WO2012035777A1 - Combustion plant - Google Patents

Combustion plant Download PDF

Info

Publication number
WO2012035777A1
WO2012035777A1 PCT/JP2011/005232 JP2011005232W WO2012035777A1 WO 2012035777 A1 WO2012035777 A1 WO 2012035777A1 JP 2011005232 W JP2011005232 W JP 2011005232W WO 2012035777 A1 WO2012035777 A1 WO 2012035777A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
gas
combustion
working gas
working
Prior art date
Application number
PCT/JP2011/005232
Other languages
French (fr)
Japanese (ja)
Inventor
祥悟 盛
考司 村本
島津 浩通
尾田 直己
森本 信夫
野村 伸一郎
豊 竹野
仁 若松
浩明 金本
秀雄 三井
丸本 隆弘
秀久 吉廻
木山 研滋
パウリ デルニヤティン
ユルキ レヘトネン
Original Assignee
バブコック日立株式会社
フォータム コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコック日立株式会社, フォータム コーポレーション filed Critical バブコック日立株式会社
Publication of WO2012035777A1 publication Critical patent/WO2012035777A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/08Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for reducing temperature in combustion chamber, e.g. for protecting walls of combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers
    • F23J3/02Cleaning furnace tubes; Cleaning flues or chimneys
    • F23J3/023Cleaning furnace tubes; Cleaning flues or chimneys cleaning the fireside of watertubes in boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • F23L7/007Supplying oxygen or oxygen-enriched air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L2900/00Special arrangements for supplying or treating air or oxidant for combustion; Injecting inert gas, water or steam into the combustion chamber
    • F23L2900/07001Injecting synthetic air, i.e. a combustion supporting mixture made of pure oxygen and an inert gas, e.g. nitrogen or recycled fumes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a combustion plant equipped with an oxyfuel combustion apparatus, and more particularly to a combustion plant suitable for separating and recovering CO 2 with high efficiency.
  • CO 2 carbon dioxide
  • fossil fuel containing carbon such as petroleum, natural gas, coal, or waste is burned.
  • a combustion plant that burns these combustion objects is desired to reduce the amount of CO 2 emissions generated by combustion.
  • Patent Document 1 in order to recover CO 2 in combustion exhaust gas with high efficiency, air is separated into a gas mainly composed of oxygen and nitrogen, and the separated oxygen-rich gas (hereinafter referred to as oxygen-rich gas).
  • a boiler plant equipped with a so-called oxyfuel boiler is proposed in which an object to be combusted, such as coal, is combusted with a combustion gas diluted with combustion exhaust gas.
  • an object to be combusted such as coal
  • a combustion gas diluted with combustion exhaust gas According to this, not only the amount of exhaust gas is reduced to about 1 ⁇ 4 compared to the case of air combustion, but also the CO 2 concentration in the exhaust gas becomes high. Therefore, the amount of CO 2 discharged into the atmosphere is reduced by separating and collecting the CO 2 in the exhaust gas.
  • the separation method for recovering CO 2 chemical absorption method of absorbing CO 2 by contacting the exhaust gas containing CO 2 absorption liquid, is compressed by the compressor exhaust gas containing CO 2 liquefying CO 2
  • a compression separation method is known. In any method, in order to improve the efficiency of CO 2 separation and recovery, it is desirable that the CO 2 concentration in the exhaust gas is high.
  • Patent Document 1 no consideration is given to reducing the CO 2 concentration in the exhaust gas by the working air used in the auxiliary equipment of the boiler plant entering the exhaust gas.
  • a general coal-fired boiler plant is provided with a boiler that burns coal and an exhaust gas treatment system that purifies exhaust gas discharged from the boiler.
  • the boiler is provided with, for example, a coal pulverizer as an auxiliary device. Since the sealing of the sliding portion of the coal pulverizer is performed with air, this air is consumed by the combustion in the boiler and is contained in the exhaust gas. The CO 2 concentration of the water decreases.
  • a dust dust removal device for a dust collector is provided, and the dust collection dust is removed by aeration in which air flows, so that air is mixed in the exhaust gas. As a result, the CO 2 concentration decreases.
  • the problem to be solved by the present invention is that in a combustion plant equipped with an oxyfuel combustion device, the intrusion of air into the exhaust gas is prevented, the decrease in the CO 2 concentration of the exhaust gas is suppressed, and the CO 2 recovery efficiency Is to improve.
  • the present invention provides an oxyfuel combustion apparatus that burns an object to be burned with a combustion gas obtained by diluting an oxygen-rich gas with an exhaust gas, and an exhaust gas treatment that purifies the exhaust gas discharged from the combustion apparatus.
  • the exhaust gas treatment system includes a dust collector that collects dust in the exhaust gas, and a branch flow that supplies exhaust gas that dilutes the exhaust gas from the flue downstream of the dust collector and dilutes the oxygen-rich gas Working gas supply for supplying working gas that penetrates into exhaust gas and is used in a passage, a CO 2 recovery device that separates and recovers carbon dioxide (CO 2 ) from exhaust gas, and an auxiliary device of at least one of a combustion device and an exhaust gas treatment system in combustion plants consisting provided with a device, the active gas supply apparatus, and exhaust gas dust is collected by the dust collector, the less of the CO 2 recovered by the CO 2 recovery unit It characterized by using one as the working gas.
  • a dust collector that collects dust in the exhaust gas
  • a branch flow that supplies exhaust gas that dilutes the exhaust gas from the flue downstream of the dust collector and dilutes the oxygen-rich gas Working gas supply for supplying working gas that penetrates into exhaust gas and is used in a passage
  • CO 2 recovery device that separates and recovers carbon dioxide
  • At least the exhaust gas combusted by the oxygen combustion system is a gas having a high CO 2 concentration. Therefore, by using this exhaust gas as the working gas of the auxiliary device of the combustion plant, the working gas leaks into or enters the exhaust gas. even if they are, it is possible to suppress the reduction of the CO 2 concentration in the exhaust gas. As a result, CO 2 separation and recovery efficiency can be kept high, and an increase in compressor power can be suppressed.
  • the moisture contained in the exhaust gas is separated from the CO 2 in the CO 2 recovery apparatus, it can be reduced corrosion of the active gas supply pipe.
  • a pulverization device such as a mill for pulverizing the object to be combusted
  • the combustion device is a boiler, there are a heat transfer tube in the boiler or a soot blower for removing soot on the water cooling wall, etc.
  • the working gas of these auxiliary devices include a sealing gas for sealing the sliding portion of the crushing device and the blower for soot blowing.
  • auxiliary devices of the exhaust gas treatment system there are a dust collector maintenance device and an exhaust gas induction blower.
  • the working gas of these auxiliary devices includes gas used to remove dust collected from the dust collector (aeration gas), and gas used to prevent breakdown of electrical insulation when the dust collector is an electric dust collector ( Aeration gas), exhaust gas or shaft seal gas of a blower for supplying working gas.
  • seal gas and scavenging gas for the soot blower sliding portion of the gas-gas heater are used as the working gas.
  • the reducing agent into the exhaust gas upstream of the dust collector (e.g., ammonia) exhaust gas treatment apparatus for the addition of placing the denitration apparatus for removing NO X is used .
  • the dust collector e.g., ammonia
  • ancillary equipment of the denitration apparatus there is a reducing agent diluting device, and a reducing agent diluting gas is used as a working gas.
  • the aeration gas of the dust collector the gas used to prevent the breakdown of electrical insulation when the dust collector is an electric dust collector, the dilution gas of the denitration device, etc. were used. Almost all of the working gas enters the exhaust gas.
  • working gas at a site where at least a part of the working gas enters the exhaust gas includes a seal gas for sealing the sliding portion of the apparatus, a shaft seal gas for a blower, and a scavenging gas.
  • a desulfurization apparatus that removes SOx in exhaust gas is provided on the downstream side (rear stream side) of the dust collector, and a CO 2 recovery apparatus is further provided on the downstream side. It is done.
  • the working gas supply device can use the exhaust gas desulfurized by the desulfurization device as the working gas. According to this, since corrosive SO 3 or the like is not included in the working gas, it is possible to avoid corrosion and blockage of the working gas supply pipe and the shaft seal portion.
  • the desulfurized working gas can be heated by, for example, a combustion gas preheater by heat exchange with the exhaust gas flowing into the dust collector.
  • a combustion gas preheater by heat exchange with the exhaust gas flowing into the dust collector.
  • the working gas supply means includes a working gas passage branched from the exhaust gas passage on the outflow side of the dust collector, a first heat exchanger provided in the exhaust gas passage on the inflow side of the dust collector, And a second heat exchanger provided in the gas flow path, and the working medium can be heated by circulating the heat medium heated by the first heat exchanger to the second heat exchanger. According to this, it is possible to avoid the water vapor in the gas discharged from the dust collector from being condensed in the working gas supply pipe, the shaft seal portion, and the like, and corroding those parts.
  • the working gas supply device When the CO 2 recovery device recovers CO 2 as a liquid, the working gas supply device includes a vaporizer that vaporizes the liquid CO 2 recovered by the CO 2 recovery device, and a blower that boosts the vaporized CO 2. And a flow path for supplying pressurized CO 2 as a working gas.
  • air in a combustion plant equipped with an oxyfuel combustion apparatus, air can be prevented from entering the exhaust gas, a decrease in the CO 2 concentration of the exhaust gas can be suppressed, and the CO 2 recovery efficiency can be improved.
  • FIG. 12 is a sectional view taken along line AA in FIG. 11. It is an enlarged view of the heat exchanger tube inserted from the boiler ceiling of FIG. It is a whole block diagram of the boiler plant of Example 9 of this invention. It is a whole block diagram of the boiler plant of Example 10 of this invention. It is a whole block diagram of the boiler plant of Example 11 of this invention. SO 3 is a graph showing the relationship between the concentration and the acid dew point temperature. It is a whole block diagram of the boiler plant of Example 12 of this invention. It is a whole block diagram of the boiler plant of Example 13 of this invention. It is a whole block diagram of the boiler plant of Example 14 of this invention.
  • combustion plant equipped with the oxyfuel combustion apparatus of the present invention will be described based on examples.
  • the combustion plant of this invention is not limited to this, The boiler plant which burns other fossil fuels, the waste which incinerates waste It can be applied to a known combustion plant such as a processing plant.
  • Example 1 is an example in which the present invention is applied to a coal-fired boiler plant as a combustion plant of the present invention.
  • the boiler plant according to the present embodiment includes an oxyfuel combustion apparatus, for example, a boiler 1 and an exhaust gas treatment system that purifies exhaust gas 2 discharged from the boiler 1.
  • the exhaust gas treatment system includes a denitration device 3 that reduces and decomposes NOx in exhaust gas, a combustion gas preheater 4 that preheats combustion gas, a desulfurization device 6 that removes SOx in exhaust gas, and CO 2 from the exhaust gas.
  • a CO 2 recovery device 8 is provided for separating and recovering the gas.
  • the boiler 1 is configured to burn pulverized coal, which is an object to be burned, with a combustion gas obtained by diluting an oxygen-rich gas with an exhaust gas.
  • the exhaust gas 2 discharged from the boiler 1 is supplied to the denitration device 3 through a flue 11 that is an exhaust gas flow path.
  • the denitration device 3 injects a reducing agent such as ammonia into the exhaust gas 2 to reduce and decompose NOx in the exhaust gas 2 in the presence of a denitration catalyst.
