/en
Publication of JP2011141075A publication Critical patent/JP2011141075A/en
Application granted granted Critical
Publication of JP5448858B2 publication Critical patent/JP5448858B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Landscapes

  • Chimneys And Flues (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Air Supply (AREA)

Description

本発明は火力発電プラントに係わり、特に、排ガスに含まれるCO2を効率良く回収するに好適な酸素燃焼発電プラント及びその運転方法に関する。 The present invention relates to a thermal power plant, and more particularly to an oxyfuel power plant suitable for efficiently recovering CO 2 contained in exhaust gas and an operation method thereof.

石炭等の化石燃料を用いる火力発電プラントの排ガスに含まれるCO2を効率良く回収するため、空気から酸素(O2)と窒素(N2)とを分離し、N2を含まない燃焼用ガスを用いることで、排ガス中のCO2濃度を理論的に90%以上に高める酸素燃焼発電プラントが研究開発されている。 Combustion gas that separates oxygen (O 2 ) and nitrogen (N 2 ) from air and does not contain N 2 in order to efficiently recover CO 2 contained in exhaust gas from thermal power plants using fossil fuels such as coal Oxygen combustion power plants that theoretically increase the CO 2 concentration in the exhaust gas to 90% or more by using the above are being researched and developed.

純酸素燃焼では火炎温度が高くなりすぎて材料が損傷するので、排ガス(主成分CO2)の一部を再循環して酸素と混合し、酸素濃度を20%〜40%程度に希釈して火炎温度を抑制する方法が採られる。この酸素燃焼発電プラントは、高酸素濃度ガスを供給するための空気分離装置(ASU)やCO2回収装置の圧縮機等に多大な動力を必要とするため、発電効率が低下するといった課題がある。 In pure oxygen combustion, since the flame temperature becomes too high and the material is damaged, a part of the exhaust gas (main component CO 2 ) is recirculated and mixed with oxygen, and the oxygen concentration is diluted to about 20% to 40%. A method of suppressing the flame temperature is adopted. Since this oxyfuel power plant requires a large amount of power for an air separation device (ASU) for supplying a high oxygen concentration gas, a compressor of a CO 2 recovery device, etc., there is a problem that power generation efficiency is lowered. .

ところで、酸素燃焼でも空気燃焼と同様に、燃料中の硫黄(S)成分が燃焼すると三酸化硫黄(SO3)が生成する。SO3は煙道中で水と反応して硫酸となり、金属材料の腐食原因となる。排ガスをボイラに再循環させる酸素燃焼発電プラントでは、ガス中成分が濃縮するので、特にダクトや石炭搬送ライン等、酸露点以下となる領域において、SO3に起因する腐食の問題が顕著となりやすく、その除去が重要である。 By the way, in the oxyfuel combustion, as in the air combustion, sulfur trioxide (SO 3) is generated when the sulfur (S) component in the fuel is combusted. SO 3 reacts with water in the flue to become sulfuric acid, which causes corrosion of the metal material. In an oxyfuel power plant that recirculates exhaust gas to the boiler, gas components are concentrated, so corrosion problems due to SO 3 are likely to be prominent, especially in areas where the acid dew point is below the duct, coal transport line, etc. Its removal is important.

従来の空気燃焼発電プラントにおいて、排ガス中の煤塵捕集効率を向上させるため集塵装置(乾式電気集塵機)の前流側で熱回収して排ガス温度を低減し、回収した熱を脱硫装置(FGD)の後流で排ガスの再加熱に供する技術が特開平11−179147号公報等に開示されている。このような技術によれば、排ガス熱回収器内の伝熱チューブの付着灰と電気集塵機(EP)内の煤塵にSO3を吸着させて除去することができる。 In a conventional air-fired power plant, in order to improve the dust collection efficiency in the exhaust gas, heat is recovered at the upstream side of the dust collector (dry electrostatic precipitator) to reduce the exhaust gas temperature, and the recovered heat is desulfurized (FGD). A technique for reheating the exhaust gas in the downstream is disclosed in JP-A-11-179147. According to such a technique, SO 3 can be adsorbed and removed by the adhering ash of the heat transfer tube in the exhaust gas heat recovery device and the dust in the electric dust collector (EP).

『新エネルギー・産業技術総合開発機構、平成17年度クリーンコールテクノロジー推進事業、既設微粉炭火力発電プラントへの酸素燃焼技術の適用に関する調査』報告書には、酸素燃焼発電プラントにおいて、このような排ガスの熱回収−再加熱が行われ、排ガス再加熱器の後段から排ガスを再循環させ、CO2を回収できるようにした例が開示されている。 The “New Energy and Industrial Technology Development Organization, 2005 Clean Coal Technology Promotion Project, Survey on Application of Oxyfuel Technology to Existing Pulverized Coal-Fired Power Plants” reports such exhaust gases in oxyfuel power plants. An example is disclosed in which heat recovery and reheating are performed, and exhaust gas is recirculated from the rear stage of the exhaust gas reheater so that CO 2 can be recovered.

また、特開2006−308269号公報には空気燃焼発電プラントにおいて、排ガス熱回収器の排熱を蒸気タービン復水の再加熱器の熱源に利用してプラントの発電効率を上げる技術が示されている。   Japanese Patent Application Laid-Open No. 2006-308269 discloses a technique for increasing the power generation efficiency of a plant using an exhaust heat from an exhaust gas heat recovery unit as a heat source of a reheater for steam turbine condensate in an air combustion power plant. Yes.

特開平11−179147号公報Japanese Patent Laid-Open No. 11-179147 特開2006−308269号公報JP 2006-308269 A

新エネルギー・産業技術総合開発機構編「平成17年度クリーンコールテクノロジー推進事業、既設微粉炭火力発電プラントへの酸素燃焼技術の適用に関する調査報告書」平成18年3月発行New Energy and Industrial Technology Development Organization, “2005 Clean Coal Technology Promotion Project, Survey Report on Application of Oxyfuel Technology to Existing Pulverized Coal-Fired Power Plant” published in March 2006

しかし、前記非特許文献1記載の内容では、排ガス再加熱器の後段でガス温度が高くなるため、CO2回収効率の点では最適とはいえない。
特許文献2に記載の発明では、蒸気タービンに蒸気が供給されないボイラ起動時からしばらく経過した段階では、復水の再加熱に回収熱が利用できない。したがって、排ガス熱回収器が空焚きの状態となって熱損傷しないように配慮する必要がある。
However, the contents described in Non-Patent Document 1 are not optimal in terms of CO 2 recovery efficiency because the gas temperature increases after the exhaust gas reheater.
In the invention described in Patent Document 2, the recovered heat cannot be used for reheating the condensate after a while has elapsed since the start of the boiler in which no steam is supplied to the steam turbine. Therefore, it is necessary to consider that the exhaust gas heat recovery device is in an empty state and is not thermally damaged.

酸素燃焼発電プラントは、定常的な発電時には酸素燃焼を行い、再循環されない排ガスは全量CO2回収装置に供給される。
上記酸素燃焼発電プラントの起動は空気燃焼で行われ、それからしばらくの間は、酸素を希釈する再循環ガスの量、再循環系統の温度等の条件が十分な水準に達するまで、定常時とは異なる運用条件で運転を行う必要がある。ここで、再循環されない排ガスはCO回収装置に供給しないで、煙突から系外に排出される。このとき、排ガス中の残留SO3が低温のまま紫煙(SO3フューム)として放出されないように配慮する必要がある。また、排ガスから回収した排熱を有効に利用しようとする場合、運転条件に応じた適切な切り換え運用が必要である。
The oxyfuel power generation plant performs oxyfuel combustion at the time of steady power generation, and exhaust gas that is not recirculated is supplied to the entire CO 2 recovery device.
The oxyfuel power plant is activated by air combustion, and for a while, until the conditions such as the amount of recirculation gas for diluting oxygen and the temperature of the recirculation system reach a sufficient level, It is necessary to operate under different operating conditions. Here, the exhaust gas that is not recirculated is discharged from the chimney out of the system without being supplied to the CO 2 recovery device. At this time, it is necessary to consider that residual SO 3 in the exhaust gas is not released as purple smoke (SO 3 fume) at a low temperature. In addition, in order to effectively use the exhaust heat recovered from the exhaust gas, an appropriate switching operation according to the operation condition is necessary.

本発明は、酸素燃焼発電プラントにおいて、起動から定常運転に至るまで、プラント構成部材のSO3による腐食や紫煙放出の問題がなく、排熱を有効利用して発電効率の低下を抑制することを課題とするものである。 In the oxyfuel power plant, there is no problem of SO 3 corrosion or purple smoke emission of plant components from start-up to steady operation, and effective use of exhaust heat suppresses a decrease in power generation efficiency. It is to be an issue.

本発明の上記課題は、次の解決手段により解決される。
請求項1記載の発明は、石炭又は石炭以外の燃料を燃焼させるボイラ(17)と、脱硝装置(18)、集塵装置(20)および脱硫装置(22)を含むボイラ(17)の燃焼排ガスを浄化する装置をそれぞれ前流側から後流側に順次設けた排ガス流路である排ガス処理ライン(14)と、ボイラ(17)の給水ライン(68)と、ボイラ(17)に燃焼用ガスとして用いる酸素を供給する酸素供給ライン(4,8)と、ボイラ(17)の燃焼用ガスに用いる空気と前記酸素供給ライン(4,8)から分岐した分岐酸素供給ライン(6)より供給される酸素とを混合して得られる一次用燃焼ガスと共に石炭を含む燃料をボイラ(17)に供給する一次用燃焼ガス供給ライン(66)と、ボイラ(17)の燃焼用ガスに用いる空気を酸素供給ライン(4,8)からの酸素と混合して燃焼ガスとしてボイラ(17)に供給する二次用燃焼ガス供給ライン(67)と、ボイラ排ガス中のCO2を回収する排ガス流路であるCO2回収ライン(69)と、集塵装置(20)より後流側の排ガス処理ライン(14)から分岐して燃焼排ガスをボイラ(17)の二次用燃焼用ガスとして戻すために二次用燃焼ガス供給ライン(67)へ接続する排ガス再循環ライン(34)と、浄化処理した燃焼排ガスを煙突(27)へ向けて流す排ガス処理ライン(14)の後流側に設けた排ガス流路である排出ライン(45)とを備えた酸素燃焼発電プラントであって、排ガス処理ライン(14)には、集塵装置(20)より排ガス流路前流側にある燃焼排ガスの熱を回収する熱交換器(36)を有する排ガス熱回収器(50)と脱硫装置(22)の排ガス流路後流側に設けた燃焼排ガスを再加熱する排ガス再加熱器(23)を備え、前記CO2回収ライン(69)は、脱硫装置(22)のある排ガス流路後流側であって、排ガス再加熱器(23)の排ガス流路前流側の排ガス処理ライン(14)から分岐して設けられ、前記給水ライン(68)には、ボイラ給水を加熱する給水加熱器(56)を設け、該給水加熱器(56)と排ガス熱回収器(50)との間及び前記給水加熱器(56)と排ガス再加熱器(23)との間に熱媒体が循環する熱媒体循環ライン(61)を設け、熱媒体循環ライン(61)は排ガス熱回収器(50)で回収した熱の供給先となる排ガス再加熱器(23)と給水加熱器(56)とを流れる熱媒体の流量をそれぞれ調節可能に構成したことを特徴とする酸素燃焼発電プラントである。
The above-described problems of the present invention are solved by the following solution means.
The invention according to claim 1 is a combustion exhaust gas of a boiler (17) including a boiler (17) for burning coal or fuel other than coal, a denitration device (18), a dust collector (20), and a desulfurization device (22). The combustion gas is disposed in the exhaust gas treatment line (14), which is an exhaust gas flow path provided sequentially from the upstream side to the downstream side, the water supply line (68) of the boiler (17), and the boiler (17). Supplied from an oxygen supply line (4, 8) for supplying oxygen to be used as air, a branch oxygen supply line (6) branched from the oxygen supply line (4, 8) and air used for combustion gas of the boiler (17) A primary combustion gas supply line (66) for supplying a fuel containing coal together with a primary combustion gas obtained by mixing oxygen to the boiler (17), and air used for the combustion gas of the boiler (17) to oxygen Supply rye And mixed with oxygen from the (4,8) boiler as a combustion gas (17) to supply secondary combustion gas supply line (67), CO 2 is a gas flow path for recovering the CO 2 of the boiler flue gas Combustion for secondary to branch from the recovery line (69) and the exhaust gas treatment line (14) downstream from the dust collector (20) to return the combustion exhaust gas as secondary combustion gas for the boiler (17) The exhaust gas recirculation line (34) connected to the gas supply line (67) and the exhaust gas flow path provided on the downstream side of the exhaust gas treatment line (14) for flowing the purified combustion exhaust gas toward the chimney (27) An oxyfuel combustion power plant equipped with a discharge line (45), in the exhaust gas treatment line (14), heat exchange for recovering the heat of the combustion exhaust gas on the upstream side of the exhaust gas flow path from the dust collector (20) Exhaust gas heat having a vessel (36) Osamuki (50) and desulfurization unit (22) an exhaust gas reheater for reheating the flue gas which is provided in the exhaust gas line downstream side includes a (23), the CO 2 recovery line (69) is desulfurizer ( 22) is provided downstream from the exhaust gas treatment line (14) on the downstream side of the exhaust gas flow path with the exhaust gas reheater (23), and the water supply line (68) includes And a feed water heater (56) for heating the boiler feed water, and between the feed water heater (56) and the exhaust gas heat recovery device (50) and between the feed water heater (56) and the exhaust gas reheater (23), A heat medium circulation line (61) through which the heat medium circulates is provided, and the heat medium circulation line (61) includes an exhaust gas reheater (23) serving as a supply destination of heat recovered by the exhaust gas heat recovery device (50). The flow rate of the heat medium flowing through the feed water heater (56) can be adjusted individually. This is an oxyfuel power plant characterized by being constructed.