  • the denitrated exhaust gas 2 flowing out from the denitration device 3 is adjusted to a low gas temperature by the combustion gas preheater 4 and guided to the dust collecting device 5 where the dust in the exhaust gas is collected and removed. It has become.
  • the exhaust gas 2 from which the dust is removed by the dust collector 5 is introduced into the desulfurizer 6 where it is desulfurized by contact with, for example, limestone slurry.
  • Desulfurized treated flue gas 2 is guided to the CO 2 recovery device 8 is CO 2 in the exhaust gas is separated from the other components are stored in CO 2 storage facility 19.
  • the compression separation method in the present embodiment although so as to separate and recover liquefied by compressing the CO 2 in the exhaust gas 2, the present invention is not limited to this, the CO 2 by a chemical absorption method It can be separated and recovered.
  • Other exhaust gas components separated from CO 2 by the CO 2 recovery device are discharged to the atmosphere from a chimney or the like (not shown).
  • the combustion gas supply system is branched from the flue 11 on the upstream side of the desulfurization device 6 on the downstream side of the dust collector 5, and an exhaust gas recirculation line 9 and a mill exhaust gas recirculation line 16 are provided. .
  • These exhaust gas recirculation lines 9 and 16 are respectively provided with a boiler side recirculation blower 13 and a mill side recirculation blower 14, and the exhaust gas extracted from the flue 11 is finely passed through the burner section of the boiler 1 and the coal 7.
  • a crushing device for crushing, for example, a mill 15 is supplied.
  • the exhaust gas recirculation lines 9 and 16 on the downstream side of the boiler-side recirculation blower 13 and the mill-side recirculation blower 14 are connected via the boiler-side oxygen supply pipe 17 and the mill-side oxygen supply pipe 18 from the oxygen production apparatus 10. Oxygen-rich gas is supplied.
  • the oxygen production apparatus 10 produces oxygen-rich gas by separating oxygen from air, and is not particularly limited, and a known oxygen production process can be applied. Moreover, the mixing ratio of the oxygen-rich gas and the recirculated exhaust gas is adjusted to a preset ratio by an adjusting means (not shown).
  • the combustion gas generated by mixing in this way is heated by the gas-gas heat exchanger of the combustion gas preheater 4 and supplied to the boiler 1 and the mill 15.
  • the combustion gas supplied to the mill 15 dries the pulverized coal 7 and supplies it to the burner portion of the boiler 1 together with the coal.
  • CO 2 gas is used as the working gas. That is, the CO 2 storage facility 19 is provided CO 2 vaporizer 21 communicates, by vaporizing the liquefied CO 2 led to active gas supply blower 22, the application area of the working gas from the working gas supply blower 22 A working gas supply pipe 12 is provided.
  • the working gas is supplied to a reducing agent injection line a for reducing agent dilution, which is an incidental facility of the denitration apparatus 3.
  • dust removal (aeration gas) for the dust collector 5 it is supplied to an aeration working gas line b which is an accessory facility of the dust collector.
  • the gas is supplied to the shaft seal working gas lines c, d, and e for shaft sealing of the working gas supply blower 22, the boiler side recirculation blower 13, and the mill side recirculation blower 14 which are incidental facilities of the exhaust gas treatment system. It is supposed to be.
  • CO 2 gas is separated and recovered from exhaust gas burned by at least the oxyfuel combustion method and used as the working gas. Even if it leaks into the exhaust gas from the incidental equipment of the exhaust gas treatment system or is mixed in the exhaust gas, it is possible to suppress a decrease in the CO 2 concentration of the exhaust gas. That is, since CO 2 gas is supplied to the reducing agent injection line for diluting the reducing agent of the denitration apparatus 3, even if it is injected into the exhaust gas together with the reducing agent, the CO 2 concentration of the exhaust gas does not decrease. Further, since CO 2 gas is used as the aeration gas of the dust collector 5, the CO 2 concentration of the exhaust gas does not decrease even when injected into the exhaust gas.
  • the CO 2 recovery device separates CO 2 from the exhaust gas treated by the dust collector 5 and the desulfurization device 6 and uses it as a working gas. Blockage and corrosion of the supply pipe 12 and related components can be prevented.
  • FIG. 2 the structure of the boiler plant of Example 2 of this invention is shown.
  • This embodiment is different from the first embodiment of FIG. 1 in that, instead of CO 2 as the working gas, the recirculation of the exhaust gas recirculation line 9 branched from the flue 11 between the dust collector 5 and the desulfurizer 6. This is because a part of the circulating exhaust gas is used. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.
  • the exhaust gas burned by at least the oxyfuel combustion method is a gas that does not contain air, and since this gas is used as the working gas, the working gas is discharged from the incidental equipment of the combustion plant into the exhaust gas. Even if it leaks into or is mixed in, it is possible to suppress a decrease in the CO 2 concentration of the exhaust gas. As a result, the CO 2 separation and recovery efficiency can be kept high, and in the case of the compression separation method, an increase in the power of the compressor can be suppressed.
  • the dust-treated exhaust gas is used as the working gas, it is possible to prevent the shaft seal portion, the working gas supply pipe 12 and related components from being blocked by dust.
  • the working gas of this embodiment contains SOx and moisture (water vapor), there remains a problem that the shaft seal portion, the working gas supply pipe 12, and related components are corroded.
  • FIG. 3 shows the configuration of the boiler plant according to the third embodiment of the present invention. 2 differs from Example 2 of FIG. 2 in that the exhaust gas recirculation line 9 is branched from the flue 11 on the downstream side of the desulfurization device 6, and the extracted recirculated exhaust gas is mixed with oxygen-rich gas. The combustion gas is generated, and the generated combustion gas is heated by the combustion gas preheater 4 and used as a working gas. Since other configurations are the same as those of the second embodiment, the same reference numerals are given and description thereof is omitted.
  • the working gas supply system uses the exhaust gas desulfurized by the desulfurization device 6 provided on the downstream side of the dust collector 5 as the combustion gas and the working gas. Does not contain soot and corrosive SO 3 . Therefore, corrosion and blockage of the working gas supply pipe 12 and the shaft seal portion can be avoided.
  • the combustion gas heated by the combustion gas preheater 4 is used as the working gas, condensation of moisture (water vapor) can be suppressed. The problem of corrosion of the gas supply pipe 12 and related components can be avoided.
  • FIG. 4 the structure of the boiler plant of Example 4 of this invention is shown.
  • This embodiment differs from the first embodiment of FIG. 1 in that a first heat exchanger 23 is provided in the flue 11 on the inflow side of the dust collector 5, and the flue 11 on the outflow side of the dust collector 5.
  • the second heat exchanger 24 is provided in the exhaust gas recirculation line 9 branched from the first. Then, the heat medium heated by the first heat exchanger 23 is circulated to the second heat exchanger 24, and the recirculated exhaust gas extracted from the downstream side of the dust collector 5 is heated to generate combustion gas. It is a point to do.
  • the exhaust gas extracted from the outflow side of the dust collector 5 can be heated, even if it is used as a part of the combustion gas, a decrease in gas temperature can be suppressed, and the mill 15 Or it can avoid that the water vapor
  • FIG. 5 shows the configuration of the boiler plant of Example 5 of the present invention.
  • This embodiment is different from the first embodiment of FIG. 1 in that a working gas supply pipe 51 for supplying a working gas to the sliding portion of the mill 15 is provided instead of the working gas supply pipe 12. . Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.
  • FIG. 5 omits the description of the shaft sealing working gas line e of the working gas supply blower 22.
  • the mill 15 is, for example, a vertical roller mill, a pulverizing unit 55 for pulverizing coal, a pulverizing unit driving unit 59 for driving the pulverizing table 57 of the pulverizing unit 55, and the pulverized coal being classified. And a distribution unit 69 from which pulverized coal 67 having a particle size combustible in the boiler 1 is discharged.
  • the crushing unit 55 is provided with, for example, a cylindrical housing 71 that houses a disc-shaped crushing table 57 and a plurality of crushing rollers 73 that rotate on the outer peripheral side of the crushing table 57.
  • Each grinding roller 73 is connected to a pressure cylinder 79 via a pressure rod 75 and a pressure frame 77 so that each grinding roller 73 can be pressurized toward the grinding table 57.
  • a mill motor 83 is connected to the crushing table 57 via a speed reducer 81 so that the crushing table 57 can be rotated in the circumferential direction at a set speed.
  • the coal 7 supplied from the coal supply pipe 58 to the center of the crushing table 57 moves to the outer periphery of the crushing table 57 while drawing a spiral trajectory on the crushing table 57 by centrifugal force. It is sandwiched between the pulverizing roller 73 and pulverized.
  • the pulverized coal moves to the outer periphery due to the centrifugal force of the pulverization table 57 and is heated by a combustion gas 86 supplied from a throat 85 provided around the pulverization table 57, for example, 150 ° C. to 300 ° C. It is blown up to the upper classifying part 61.
  • the classifying unit 61 is provided with a cyclonic fixed classifier 87 and a rotary classifier 89.
  • the fixed classifier 87 includes a fixed fin 91 and a cone portion 93.
  • the rotary classifier 89 includes rotating fins 92 and a rotor 95 and is formed to be rotatable by a classifier motor 94.
  • the particles blown up to the classification unit 61 are classified by gravity, and the coarse coal 106 a having a large particle size is returned to the pulverization unit 55.
  • pulverized coal 67 having a predetermined particle size or less and coarse coal 106b having a predetermined particle size or more
  • the pulverized coal 106b is pulverized along the inner wall of the cone portion 93. It falls on the table 57 and undergoes re-grinding.
  • the pulverized coal 67 is discharged from the coal feeding pipe 96 using the combustion gas as a carrier gas, and is sent out to a burner installed in the boiler 1.
  • the sealing gas is continuously blown into the sliding portion during operation of the mill 15. Therefore, when air is used as the seal gas, the air mixes with the combustion gas and enters the boiler 1, thereby reducing the CO 2 concentration in the exhaust gas.
  • the present embodiment as the seal gas of the sliding portion of the mill 15, and supplies the separated recovered CO 2 gas in the CO 2 recovery device 8.
  • the CO 2 gas supplied from the working gas supply pipe 51 is branched and supplied to the table drive section pipe 101, the roller shaft pipe 103, the rotation classification drive section pipe 105, and the loading pipe 107.
  • the pipe 101 for the table driving unit can supply CO 2 gas to the sliding part of the crushing table 57 and seal it.
  • the roller shaft piping 103 can supply CO 2 gas to the rotating shaft portion of the crushing roller 73 and seal it.
  • the rotation classifying drive pipe 105 can supply and seal the sliding portion of the rotor 95 of the rotary classifier 89 with CO 2 gas.
  • the loading pipe 107 is configured to supply CO 2 gas to the pressure rod 75, the pressure frame 77, and the sliding portion so as to be sealed.
  • the working gas supply system of this embodiment since using a CO 2 gas separated and recovered by the CO 2 recovery apparatus 8 as a sealing gas of the sliding portion of the mill 15, CO in the exhaust gas 2
  • the working gas can be supplied without reducing the concentration.
  • the higher can be maintained CO 2 recovery efficiency in CO 2 recovery device 8, it is possible to prevent the to the sliding portion of the mill 15 is pulverized coal entering.
  • FIG. 7 the structure of the boiler plant of Example 6 of this invention is shown.
  • the difference between the present embodiment and the first embodiment in FIG. 1 is that the working gas supply pipe 12 is branched to supply the CO 2 gas to the sliding portion of the mill 15 as in the fifth embodiment. This is the point that a pipe 110 is provided. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.
  • the supply destination of the seal gas can be supplied to a sliding portion which is limited to the present embodiment and may cause dust blockage in the mill 15.
  • FIG. 8 the structure of the boiler plant of Example 7 of this invention is shown.
  • the difference between the present embodiment and the second embodiment shown in FIG. 2 is that the exhaust gas recirculation line 9 is branched to supply the CO 2 gas to the sliding portion of the mill 15 as in the fifth embodiment. This is the point that a pipe 112 is provided. Since other configurations are the same as those of the second embodiment, the same reference numerals are given and description thereof is omitted.
  • the seal gas of the sliding portion of the mill 15 because it supplies the CO 2 rich exhaust gas, it is possible to maintain high CO 2 recovery efficiency of the CO 2 recovery apparatus 8, the sliding portion of the mill 15 It is possible to prevent pulverized coal from entering.
  • a boiler plant according to an eighth embodiment of the present invention will be described with reference to FIGS.
  • CO 2 gas separated and recovered by the CO 2 recovery apparatus 8 the exhaust gas branched from the outlet side of the flue 11 of the dust collector 5, desulfurization
  • At least one of the exhaust gases branched from the flue 11 on the outlet side of the apparatus is passed through the sliding parts of the water blow wall blower (wall blower) of the water cooling wall of the boiler 1 and the soot blower blower (soot blower) of the heat transfer tube.
  • It is a boiler plant supplied as seal gas.
  • the boiler 1 of this embodiment is a two-stage combustion type vertical boiler having a burner part 121 and an after air port 123, and the wall of the boiler 1 of the burner part 121 and the after air port 123 absorbs the heat of the flame.
  • a water cooling wall 125 is provided to protect the furnace wall.
  • the water cooling wall 125 is formed by a plurality of water cooling tubes 127 and a plate-like membrane 129 connecting the water cooling tubes 127, and is formed so as to be able to absorb the heat of the flame by the water flowing through the water cooling tubes 127.
  • a plurality of heat transfer tubes 131 are provided at the ceiling portion and the exhaust gas outlet portion of the boiler 1 so that water vapor is generated by the heat of the exhaust gas.
  • a wall blower 133 and a soot blower 135 are provided adjacent to the water cooling tube 127 and the heat transfer tube 131 in order to remove soot (combustion ash) adhering to the water cooling tube 127 and the heat transfer tube 131.
  • the wall blower 133 and the soot blower 135 eject the soot blowing gas, for example, water vapor generated by the boiler 1 from the ejection holes formed on the peripheral surface of the circular pipe, and the soot adhering to the water cooling pipe 127 or the heat transfer pipe 131. Blow away and remove.
  • the wall blower 133 is supported by the water cooling wall 125 so as to be rotatable in the arrow X direction of FIG.
  • the soot blower 135 can move forward and backward in the Y direction of FIG. 11 (the axial direction of the soot blower 135) and can rotate in the Z direction of FIG. 12 (the circumferential direction of the soot blower 135).
  • the furnace wall 139 are supported by the furnace wall 139.
  • high-temperature exhaust gas in the boiler 1 may be ejected from the sliding portion of the wall blower 133 or the sliding portion of the soot blower 135 due to pressure fluctuation in the boiler 1 or the like. Therefore, a seal gas 141 that seals each sliding portion is used.
  • the seal gas 141 when air is used for the seal gas 141, the air is mixed with the exhaust gas, and the CO 2 concentration in the exhaust gas is reduced. Therefore, in this embodiment, the CO 2 gas separated and recovered by the CO 2 recovery device 8, the exhaust gas branched from the flue 11 on the outlet side of the dust collector 5, and the exhaust gas branched from the flue 11 on the outlet side of the desulfurization device At least one of them is supplied as the seal gas 141.
  • the heat transfer tube is inserted into the boiler furnace through a through portion provided on the ceiling of the boiler 1 or a side wall of the boiler 1 (not shown). Seal gas can be supplied also to this penetration part. In this case, exhaust gas dust is collected and removed, or the CO 2 recovered in the CO 2 recovery device 8 can be used by the dust collector 5 as a sealing gas.
  • FIG. 14 the structure of the boiler plant of Example 9 of this invention is shown. 1 differs from the first embodiment of FIG. 1 in that the working gas supply pipe 12 is branched from the flue 11 on the downstream side of the desulfurization device 6 and the sliding of the mill 15 as in the fifth embodiment.
  • the working gas supply pipe 110 that supplies CO 2 gas to the section is connected to the working gas supply pipe 12. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.
  • the exhaust gas circulation lines 9 and 16 are located upstream of the desulfurization device 6, the amount of exhaust gas to be processed by the desulfurization device 6 is reduced, so that the desulfurization device 6 can be reduced in size.
  • the CO 2 separation and recovery efficiency can be maintained higher than in the case of using CO 2 recovered by the CO 2 recovery device 8 as the working gas (Example 1).
  • the CO 2 recovery device 8 is based on the compression separation method, an increase in power of the compressor can be suppressed.
  • exhaust gas desulfurized by the desulfurization device 6 is used as the working gas, the working gas does not contain corrosive sulfur oxides. Blockage can be avoided. Therefore, according to the present embodiment, it is possible to simultaneously reduce the manufacturing cost of the boiler plant and improve the maintainability against corrosion and blockage of each device of the boiler plant.
  • FIG. 15 shows the configuration of the boiler plant of Example 10 of the present invention.
  • the present embodiment is different from the ninth embodiment in that a first heat exchanger 113 is provided in the flue 11 on the inflow side of the dust collector 5 and a second heat exchanger 114 is provided in the working gas supply pipe 12. It is a point that is provided. And the heat medium heated with the 1st heat exchanger 113 distribute
  • the heat of the exhaust gas is recovered by the first heat exchanger 113 on the inlet side of the dust collector 5, and the exhaust gas is heated by the second heat exchanger 114 using the heat.
  • the heat of the exhaust gas is recovered by the first heat exchanger 113 on the inlet side of the dust collector 5, and the exhaust gas is heated by the second heat exchanger 114 using the heat.
  • Use gas According to this, it becomes difficult to condense the water vapor contained in the exhaust gas, and it is possible to improve the maintainability against corrosion and blockage of each equipment of the boiler plant.
  • the second heat exchanger 24 is installed on the exhaust gas recirculation line, and heat is exchanged with a configuration for supplying heat to the heat exchanger 24, boiler feed water, cooling seawater, or the like. It is good also as a structure and those 2 or more combinations.
  • the exhaust gas temperature on the inlet side of the dust collector 5 is 90 ° C. or higher and 140 ° C. or lower with the first heat exchanger 113. The operation and effect of setting the exhaust gas temperature on the inlet side of the dust collector 5 to 90 ° C. or more and 140 ° C. or less will be described in Examples 11 to 14 described later.
  • FIG. 16 illustrates a boiler plant according to Example 11 of the present invention.
  • the boiler plant shown in FIG. 16 includes an oxyfuel boiler 100.
  • the boiler 100 includes a furnace 102, a burner 104 and a wind box 108 attached to the furnace 102.
  • the burner 104 is arranged in a state accommodated in the wind box 108.
  • the burner 104 is formed with a fuel flow path to which pulverized coal of fuel is supplied and a combustion gas flow path to which combustion gas is supplied.
  • a first flue 109 through which exhaust gas flows is connected to the outlet of the boiler 100.
  • a device 122 and a chimney 124 are sequentially arranged.
  • the first flue 109 is connected to an exhaust gas recirculation duct 126 that branches off the flue connecting the induction blower 119 and the desulfurization device 120 and extracts a part of the exhaust gas.
  • the exhaust gas recirculation duct 126 is connected in the middle of a second flue 128 that sends combustion gas to the burner 104.
  • the exhaust gas recirculation duct 126 may be branched from the downstream side of the desulfurization device 120 of the first flue 109.
  • the second flue 128 has one end serving as an air intake and the other end connected to the combustion gas flow path of the boiler 100.
  • a part of the flue gas flowing through the second flue 128 (hereinafter referred to as “circulated exhaust gas”) is branched to the second flue 128 by branching the flue downstream of the portion to which the exhaust gas recirculation duct 126 is connected.
  • a fuel transfer duct 132 for extracting the fuel is connected, and the outlet of the fuel transfer duct 132 is connected to a pulverized coal unit 134.
  • Fuel coal is supplied to the pulverized coal unit 134 and is pulverized to a particle size suitable for pulverized coal combustion by a coal pulverization mill (not shown) accommodated in the pulverized coal unit 134.
  • the pulverized pulverized coal is accompanied by the circulating exhaust gas supplied from the fuel transfer duct 132, passes through the coal feeding pipe 136, and is supplied to the fuel flow path of the burner 104.
  • the second outlet of the oxygen introduction pipe 161 is connected to the second flue 128 and the fuel transfer duct 132, respectively.
  • a valve 138 is disposed in each of the branched oxygen introduction pipes 161.
  • an air separation device 140 is connected to the inlet portion on the opposite side of the oxygen introduction pipe 161. Thereby, the oxygen produced
  • the air separation device 140 separates nitrogen and the like from air to generate high concentration oxygen having a concentration of 95% vd (volume fraction of the dry base) or more.
  • the oxygen generated by the air separation device 140 is divided by adjusting the opening degree of the two valves 138 for coal conveyance (burner primary) and fuel (burner secondary, tertiary, and after air), respectively, 2 are supplied to the second flue 128 and the fuel transfer duct 132, respectively.
  • Oxygen is mixed with the circulating exhaust gas flowing through the second flue 128 and the fuel transfer duct 132, and adjusted to a practical oxygen concentration (for example, 26% to 29% vw: volume fraction of wet base). Is done.
  • a plurality of nozzles for spraying oxygen supplied from the oxygen introduction pipe 161 into the circulating exhaust gas are provided at the tip portions where the oxygen introduction pipe 161 is connected to the second flue 128 and the fuel transfer duct 132, respectively.
  • the provided oxygen mixing device 143 is connected. Oxygen supplied from the oxygen mixing device 143 is rapidly and uniformly mixed with the circulating exhaust gas passing through the oxygen mixing device 143.
  • a combustion gas heater 116 is disposed in the first flue 109, the second flue 128, and the fuel transfer duct 132.
  • the combustion gas heater 116 includes exhaust gas flowing between the denitration device 111 of the first flue 109 and the exhaust gas cooler 115, circulating exhaust gas flowing downstream of the oxygen mixing device 143 of the second flue 128, and Heat is exchanged with the circulating exhaust gas flowing on the downstream side of the oxygen mixing device 143 of the fuel transfer duct 132.
  • the circulating exhaust gas flowing through the second flue 128 or the fuel conveyance duct 132 is guided to the combustion gas heater 116 in a state where oxygen is mixed, and the exhaust gas flowing through the first flue 109 and the heat are respectively heated. Exchange and heat.
  • Dampers 145 are disposed on the sides. By adjusting the opening of each damper 145, the amount of exhaust gas extracted from the first flue 109 is adjusted.
  • a forced draft fan 147 is disposed between the connection part of the exhaust gas recirculation duct 126 and the branch part of the fuel transfer duct 132.