請求項2記載の発明は、前記排ガス再循環ライン(34)は、排ガス再加熱器(23)より後流側の排ガス処理ライン(14)から分岐して設けられていることを特徴とする請求項1に記載の酸素燃焼発電プラントである。   The invention according to claim 2 is characterized in that the exhaust gas recirculation line (34) is branched from the exhaust gas treatment line (14) on the downstream side of the exhaust gas reheater (23). The oxyfuel combustion power plant according to Item 1.

請求項3記載の発明は、前記排ガス再循環ライン(34)は、ボイラ(17)に燃料を搬送する一次用燃焼ガス供給ライン(66)と燃料を搬送しない二次用燃焼ガス供給ライン(67)に分岐して接続していることを特徴とする請求項1に記載の酸素燃焼発電プラントである。   According to a third aspect of the present invention, the exhaust gas recirculation line (34) includes a primary combustion gas supply line (66) for conveying fuel to the boiler (17) and a secondary combustion gas supply line (67) for not conveying fuel. The oxyfuel combustion power plant according to claim 1, wherein the oxyfuel power plant is branched and connected to ().

請求項4記載の発明は、前記排ガス再循環ライン(34)は、脱硫装置(22)より前流側の排ガス処理ライン(14)と脱硫装置(22)より後流側の排ガス処理ライン(14)から分岐してそれぞれ設けられた排ガス再循環ライン(34b)と排ガス再循環ライン(34a)からなり、排ガス再循環ライン(34a)は、ボイラ(17)に燃料を搬送する一次用燃焼ガス供給ライン(66)に接続し、排ガス再循環ライン(34b)は、ボイラ(17)に燃料を搬送しない二次用燃焼ガス供給ライン(67)に接続していることを特徴とする請求項1に記載の酸素燃焼発電プラントである。   According to a fourth aspect of the present invention, the exhaust gas recirculation line (34) includes an exhaust gas treatment line (14) on the upstream side of the desulfurization device (22) and an exhaust gas treatment line (14 on the downstream side of the desulfurization device (22)). ) Are provided with an exhaust gas recirculation line (34b) and an exhaust gas recirculation line (34a) provided respectively, and the exhaust gas recirculation line (34a) supplies primary combustion gas for conveying fuel to the boiler (17). The exhaust gas recirculation line (34b) connected to the line (66) is connected to a secondary combustion gas supply line (67) that does not convey fuel to the boiler (17). The oxyfuel combustion power plant described.

請求項5記載の発明は、請求項1記載の酸素燃焼発電プラントの運転方法であって、
プラント起動時は、ボイラ(17)の燃焼用ガスには二次用燃焼ガス供給ライン(67)から供給される空気を使用して空気燃焼を行いながら、ボイラ排ガスは排ガス処理ライン(14)から排出ライン(45)に流し、同時に排ガス熱回収器(50)で回収した熱を熱媒体循環ライン(61)により排ガス再加熱器(23)に流し、プラント定常運転時には、ボイラ(17)の燃焼用ガスとして酸素供給ライン(4,6,8)からの酸素と排ガス再循環ライン(34)からの排ガスとの混合ガスを使用して酸素燃焼を行いながら、排ガス処理ライン(14)からの排ガスをCO2回収ライン(69)に流して排ガスからCO2を回収し、同時に排ガス熱回収器(50)で回収した熱を熱媒体循環ライン(61)により給水加熱器(56)に流すことを特徴とする酸素燃焼発電プラントの運転方法である。
Invention of Claim 5 is the operating method of the oxyfuel power plant of Claim 1, Comprising:
At the time of starting the plant, the boiler exhaust gas is discharged from the exhaust gas treatment line (14) while performing air combustion using the air supplied from the secondary combustion gas supply line (67) as the combustion gas of the boiler (17). At the same time, the heat recovered by the exhaust gas heat recovery unit (50) is supplied to the exhaust line reheater (23) by the heat medium circulation line (61), and the boiler (17) is combusted during normal plant operation. Exhaust gas from the exhaust gas treatment line (14) while performing oxygen combustion using a mixed gas of oxygen from the oxygen supply line (4, 6, 8) and exhaust gas from the exhaust gas recirculation line (34) as a working gas To the CO 2 recovery line (69) to recover CO 2 from the exhaust gas. At the same time, the heat recovered by the exhaust gas heat recovery device (50) flows to the feed water heater (56) through the heat medium circulation line (61). It is the operating method of the oxyfuel combustion power plant characterized by this.

請求項6記載の発明は、プラント起動時からボイラ(17)が設定した第1の温度条件に達するまでは、石炭以外の燃料を用いて空気燃焼により昇温させながらボイラ排ガスは排ガス処理ライン(14)から排出ライン(45)へ流し、その後、燃焼用ガスとして、徐々に空気の量を減じつつ、酸素供給ライン(4,6,8)からの酸素と排ガス再循環ライン(34)からの排ガスの量を増加させることで排ガス再循環ライン(34)内の排ガスを昇温させ、その過程において、石炭以外の燃料と石炭との混焼を開始し、ボイラ(17)が設定した第2の温度条件に達したら、燃料を石炭に切り換えて、ボイラ(17)の昇温を継続し、設定した第3の温度条件に達したら定常運転に移行し、前記熱媒体循環ライン(61)で回収した熱の供給先を排ガス再加熱器(23)側から給水加熱器(56)側に切り換え、排ガス中のCO濃度が90%以上になると、ボイラ排ガスの排出先を排出ライン(45)からCO2回収ライン(69)に切り換えることを特徴とする請求項5記載の酸素燃焼発電プラントの運転方法である。 According to the sixth aspect of the invention, the boiler exhaust gas is heated by air combustion using a fuel other than coal from the time of starting the plant until the first temperature condition set by the boiler (17) is reached. 14) from the oxygen supply line (4, 6, 8) and the exhaust gas recirculation line (34) while gradually reducing the amount of air as a combustion gas. By increasing the amount of exhaust gas, the temperature of the exhaust gas in the exhaust gas recirculation line (34) is increased, and in the process, mixed combustion of fuel other than coal and coal is started, and the boiler (17) sets the second When the temperature condition is reached, the fuel is switched to coal, and the temperature of the boiler (17) is continuously increased. When the third temperature condition is reached, the operation is shifted to the steady operation and recovered by the heat medium circulation line (61). Donated heat Previously switched from the exhaust gas reheater (23) side to the feed water heater (56) side, when the CO 2 concentration in the exhaust gas becomes 90% or more, CO 2 recovery line discharge destination of the boiler flue gas from the discharge line (45) The method according to claim 5, wherein the operation method is switched to (69).

請求項1,5記載の発明によれば、排ガスの廃熱をボイラ発電設備の給水加熱に利用でき、設備全体の有効な熱利用を図ることができる。さらに従来において低圧タービンのスチームの一部を抽出し、給水加熱の熱源としていたものが不要になり、タービン駆動力に使用できるため、酸素燃焼システムによる発電効率の低下を抑制できる。同時に、起動時の空気燃焼におけるSO3による紫煙発生を防止できる。 According to invention of Claim 1, 5, the waste heat of waste gas can be utilized for the feed water heating of boiler power generation equipment, and the effective heat utilization of the whole equipment can be aimed at. Furthermore, since a part of the steam of the low-pressure turbine that has been conventionally extracted as a heat source for heating the feedwater is no longer needed and can be used for the turbine driving force, it is possible to suppress a decrease in power generation efficiency due to the oxyfuel combustion system. At the same time, generation of purple smoke due to SO 3 in air combustion at startup can be prevented.

より具体的には次のような効果がある。
(1)排ガス熱回収器50により集塵装置20の入口の排ガス温度を酸露点以下になる90℃に下げることでSO3の高効率捕集が可能になり、後段の酸腐食防止及び煙突27からの紫煙削減に効果がある。
More specifically, there are the following effects.
(1) The exhaust gas heat recovery device 50 reduces the exhaust gas temperature at the inlet of the dust collector 20 to 90 ° C., which is lower than the acid dew point, thereby enabling highly efficient collection of SO 3. Effective in reducing purple smoke from

また、プラント起動時のボイラ排ガス処理ライン14の排ガス温度を90℃に維持できないときは、熱媒体循環ライン61を経由してボイラ熱回収器50と排ガス再加熱器23を接続することでボイラ熱回収器50による排ガス冷却を行い、ガス状SO3が大気放出されることを防止できる効果がある。 Further, when the exhaust gas temperature of the boiler exhaust gas treatment line 14 at the time of starting the plant cannot be maintained at 90 ° C., the boiler heat recovery device 50 and the exhaust gas reheater 23 are connected via the heat medium circulation line 61 to thereby generate boiler heat. There is an effect that the exhaust gas cooling by the recovery unit 50 can be performed and gaseous SO 3 can be prevented from being released into the atmosphere.

(2)給水用加熱器56と排ガス熱回収器50の間で熱交換を行うことで、それまでボイラ給水加熱に利用していたタービン52からの抽気を低減でき、これによりタービン52への蒸気量が増加し、タービン出力増加につながり、酸素燃焼システムによる発電効率低下を抑制できる。 (2) By exchanging heat between the feed water heater 56 and the exhaust gas heat recovery unit 50, it is possible to reduce the bleed from the turbine 52 that has been used for heating the boiler feed water until then. The amount increases, leading to an increase in turbine output, and a reduction in power generation efficiency due to the oxyfuel combustion system can be suppressed.

請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、排ガス再循環ライン34は長くなるが、排ガス再加熱器23で昇温された排ガスをボイラ17に再循環させることができるため、プラント起動後、図5の(2)〜(3)の循環ライン昇温モードにおいて、排ガス再循環ライン34の昇温に要する時間を短縮できる利点がある。   According to the invention described in claim 2, in addition to the effect of the invention described in claim 1, the exhaust gas recirculation line 34 becomes longer, but the exhaust gas heated by the exhaust gas reheater 23 is recirculated to the boiler 17. Therefore, there is an advantage that the time required for raising the temperature of the exhaust gas recirculation line 34 can be shortened in the circulation line temperature raising mode of (2) to (3) in FIG.

請求項3記載の発明によれば、請求項1記載の発明の効果に加えて、排ガス再循環ライン34から一次用燃焼ガス供給ライン66と二次用燃焼ガス供給ライン67に分岐して、ボイラ17に排ガス再循環ガスを搬送するので、燃焼搬送用と排ガス再循環ガス内の未燃焼燃料をボイラに供給できる。   According to the invention described in claim 3, in addition to the effect of the invention described in claim 1, the boiler is branched from the exhaust gas recirculation line 34 into the primary combustion gas supply line 66 and the secondary combustion gas supply line 67, and the boiler. Since the exhaust gas recirculation gas is conveyed to 17, the unburned fuel for combustion conveyance and in the exhaust gas recirculation gas can be supplied to the boiler.

請求項4記載の発明によれば、請求項1記載の発明の効果に加えて、大部分の酸素燃焼排ガスを脱硫装置22の前流側の排ガス処理ライン14から分岐して抜き出すため、脱硫装置22での処理ガス量が低減でき、脱硫装置22のコンパクト化、脱硫剤の低減による低ランニングコスト化などが図れる。さらに脱硫装置22出口で排ガス温度を90℃から50℃まで下げなくて済むため、排ガスの熱損失を大幅に防止できる。一次用排ガス再循環ライン65を流れるガスは脱硫装置22を通過することで硫黄分が除去されているため、該ライン65の酸露点による腐食を防止できるメリットがある。   According to the fourth aspect of the present invention, in addition to the effect of the first aspect of the invention, most of the oxyfuel combustion exhaust gas branches off from the exhaust gas treatment line 14 on the upstream side of the desulfurization device 22 and is thus extracted. The amount of the processing gas at 22 can be reduced, and the desulfurization apparatus 22 can be made compact and the running cost can be reduced by reducing the desulfurization agent. Furthermore, since it is not necessary to lower the exhaust gas temperature from 90 ° C. to 50 ° C. at the outlet of the desulfurization device 22, heat loss of the exhaust gas can be largely prevented. Since the gas flowing through the primary exhaust gas recirculation line 65 passes through the desulfurization device 22 and the sulfur content is removed, there is an advantage that corrosion due to the acid dew point of the line 65 can be prevented.

請求項6記載の発明によれば、請求項5記載の発明の効果に加えて、、COC濃度90%以上の排ガスを得ることで、排ガス中のCOC濃度が高いほどCOCの回収が容易であり、COC貯留やEOR(Enhanced Oil Recovery)への適用に有利となる。 According to the invention described in claim 6, in addition to the effect of the invention described in claim 5, by obtaining an exhaust gas having a CO C concentration of 90% or more, the higher the CO C concentration in the exhaust gas, the more CO C can be recovered. It is easy and is advantageous for application to CO C storage and EOR (Enhanced Oil Recovery).

本発明の実施例1の酸素燃焼プラントのフロー図である。It is a flowchart of the oxyfuel combustion plant of Example 1 of this invention. 本発明の実施例2の酸素燃焼プラントのフロー図である。It is a flowchart of the oxyfuel combustion plant of Example 2 of this invention. 本発明の実施例3の酸素燃焼プラントのフロー図である。It is a flowchart of the oxyfuel combustion plant of Example 3 of this invention. 本発明の実施例1〜3に係る排ガス熱回収器の概念図である。It is a key map of the exhaust gas heat recovery device concerning Examples 1-3 of the present invention. 本発明に係る運転方法の図である。It is a figure of the driving | running method which concerns on this invention. 本発明の比較例の酸素燃焼プラントのフロー図である。It is a flowchart of the oxyfuel combustion plant of the comparative example of this invention. 本発明の比較例の酸素燃焼プラントのフロー図である。It is a flowchart of the oxyfuel combustion plant of the comparative example of this invention.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本実施例の酸素燃焼発電プラントの構成を示す図である。主な構成は、ボイラ17に酸素を供給するための酸素供給ライン4とボイラ17から排出する燃焼排ガスを脱硝装置(SCR)18で脱硝し、予熱器(PH)19でボイラ17で使用する燃焼用空気を予熱し、電気集塵機(EP)20で集塵し、脱硫装置(FGD)22で脱硫する排ガス処理ライン14と、該排ガス処理ライン14から排ガス再加熱器23で再加熱して煙突27に浄化した排ガスを送る排出ライン45と、前記排ガス処理ライン14から分岐してボイラ17の二次用燃焼ガスとしてボイラ17のウインドボックス16へ二次用燃焼ガスライン67から混合器11を経由して循環される排ガス再循環ライン34と、該排ガス再循環ライン34への分岐点の後流側の排ガス処理ライン14から分岐したCO2回収ライン69と、ボイラ17で得られた蒸気51をタービン52で使用した後、復水器54で復水して再びボイラ17に給水する給水ライン68とを備えている。 FIG. 1 is a diagram showing the configuration of an oxyfuel power plant according to this embodiment. The main configuration is that the oxygen supply line 4 for supplying oxygen to the boiler 17 and the combustion exhaust gas discharged from the boiler 17 are denitrated by a denitration device (SCR) 18 and are used in the boiler 17 by a preheater (PH) 19. An exhaust gas treatment line 14 that preheats industrial air, collects dust with an electric dust collector (EP) 20, and desulfurizes with a desulfurization device (FGD) 22, and is reheated from the exhaust gas treatment line 14 with an exhaust gas reheater 23, and a chimney 27 An exhaust line 45 for sending purified exhaust gas to the boiler and a branch combustion gas line 67 from the exhaust gas treatment line 14 to the wind box 16 of the boiler 17 as a secondary combustion gas of the boiler 17 via the mixer 11 an exhaust gas recirculation line 34 to be circulated Te, and CO 2 recovery line 69 branched from the exhaust gas treatment line 14 downstream after the branch point to the exhaust gas recirculation line 34, After the steam 51 obtained in Ira 17 was used in the turbine 52, and a water supply line 68 for supplying water to the boiler 17 again and condensed in condenser 54.

酸素燃焼発電プラントの発電時におけるボイラ17で使用する石炭を含む燃料を酸素を利用して燃焼させる酸素燃焼時のボイラ17の運転時には、空気1は空気分離装置(ASU)2(これを酸素供給装置ともいう)により窒素3と酸素に分離される。分離した酸素は酸素供給ライン4を経由して予熱ヒータ5で予熱され、酸素供給ライン4の2つに分岐した一次酸素(燃料搬送用)ライン(これを分岐酸素供給ラインともいう)6と二次酸素(燃焼用)ライン8にそれぞれ設けられた流量調節弁7と流量調節弁10によって分配される。   At the time of operation of the boiler 17 at the time of oxyfuel combustion in which fuel containing coal used in the boiler 17 at the time of power generation of the oxyfuel combustion power plant is burned using oxygen, the air 1 is an air separation device (ASU) 2 (this is oxygen supply) Is also separated into nitrogen 3 and oxygen. The separated oxygen is preheated by a preheater 5 via an oxygen supply line 4 and is divided into two primary oxygen (fuel transfer) lines (also referred to as branched oxygen supply lines) 6 and 2 branched into two oxygen supply lines 4. The secondary oxygen (combustion) line 8 is distributed by a flow rate control valve 7 and a flow rate control valve 10 provided respectively.

一方、ボイラ17の起動時には燃料は空気を用いる燃焼(以後、空気燃焼という)が行われるが、該空気燃焼では一定条件に達するまで流量調節弁7と流量調節弁10は全閉され、ボイラ17へ燃料の二次燃焼用の燃焼ガス(空気)を供給するために設けられた二次用燃焼ガス供給ライン67の入口付近にある流量調節弁49が開き、再循環ガス用ブロア35により空気40が二次酸素(燃焼用)ライン8に配置された混合器11に供給される。また、二次用燃焼ガス供給ライン67には前記排ガス再循環ライン34からの燃焼排ガスが供給される。詳しい運転モードの切り換えについては、後述する。   On the other hand, when the boiler 17 is started, combustion using air is performed as fuel (hereinafter referred to as air combustion). In the air combustion, the flow rate control valve 7 and the flow rate control valve 10 are fully closed until a certain condition is reached. The flow control valve 49 near the inlet of the secondary combustion gas supply line 67 provided to supply the combustion gas (air) for secondary combustion of the fuel to the air is opened, and the air 40 is supplied by the recirculation gas blower 35. Is supplied to a mixer 11 arranged in a secondary oxygen (combustion) line 8. Further, the combustion exhaust gas from the exhaust gas recirculation line 34 is supplied to the secondary combustion gas supply line 67. Detailed operation mode switching will be described later.

一次酸素(燃料搬送用)ライン6に供給される一次酸素は混合器9に送られ、該混合器9には二次用燃焼ガス供給ライン67に設置される予熱器19の前流側で分岐した一次用燃焼ガス供給ライン66から一次用燃焼ガス用ブロア44により再循環ガスの一部も搬送されるので混合器9で一次酸素は燃焼排ガスと混合され、次いで石炭粉砕器ミル13に供給される。ミル13では石炭12が粉砕されて微粉炭となり、得られた微粉炭はミル13に供給された一次酸素と燃焼排ガスとの混合ガスによって、乾燥されると同時に一次用燃焼ガス供給ライン66内を気流搬送されてバーナ15に供給される。   The primary oxygen supplied to the primary oxygen (fuel transfer) line 6 is sent to the mixer 9, and the mixer 9 is branched on the upstream side of the preheater 19 installed in the secondary combustion gas supply line 67. Part of the recirculated gas is also conveyed from the primary combustion gas supply line 66 by the primary combustion gas blower 44, so that the primary oxygen is mixed with the combustion exhaust gas in the mixer 9 and then supplied to the coal pulverizer mill 13. The In the mill 13, the coal 12 is pulverized into pulverized coal, and the obtained pulverized coal is dried by the mixed gas of primary oxygen and combustion exhaust gas supplied to the mill 13 and at the same time, in the primary combustion gas supply line 66. The air is conveyed and supplied to the burner 15.

また、二次酸素(燃焼用)ライン8に送られる二次酸素は混合器11に送られ、該混合器11には排ガス再循環ライン34と二次用燃焼ガス供給ライン67を経由して再循環ガスの一部も供給されるので混合器11で二次酸素は再循環ガスと混合された後に二次燃焼用酸化剤としてウィンドボックス16に導入後、バーナ15の二次燃焼気体供給口に供給される。   Further, the secondary oxygen sent to the secondary oxygen (combustion) line 8 is sent to the mixer 11, and recirculated to the mixer 11 via the exhaust gas recirculation line 34 and the secondary combustion gas supply line 67. Since a part of the circulating gas is also supplied, the secondary oxygen is mixed with the recirculated gas in the mixer 11 and then introduced into the wind box 16 as the secondary combustion oxidant and then into the secondary combustion gas supply port of the burner 15. Supplied.

石炭12と排ガス再循環ガスで希釈された一次酸素と二次酸素はボイラ17で燃料を酸素燃焼させる。このときの全酸素比(完全燃焼に必要な酸素量を1としたときの燃焼に必要な酸素量)は1以上である。石炭中の炭素分はほとんどが二酸化炭素(CO2)になり、水素、窒素、硫黄等の揮発分を含む石炭では、これらの揮発分が燃焼気体中の酸素により酸化され、窒素酸化物(NOx)、二酸化硫黄(SO2)、三酸化硫黄(SO3)等の酸性ガスを発生する。 The primary oxygen and the secondary oxygen diluted with the coal 12 and the exhaust gas recirculation gas cause the fuel to be oxygen-combusted in the boiler 17. The total oxygen ratio at this time (the amount of oxygen necessary for combustion when the amount of oxygen necessary for complete combustion is 1) is 1 or more. Most of the carbon content in the coal is carbon dioxide (CO 2 ). In coal containing volatile components such as hydrogen, nitrogen and sulfur, these volatile components are oxidized by oxygen in the combustion gas, and nitrogen oxides (NOx). ), Sulfur dioxide (SO 2 ), sulfur trioxide (SO 3 ), and other acidic gases.

前記CO2、NOx、SO2、SO3等の成分と粉塵を含む酸素燃焼排ガスは、ボイラ17の後流の排ガス処理ライン14に配置した複数の浄化機器で処理される。即ち、酸素燃焼排ガスは脱硝装置(SCR)18でNOxが除去され、その後、予熱器(PH)19で、排ガス再循環ライン34からの再循環ガスと熱交換して、約350℃から200〜140℃に冷却され、次いで排ガス熱回収器50で約90℃まで降温される。約90℃の酸素燃焼排ガスは電気集塵装置(EP)20で煤塵とSO3が除去される。その後、排ガスは湿式脱硫装置(FGD)22でSO2が除去されて、排ガス温度が約50℃になる。続いて再循環ガスライン34にある流量調節弁33の開度を調整して、排ガス量の約50〜75%を再循環ガスライン34から抜き出して予熱器(PH)19に送って昇温させ、次いで混合機9とミル13を経由してバーナ15に送られ、また混合器11を経由してウィンドボックス16に再循環されるようになっている。 Oxygen combustion exhaust gas containing components such as CO 2 , NOx, SO 2 , SO 3 and dust is processed by a plurality of purification devices arranged in the exhaust gas processing line 14 downstream of the boiler 17. That is, the NOx is removed from the oxyfuel combustion exhaust gas by the denitration device (SCR) 18, and then the preheater (PH) 19 exchanges heat with the recirculation gas from the exhaust gas recirculation line 34, so After cooling to 140 ° C., the exhaust gas heat recovery unit 50 lowers the temperature to about 90 ° C. Soot and SO 3 are removed from the oxygen combustion exhaust gas at about 90 ° C. by an electric dust collector (EP) 20. Thereafter, SO 2 is removed from the exhaust gas by a wet desulfurization apparatus (FGD) 22, and the exhaust gas temperature becomes about 50 ° C. Subsequently, the opening degree of the flow control valve 33 in the recirculation gas line 34 is adjusted, and about 50 to 75% of the exhaust gas amount is extracted from the recirculation gas line 34 and sent to the preheater (PH) 19 to raise the temperature. Then, it is sent to the burner 15 via the mixer 9 and the mill 13, and recirculated to the wind box 16 via the mixer 11.