  • a primary gas fan 149 is disposed on the upstream side of the oxygen mixing device 143 in the fuel transfer duct 132.
  • the exhaust gas cooler 115 cools the exhaust gas to a predetermined temperature by exchanging heat between the exhaust gas flowing through the first flue 109 and a cooling refrigerant (not shown). It is a tube type heat exchanger that exchanges heat with the exhaust gas flowing through.
  • the cooling medium used in the exhaust gas cooler 115 is not particularly limited, but low-pressure feed water or seawater of a steam turbine system can also be used.
  • a temperature detector for detecting the temperature of the exhaust gas introduced into the dust remover 117 is provided at the inlet of the dust remover 117 in the first flue 109.
  • the detected temperature is converted into an electric signal and input to a control device (not shown).
  • the control device controls the amount of heat collected by the exhaust gas cooler 115 based on the result obtained by comparing the input detected temperature with the set temperature. Specifically, at least one of the flow rate and the temperature of the cooling medium of the exhaust gas cooler 115 is adjusted so that the temperature detected by the temperature detection device is 90 ° C. or higher and 140 ° C. or lower.
  • the boiler 100 is supplied with circulating exhaust gas containing oxygen as a combustion gas and pulverized coal as fuel, and the pulverized coal is combusted.
  • the exhaust gas generated by the combustion of the boiler 100 is guided to the first flue 109 and supplied to the denitration device 111, and NOx in the exhaust gas is removed.
  • the exhaust gas exiting the denitration device 111 is supplied to the combustion gas heater 116 and the temperature is reduced.
  • the exhaust gas exiting the combustion gas heater 116 is supplied to the exhaust gas cooler 115 and reduced in temperature to a set temperature, and then guided to the dust removing device 117, where a part of SO 3 in the exhaust gas is removed together with the dust component.
  • the exhaust gas is guided to the desulfurization device 120 via the induction fan 119, and SOx is removed.
  • the exhaust gas exiting the desulfurization device 120 is cooled and compressed by the exhaust gas liquefaction device 122, separated in a state where CO 2 is liquefied, and then released from the chimney 124 into the atmosphere.
  • the first flue 109 a part of the exhaust gas that has passed through the induction fan 119 is extracted through the exhaust gas recirculation duct 126 and guided to the second flue 128.
  • the exhaust gas guided to the second flue 128 passes through the forced draft fan 147 as a recirculation gas, and then mixed with the oxygen injected from the oxygen mixing device 143 to become a combustion gas, and the combustion gas heater 116. Led to.
  • the combustion gas heated by the combustion gas heater 116 is supplied to the combustion gas flow path of the burner 104.
  • a part of the circulating exhaust gas guided from the exhaust gas recirculation duct 126 to the second flue 128 and passed through the forced draft fan 147 is guided to the fuel transport duct 132.
  • the circulating exhaust gas guided to the fuel transport duct 132 passes through the primary gas fan 149, and then mixed with oxygen injected from the oxygen mixing device 143 to become a fuel transport gas, which is guided to the combustion gas heater 116. .
  • the fuel carrier gas heated by the combustion gas heater 116 is supplied to the pulverized coal unit 134.
  • the coal pulverized by the pulverized coal unit 134 is accompanied by the fuel conveying gas supplied to the pulverized coal unit 134 and is supplied to the fuel flow path of the burner 104 through the coal feeding pipe 136.
  • the high-temperature and high-pressure steam generated by the combustion in the boiler 1 is supplied to a steam turbine power generation facility (not shown) to generate power.
  • the temperature of the circulating exhaust gas before passing through the combustion gas heater 116 is 70 ° C. to 100 ° C., and air at normal temperature and the first flue Compared to the case where the exhaust gas flowing through 109 is subjected to heat exchange, the amount of heat exchange of the combustion gas heater 116 is reduced. Therefore, after passing through the combustion gas heater 116 in the first flue 109, the exhaust gas flowing in the vicinity of the inlet of the dust removing device 117 is in a relatively high temperature (eg, 190 ° C. to 200 ° C.). When such exhaust gas is supplied to the dust removing device 117, there is a risk of deteriorating dust removal efficiency and heat loss.
  • a relatively high temperature eg, 190 ° C. to 200 ° C.
  • an exhaust gas cooler 115 is installed between the combustion gas heater 116 and the dust removing device 117 so as to further cool the exhaust gas that has passed through the combustion gas heater 116. Therefore, the efficiency deterioration and heat loss of the dust removing device 117 can be prevented. Further, by cooling the exhaust gas flowing in the vicinity of the inlet of the dust removing device 117 to a temperature below the acid dew point, SO 3 in the exhaust gas becomes sulfuric acid mist, and this sulfuric acid mist is captured by the soot dust in the exhaust gas. Is removed.
  • the acid dew point of the exhaust gas thus cooled is substantially equal to the water dew point, for example, when oxygen at room temperature is injected into the second flue 128 or the fuel transfer duct 132, Condensation may occur on the surface of the mixing device 143 and the inlet of the combustion gas heater 116 due to a decrease in gas temperature.
  • a means to reduce the moisture concentration by providing a condenser in the flue can be considered.
  • the moisture concentration of the exhaust gas reaches 25 to 40%.
  • the drain treatment amount increases, and the second flue 128 and the fuel transfer duct 132 have a small amount of soot in the circulating exhaust gas, which makes it difficult to remove sulfuric acid mist and may cause acid dew point corrosion. There is.
  • FIG. 17 is a diagram showing the relationship between the SO 3 concentration of the exhaust gas and the acid dew point.
  • the horizontal axis represents the SO 3 concentration and the vertical axis represents the acid dew point (° C.).
  • the horizontal axis is dimensionless based on the SO 3 concentration when specific coal is burned, and is a logarithmic axis.
  • the SO 3 concentration in the exhaust gas varies depending on the content ratio of the S content in the raw coal.
  • the S content in the raw coal is in the range of 0.1% to 2.0% and the moisture concentration in the exhaust gas is in the range of 25 to 40% (A Coal, B charcoal, C charcoal)
  • the acid dew point temperature is about 140 ° C. with a slight change in SO 3 concentration without being affected by the S content in the raw coal and the moisture concentration in the exhaust gas. It changes rapidly to about 90 ° C.
  • the present invention utilizes this phenomenon, adjusts the amount of heat collected by the exhaust gas cooler 115, and maintains the exhaust gas temperature near the inlet of the dust remover 117 at 90 ° C or higher and 140 ° C or lower.
  • the acid dew point of the exhaust gas is greatly reduced, and the temperature of the gas flowing through the exhaust gas recirculation duct 126, the second flue 128, the fuel transfer duct 132, etc. is always kept above the acid dew point temperature.
  • the sudden drop in the acid dew point temperature is a phenomenon observed in a predetermined SO 3 concentration range. Since the SO 3 concentration is greatly influenced by the S content contained in the raw coal, It is necessary to adjust the SO 3 concentration by managing the formulation and the like.
  • the amount of heat collected by the exhaust gas cooler 115 so that the exhaust gas temperature on the inlet side of the dust removal device 117, that is, the temperature detected by the temperature detection device becomes 140 ° C.
  • SO 3 in the exhaust gas is removed together with soot dust. Removed by device 117.
  • the acid dew point temperature decreases to, for example, 90 ° C. or less, but the exhaust gas temperature is almost the same as that before passing through the dust removing device 117.
  • the circulating exhaust gas is injected by, for example, oxygen injection or heat dissipation. It is conceivable that the temperature decreases to about 120 ° C. before reaching the combustion gas heater 116.
  • the acid dew point of the exhaust gas after passing through the dust removing device 117 is lowered to 90 ° C. or less, even if the circulating exhaust gas is lowered to about 120 ° C., there is a difference of 30 ° C. between the acid dew point. For this reason, the temperature of the exhaust gas after passing through the dust removal device 117 or the circulating exhaust gas does not fall below the acid dew point temperature, and acid dew point corrosion and dust clogging can be prevented.
  • the exhaust gas temperature on the inlet side of the dust removal device 117 is adjusted to 160 ° C., even if the SO 3 concentration in the exhaust gas after passing through the dust removal device 117 is halved compared to the exhaust gas before passing through, The acid dew point temperature is only lower by several to 10 ° C than 160 ° C. For this reason, if the temperature of the exhaust gas after passing through the dust removal device 117 decreases by about 5 ° C. to 20 ° C. before reaching the combustion gas heater 116 by heat dissipation or the like, the exhaust gas temperature falls below the acid dew point temperature, and the flue May cause acid dew point corrosion.
  • the exhaust gas temperature on the inlet side of the dust removing device 117 is adjusted to be 80 ° C., even if the SO 3 concentration in the exhaust gas after passing through the dust removing device 117 is halved compared to the exhaust gas before passing through, The acid dew point temperature is only lower by several to 10 ° C than 80 ° C. For this reason, if the temperature of the exhaust gas after passing through the dust removal device 117 decreases by about 5 ° C. to 20 ° C. before reaching the combustion gas heater 116 by heat dissipation or the like, the exhaust gas temperature falls below the acid dew point temperature, and the flue May cause acid dew point corrosion.
  • the exhaust gas temperature in the vicinity of the inlet of the dust remover 117 is maintained at 90 ° C. or higher and 140 ° C. or lower, so that the acid dew point temperature can be greatly reduced by slightly reducing the SO 3 concentration. . Therefore, even if the exhaust gas is circulated without removing moisture from the exhaust gas, it is possible to prevent acid dew point corrosion and dust clogging in the exhaust gas recirculation duct 126, the second flue 128, the fuel transfer duct 132, and the like. It is possible to improve the reliability and safety of the plant.
  • a heater or the like is provided in the duct or the flue after the dust remover 117 in order to prevent the temperature of the circulating exhaust gas leaving the dust remover 117 from decreasing. It is preferable to provide a known heat retaining means.
  • the composition, flow rate, and heat amount of the gas flowing in the system greatly vary during the air combustion operation at startup and during the steady oxyfuel combustion operation, and the combustion gas is heated in the first flue 109.
  • the exhaust gas temperature coming out of the vessel 116 also varies greatly depending on the operating conditions. For this reason, it is difficult to always manage the exhaust gas temperature in the vicinity of the inlet of the dust removing device 117 using only the combustion gas heater 116.
  • the exhaust gas cooler 115 is configured by a tube heat exchanger and is disposed independently on the downstream side of the combustion gas heater 116 of the first flue 109.
  • the exhaust gas temperature on the inlet side of the dust removal device 117 is always set to an arbitrary temperature independently of the operating conditions of the oxyfuel combustion system without being affected by the flow rate and temperature of exhaust gas and circulating exhaust gas, the supply amount and temperature of oxygen, and the like. Can be quickly adjusted and can be kept stable at that temperature.
  • the amount of heat collected by the exhaust gas cooler 115 may be controlled according to the load of the boiler 100 in a range where the exhaust gas temperature on the inlet side of the dust removing device 117 is 90 ° C. or higher and 140 ° C. or lower. .
  • the amount of heat collected by the exhaust gas cooler 115 is controlled so that the exhaust gas temperature is always constant (for example, 120 ° C.). It is assumed that the amount of heat collected by the exhaust gas cooler 115 is controlled so that the temperature is equal to the rated load or a temperature (for example, 100 ° C.) that is increased or decreased from the rated load condition.
  • the second flue 128 and the fuel transfer duct 132 oxygen having a temperature lower than that of the circulating exhaust gas (for example, room temperature) is mixed with the circulating exhaust gas, and then heat is exchanged with the exhaust gas by the combustion gas heater 116. Therefore, oxygen is recovered by the combustion gas heater 116. For this reason, boiler heat input can be raised and plant efficiency can be improved.
  • the amount of heat collected in the exhaust gas cooler 115 can be smaller than when oxygen is mixed with the circulating exhaust gas on the downstream side of the combustion gas heater 116, so that the exhaust gas cooler 115 itself can be made compact. In addition to reducing the cost of additional installation and remodeling of existing equipment, it is possible to minimize a decrease in efficiency of the entire plant system due to cooling.
  • Example 12 of the oxyfuel combustion system to which the present invention is applied will be described with reference to FIG.
  • differences from the eleventh embodiment will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.
  • This embodiment is different from the embodiment 11 in that an oxygen mixing device 151 is provided in the exhaust gas recirculation duct 126 instead of the oxygen mixing device 143 in FIG.
  • the high-concentration oxygen produced by the air separation device 140 is mixed with a part of the exhaust gas extracted from the first flue 109 and then the second flue 128 and the fuel. Since the gas is distributed to the transfer duct 132, the combustion gas flowing through the second flue 128 and the fuel transfer gas flowing through the fuel transfer duct 132 have the same oxygen concentration.
  • the oxygen concentrations of the combustion gas and the fuel transfer gas may be the same, there is an advantage that the oxygen concentrations of the combustion gas and the fuel transfer gas can be easily adjusted with simple equipment.
  • Example 13 of the boiler plant to which the present invention is applied will be described with reference to FIG.
  • differences from the twelfth embodiment will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.
  • the oxygen mixing device 153 is provided on the downstream side of the combustion gas heater 116 of the second flue 128.
  • the configuration is different. According to this embodiment, most of the oxygen produced by the air separation device 140 is supplied to the upstream side of the combustion gas heater 116 of the second flue 128, and the remaining small amount of oxygen is heated by the combustion gas.
  • the heat recovery efficiency in the combustion gas heater 116 is slightly lower than that in the eleventh embodiment by supplying to the downstream side of the vessel 116, there is an advantage that the oxygen concentration of the combustion gas and the fuel carrier gas can be easily adjusted. is there.
  • FIG. 20 shows the configuration of the boiler plant of Example 14 of the present invention.
  • This embodiment is different from the second embodiment of FIG. 2 in that the exhaust gas cooler 115 of the tenth embodiment is installed in the flue 11 between the combustion gas preheater 4 and the dust collector 5. And the temperature of the exhaust gas introduced into the dust collector 5 by the exhaust gas cooler 115 is 90 degreeC or more and 140 degrees C or less. Since other configurations are the same as those of the second embodiment, the same reference numerals are given and description thereof is omitted.
  • the acid dew point temperature rapidly changes from about 140 ° C. to about 90 ° C. within a specific narrow SO 3 concentration range. Therefore, by adjusting the heat recovery amount of the exhaust gas cooler 115 and maintaining the exhaust gas temperature near the inlet of the dust collector 5 at 90 ° C. or higher and 140 ° C. or lower, the acid dew point of the exhaust gas can be greatly reduced. As a result, a part of SO 3 in the exhaust gas is removed together with the dust component by the dust collector 5.
  • the temperature of the exhaust gas on the inlet side of the dust collector 5 is detected by a temperature detector or the like, and the amount of SO 3 in the exhaust gas is adjusted by adjusting the amount of heat collected by the exhaust gas cooler 115 so that the temperature becomes 140 ° C. It is removed by the dust collector 5 together with the dust.
  • the SO 3 concentration in the exhaust gas that has passed through the dust collector 5 is halved, the acid dew point temperature decreases to, for example, 90 ° C. or less, but the exhaust gas temperature is almost the same as that before passing through the dust collector 5. is there.
  • the temperature of the exhaust gas is reduced by 5 to 20 ° C. due to, for example, injection of oxygen or heat dissipation, and the exhaust gas is heated up to the combustion gas preheater 4. It is conceivable that the temperature drops to about 120 ° C. However, the acid dew point of the exhaust gas after passing through the dust collector 5 is lowered to 90 ° C. or less. Therefore, even if the temperature of the exhaust gas used as the circulating exhaust gas or the working gas decreases to about 120 ° C., the gas temperature is 30 ° C. higher than the acid dew point. For this reason, the temperature of circulating exhaust gas or working gas does not fall below the acid dew point temperature, and acid corrosion and dust clogging of components such as piping can be prevented.
  • an exhaust gas cooler 115 is installed in the flue 11 between the combustion gas preheater 4 and the dust collector 5 and introduced into the dust collector 5. It is possible to control the temperature of the exhaust gas to be 90 ° C. or higher and 140 ° C. or lower.
  • Example 1 (FIG. 1), Example 2 (FIG. 2), Example 4 (FIG. 4), Example 6 (FIG. 7), and Example 7 (FIG. 8) are exhaust gases that have not been desulfurized. Since it is contained in the working gas, it is preferable to install the exhaust gas cooler 115. Thereby, acid corrosion of piping etc. through which circulating exhaust gas and working gas flow can be controlled.

Abstract

This combustion plant: combusts a combusted material in a boiler (1) by means of combustion gas that is oxygen-enriched gas that has been attenuated by exhaust gas; collects soot within the combustion exhaust gas by means of a dust collection device (5); attenuates oxygen-enriched gas using exhaust gas branched from a flue downstream from the dust collection device (5); is used in an ancillary device of a boiler plant that separates/recovers carbon dioxide (CO2) that is in the exhaust gas by means of a CO2 recovery device (8); and suppresses a decrease in CO2 concentration in the exhaust gas by means of using the exhaust gas from which the soot has been collected by dust collection device (5) and/or the CO2 recovered by the CO2 recovery device (8) as the working gas that is admitted into the exhaust gas.

Description

燃焼プラントCombustion plant
 本発明は、酸素燃焼式の燃焼装置を備えた燃焼プラントに係り、特に、COを高効率で分離回収するのに適した燃焼プラントに関する。 The present invention relates to a combustion plant equipped with an oxyfuel combustion apparatus, and more particularly to a combustion plant suitable for separating and recovering CO 2 with high efficiency.
 地球温暖化等の環境負荷を低減するため、社会的に、二酸化炭素(CO)の排出量削減が要請されている。COは、例えば、石油、天然ガス、石炭などの炭素を含む化石燃料、あるいは廃棄物などを燃焼すると発生する。これらの燃焼対象物を燃焼する燃焼プラントは、燃焼で発生するCOの排出量を削減することが望まれている。 In order to reduce environmental burdens such as global warming, there is a social demand for reduction of carbon dioxide (CO 2 ) emissions. CO 2 is generated when, for example, fossil fuel containing carbon such as petroleum, natural gas, coal, or waste is burned. A combustion plant that burns these combustion objects is desired to reduce the amount of CO 2 emissions generated by combustion.
 そこで、特許文献1では、燃焼排ガス中のCOを高効率で回収するため、空気を酸素と窒素を主体とするガスに分離し、分離された酸素に富んだガス(以下、富酸素ガスという。)を燃焼排ガスで希釈した燃焼用ガスで燃焼対象物、例えば、石炭を燃焼させる、いわゆる酸素燃焼式のボイラを備えたボイラプラントが提案されている。これによれば、排ガス量が空気燃焼の場合に比べて約1/4に減るだけでなく、排ガス中のCO濃度が高くなる。そこで、排ガス中のCOを分離して回収することにより、大気中に排出されるCO量を削減するようにしている。 Therefore, in Patent Document 1, in order to recover CO 2 in combustion exhaust gas with high efficiency, air is separated into a gas mainly composed of oxygen and nitrogen, and the separated oxygen-rich gas (hereinafter referred to as oxygen-rich gas). A boiler plant equipped with a so-called oxyfuel boiler is proposed in which an object to be combusted, such as coal, is combusted with a combustion gas diluted with combustion exhaust gas. According to this, not only the amount of exhaust gas is reduced to about ¼ compared to the case of air combustion, but also the CO 2 concentration in the exhaust gas becomes high. Therefore, the amount of CO 2 discharged into the atmosphere is reduced by separating and collecting the CO 2 in the exhaust gas.
 一般に、COの分離回収法には、COを含む排ガスを吸収液に接触させてCOを吸収させる化学吸収法と、COを含む排ガスを圧縮機により圧縮してCOを液化する圧縮分離法が知られている。いずれの方法にしても、COの分離回収の効率を向上させるためには、排ガス中のCO濃度が高いことが望ましい。 Generally, the separation method for recovering CO 2, chemical absorption method of absorbing CO 2 by contacting the exhaust gas containing CO 2 absorption liquid, is compressed by the compressor exhaust gas containing CO 2 liquefying CO 2 A compression separation method is known. In any method, in order to improve the efficiency of CO 2 separation and recovery, it is desirable that the CO 2 concentration in the exhaust gas is high.
特開2007-147161号公報JP 2007-147161 A
 しかし、特許文献1では、ボイラプラントの付帯装置に用いられる作用空気が排ガス中に侵入して、排ガス中のCO濃度を低下させることについて配慮されていない。 However, in Patent Document 1, no consideration is given to reducing the CO 2 concentration in the exhaust gas by the working air used in the auxiliary equipment of the boiler plant entering the exhaust gas.
 例えば、一般の石炭焚きのボイラプラントには、石炭を燃焼するボイラと、ボイラから排出される排ガスを浄化処理する排ガス処理システムが設けられる。そして、ボイラには、付帯装置として、例えば、石炭粉砕装置が設けられるが、石炭粉砕装置の摺動部のシールは空気で行われることから、この空気がボイラ内の燃焼で消費され、排ガス中のCO濃度が低下する。一方、排ガス処理システムには、付帯装置として、例えば、集塵装置の煤塵払い落し装置が設けられ、捕集煤塵の払い落しは、空気を通流させるエアレーションで行うので、排ガス中に空気が混ざってCO濃度が低下する。 For example, a general coal-fired boiler plant is provided with a boiler that burns coal and an exhaust gas treatment system that purifies exhaust gas discharged from the boiler. The boiler is provided with, for example, a coal pulverizer as an auxiliary device. Since the sealing of the sliding portion of the coal pulverizer is performed with air, this air is consumed by the combustion in the boiler and is contained in the exhaust gas. The CO 2 concentration of the water decreases. On the other hand, in the exhaust gas treatment system, as an auxiliary device, for example, a dust dust removal device for a dust collector is provided, and the dust collection dust is removed by aeration in which air flows, so that air is mixed in the exhaust gas. As a result, the CO 2 concentration decreases.
 このようにして排ガスのCO濃度が低下すると、後流に配置されたCO回収装置における回収効率が低下する。また、圧縮分離法の場合は、分離回収に要する圧縮機動力が増加するという問題がある。また、空気が流入した場合は、空気の大半を占める窒素(N)によって排ガス中のN量が増加し、その排ガスで燃焼用ガスの富酸素ガスを希釈すると、燃焼装置におけるNOxの発生量が増加するという弊害もある。 When the CO 2 concentration of the exhaust gas is reduced in this way, the recovery efficiency in the CO 2 recovery device arranged in the downstream is reduced. In the case of the compression separation method, there is a problem that the compressor power required for separation and recovery increases. In addition, when air flows in, the amount of N 2 in the exhaust gas increases due to nitrogen (N 2 ) that occupies most of the air, and when the oxygen-rich gas of the combustion gas is diluted with the exhaust gas, NOx is generated in the combustion device There is also the harmful effect of increasing the amount.