上述のように排ガス再循環ガスは一次用燃焼ガス供給ライン66から燃料搬送用として利用できるだけでなく、二次用燃焼ガス供給ライン67から排ガス再循環ガス内の未燃焼燃料としてボイラ17に供給して燃焼させることができる。
なお、EP20とFGD22の間の排ガス処理ライン14には排ガスをスムーズに後流側に送り出すための排ガス用ブロア21を配置している。
As described above, the exhaust gas recirculation gas can be used not only for fuel transfer from the primary combustion gas supply line 66 but also supplied to the boiler 17 as unburned fuel in the exhaust gas recirculation gas from the secondary combustion gas supply line 67. Can be burned.
Note that an exhaust gas blower 21 for smoothly sending exhaust gas to the downstream side is disposed in the exhaust gas treatment line 14 between the EP 20 and the FGD 22.

また、ボイラ17での燃料の酸素燃焼時は、排出ライン45の流量調節弁30を閉じ、該流量調節弁30の前流側の排出ライン45から分岐したCO2回収ライン69の流量調節弁31を開いて、ボイラ燃焼排ガスはCO2回収ライン69に送られ、残りの燃焼排ガスは、冷却機32を経て圧縮機24に導入される。冷却機32では燃焼排ガスが30℃まで冷却及び脱水され、圧縮機24では0.518〜50MPaの範囲で圧縮される。その後、冷却機25により燃焼排ガス中に含まれるCO2は−56.6℃〜31.1℃の範囲で冷却液化され、分離器26で気体と液化CO2に分離される。液化されないガス29は煙突27にて排出される。液化されたCO2はCO2貯蔵容器28に貯蔵される。 Further, during the oxygen combustion of fuel in the boiler 17, the flow rate adjustment valve 30 of the discharge line 45 is closed, and the flow rate adjustment valve 31 of the CO 2 recovery line 69 branched from the discharge line 45 on the upstream side of the flow rate adjustment valve 30. The boiler combustion exhaust gas is sent to the CO 2 recovery line 69, and the remaining combustion exhaust gas is introduced into the compressor 24 through the cooler 32. The combustion exhaust gas is cooled and dehydrated to 30 ° C. in the cooler 32, and compressed in the range of 0.518 to 50 MPa in the compressor 24. Thereafter, CO 2 contained in the combustion exhaust gas is cooled and liquefied in the range of −56.6 ° C. to 31.1 ° C. by the cooler 25 and separated into gas and liquefied CO 2 by the separator 26. The gas 29 that is not liquefied is discharged from the chimney 27. The liquefied CO 2 is stored in the CO 2 storage container 28.

ボイラ17の内部には給水が通るチューブが多数並べられている。チューブ表面が伝熱面となってボイラ17で発生した燃焼熱を吸収して、チューブの中を通る給水を加熱する。加熱された給水はスチーム51となってタービン52に導かれる。タービン52は多数の羽根が円周方向に埋め込まれた構造となっており、スチーム51のエネルギーを受けてタービン52が回転し、軸に直結された発電機53を回す。タービン52から排出されたスチーム51は低温、低圧の蒸気となって復水器54に導入される。   A large number of tubes through which water is supplied are arranged inside the boiler 17. The surface of the tube serves as a heat transfer surface, absorbs the combustion heat generated in the boiler 17, and heats the feed water passing through the tube. The heated water supply becomes steam 51 and is guided to the turbine 52. The turbine 52 has a structure in which a large number of blades are embedded in the circumferential direction. The turbine 52 rotates by receiving the energy of the steam 51 and rotates a generator 53 directly connected to the shaft. The steam 51 discharged from the turbine 52 is introduced into the condenser 54 as low-temperature and low-pressure steam.

復水器54はタービン52の下部に設けられたタンクである。復水器54の中には冷却水(海水等)が通るチューブが多数配置されており、スチーム51はこれに触れて凝縮して水に戻る。スチーム51が水になると体積が著しく小さくなるので、復水器54中は真空になっている。水は復水器54の底に貯まる。復水器54からの水はボイラ17の給水に必要な20MPa程度までポンプ55で昇圧された後、ボイラ17に供給される。   The condenser 54 is a tank provided under the turbine 52. A large number of tubes through which cooling water (seawater or the like) passes are arranged in the condenser 54, and the steam 51 touches and condenses to return to water. When the steam 51 becomes water, the volume becomes extremely small, so that the condenser 54 is evacuated. Water is stored at the bottom of the condenser 54. The water from the condenser 54 is boosted by the pump 55 to about 20 MPa necessary for supplying water to the boiler 17 and then supplied to the boiler 17.

次にSO3除去技術に関して述べる。
排ガスに接する固体表面上に液滴硫酸が出現する温度を一般に酸露点と呼ぶが、SO3濃度が高まるほど酸露点温度が上昇し、SO3が1ppm含まれるだけでも露点が100℃を超え130℃になる。これは、SO3が存在すると硫酸のような不揮発性溶液の溶質を含む液滴は蒸気圧が減少するためである。排ガス温度を100℃未満にするとガス状SO3が液滴として捕集可能になる。したがって、排ガス熱回収器50により電気集塵機20の入口での排ガス温度を酸露点以下となる90℃まで低下させると、ガス状SO3が凝縮し、それが煤塵に吸着し、排ガス熱回収器50及び電気集塵機20で煤塵と共にSO3が除去できる。
Next, the SO 3 removal technique will be described.
The temperature at which droplet sulfuric acid appears on the solid surface in contact with the exhaust gas is generally referred to as the acid dew point. The higher the SO 3 concentration, the higher the acid dew point temperature. Even if 1 ppm of SO 3 is contained, the dew point exceeds 100 ° C. and 130 It becomes ℃. This is because in the presence of SO 3 , the vapor pressure of a droplet containing a non-volatile solution solute such as sulfuric acid is reduced. When the exhaust gas temperature is lower than 100 ° C., gaseous SO 3 can be collected as droplets. Therefore, when the exhaust gas heat recovery device 50 reduces the exhaust gas temperature at the inlet of the electrostatic precipitator 20 to 90 ° C., which is below the acid dew point, gaseous SO 3 is condensed and adsorbed on the dust, and the exhaust gas heat recovery device 50 In addition, the electric dust collector 20 can remove SO 3 together with dust.

本実施例に係る排ガス熱回収器50について図4を参照して説明する。
排ガス熱回収器50は熱回収する排ガスを導入する入口37と熱回収された排ガスを排出する出口41とを有する装置内に排ガスの熱を回収する伝熱管としてフィンチューブ36を配置し、フィンチューブ36の内部を熱媒体(水)39が流れ、排ガスと熱交換し、140〜200℃から90℃まで排ガス温度を下げる。
The exhaust gas heat recovery device 50 according to the present embodiment will be described with reference to FIG.
The exhaust gas heat recovery device 50 arranges a fin tube 36 as a heat transfer tube for recovering the heat of exhaust gas in an apparatus having an inlet 37 for introducing exhaust gas for heat recovery and an outlet 41 for discharging heat recovered exhaust gas. A heat medium (water) 39 flows inside 36 and exchanges heat with the exhaust gas to lower the exhaust gas temperature from 140 to 200 ° C. to 90 ° C.

排ガス熱回収器50内でフィンチューブ36に堆積した灰に90℃で気体から凝縮したSO3ミストが吸湿されて排ガス中からSO3が除去される。SO3吸着灰42は排ガス熱回収器50の下部の灰ホッパ50aに落下して系外に排出される。このときフィンチューブ36に堆積したSO3吸着灰はスートブロア38で高温高圧のスチームを吹き付けて落下させるものである。 The SO 3 mist condensed from the gas at 90 ° C. is absorbed by the ash deposited on the fin tube 36 in the exhaust gas heat recovery unit 50, and SO 3 is removed from the exhaust gas. The SO 3 adsorbed ash 42 falls on the ash hopper 50a below the exhaust gas heat recovery unit 50 and is discharged out of the system. At this time, the SO 3 adsorbed ash deposited on the fin tube 36 is sprayed and dropped by high temperature and high pressure steam by the soot blower 38.

前述のとおり、蒸気タービン52に蒸気が供給されない起動からしばらく経過した段階では、復水の再加熱には回収熱が利用できない。したがって、排ガス熱回収器50が空焚きの状態となって熱損傷しないように配慮する必要がある。また、プラントの起動時に空気を用いて燃料を燃焼させる空気燃焼を行うが、このとき排ガスの熱を排ガス熱回収器50により除熱しなかった場合には、排ガス中に含まれる強腐食性ガスである三酸化硫黄(SO3)は、電気集塵機20でほとんど除去されず、電気集塵機20より後流側のダクト配管の腐食の発生、さらに煙突27からの紫煙(SO3フューム)発生などの問題が生じる。 As described above, the recovered heat cannot be used for reheating the condensate after a while has elapsed since the start of when no steam is supplied to the steam turbine 52. Therefore, it is necessary to consider that the exhaust gas heat recovery device 50 is in an empty state and is not thermally damaged. In addition, air combustion is performed in which fuel is burned using air when the plant is started. At this time, if the heat of the exhaust gas is not removed by the exhaust gas heat recovery unit 50, the strongly corrosive gas contained in the exhaust gas is used. Certain sulfur trioxide (SO 3 ) is hardly removed by the electrostatic precipitator 20, causing problems such as corrosion of duct piping on the downstream side of the electrostatic precipitator 20 and generation of purple smoke (SO 3 fume) from the chimney 27. Arise.

従って、ボイラ燃料の空気燃焼時と酸素燃焼時で熱媒体の熱供給先を切り換えるため、排出ライン45に排ガス再加熱器23を設置し、給水加熱器56と排ガス再加熱器23にそれぞれ熱媒体を切り換えて循環可能にした熱媒体循環ライン61を設け、熱媒体循環ライン61に流量調節弁57、流量調節弁58、流量調節弁59、流量調節弁60を設置して排ガス熱回収器50からの熱媒体の流れが給水加熱器56と排ガス再加熱器23との間で切り換わるようにした。すなわち、排ガス熱回収器50から給水加熱器56への熱媒体循環ライン61には流量調節弁58を配置し、給水加熱器56から排ガス熱回収器50への熱媒体循環ライン61には流量調節弁57を配置し、排ガス熱回収器50から排ガス再加熱器23への熱媒体循環ライン61には流量調節弁60を配置し、排ガス再加熱器23から排ガス熱回収器50への熱媒体循環ライン61には流量調節弁59を配置している。また熱媒体循環ライン61には流量調節弁57と流量調節弁59を直列に配置し、されに流量調節弁58と流量調節弁60も熱媒体循環ライン61に直列に配置されているので、流量調節弁57〜60の開閉制御で熱媒体循環ライン61中の熱媒体は排ガス熱回収器50と給水加熱器56の間で循環されるか又は排ガス熱回収器50と排ガス再加熱器23の間で循環され、さらに場合によって給水加熱器56と排ガス再加熱器23の間で循環させることもできる。   Therefore, in order to switch the heat supply destination of the heat medium between the air combustion and the oxygen combustion of the boiler fuel, the exhaust gas reheater 23 is installed in the discharge line 45, and the heat medium is supplied to the feed water heater 56 and the exhaust gas reheater 23, respectively. A heat medium circulation line 61 that can be circulated by switching is provided, and a flow rate adjustment valve 57, a flow rate adjustment valve 58, a flow rate adjustment valve 59, and a flow rate adjustment valve 60 are installed in the heat medium circulation line 61 from the exhaust gas heat recovery device 50. The flow of the heat medium is switched between the feed water heater 56 and the exhaust gas reheater 23. That is, a flow rate adjusting valve 58 is disposed in the heat medium circulation line 61 from the exhaust gas heat recovery device 50 to the feed water heater 56, and a flow rate is adjusted in the heat medium circulation line 61 from the feed water heater 56 to the exhaust gas heat recovery device 50. A valve 57 is disposed, a flow rate adjusting valve 60 is disposed in the heat medium circulation line 61 from the exhaust gas heat recovery device 50 to the exhaust gas reheater 23, and the heat medium circulation from the exhaust gas reheater 23 to the exhaust gas heat recovery device 50. A flow control valve 59 is disposed in the line 61. Further, the flow rate adjustment valve 57 and the flow rate adjustment valve 59 are arranged in series in the heat medium circulation line 61, and the flow rate adjustment valve 58 and the flow rate adjustment valve 60 are also arranged in series in the heat medium circulation line 61. The heat medium in the heat medium circulation line 61 is circulated between the exhaust gas heat recovery unit 50 and the feed water heater 56 or between the exhaust gas heat recovery unit 50 and the exhaust gas reheater 23 by opening / closing control of the control valves 57 to 60. It is also possible to circulate between the feed water heater 56 and the exhaust gas reheater 23 in some cases.

ボイラ燃料の酸素燃焼時には、排ガス熱回収器50でガス温度120℃〜200℃の温度域で熱回収した熱媒体を給水用加熱器56に送り、ここで25〜50℃付近の温度域の復水を加熱する。このとき熱媒体循環ライン61の流量調節弁57と流量調節弁58は全開し、流量調節弁59と流量調節弁60は全閉し、熱媒体が排ガス再加熱器23へ流れないようにする。   At the time of oxyfuel combustion of boiler fuel, the heat medium recovered in the exhaust gas heat recovery device 50 in the temperature range of gas temperature 120 ° C. to 200 ° C. is sent to the feed water heater 56, where the temperature range near 25 ° C. to 50 ° C. is recovered. Heat the water. At this time, the flow rate adjustment valve 57 and the flow rate adjustment valve 58 of the heat medium circulation line 61 are fully opened, and the flow rate adjustment valve 59 and the flow rate adjustment valve 60 are fully closed, so that the heat medium does not flow to the exhaust gas reheater 23.

一方、プラント起動時における燃料の空気燃焼時には、給水加熱器56に復水が流れておらず、熱媒体循環ライン61内の熱媒体を排出ライン45に設置した排ガス再加熱器23に流すために、流量調節弁57、流量調節弁58を閉じ、流量調節弁59、流量調節弁60を開いて運用する。   On the other hand, during the air combustion of the fuel at the time of starting the plant, the condensate does not flow into the feed water heater 56, so that the heat medium in the heat medium circulation line 61 flows to the exhaust gas reheater 23 installed in the discharge line 45. The flow control valve 57 and the flow control valve 58 are closed, and the flow control valve 59 and the flow control valve 60 are opened for operation.

以下に図5を用いてプラント起動手順のシーケンスを説明する。図5には火炉温度と発電負荷の時間変化と手順項目を示している。   Hereinafter, the sequence of the plant starting procedure will be described with reference to FIG. FIG. 5 shows the time variation of the furnace temperature and the power generation load and the procedure items.

(1)点火:プラント起動時は天然ガスや軽油など着火性の良い石炭以外の燃料で空気燃焼を行い、ボイラ(火炉)17を昇温させる。このとき、一次酸素供給ライン6の流量調節弁7と二次酸素供給ライン8の流量調節弁10を閉じ、排ガス再循環ライン34の流量調節弁33を閉じ、二次用燃焼ガス供給ライン67に空気40を供給するため流量調節弁49を開く。また、排ガス中のCO2濃度は10数%のため、CO2回収ライン69の流量調節弁31を閉じ、排出ライン45の流量調節弁30を開き、排ガスが排ガス再加熱器23に流れるようにする。
また、排ガス熱回収器50の熱媒体は排ガス再加熱器23に流れるように熱媒体循環ライン61にある流量調節弁57、流量調節弁58を閉じ、流量調節弁59、流量調節弁60を開く。
(1) Ignition: At the time of starting the plant, air combustion is performed with a fuel other than coal with good ignitability such as natural gas and light oil, and the temperature of the boiler (furnace) 17 is increased. At this time, the flow control valve 7 of the primary oxygen supply line 6 and the flow control valve 10 of the secondary oxygen supply line 8 are closed, the flow control valve 33 of the exhaust gas recirculation line 34 is closed, and the secondary combustion gas supply line 67 is connected. In order to supply the air 40, the flow control valve 49 is opened. Further, since the CO 2 concentration in the exhaust gas is 10%, the flow rate control valve 31 of the CO 2 recovery line 69 is closed and the flow rate control valve 30 of the discharge line 45 is opened so that the exhaust gas flows to the exhaust gas reheater 23. To do.
Further, the flow rate control valve 57 and the flow rate control valve 58 in the heat medium circulation line 61 are closed and the flow rate control valve 59 and the flow rate control valve 60 are opened so that the heat medium of the exhaust gas heat recovery device 50 flows to the exhaust gas reheater 23. .

(2)燃焼モード変更:ボイラ17の火炉内温度が800℃に達したとき、排ガス再循環ライン34の流量調節弁33を開き、且つ一次酸素供給ライン6の流量調節弁7と二次酸素供給ライン8の流量調節弁10を開いて酸素をボイラ17に供給し、二次用燃焼ガス供給ライン67の流量調節弁49を除々に閉じながら空気40のボイラ17への供給量を除々に減らし、ボイラ17の燃料の空気燃焼を酸素燃焼に変更する。このときの燃料はまだ天然ガスや軽油である。これは、排ガス再循環ライン34及び石炭などの燃料搬送ラインである一次用燃焼ガス供給ライン66を100℃まで昇温させることで、凝縮水などで微粉炭や煤塵などが詰まることを防止するためである。 (2) Change of combustion mode: When the furnace temperature of the boiler 17 reaches 800 ° C., the flow rate control valve 33 of the exhaust gas recirculation line 34 is opened, and the flow rate control valve 7 of the primary oxygen supply line 6 and the secondary oxygen supply The flow control valve 10 of the line 8 is opened to supply oxygen to the boiler 17, and the supply amount of the air 40 to the boiler 17 is gradually reduced while the flow control valve 49 of the secondary combustion gas supply line 67 is gradually closed. The air combustion of the fuel in the boiler 17 is changed to oxyfuel combustion. The fuel at this time is still natural gas or light oil. In order to prevent clogging of pulverized coal or dust with condensed water or the like by raising the temperature of the exhaust gas recirculation line 34 and the primary combustion gas supply line 66 that is a fuel transfer line such as coal to 100 ° C. It is.

また、発電負荷開始と同時に、今まで排ガス熱回収器50と排ガス再加熱器23の間を流れていた熱媒体を排ガス熱回収器50と給水加熱器56の間に流れるように熱媒体循環ライン61にある流量調節弁57と流量調節弁58を開き、流量調節弁59と流量調節弁60を閉じる。   In addition, at the same time when the power generation load is started, the heat medium circulation line so that the heat medium that has flown between the exhaust gas heat recovery device 50 and the exhaust gas reheater 23 until now flows between the exhaust gas heat recovery device 50 and the feed water heater 56. The flow control valve 57 and the flow control valve 58 at 61 are opened, and the flow control valve 59 and the flow control valve 60 are closed.

(3)燃料変更:火炉温度が石炭が着火する温度900℃以上に達し、且つ石炭などの燃料搬送ラインである一次用燃焼ガス供給ライン66が100℃に達した後、石炭の供給を開始する。このとき、天然ガス供給量を除々に減らし、一方、石炭は供給量を除々に増加させて、火炉内の圧力や温度、排ガス量の変動を抑えながら燃料を切換え、石炭専焼にする。 (3) Fuel change: After the furnace temperature reaches a temperature at which coal is ignited at 900 ° C. or higher and the primary combustion gas supply line 66, which is a fuel transport line such as coal, reaches 100 ° C., the supply of coal is started. . At this time, the supply amount of natural gas is gradually reduced, while the supply amount of coal is gradually increased to switch the fuel while suppressing fluctuations in the pressure, temperature, and exhaust gas amount in the furnace, and to exclusively burn coal.

(4)CO2回収開始:排ガス中のCO2濃度が90%以上であることを確認後、CO2回収ライン69の流量調節弁31を開き、排出ライン45の流量調節弁30を閉じる。 (4) Start of CO 2 recovery: After confirming that the CO 2 concentration in the exhaust gas is 90% or more, the flow control valve 31 of the CO 2 recovery line 69 is opened, and the flow control valve 30 of the discharge line 45 is closed.

上記各ステップおよび各ステップ間を次のように表現することができる。
(1)〜(2):ボイラ昇温モード
(2)前後:空気/酸素混合燃焼モード(除々に再循環ガスを供給)
(2)〜(3):循環ライン昇温モード
(3)前後:天然ガス/石炭の混焼モード
(3)〜(4):石炭専燃モード
(4)前後:炉内圧静定モード
(4)〜 :定常酸素燃焼モード
The above steps and the steps can be expressed as follows.
(1)-(2): Boiler temperature increase mode (2) Before and after: Air / oxygen mixed combustion mode (recirculation gas is gradually supplied)
(2) to (3): Circulation line temperature raising mode (3) Before and after: Natural gas / coal mixed combustion mode (3) to (4): Coal combustion mode (4) Before and after: In-furnace pressure stabilization mode (4) ~: Steady oxygen combustion mode

次に実施例1の比較例として、従来の空気燃焼で用いられているSO3除去技術を酸素燃焼プラントに採用した場合について、図6と図7により説明する。
図6に示す比較例は排ガスの廃熱を有効利用するために、予熱器(PH)19の後流側に排ガス熱回収器50を設け、該排ガス熱回収器50で回収した熱を給水ライン68の給水加熱器56の熱源として利用し、図1に示す実施例1のように、排出ライン45に排ガス再加熱器23を設けていない例である。
Next, as a comparative example of Example 1, the case where the SO 3 removal technique used in conventional air combustion is employed in an oxyfuel combustion plant will be described with reference to FIGS. 6 and 7.
In the comparative example shown in FIG. 6, in order to effectively use the waste heat of the exhaust gas, an exhaust gas heat recovery device 50 is provided on the downstream side of the preheater (PH) 19, and the heat recovered by the exhaust gas heat recovery device 50 is supplied to the water supply line. This is an example in which the exhaust gas reheater 23 is not provided in the discharge line 45 as in the first embodiment shown in FIG.

SO3による紫煙問題は、ボイラ17の燃料の酸素燃焼時では大気放出する排ガスがほとんどゼロに近いため問題とならない。一方、ボイラ起動時に燃料の空気燃焼を開始して定常的な酸素燃焼に移行するまでのしばらくの間は、煙突27から排ガスを系外に放出するが、この図6に示す比較例の構成では、復水が給水加熱器56に流れていない発電前の段階では、排ガス熱回収器50では排ガス再加熱器23を設けていないために排ガスの除熱ができず、排ガス温度を90℃に下げることができない。このため、電気集塵機(EP)20でSO3を灰に吸着して十分に除去させることができず、そのままガス状のSO3がすり抜けて煙突27から大気放出され、ガス状SO3が凝縮してミスト状となって大気中で紫煙が発生するといった問題が生じる。 The problem of purple smoke due to SO 3 is not a problem because the exhaust gas released into the atmosphere is almost zero during the oxygen combustion of the boiler 17 fuel. On the other hand, the exhaust gas is discharged from the chimney 27 for a while from the start of air combustion of fuel at the start of the boiler to the transition to steady oxyfuel combustion. In the configuration of the comparative example shown in FIG. In the stage before power generation where the condensate does not flow into the feed water heater 56, the exhaust gas heat recovery unit 50 does not have the exhaust gas reheater 23, so the exhaust gas cannot be removed and the exhaust gas temperature is lowered to 90 ° C. I can't. For this reason, the electric dust collector (EP) 20 cannot sufficiently remove SO 3 by adsorbing it to the ash, and the gaseous SO 3 passes through as it is and is released into the atmosphere from the chimney 27, and the gaseous SO 3 is condensed. As a result, there is a problem that purple smoke is generated in the atmosphere.

また、図7に示す比較例はボイラ17からの燃焼排ガスを、熱媒体循環ライン61で接続した排ガス熱回収器50と排ガス再加熱器23の組み合わせにおいて、排ガス再加熱器23の後流側の排出ライン45から排ガス再循環ライン34及びCO2回収ライン69を分岐させた例を示す。 Further, in the comparative example shown in FIG. 7, in the combination of the exhaust gas heat recovery unit 50 and the exhaust gas reheater 23 in which the combustion exhaust gas from the boiler 17 is connected by the heat medium circulation line 61, An example in which the exhaust gas recirculation line 34 and the CO 2 recovery line 69 are branched from the discharge line 45 is shown.