 本発明が解決しようとする課題は、酸素燃焼式の燃焼装置を備えた燃焼プラントにおいて、排ガス中への空気の侵入を防ぎ、排ガスのCO濃度の低下を抑制して、COの回収効率を向上させることにある。 The problem to be solved by the present invention is that in a combustion plant equipped with an oxyfuel combustion device, the intrusion of air into the exhaust gas is prevented, the decrease in the CO 2 concentration of the exhaust gas is suppressed, and the CO 2 recovery efficiency Is to improve.
 上記課題を解決するため、本発明は、富酸素ガスを排ガスで希釈した燃焼用ガスで燃焼対象物を燃焼する酸素燃焼式の燃焼装置と、燃焼装置から排出される排ガスを浄化処理する排ガス処理システムとを備え、排ガス処理システムは、排ガス中の煤塵を捕集する集塵装置と、集塵装置の下流側の煙道から排ガスを分岐して富酸素ガスを希釈する排ガスを供給する分岐流路と、排ガスから二酸化炭素(CO)を分離回収するCO回収装置と、燃焼装置と排ガス処理システムの少なくとも一方の付帯装置で用いられ、排ガス中に侵入する作用ガスを供給する作用ガス供給装置を備えてなる燃焼プラントにおいて、作用ガス供給装置は、集塵装置により煤塵が捕集された排ガスと、CO回収装置により回収されたCOのうちの少なくとも一方を作用ガスとして用いることを特徴とする。 In order to solve the above problems, the present invention provides an oxyfuel combustion apparatus that burns an object to be burned with a combustion gas obtained by diluting an oxygen-rich gas with an exhaust gas, and an exhaust gas treatment that purifies the exhaust gas discharged from the combustion apparatus. The exhaust gas treatment system includes a dust collector that collects dust in the exhaust gas, and a branch flow that supplies exhaust gas that dilutes the exhaust gas from the flue downstream of the dust collector and dilutes the oxygen-rich gas Working gas supply for supplying working gas that penetrates into exhaust gas and is used in a passage, a CO 2 recovery device that separates and recovers carbon dioxide (CO 2 ) from exhaust gas, and an auxiliary device of at least one of a combustion device and an exhaust gas treatment system in combustion plants consisting provided with a device, the active gas supply apparatus, and exhaust gas dust is collected by the dust collector, the less of the CO 2 recovered by the CO 2 recovery unit It characterized by using one as the working gas.
 すなわち、少なくとも酸素燃焼方式により燃焼された排ガスは、CO濃度が高いガスであるから、この排ガスを燃焼プラントの付帯装置の作用ガスとして用いることで、作用ガスが排ガス中に漏れ込み、あるいは侵入されたとしても、排ガスのCO濃度の低下を抑制することができる。その結果、COの分離回収効率を高く保持でき、圧縮機の動力の増加を抑えることができる。なお、少なくとも除塵処理された排ガスの一部を抜出して作用ガスとして供給することが望ましいのは、煤塵により作用ガス供給配管などが閉塞するのを防止できるからである。さらに、CO回収装置により回収されたCOガスを作用ガスとして用いることが好ましい。これにより、排ガス中に含まれる水分がCO回収装置でCOと分離されるから、作用ガス供給配管の腐食を軽減できる。 That is, at least the exhaust gas combusted by the oxygen combustion system is a gas having a high CO 2 concentration. Therefore, by using this exhaust gas as the working gas of the auxiliary device of the combustion plant, the working gas leaks into or enters the exhaust gas. even if they are, it is possible to suppress the reduction of the CO 2 concentration in the exhaust gas. As a result, CO 2 separation and recovery efficiency can be kept high, and an increase in compressor power can be suppressed. In addition, it is desirable to extract at least a part of the dust-treated exhaust gas and supply it as a working gas because it is possible to prevent the working gas supply pipe and the like from being blocked by soot dust. Furthermore, it is preferable to use the CO 2 gas recovered by the CO 2 recovery device as the working gas. Thus, because the moisture contained in the exhaust gas is separated from the CO 2 in the CO 2 recovery apparatus, it can be reduced corrosion of the active gas supply pipe.
 ここで、燃焼装置の付帯装置としては、燃焼対象物を粉砕するミルなどの粉砕装置、燃焼装置がボイラの場合は、ボイラ内の伝熱管又は水冷壁の煤を除去する煤吹き用ブロアなどがある。これらの付帯装置の作用ガスとしては、粉砕装置及び煤吹き用ブロアの摺動部をシールするシールガスなどがある。 Here, as an auxiliary device of the combustion device, a pulverization device such as a mill for pulverizing the object to be combusted, and when the combustion device is a boiler, there are a heat transfer tube in the boiler or a soot blower for removing soot on the water cooling wall, etc. is there. Examples of the working gas of these auxiliary devices include a sealing gas for sealing the sliding portion of the crushing device and the blower for soot blowing.
 また、排ガス処理システムの付帯装置としては、集塵装置の保守装置、排ガスの誘引送風機がある。これらの付帯装置の作用ガスとしては、集塵装置の捕集煤塵の払い落し用ガス(エアレーションガス)、集塵装置が電気集塵機である場合に電気的絶縁の破壊防止のために使用するガス(エアレーションガス)、排ガス又は作用ガス供給用の送風機の軸シールガスなどがある。 Also, as ancillary devices of the exhaust gas treatment system, there are a dust collector maintenance device and an exhaust gas induction blower. The working gas of these auxiliary devices includes gas used to remove dust collected from the dust collector (aeration gas), and gas used to prevent breakdown of electrical insulation when the dust collector is an electric dust collector ( Aeration gas), exhaust gas or shaft seal gas of a blower for supplying working gas.
 また、排ガス処理システムにガスーガスヒータ(例えば、燃焼用ガス予熱器)を設ける場合は、作用ガスとして、ガスーガスヒータのスートブロア摺動部のシールガス及びスカベンジング用ガスが用いられる。 Further, when a gas-gas heater (for example, a combustion gas preheater) is provided in the exhaust gas treatment system, seal gas and scavenging gas for the soot blower sliding portion of the gas-gas heater are used as the working gas.
 また、NOを含む排ガスを浄化処理する場合は、集塵装置の上流側に排ガスに還元剤(例えば、アンモニア)を添加してNOを除去する脱硝装置を配置した排ガス処理装置が用いられる。そして、脱硝装置の付帯設備としては、還元剤の希釈装置があり、作用ガスとして還元剤の希釈用ガスが用いられる。 In the case of purifying process of exhaust gas containing NO X, the reducing agent into the exhaust gas upstream of the dust collector (e.g., ammonia) exhaust gas treatment apparatus for the addition of placing the denitration apparatus for removing NO X is used . As ancillary equipment of the denitration apparatus, there is a reducing agent diluting device, and a reducing agent diluting gas is used as a working gas.
 なお、上述した作用ガスのうち、集塵装置のエアレーションガス、集塵装置が電気集塵機である場合に電気的絶縁の破壊防止のために使用するガス、脱硝装置の希釈用ガスなどは、使用した作用ガスのほぼ全量が排ガスに侵入される。一方、少なくとも一部が排ガス中に侵入される部位の作用ガスとしては、装置摺動部をシールするシールガス、送風機の軸シールガス、スカベンジング用ガスなどがある。 Of the working gases described above, the aeration gas of the dust collector, the gas used to prevent the breakdown of electrical insulation when the dust collector is an electric dust collector, the dilution gas of the denitration device, etc. were used. Almost all of the working gas enters the exhaust gas. On the other hand, working gas at a site where at least a part of the working gas enters the exhaust gas includes a seal gas for sealing the sliding portion of the apparatus, a shaft seal gas for a blower, and a scavenging gas.
 また、一般に、化石燃料を燃焼する燃焼装置においては、集塵装置の下流側(後流側)に排ガス中のSOxを除去する脱硫装置が設けられ、さらにその後流側にCO回収装置が設けられる。この場合、作用ガス供給装置は、脱硫装置により脱硫処理された排ガスを作用ガスとして用いることができる。これによれば、腐食性のSO等が作用ガス中に含まれないので、作用ガス供給配管、軸シール部の腐食及び閉塞を回避することができる。 Further, in general, in a combustion apparatus that burns fossil fuel, a desulfurization apparatus that removes SOx in exhaust gas is provided on the downstream side (rear stream side) of the dust collector, and a CO 2 recovery apparatus is further provided on the downstream side. It is done. In this case, the working gas supply device can use the exhaust gas desulfurized by the desulfurization device as the working gas. According to this, since corrosive SO 3 or the like is not included in the working gas, it is possible to avoid corrosion and blockage of the working gas supply pipe and the shaft seal portion.
 この場合において、脱硫処理された作用ガスを、集塵装置に流入する排ガスとの熱交換により、例えば燃焼用ガス予熱器により加熱することができる。これにより、脱硫装置から排出される水分が飽和したガスを加熱しているから、作用ガス供給配管、軸シール部等において水蒸気が凝縮しそれらの部位が腐食するのを回避できる。 In this case, the desulfurized working gas can be heated by, for example, a combustion gas preheater by heat exchange with the exhaust gas flowing into the dust collector. Thereby, since the gas saturated with water discharged from the desulfurization apparatus is heated, it is possible to avoid the water vapor condensing in the working gas supply pipe, the shaft seal portion, and the like, and corrosion of those parts.
 さらに、作用ガス供給手段は、集塵装置の流出側の排ガス流路から分岐した作用ガス流路と、集塵装置の流入側の排ガス流路に設けられた第1の熱交換器と、作用ガス流路に設けられた第2の熱交換器とを有し、第1の熱交換器で加熱された熱媒を第2の熱交換器に流通して作用ガスを加熱することができる。これによれば、集塵装置から排出されるガス中の水蒸気が、作用ガス供給配管、軸シール部等において凝縮して、それらの部位が腐食するのを回避できる。 Further, the working gas supply means includes a working gas passage branched from the exhaust gas passage on the outflow side of the dust collector, a first heat exchanger provided in the exhaust gas passage on the inflow side of the dust collector, And a second heat exchanger provided in the gas flow path, and the working medium can be heated by circulating the heat medium heated by the first heat exchanger to the second heat exchanger. According to this, it is possible to avoid the water vapor in the gas discharged from the dust collector from being condensed in the working gas supply pipe, the shaft seal portion, and the like, and corroding those parts.
 また、CO回収装置が、COを液体で回収する場合、作用ガス供給装置は、CO回収装置で回収された液体COを気化する気化器と、気化されたCOを昇圧する送風機と、昇圧されたCOを作用ガスとして供給する流路とを備えて構成することができる。 When the CO 2 recovery device recovers CO 2 as a liquid, the working gas supply device includes a vaporizer that vaporizes the liquid CO 2 recovered by the CO 2 recovery device, and a blower that boosts the vaporized CO 2. And a flow path for supplying pressurized CO 2 as a working gas.