ボイラ17における燃料の酸素燃焼時の排ガスの水分は約30%と高く、水分を除去するために、CO2回収ライン69の冷却機32で30℃程度まで除熱する必要がある。これは、凝縮水に排ガス中のCO2が溶けて炭酸水となって圧縮機24の腐食を引き起こすためである。本比較例のような構成であると、圧縮機24へ導入する前に、排ガスは排ガス再加熱器23で50℃から90℃まで昇温した後、水分を除去するために、冷却機32で30℃程度まで再度冷却する必要がある。このように排ガスを昇温後に再冷却することになるので、エネルギー損失が大きく、プラント効率の低下を招く。 The moisture content of the exhaust gas at the time of oxygen combustion of fuel in the boiler 17 is as high as about 30%, and it is necessary to remove heat to about 30 ° C. by the cooler 32 of the CO 2 recovery line 69 in order to remove the moisture. This is because CO 2 in the exhaust gas dissolves in the condensed water and becomes carbonated water, causing the compressor 24 to corrode. In the configuration as in this comparative example, before being introduced into the compressor 24, the exhaust gas is heated from 50 ° C. to 90 ° C. by the exhaust gas reheater 23, and then removed by the cooler 32 in order to remove moisture. It is necessary to cool again to about 30 ° C. As described above, since the exhaust gas is re-cooled after the temperature is raised, the energy loss is large and the plant efficiency is lowered.

以下に実施例1の作用、効果を述べる。
排ガス熱回収器50により電気集塵機20の入口の排ガス温度を酸露点以下になる90℃に下げることでSO3の高効率捕集が可能になり、後段の酸腐食防止及び煙突からの紫煙削減に効果がある。
The operation and effect of Example 1 will be described below.
The exhaust gas heat recovery device 50 reduces the exhaust gas temperature at the inlet of the electrostatic precipitator 20 to 90 ° C., which is lower than the acid dew point. This makes it possible to collect SO 3 with high efficiency, thereby preventing acid corrosion in the subsequent stage and reducing purple smoke from the chimney. effective.

給水用加熱器56と排ガス熱回収器50の間で熱交換を行うことで、それまでボイラ給水加熱に利用していたタービン52からの抽気を低減でき、これによりタービン52への蒸気量が増加し、タービン出力増加につながる。   By exchanging heat between the feed water heater 56 and the exhaust gas heat recovery unit 50, it is possible to reduce the bleed air from the turbine 52 that has been used for boiler feed water heating, and the amount of steam to the turbine 52 increases accordingly. This leads to an increase in turbine output.

例えば、発電端出力500MWのプラントにおけるヒートバランスは、排ガス熱回収器50で燃焼排ガスの温度を約200℃から90℃に下げることによって熱媒体(水)の温度は約50℃から110℃にまで上がる。熱媒体が給水用加熱器56を通過することにより、復水温度が約70℃程度増加する。タービン出力は72MJ/sから換算して約20〜25MWth相当の出力増加が達成でき、酸素燃焼システムによる発電効率低下を約3%抑制できる。   For example, the heat balance in a plant with a power generation end output of 500 MW is achieved by reducing the temperature of the combustion exhaust gas from about 200 ° C. to 90 ° C. with the exhaust gas heat recovery device 50, so that the temperature of the heat medium (water) is increased from about 50 ° C. to 110 ° C. Go up. As the heat medium passes through the water heater 56, the condensate temperature increases by about 70 ° C. The turbine output can be increased from about 20 to 25 MWth in terms of 72 MJ / s, and a reduction in power generation efficiency due to the oxyfuel combustion system can be suppressed by about 3%.

表1は酸素燃焼プラントにおける酸素燃焼運転時の熱収支を示したものである。排ガス熱回収器50と給水加熱器56の熱交換により、60MWthの廃熱を有効利用できることを示している。

Figure 0005448858
Table 1 shows the heat balance during the oxyfuel combustion operation in the oxyfuel combustion plant. It shows that 60 MWth of waste heat can be effectively utilized by heat exchange between the exhaust gas heat recovery device 50 and the feed water heater 56.
Figure 0005448858

このように従来ではボイラ給水の加熱をタービン52からの抽気により賄っていたが、本発明のように給水加熱器56によりボイラ給水の加熱ができるので、これまで行っていたタービン52からの抽気を一部低減可能となり、出力増加を図ることができる。   As described above, the boiler feed water is conventionally heated by the extraction from the turbine 52. However, since the boiler feed water can be heated by the feed water heater 56 as in the present invention, the extraction from the turbine 52 that has been performed so far can be performed. A part of the output can be reduced, and the output can be increased.

同時にプラント起動時の給水加熱器56の熱交換ができずにボイラ排ガス処理ライン14の排ガス温度を90℃に維持できないときは、熱媒体循環ライン61を経由してボイラ熱回収器50と排ガス再加熱器23を接続することでボイラ熱回収器50による排ガス冷却を行い、ガス状SO3が大気放出されることを防止できる効果がある。 At the same time, when the heat exchange of the feed water heater 56 at the time of starting the plant cannot be performed and the exhaust gas temperature of the boiler exhaust gas treatment line 14 cannot be maintained at 90 ° C., the boiler heat recovery device 50 and the exhaust gas recirculation are connected via the heat medium circulation line 61. By connecting the heater 23, exhaust gas cooling by the boiler heat recovery device 50 is performed, and there is an effect that gaseous SO 3 can be prevented from being released into the atmosphere.

このように、図1に示す実施例では、定常運転以外の段階でも排ガス中からのSO3の高効率除去を図ることができる(後述の実施例2、実施例3も同様)。表2はプラント起動時の各機器の温度と排ガス中のSO3濃度を示したものである。排ガス熱回収器50より後流側の排ガス処理ライン14において電気集塵機(EP)20で排ガス中のSO3が高効率で除去されるため、煙突27までの排ガス中のSO3濃度が0.1ppm未満となる。

Figure 0005448858
As described above, in the embodiment shown in FIG. 1, high-efficiency removal of SO 3 from the exhaust gas can be achieved even at a stage other than steady operation (the same applies to Embodiments 2 and 3 described later). Table 2 shows the temperature of each device at the time of starting the plant and the SO 3 concentration in the exhaust gas. In the exhaust gas treatment line 14 on the downstream side of the exhaust gas heat recovery unit 50, SO 3 in the exhaust gas is removed with high efficiency by the electric dust collector (EP) 20, so that the SO 3 concentration in the exhaust gas up to the chimney 27 is 0.1 ppm. Less than.
Figure 0005448858

本実施例の酸素燃焼システムに係る実施手段として以下のものを挙げる。
排ガス熱回収器50の熱交換の方式において、低温流体側の熱媒体流れ方向は、高温流体側の排ガスの熱を効率的に熱回収できる向流式が望ましいが、電気集塵機(EP)20の入口温度を90℃未満にできるならば、並流式でも十字流式でも良い。
排ガス再加熱器23の熱交換の方式において、高温流体側の熱媒体流れ方向は、低温流体側の排ガスに熱を効率的に供給できる向流式が望ましいが、煙突27の入口温度を90℃以上にできるならば、並流式でも十字流式でも良い。
給水加熱器56の熱交換の方式において、高温流体側の熱媒体流れ方向は、低温流体側の給水に熱を効率的に供給できる向流式が望ましいが、並流式でも十字流式でも良い。
The following are mentioned as implementation means according to the oxyfuel combustion system of the present embodiment.
In the heat exchange system of the exhaust gas heat recovery unit 50, the flow direction of the heat medium on the low temperature fluid side is preferably a countercurrent type capable of efficiently recovering the heat of the exhaust gas on the high temperature fluid side. As long as the inlet temperature can be less than 90 ° C., a parallel flow type or a cross flow type may be used.
In the heat exchange system of the exhaust gas reheater 23, the flow direction of the heat medium on the high temperature fluid side is preferably a countercurrent type capable of efficiently supplying heat to the exhaust gas on the low temperature fluid side, but the inlet temperature of the chimney 27 is 90 ° C. If it is possible to do so, it may be a parallel flow type or a cross flow type.
In the heat exchange method of the feed water heater 56, the flow direction of the heat medium on the high temperature fluid side is preferably a countercurrent type capable of efficiently supplying heat to the low temperature fluid side feed water, but may be a cocurrent type or a cross flow type. .

空気分離装置(ASU)2として、例えば深冷分離法による高純度酸素製造装置を利用できるが、これに限定されるものでなく、圧力スウィング吸着法や膜分離法などを利用した装置でも良い。
脱硝装置(SCR)18としては、触媒を用いるアンモニア接触還元法を利用した装置が挙げられるが、これに限定されるものでなく、無触媒還元法や活性炭吸着法などを利用した装置でも良い。
脱硫装置(FGD)22は、湿式脱硫方式のものが挙げられるがこれに限定されるものでなく、乾式脱硫、および半乾式脱硫などでも良い。
集塵装置20は電気集塵装置(EP)が挙げられるが、バグフィルタなどのろ布式などのものでも良い。
As the air separation device (ASU) 2, for example, a high-purity oxygen production device using a cryogenic separation method can be used, but the present invention is not limited to this, and a device using a pressure swing adsorption method or a membrane separation method may be used.
Examples of the denitration apparatus (SCR) 18 include an apparatus using an ammonia catalytic reduction method using a catalyst, but the present invention is not limited to this, and an apparatus using a non-catalytic reduction method or an activated carbon adsorption method may be used.
The desulfurization apparatus (FGD) 22 includes a wet desulfurization type, but is not limited thereto, and may be dry desulfurization, semi-dry desulfurization, or the like.
The dust collector 20 may be an electric dust collector (EP), but may be a filter cloth type such as a bag filter.

酸素濃度は、高温によるボイラ17内の材料損傷を防止するため、約15〜40%−dry(無水状態基準)になるように再循環ガスライン34の流量を流量調節弁33および一次酸素供給ライン6の流量調節弁7、二次酸素供給ライン8の流量調節弁10で調整する。   In order to prevent material damage in the boiler 17 due to high temperature, the flow rate of the recirculation gas line 34 is adjusted so that the oxygen concentration is about 15 to 40% -dry (an anhydrous state standard), and the primary oxygen supply line. The flow rate adjustment valve 7 and the flow rate adjustment valve 10 of the secondary oxygen supply line 8 are adjusted.

排ガス熱回収器50には熱交換用伝熱管に付着した灰を払い落とすスートブロア38を設ける。スートブロア38には、高温高圧スチームの他にCO2の気体でも構わないが、空気は窒素が含まれると、CO2回収率が低下するため、望ましくない。
排ガス熱回収器50の熱交換する伝熱管は、熱回収効率及び煤塵の付着面積が増大するフィン付のフィンチューブ36とすることが望ましい。排ガスとフィンチューブ36内の熱媒体の流れ方向は、向流でも並行流でも構わないが熱交換性の高い向流が望ましい。フィンチューブ36の配置は水平方向でも鉛直方向でも良いが、煤塵が堆積し易い水平方向が望ましい。
排ガス熱回収器50内に流す熱媒体39として、例えば温度が70〜180℃程度の水/蒸気やオイル、または窒素等の気体を用いることができる。
The exhaust gas heat recovery unit 50 is provided with a soot blower 38 for removing ash adhering to the heat exchange heat transfer tubes. The soot blower 38 may be CO 2 gas in addition to high-temperature and high-pressure steam. However, if the air contains nitrogen, the CO 2 recovery rate is lowered, which is not desirable.
The heat transfer tube for exchanging heat of the exhaust gas heat recovery unit 50 is desirably a finned tube 36 with increased heat recovery efficiency and dust adhesion area. The flow direction of the exhaust gas and the heat medium in the fin tube 36 may be a countercurrent or a parallel flow, but a countercurrent with high heat exchange is desirable. The fin tube 36 may be arranged in the horizontal direction or the vertical direction, but the horizontal direction in which dust is likely to accumulate is desirable.
As the heat medium 39 that flows into the exhaust gas heat recovery unit 50, for example, water / steam, oil, or a gas such as nitrogen having a temperature of about 70 to 180 ° C. can be used.

燃料は可燃性であれば何でも良く、一般に発電用燃料としては化石燃料である石油、石炭、天然ガスなどが使用される。他にバイオマス燃料を混ぜたものでも構わない。   The fuel may be anything as long as it is combustible. Generally, oil, coal, natural gas or the like, which is a fossil fuel, is used as a fuel for power generation. Other than that, biomass fuel may be mixed.

実施例1の変形例として図2に示す構成からなる実施例2を採用することもできる。
図1との相違点は、再循環ガスライン34を排ガス再加熱器23の後流側の排出ライン45から分岐させ、流量調節弁30を排ガス再加熱器23の後流側の排出ライン45に設けるように構成した点である。
As a modification of the first embodiment, the second embodiment having the configuration shown in FIG. 2 can be adopted.
The difference from FIG. 1 is that the recirculation gas line 34 is branched from the exhaust line 45 on the downstream side of the exhaust gas reheater 23, and the flow control valve 30 is connected to the exhaust line 45 on the downstream side of the exhaust gas reheater 23. It is the point comprised so that it might provide.

この例では、図1に示す例に比べ、排ガス再循環ライン34は長くなるが、排ガス再加熱器23で昇温された排ガスを再循環させることができるため、プラント起動後、図5の(2)〜(3):循環ライン昇温モードにおいて、排ガス再循環ライン34の昇温に要する時間を短縮できる利点がある。
本実施例2における、その他の作用・効果については、いずれも実施例1と同様である。
In this example, the exhaust gas recirculation line 34 is longer than the example shown in FIG. 1, but the exhaust gas heated by the exhaust gas reheater 23 can be recirculated. 2) to (3): In the circulation line temperature raising mode, there is an advantage that the time required for raising the temperature of the exhaust gas recirculation line 34 can be shortened.
The other actions and effects in the second embodiment are the same as those in the first embodiment.

図3に実施例3の酸素燃焼フロー図を示す。実施例1との差異は、排ガス処理ライン14からボイラ17に再循環させる排ガスのラインを一次用排ガス再循環ライン34aと二次用排ガス再循環ライン34bの複数系統に分割した点である。   FIG. 3 shows an oxyfuel combustion flowchart of the third embodiment. The difference from Example 1 is that the exhaust gas line recirculated from the exhaust gas treatment line 14 to the boiler 17 is divided into a plurality of systems of a primary exhaust gas recirculation line 34a and a secondary exhaust gas recirculation line 34b.

流量調節弁33を有する二次用排ガス再循環ライン34bは、EP20の後流側の排ガス処理ライン14と二次用燃焼ガス供給ライン67の間に設ける。一方、流量調節弁61を有する一次用排ガス再循環ライン34aは、FGD22の後流側の排ガス処理ライン14と一次用燃焼ガス供給ライン66の間に設ける。   The secondary exhaust gas recirculation line 34 b having the flow control valve 33 is provided between the exhaust gas treatment line 14 on the downstream side of the EP 20 and the secondary combustion gas supply line 67. On the other hand, the primary exhaust gas recirculation line 34 a having the flow control valve 61 is provided between the exhaust gas treatment line 14 on the downstream side of the FGD 22 and the primary combustion gas supply line 66.

また二次用燃焼ガス供給ライン67の入口には流量調節弁49を備え、空気40が導入できる構成であり、二次用燃焼ガス供給ライン67の流量調節弁49の前流側には一次用排ガス再循環ライン34aへの空気導入用ライン70があり、この空気導入用ライン70には流量調節弁63を設けている。
本実施例3の起動方法とその後の運転方法は実施例1に準じる。
Further, the flow rate adjustment valve 49 is provided at the inlet of the secondary combustion gas supply line 67 so that the air 40 can be introduced, and the primary combustion gas supply line 67 is provided upstream of the flow rate adjustment valve 49 in the secondary combustion gas supply line 67. There is an air introduction line 70 to the exhaust gas recirculation line 34a, and a flow rate adjusting valve 63 is provided in the air introduction line 70.
The starting method of the third embodiment and the subsequent operation method are the same as those of the first embodiment.

実施例3の効果は、大部分の酸素燃焼排ガスをEP20の後流側の排ガス処理ライン14から分岐して抜き出すため、脱硫装置(FGD)22での処理ガス量が低減でき、FGD22のコンパクト化、脱硫剤の低減による低ランニングコスト化及びブロア21の低容量化などが図れる。さらにFGD22出口で排ガス温度を90℃から50℃まで下げなくて済むため、排ガスの熱損失を大幅に防止できる。一次用排ガス再循環ガスは、FGD22を通過することで硫黄分が除去されているため、ミル13までの一次用燃焼ガス供給ライン66での酸露点による腐食を防止できるメリットがある。   The effect of the third embodiment is that most of the oxygen combustion exhaust gas is branched and extracted from the exhaust gas treatment line 14 on the downstream side of the EP 20, so that the amount of treatment gas in the desulfurization device (FGD) 22 can be reduced and the FGD 22 can be made compact. In addition, it is possible to reduce the running cost by reducing the desulfurizing agent and to reduce the capacity of the blower 21. Furthermore, since it is not necessary to lower the exhaust gas temperature from 90 ° C. to 50 ° C. at the FGD 22 outlet, heat loss of the exhaust gas can be largely prevented. The primary exhaust gas recirculation gas has the merit of preventing corrosion due to the acid dew point in the primary combustion gas supply line 66 to the mill 13 because the sulfur content is removed by passing through the FGD 22.

なお、図示しないが図3に示す実施例3において、一次用排ガス再循環ライン34aを図2に示す実施例2と同様に、排ガス再加熱器23の後流側の排出ライン45から分岐させるように構成しても良く、この場合も排ガス再加熱器23で昇温された排ガスを再循環させることができるため、プラント起動後、一次用排ガス再循環ライン34aの昇温に要する時間を短縮できる利点がある。   Although not shown, in the third embodiment shown in FIG. 3, the primary exhaust gas recirculation line 34a is branched from the exhaust line 45 on the downstream side of the exhaust gas reheater 23, similarly to the second embodiment shown in FIG. In this case as well, the exhaust gas heated by the exhaust gas reheater 23 can be recirculated, so that the time required for raising the temperature of the primary exhaust gas recirculation line 34a can be shortened after the plant is started. There are advantages.

以上のように、本発明に係る酸素燃焼プラントは、排ガス熱回収器による排ガスの廃熱を発電設備の給水の加熱に利用することができ、プラント全体の発電効率の向上を図ることができると同時に、酸腐食や紫煙発生の原因となるガス状SO3を、効率よく除去ができ、酸素燃焼プラントに用いるのに適している。 As described above, the oxyfuel combustion plant according to the present invention can use the waste heat of the exhaust gas from the exhaust gas heat recovery device for heating the feed water of the power generation facility, and can improve the power generation efficiency of the entire plant. At the same time, gaseous SO 3 that causes acid corrosion and generation of purple smoke can be efficiently removed and is suitable for use in an oxyfuel combustion plant.

1 空気(大気) 2 空気分離装置(ASU)
3 窒素(N2) 4 酸素供給ライン
5 予熱ヒータ
6 一次酸素(燃料搬送用)ライン
7 流量調節弁
8 二次酸素(燃焼用)ライン
9 混合器 10 流量調節弁
11 混合器 12 燃料(Coal)
13 ミル 14 排ガス処理ライン
15 バーナ 16 ウィンドボックス
17 ボイラ 18 脱硝装置(SCR)
19 予熱器(PH) 20 電気集塵機(EP)
21 ブロア(IDF)22 脱硫装置(FGD)
23 排ガス再加熱器 24 圧縮機
25 冷却機 26 分離器
27 煙突 28 CO2貯蔵容器
29 液化されないガス
30 流量調節弁 31 流量調節弁
32 冷却機 33 流量調節弁
34 再循環ガスライン
34b 二次用再循環ガスライン
34a 一次用再循環ガスライン
35 2次用ブロア 36 フィンチューブ
37 入口 38 スートブロア
39 熱媒体 40 空気
41 出口 42 SO3吸着灰
43 液化CO2 44 一次用ブロア
45 排出ライン 49 流量調節弁
50 排ガス熱回収器 50a 灰ホッパ
51 スチーム 52 タービン
53 発電機 54 復水器
55 ポンプ 56 給水加熱器
57〜60 流量調節弁
61 熱媒体循環ライン
62 一次用再循環ガス
63 流量調節弁
66 一次用燃焼ガス供給ライン
67 二次用燃焼ガス供給ライン
68 給水ライン 69 CO2回収ライン
70 空気導入用ライン
1 Air (atmosphere) 2 Air separation device (ASU)
3 Nitrogen (N2) 4 Oxygen supply line 5 Preheating heater 6 Primary oxygen (for fuel transfer) line 7 Flow control valve 8 Secondary oxygen (for combustion) line 9 Mixer 10 Flow control valve 11 Mixer 12 Fuel (Coal)
13 Mil 14 Exhaust gas treatment line 15 Burner 16 Wind box 17 Boiler 18 Denitration equipment (SCR)
19 Preheater (PH) 20 Electric dust collector (EP)
21 Blower (IDF) 22 Desulfurization equipment (FGD)
23 Exhaust gas reheater 24 Compressor 25 Cooler 26 Separator 27 Chimney 28 CO 2 storage container 29 Gas not liquefied 30 Flow rate control valve 31 Flow rate control valve 32 Cooler 33 Flow rate control valve 34 Recirculation gas line 34b Circulating gas line 34a Primary recirculating gas line 35 Secondary blower 36 Fin tube 37 Inlet 38 Soot blower 39 Heat medium 40 Air 41 Outlet 42 SO 3 adsorption ash 43 Liquefied CO 2 44 Primary blower 45 Discharge line 49 Flow control valve 50 Exhaust gas heat recovery device 50a Ash hopper 51 Steam 52 Turbine 53 Generator 54 Condenser 55 Pump 56 Feed water heater 57-60 Flow rate adjustment valve 61 Heat medium circulation line 62 Primary recirculation gas 63 Flow rate adjustment valve 66 Primary combustion gas Supply line 67 Secondary combustion gas supply line 68 Water supply line 69 C O 2 recovery line 70 Air introduction line

Claims (6)