 本発明によれば、酸素燃焼式の燃焼装置を備えた燃焼プラントにおいて、排ガス中への空気の侵入を防ぎ、排ガスのCO濃度の低下を抑制でき、COの回収効率を向上できる。 According to the present invention, in a combustion plant equipped with an oxyfuel combustion apparatus, air can be prevented from entering the exhaust gas, a decrease in the CO 2 concentration of the exhaust gas can be suppressed, and the CO 2 recovery efficiency can be improved.
本発明の実施例1のボイラプラントの全体構成図である。It is a whole block diagram of the boiler plant of Example 1 of this invention. 本発明の実施例2のボイラプラントの全体構成図である。It is a whole block diagram of the boiler plant of Example 2 of this invention. 本発明の実施例3のボイラプラントの全体構成図である。It is a whole block diagram of the boiler plant of Example 3 of this invention. 本発明の実施例4のボイラプラントの全体構成図である。It is a whole block diagram of the boiler plant of Example 4 of this invention. 本発明の実施例5のボイラプラントの全体構成図である。It is a whole block diagram of the boiler plant of Example 5 of this invention. 図5のミルの要部構成図である。It is a principal part block diagram of the mill of FIG. 本発明の実施例6のボイラプラントの全体構成図である。It is a whole block diagram of the boiler plant of Example 6 of this invention. 本発明の実施例7のボイラプラントの全体構成図である。It is a whole block diagram of the boiler plant of Example 7 of this invention. 本発明の実施例8のボイラの要部構成図である。It is a principal part block diagram of the boiler of Example 8 of this invention. 図9のボイラのウォールブロアの拡大図である。It is an enlarged view of the wall blower of the boiler of FIG. 図9のボイラ側壁から挿入されたスートブロアの拡大図である。It is an enlarged view of the soot blower inserted from the boiler side wall of FIG. 図11の線A-Aの断面図である。FIG. 12 is a sectional view taken along line AA in FIG. 11. 図9のボイラ天井から挿入された伝熱管の拡大図である。It is an enlarged view of the heat exchanger tube inserted from the boiler ceiling of FIG. 本発明の実施例9のボイラプラントの全体構成図である。It is a whole block diagram of the boiler plant of Example 9 of this invention. 本発明の実施例10のボイラプラントの全体構成図である。It is a whole block diagram of the boiler plant of Example 10 of this invention. 本発明の実施例11のボイラプラントの全体構成図である。It is a whole block diagram of the boiler plant of Example 11 of this invention. SO濃度と酸露点温度との関係を示す図である。SO 3 is a graph showing the relationship between the concentration and the acid dew point temperature. 本発明の実施例12のボイラプラントの全体構成図である。It is a whole block diagram of the boiler plant of Example 12 of this invention. 本発明の実施例13のボイラプラントの全体構成図である。It is a whole block diagram of the boiler plant of Example 13 of this invention. 本発明の実施例14のボイラプラントの全体構成図である。It is a whole block diagram of the boiler plant of Example 14 of this invention.
 以下、本発明の酸素燃焼式の燃焼装置を備えた燃焼プラントを実施例に基づいて説明する。なお、以下の実施例は、石炭焚きのボイラプラントを例として説明するが、本発明の燃焼プラントはこれに限定されず、他の化石燃料を燃焼するボイラプラント、廃棄物を焼却処理する廃棄物処理プラントなど、周知の燃焼プラントに適用できる。 Hereinafter, a combustion plant equipped with the oxyfuel combustion apparatus of the present invention will be described based on examples. In addition, although a following example demonstrates as an example the coal-fired boiler plant, the combustion plant of this invention is not limited to this, The boiler plant which burns other fossil fuels, the waste which incinerates waste It can be applied to a known combustion plant such as a processing plant.
 図1に示すように、本実施例1は、本発明の燃焼プラントとして石炭焚きのボイラプラントに適用した例である。本実施例のボイラプラントは、酸素燃焼式の燃焼装置、例えば、ボイラ1と、ボイラ1から排出される排ガス2を浄化処理する排ガス処理システム備えている。排ガス処理システムは、排ガス中のNOxを還元して分解する脱硝装置3と、燃焼用ガスを予熱する燃焼用ガス予熱器4と、排ガス中のSOxを除去する脱硫装置6と、排ガスからCOを分離回収するCO回収装置8を備えている。 As shown in FIG. 1, Example 1 is an example in which the present invention is applied to a coal-fired boiler plant as a combustion plant of the present invention. The boiler plant according to the present embodiment includes an oxyfuel combustion apparatus, for example, a boiler 1 and an exhaust gas treatment system that purifies exhaust gas 2 discharged from the boiler 1. The exhaust gas treatment system includes a denitration device 3 that reduces and decomposes NOx in exhaust gas, a combustion gas preheater 4 that preheats combustion gas, a desulfurization device 6 that removes SOx in exhaust gas, and CO 2 from the exhaust gas. A CO 2 recovery device 8 is provided for separating and recovering the gas.
 ボイラ1は、燃焼対象物である微粉炭を、富酸素ガスを排ガスで希釈した燃焼用ガスで燃焼するようになっている。ボイラ1から排出される排ガス2は、排ガス流路である煙道11を介して脱硝装置3に供給されるようになっている。脱硝装置3は排ガス2にアンモニアなどの還元剤を注入し、脱硝触媒の存在下で排ガス2中のNOxを還元して分解するようになっている。脱硝装置3から流出される脱硝された排ガス2は、燃焼用ガス予熱器4によりガス温度が低く調整されて集塵装置5に導かれ、ここにおいて排ガス中の煤塵が捕集除去されるようになっている。集塵装置5で煤塵が除去された排ガス2は脱硫装置6に導入され、ここにおいて例えば石灰石スラリーに接触して脱硫処理される。脱硫処理された排ガス2は、CO回収装置8に導かれて排ガス中のCOが他の成分から分離され、CO貯蔵設備19に貯蔵される。なお、本実施例の場合は圧縮分離法により、排ガス2中のCOを圧縮して液化して分離回収するようにしているが、本発明はこれに限らず、化学吸収法によりCOを分離回収することができる。CO回収装置でCOと分離された他の排ガス成分は、図示していない煙突等から大気に排出されるようになっている。 The boiler 1 is configured to burn pulverized coal, which is an object to be burned, with a combustion gas obtained by diluting an oxygen-rich gas with an exhaust gas. The exhaust gas 2 discharged from the boiler 1 is supplied to the denitration device 3 through a flue 11 that is an exhaust gas flow path. The denitration device 3 injects a reducing agent such as ammonia into the exhaust gas 2 to reduce and decompose NOx in the exhaust gas 2 in the presence of a denitration catalyst. The denitrated exhaust gas 2 flowing out from the denitration device 3 is adjusted to a low gas temperature by the combustion gas preheater 4 and guided to the dust collecting device 5 where the dust in the exhaust gas is collected and removed. It has become. The exhaust gas 2 from which the dust is removed by the dust collector 5 is introduced into the desulfurizer 6 where it is desulfurized by contact with, for example, limestone slurry. Desulfurized treated flue gas 2 is guided to the CO 2 recovery device 8 is CO 2 in the exhaust gas is separated from the other components are stored in CO 2 storage facility 19. Incidentally, the compression separation method in the present embodiment, although so as to separate and recover liquefied by compressing the CO 2 in the exhaust gas 2, the present invention is not limited to this, the CO 2 by a chemical absorption method It can be separated and recovered. Other exhaust gas components separated from CO 2 by the CO 2 recovery device are discharged to the atmosphere from a chimney or the like (not shown).
 次に、本実施例の酸素燃焼方式の燃焼用ガスの供給系統について説明する。燃焼用ガスの供給系統は、集塵装置5の下流側で、脱硫装置6の上流側の煙道11から分岐して、排ガス再循環ライン9とミル用排ガス再循環ライン16が設けられている。それらの排ガス再循環ライン9,16には、それぞれボイラ側再循環送風機13と、ミル側再循環送風機14が設けられ、煙道11から抽出した排ガスをボイラ1のバーナ部と、石炭7を微粉砕する粉砕装置、例えば、ミル15に供給するようになっている。また、ボイラ側再循環送風機13と、ミル側再循環送風機14の下流側の排ガス再循環ライン9,16には、酸素製造装置10からボイラ側酸素供給配管17とミル側酸素供給配管18を介して富酸素ガスがそれぞれ供給されるようになっている。 Next, the oxyfuel combustion gas supply system of this embodiment will be described. The combustion gas supply system is branched from the flue 11 on the upstream side of the desulfurization device 6 on the downstream side of the dust collector 5, and an exhaust gas recirculation line 9 and a mill exhaust gas recirculation line 16 are provided. . These exhaust gas recirculation lines 9 and 16 are respectively provided with a boiler side recirculation blower 13 and a mill side recirculation blower 14, and the exhaust gas extracted from the flue 11 is finely passed through the burner section of the boiler 1 and the coal 7. A crushing device for crushing, for example, a mill 15 is supplied. Further, the exhaust gas recirculation lines 9 and 16 on the downstream side of the boiler-side recirculation blower 13 and the mill-side recirculation blower 14 are connected via the boiler-side oxygen supply pipe 17 and the mill-side oxygen supply pipe 18 from the oxygen production apparatus 10. Oxygen-rich gas is supplied.
 酸素製造装置10は空気から酸素を分離して富酸素ガスを製造するものであり、特に限定するものではなく、公知の酸素製造プロセスを適用できる。また、富酸素ガスと再循環排ガスとの混合割合は、図示していない調整手段によりあらかじめ設定された割合に調整されるようになっている。このように混合して生成された燃焼用ガスは、燃焼用ガス予熱器4のガス―ガス熱交換器により加熱されて、ボイラ1とミル15に供給されるようになっている。ミル15に供給された燃焼用ガスは、粉砕された石炭7を乾燥し、石炭と共にボイラ1のバーナ部に供給されるようになっている。 The oxygen production apparatus 10 produces oxygen-rich gas by separating oxygen from air, and is not particularly limited, and a known oxygen production process can be applied. Moreover, the mixing ratio of the oxygen-rich gas and the recirculated exhaust gas is adjusted to a preset ratio by an adjusting means (not shown). The combustion gas generated by mixing in this way is heated by the gas-gas heat exchanger of the combustion gas preheater 4 and supplied to the boiler 1 and the mill 15. The combustion gas supplied to the mill 15 dries the pulverized coal 7 and supplies it to the burner portion of the boiler 1 together with the coal.
 ここで、本実施例の特徴部である排ガス処理システムの作用ガス供給系統について説明する。本実施例では、作用ガスとしてCOガスを用いるようになっている。すなわち、CO貯蔵設備19にはCO気化器21が連通して設けられ、液化されたCOを気化して作用ガス供給送風機22に導き、作用ガス供給送風機22から作用ガスの使用部位に供給する作用ガス供給配管12が設けられている。本実施例では、作用ガスを、脱硝装置3の付帯設備である還元剤希釈用の還元剤注入ラインaに供給するようになっている。また、集塵装置5の煤塵払い落し用(エアレーションガス)として、集塵装置の付帯設備であるエアレーション用作用ガスラインbに供給するようになっている。さらに、排ガス処理システムの付帯設備である作用ガス供給送風機22と、ボイラ側再循環送風機13と、ミル側再循環送風機14の軸シール用として、軸シール用作用ガスラインc、d、eに供給するようになっている。 Here, the working gas supply system of the exhaust gas treatment system, which is a characteristic part of the present embodiment, will be described. In this embodiment, CO 2 gas is used as the working gas. That is, the CO 2 storage facility 19 is provided CO 2 vaporizer 21 communicates, by vaporizing the liquefied CO 2 led to active gas supply blower 22, the application area of the working gas from the working gas supply blower 22 A working gas supply pipe 12 is provided. In the present embodiment, the working gas is supplied to a reducing agent injection line a for reducing agent dilution, which is an incidental facility of the denitration apparatus 3. Further, as dust removal (aeration gas) for the dust collector 5, it is supplied to an aeration working gas line b which is an accessory facility of the dust collector. Further, the gas is supplied to the shaft seal working gas lines c, d, and e for shaft sealing of the working gas supply blower 22, the boiler side recirculation blower 13, and the mill side recirculation blower 14 which are incidental facilities of the exhaust gas treatment system. It is supposed to be.
 このように構成される本実施例の作用ガス供給系統によれば、少なくとも酸素燃焼方式により燃焼された排ガスからCOガスを分離回収して作用ガスとして用いているから、作用ガスがボイラ1や排ガス処理システムの付帯設備から排ガス中に漏れ込み、あるいは排ガス中に混入されたとしても、排ガスのCO濃度の低下を抑制することができる。つまり、脱硝装置3の還元剤希釈用としてCOガスを還元剤注入ラインに供給しているから、還元剤とともに排ガス中に注入されても、排ガスのCO濃度は低下しない。また、集塵装置5のエアレーションガスにCOガスを用いているから、排ガス中に注入されても排ガスのCO濃度は低下しない。さらに、作用ガス供給送風機22と、ボイラ側再循環送風機13と、ミル側再循環送風機14の軸シール部にCOガスを供給しているから、排ガス中に漏れ込んでも、排ガスのCO濃度は低下しない。これらの結果、COの分離回収効率を高く保持でき、圧縮機の動力の増加を抑えることができる。 According to the working gas supply system of the present embodiment configured as described above, CO 2 gas is separated and recovered from exhaust gas burned by at least the oxyfuel combustion method and used as the working gas. Even if it leaks into the exhaust gas from the incidental equipment of the exhaust gas treatment system or is mixed in the exhaust gas, it is possible to suppress a decrease in the CO 2 concentration of the exhaust gas. That is, since CO 2 gas is supplied to the reducing agent injection line for diluting the reducing agent of the denitration apparatus 3, even if it is injected into the exhaust gas together with the reducing agent, the CO 2 concentration of the exhaust gas does not decrease. Further, since CO 2 gas is used as the aeration gas of the dust collector 5, the CO 2 concentration of the exhaust gas does not decrease even when injected into the exhaust gas. Further, since CO 2 gas is supplied to the shaft seal portions of the working gas supply blower 22, the boiler side recirculation blower 13, and the mill side recirculation blower 14, the CO 2 concentration of the exhaust gas even if it leaks into the exhaust gas. Will not drop. As a result, the separation and recovery efficiency of CO 2 can be kept high, and an increase in power of the compressor can be suppressed.
 また、本実施例によれば、CO回収装置は、集塵装置5及び脱硫装置6で処理された排ガスからCOを分離して作用ガスとして用いていることから、軸シール部、作用ガス供給配管12、その関連の構成機器の閉塞、腐食を防止できる。 Further, according to the present embodiment, the CO 2 recovery device separates CO 2 from the exhaust gas treated by the dust collector 5 and the desulfurization device 6 and uses it as a working gas. Blockage and corrosion of the supply pipe 12 and related components can be prevented.
 図2に、本発明の実施例2のボイラプラントの構成を示す。本実施例が、図1の実施例1と相違する点は、作用ガスとしてCOに代えて、集塵装置5と脱硫装置6の間の煙道11から分岐した排ガス再循環ライン9の再循環排ガスの一部を用いたことにある。その他の構成は、実施例1と同一であることから、同一の符号を付して説明を省略する。 In FIG. 2, the structure of the boiler plant of Example 2 of this invention is shown. This embodiment is different from the first embodiment of FIG. 1 in that, instead of CO 2 as the working gas, the recirculation of the exhaust gas recirculation line 9 branched from the flue 11 between the dust collector 5 and the desulfurizer 6. This is because a part of the circulating exhaust gas is used. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.
 本実施例によれば、少なくとも酸素燃焼方式により燃焼された排ガスは、空気を含んでいないガスであり、このガスを作用ガスとして用いていることから、作用ガスが燃焼プラントの付帯設備から排ガス中に漏れ込み、あるいは混入されたとしても、排ガスのCO濃度の低下を抑制することができる。その結果、COの分離回収効率を高く保持でき、圧縮分離法の場合は圧縮機の動力の増加を抑えることができる。なお、少なくとも除塵処理された排ガスの一部を作用ガスとして用いていることから、軸シール部、作用ガス供給配管12、その関連の構成機器が煤塵により閉塞されるのを防止できる。しかし、本実施例の作用ガスは、SOx及び水分(水蒸気)が含まれることから、軸シール部、作用ガス供給配管12、その関連の構成機器が腐食される問題は残る。 According to the present embodiment, the exhaust gas burned by at least the oxyfuel combustion method is a gas that does not contain air, and since this gas is used as the working gas, the working gas is discharged from the incidental equipment of the combustion plant into the exhaust gas. Even if it leaks into or is mixed in, it is possible to suppress a decrease in the CO 2 concentration of the exhaust gas. As a result, the CO 2 separation and recovery efficiency can be kept high, and in the case of the compression separation method, an increase in the power of the compressor can be suppressed. In addition, since at least a part of the dust-treated exhaust gas is used as the working gas, it is possible to prevent the shaft seal portion, the working gas supply pipe 12 and related components from being blocked by dust. However, since the working gas of this embodiment contains SOx and moisture (water vapor), there remains a problem that the shaft seal portion, the working gas supply pipe 12, and related components are corroded.
 図3に、本発明の実施例3のボイラプラントの構成を示す。本実施例が、図2の実施例2と相違する点は、脱硫装置6の下流側の煙道11から排ガス再循環ライン9を分岐し、抽出した再循環排ガスに富酸素ガスを混合して燃焼用ガスを生成し、生成した燃焼用ガスを燃焼用ガス予熱器4で加熱して作用ガスとして用いたことにある。その他の構成は、実施例2と同一であることから、同一の符号を付して説明を省略する。 FIG. 3 shows the configuration of the boiler plant according to the third embodiment of the present invention. 2 differs from Example 2 of FIG. 2 in that the exhaust gas recirculation line 9 is branched from the flue 11 on the downstream side of the desulfurization device 6, and the extracted recirculated exhaust gas is mixed with oxygen-rich gas. The combustion gas is generated, and the generated combustion gas is heated by the combustion gas preheater 4 and used as a working gas. Since other configurations are the same as those of the second embodiment, the same reference numerals are given and description thereof is omitted.
 本実施例3によれば、作用ガス供給系統は、集塵装置5の下流側に設けられた脱硫装置6により脱硫処理された排ガスを燃焼用ガス及び作用ガスとして用いているから、作用ガス中に煤塵及び腐食性のSO等が含まれていない。したがって、作用ガス供給配管12、軸シール部等の腐食及び閉塞を回避することができる。 According to the third embodiment, the working gas supply system uses the exhaust gas desulfurized by the desulfurization device 6 provided on the downstream side of the dust collector 5 as the combustion gas and the working gas. Does not contain soot and corrosive SO 3 . Therefore, corrosion and blockage of the working gas supply pipe 12 and the shaft seal portion can be avoided.
 さらに、本実施例3によれば、作用ガスに燃焼用ガス予熱器4で加熱した燃焼用ガスを用いていることから、水分(水蒸気)の凝縮を抑えることができるので、軸シール部、作用ガス供給配管12、その関連の構成機器の腐食の問題を回避できる。 Furthermore, according to the third embodiment, since the combustion gas heated by the combustion gas preheater 4 is used as the working gas, condensation of moisture (water vapor) can be suppressed. The problem of corrosion of the gas supply pipe 12 and related components can be avoided.
 図4に、本発明の実施例4のボイラプラントの構成を示す。本実施例が、図1の実施例1と相違する点は、集塵装置5の流入側の煙道11に第1の熱交換器23を設け、集塵装置5の流出側の煙道11から分岐した排ガス再循環ライン9に第2の熱交換器24を設けている点である。そして、第1の熱交換器23で加熱された熱媒を第2の熱交換器24に流通し、集塵装置5の後流側から抽出した再循環排ガスを加熱して燃焼用ガスを生成する点である。また、第1の熱交換器23と第2の熱交換器24のスートブロアのシールガス及びスカベンジングガスとして、熱交換器スートブロワ用作用ガスラインf、gに分離回収後のCOを供給するようにした点である。その他の構成は、実施例1と同一であることから、同一の符号を付して説明を省略する。 In FIG. 4, the structure of the boiler plant of Example 4 of this invention is shown. This embodiment differs from the first embodiment of FIG. 1 in that a first heat exchanger 23 is provided in the flue 11 on the inflow side of the dust collector 5, and the flue 11 on the outflow side of the dust collector 5. The second heat exchanger 24 is provided in the exhaust gas recirculation line 9 branched from the first. Then, the heat medium heated by the first heat exchanger 23 is circulated to the second heat exchanger 24, and the recirculated exhaust gas extracted from the downstream side of the dust collector 5 is heated to generate combustion gas. It is a point to do. Further, as the sealing gas and scavenging gas for the soot blower of the first heat exchanger 23 and the second heat exchanger 24, CO 2 after separation and recovery is supplied to the working gas lines f and g for the heat exchanger soot blower. This is the point. Since the other configuration is the same as that of the first embodiment, the same reference numerals are given and description thereof is omitted.
 本実施例4によれば、集塵装置5の流出側から抽出した排ガスを加熱することができるので、燃焼用ガスの一部として用いても、ガス温度の低下を押さえることができ、ミル15又はボイラ1のバーナ部等において排ガスに含まれる水蒸気が凝縮して、それらが腐食するのを回避できる。 According to the fourth embodiment, since the exhaust gas extracted from the outflow side of the dust collector 5 can be heated, even if it is used as a part of the combustion gas, a decrease in gas temperature can be suppressed, and the mill 15 Or it can avoid that the water vapor | steam contained in waste gas condenses in the burner part etc. of the boiler 1, and they corrode.
 図5に、本発明の実施例5のボイラプラントの構成を示す。本実施例が、図1の実施例1と相違する点は、作用ガス供給配管12に代えて、ミル15の摺動部に作用ガスを供給する作用ガス供給配管51を設けている点である。その他の構成は、実施例1と同一であることから、同一の符号を付して説明を省略する。なお、図示をわかり易くするため、図5は、作用ガス供給送風機22の軸シール用作用ガスラインeの記載を省略している。 FIG. 5 shows the configuration of the boiler plant of Example 5 of the present invention. This embodiment is different from the first embodiment of FIG. 1 in that a working gas supply pipe 51 for supplying a working gas to the sliding portion of the mill 15 is provided instead of the working gas supply pipe 12. . Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted. In addition, in order to make illustration easy to understand, FIG. 5 omits the description of the shaft sealing working gas line e of the working gas supply blower 22.
 ここで、ミル15の構成及び動作を図6を用いて説明する。図示のように、ミル15は、例えば、竪型のローラミルであり、石炭が粉砕される粉砕部55、粉砕部55の粉砕テーブル57を駆動させる粉砕部駆動部59