石炭又は石炭以外の燃料を燃焼させるボイラ(17)と、
脱硝装置(18)、集塵装置(20)および脱硫装置(22)を含むボイラ(17)の燃焼排ガスを浄化する装置をそれぞれ前流側から後流側に順次設けた排ガス流路である排ガス処理ライン(14)と、
ボイラ(17)の給水ライン(68)と、
ボイラ(17)に燃焼用ガスとして用いる酸素を供給する酸素供給ライン(4,8)と、
ボイラ(17)の燃焼用ガスに用いる空気と前記酸素供給ライン(4,8)から分岐した分岐酸素供給ライン(6)より供給される酸素とを混合して得られる一次用燃焼ガスと共に石炭を含む燃料をボイラ(17)に供給する一次用燃焼ガス供給ライン(66)と、
ボイラ(17)の燃焼用ガスに用いる空気を酸素供給ライン(4,8)からの酸素と混合して燃焼ガスとしてボイラ(17)に供給する二次用燃焼ガス供給ライン(67)と、
ボイラ排ガス中のCO2を回収する排ガス流路であるCO2回収ライン(69)と、
集塵装置(20)より後流側の排ガス処理ライン(14)から分岐して燃焼排ガスをボイラ(17)の二次用燃焼用ガスとして戻すために二次用燃焼ガス供給ライン(67)へ接続する排ガス再循環ライン(34)と、
浄化処理した燃焼排ガスを煙突(27)へ向けて流す排ガス処理ライン(14)の後流側に設けた排ガス流路である排出ライン(45)と
を備えた酸素燃焼発電プラントであって、
排ガス処理ライン(14)には、集塵装置(20)より排ガス流路前流側にある燃焼排ガスの熱を回収する熱交換器(36)を有する排ガス熱回収器(50)と脱硫装置(22)の排ガス流路後流側に設けた燃焼排ガスを再加熱する排ガス再加熱器(23)
を備え、
前記CO2回収ライン(69)は、脱硫装置(22)のある排ガス流路後流側であって、排ガス再加熱器(23)の排ガス流路前流側の排ガス処理ライン(14)から分岐して設けられ、
前記給水ライン(68)には、ボイラ給水を加熱する給水加熱器(56)を設け、該給水加熱器(56)と排ガス熱回収器(50)との間及び前記給水加熱器(56)と排ガス再加熱器(23)との間に熱媒体が循環する熱媒体循環ライン(61)を設け、熱媒体循環ライン(61)は排ガス熱回収器(50)で回収した熱の供給先となる排ガス再加熱器(23)と給水加熱器(56)とを流れる熱媒体の流量をそれぞれ調節可能に構成したことを特徴とする酸素燃焼発電プラント。
A boiler (17) for burning coal or fuel other than coal;
Exhaust gas that is an exhaust gas flow path in which devices for purifying combustion exhaust gas of a boiler (17) including a denitration device (18), a dust collector (20), and a desulfurization device (22) are sequentially provided from the upstream side to the downstream side. A processing line (14);
The water supply line (68) of the boiler (17);
Oxygen supply lines (4, 8) for supplying oxygen used as combustion gas to the boiler (17);
Coal together with the primary combustion gas obtained by mixing the air used for the combustion gas of the boiler (17) and the oxygen supplied from the branched oxygen supply line (6) branched from the oxygen supply line (4, 8). A primary combustion gas supply line (66) for supplying fuel to the boiler (17),
A secondary combustion gas supply line (67) that mixes the air used for the combustion gas of the boiler (17) with oxygen from the oxygen supply line (4, 8) and supplies it as combustion gas to the boiler (17);
A CO 2 recovery line (69) which is an exhaust gas passage for recovering CO 2 in boiler exhaust gas;
To the secondary combustion gas supply line (67) for branching from the exhaust gas treatment line (14) downstream from the dust collector (20) to return the combustion exhaust gas as secondary combustion gas for the boiler (17). Connected exhaust gas recirculation line (34);
An oxyfuel combustion power plant comprising an exhaust line (45) which is an exhaust gas flow path provided on the downstream side of an exhaust gas treatment line (14) for flowing purified exhaust gas to a chimney (27),
In the exhaust gas treatment line (14), an exhaust gas heat recovery device (50) having a heat exchanger (36) for recovering the heat of the combustion exhaust gas on the upstream side of the exhaust gas flow path from the dust collector (20) and a desulfurization device ( 22) Exhaust gas reheater (23) for reheating the combustion exhaust gas provided on the downstream side of the exhaust gas flow path
With
The CO 2 recovery line (69) is branched from the exhaust gas treatment line (14) on the downstream side of the exhaust gas flow path where the desulfurization device (22) is located and on the upstream side of the exhaust gas flow path of the exhaust gas reheater (23). Provided,
The feed water line (68) is provided with a feed water heater (56) for heating boiler feed water, between the feed water heater (56) and the exhaust gas heat recovery device (50), and the feed water heater (56). A heat medium circulation line (61) through which the heat medium circulates is provided between the exhaust gas reheater (23) and the heat medium circulation line (61) is a supply destination of the heat recovered by the exhaust gas heat recovery device (50). An oxyfuel power plant characterized in that the flow rate of the heat medium flowing through the exhaust gas reheater (23) and the feed water heater (56) is adjustable.
前記排ガス再循環ライン(34)は、排ガス再加熱器(23)より後流側の排ガス処理ライン(14)から分岐して設けられていることを特徴とする請求項1に記載の酸素燃焼発電プラント。   The oxyfuel combustion power generation according to claim 1, wherein the exhaust gas recirculation line (34) is branched from the exhaust gas treatment line (14) downstream from the exhaust gas reheater (23). plant. 前記排ガス再循環ライン(34)は、ボイラ(17)に燃料を搬送する一次用燃焼ガス供給ライン(66)と燃料を搬送しない二次用燃焼ガス供給ライン(67)に分岐して接続していることを特徴とする請求項1に記載の酸素燃焼発電プラント。   The exhaust gas recirculation line (34) is branched and connected to a primary combustion gas supply line (66) that conveys fuel to the boiler (17) and a secondary combustion gas supply line (67) that does not convey fuel. The oxyfuel power plant according to claim 1. 前記排ガス再循環ライン(34)は、脱硫装置(22)より前流側の排ガス処理ライン(14)と脱硫装置(22)より後流側の排ガス処理ライン(14)から分岐してそれぞれ設けられた排ガス再循環ライン(34b)と排ガス再循環ライン(34a)からなり、
排ガス再循環ライン(34a)は、ボイラ(17)に燃料を搬送する一次用燃焼ガス供給ライン(66)に接続し、
排ガス再循環ライン(34b)は、ボイラ(17)に燃料を搬送しない二次用燃焼ガス供給ライン(67)に接続していることを特徴とする請求項1に記載の酸素燃焼発電プラント。
The exhaust gas recirculation line (34) is branched from the exhaust gas treatment line (14) on the upstream side of the desulfurization device (22) and the exhaust gas treatment line (14) on the downstream side of the desulfurization device (22). The exhaust gas recirculation line (34b) and the exhaust gas recirculation line (34a)
The exhaust gas recirculation line (34a) is connected to a primary combustion gas supply line (66) for conveying fuel to the boiler (17),
The oxyfuel combustion power plant according to claim 1, wherein the exhaust gas recirculation line (34b) is connected to a secondary combustion gas supply line (67) that does not convey fuel to the boiler (17).
請求項1記載の酸素燃焼発電プラントの運転方法であって、
プラント起動時は、ボイラ(17)の燃焼用ガスには二次用燃焼ガス供給ライン(67)から供給される空気を使用して空気燃焼を行いながら、ボイラ排ガスは排ガス処理ライン(14)から排出ライン(45)に流し、同時に排ガス熱回収器(50)で回収した熱を熱媒体循環ライン(61)により排ガス再加熱器(23)に流し、
プラント定常運転時には、ボイラ(17)の燃焼用ガスとして酸素供給ライン(4,6,8)からの酸素と排ガス再循環ライン(34)からの排ガスとの混合ガスを使用して酸素燃焼を行いながら、排ガス処理ライン(14)からの排ガスをCO2回収ライン(69)に流して排ガスからCO2を回収し、同時に排ガス熱回収器(50)で回収した熱を熱媒体循環ライン(61)により給水加熱器(56)に流す
ことを特徴とする酸素燃焼発電プラントの運転方法。
A method for operating an oxyfuel power plant according to claim 1,
At the time of starting the plant, the boiler exhaust gas is discharged from the exhaust gas treatment line (14) while performing air combustion using the air supplied from the secondary combustion gas supply line (67) as the combustion gas of the boiler (17). The heat recovered by the exhaust gas heat recovery device (50) is simultaneously supplied to the exhaust line reheater (23) through the heat medium circulation line (61).
During steady operation of the plant, oxygen combustion is performed using a mixed gas of oxygen from the oxygen supply line (4, 6, 8) and exhaust gas from the exhaust gas recirculation line (34) as combustion gas for the boiler (17). while the exhaust gas from the exhaust gas processing line (14) by flowing the CO 2 recovery line (69) of CO 2 is recovered from the exhaust gas, the recovered heat heat medium circulation line at the same time the exhaust gas heat recovery device (50) (61) The method of operating an oxyfuel power plant, characterized by flowing through a feed water heater (56).
プラント起動時からボイラ(17)が設定した第1の温度条件に達するまでは、石炭以外の燃料を用いて空気燃焼により昇温させながらボイラ排ガスは排ガス処理ライン(14)から排出ライン(45)へ流し、その後、燃焼用ガスとして、徐々に空気の量を減じつつ、酸素供給ライン(4,6,8)からの酸素と排ガス再循環ライン(34)からの排ガスの量を増加させることで排ガス再循環ライン(34)内の排ガスを昇温させ、その過程において、石炭以外の燃料と石炭との混焼を開始し、ボイラ(17)が設定した第2の温度条件に達したら、燃料を石炭に切り換えて、ボイラ(17)の昇温を継続し、設定した第3の温度条件に達したら定常運転に移行し、
前記熱媒体循環ライン(61)で回収した熱の供給先を排ガス再加熱器(23)側から給水加熱器(56)側に切り換え、排ガス中のCO濃度が90%以上になると、ボイラ排ガスの排出先を排出ライン(45)からCO2回収ライン(69)に切り換えることを特徴とする請求項5記載の酸素燃焼発電プラントの運転方法。
The boiler exhaust gas is discharged from the exhaust gas treatment line (14) to the exhaust line (45) while the temperature is raised by air combustion using a fuel other than coal from the time the plant is started until the boiler (17) reaches the first temperature condition set. And then increasing the amount of oxygen from the oxygen supply line (4, 6, 8) and the amount of exhaust gas from the exhaust gas recirculation line (34) while gradually reducing the amount of air as a combustion gas. The temperature of the exhaust gas in the exhaust gas recirculation line (34) is raised, and in the process, the combustion of fuel other than coal and coal is started, and when the second temperature condition set by the boiler (17) is reached, the fuel is Switch to coal, continue to heat up the boiler (17), shift to steady operation when the third temperature condition set is reached,
When the supply destination of the heat recovered in the heat medium circulation line (61) is switched from the exhaust gas reheater (23) side to the feed water heater (56) side and the CO 2 concentration in the exhaust gas reaches 90% or more, boiler exhaust gas the method of operation oxygen combustion power plant according to claim 5 wherein the discharge destination from the discharge line (45), characterized in that switching to the CO 2 recovery line (69) of.
JP2010001655A 2010-01-07 2010-01-07 Oxy-combustion power plant and its operation method Expired - Fee Related JP5448858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010001655A JP5448858B2 (en) 2010-01-07 2010-01-07 Oxy-combustion power plant and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010001655A JP5448858B2 (en) 2010-01-07 2010-01-07 Oxy-combustion power plant and its operation method

Publications (2)

Publication Number Publication Date
JP2011141075A JP2011141075A (en) 2011-07-21
JP5448858B2 true JP5448858B2 (en) 2014-03-19

Family

ID=44457058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010001655A Expired - Fee Related JP5448858B2 (en) 2010-01-07 2010-01-07 Oxy-combustion power plant and its operation method

Country Status (1)

Country Link
JP (1) JP5448858B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013189883A (en) * 2012-03-13 2013-09-26 Hitachi Ltd Thermal power generation plant
AU2013233730B2 (en) 2012-03-14 2015-11-26 Ihi Corporation Oxygen combustion boiler system
US9851102B2 (en) * 2012-09-26 2017-12-26 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Method and system for heat recovery from products of combustion and charge heating installation including the same
CN103234213B (en) * 2013-04-27 2015-10-14 东南大学 A kind of method of oxygen-enriched combusting Btu utilization and device
CN103196130B (en) * 2013-04-27 2015-04-08 东南大学 Method and device for gradient utilization of heat of oxygen-enriched combustion unit
CN104154553B (en) * 2013-11-27 2018-07-03 北京大学包头创新研究院 A kind of flue gas processing device
CN103968406B (en) * 2014-05-13 2016-06-01 上海发电设备成套设计研究院 A kind of hydrophily flue gas-smoke heat exchanging system and method that can prevent low temperature corrosion
CN106705108A (en) * 2016-12-29 2017-05-24 辽宁石油化工大学 High-temperature flue gas oxygen-doped type oxygen-enriched combustion steam-injection boiler
JP7420941B2 (en) * 2019-12-18 2024-01-23 スミトモ エスエイチアイ エフダブリュー エナージア オサケ ユキチュア Arrangement and method for operating a steam boiler system

Also Published As

Publication number Publication date
JP2011141075A (en) 2011-07-21

Similar Documents

Publication Publication Date Title
JP5448858B2 (en) Oxy-combustion power plant and its operation method
EP2431579B1 (en) Multipurpose thermal power plant system
EP2724767B1 (en) A method of treating a carbon dioxide rich flue gas and a flue gas treatment system
US6574962B1 (en) KOH flue gas recirculation power plant with waste heat and byproduct recovery
ES2602428T3 (en) Oxy-fuel combustion with integrated pollution control
JP5489254B2 (en) Oxyfuel combustion system and operating method thereof
US7559977B2 (en) Purification works for thermal power plant
JP3068888B2 (en) Combustion apparatus and operation method thereof
JP2008534862A (en) Low CO2 thermal power plant
JP7412102B2 (en) gas turbine plant
JP2010112377A (en) System and method for reducing corrosion in gas turbine system
KR102021983B1 (en) Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same
JP2010190214A (en) Post-combustion processing in power plant
WO2012035777A1 (en) Combustion plant
AU2013284383A1 (en) Controlling acidic compounds produced from oxy-combustion processes
JP5432098B2 (en) Oxyfuel boiler
KR20220100065A (en) Arrangement and method of operating a steam boiler system
US9863281B2 (en) Carbon dioxide capture interface for power generation facilities
EP2584256B1 (en) Oxygen preheating in oxyfuel combustion system
WO2018189947A1 (en) Carbon dioxide recovery system and carbon dioxide recovery method
JP2012137269A (en) Coal fired power generation plant and method of controlling the same
JP2013108680A (en) Exhaust gas treatment system
CN209944283U (en) High-speed circulation combustion system
KR101644236B1 (en) Integrated gasification combined cycle system
JP2012149792A (en) Exhausts gas treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Ref document number: 5448858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees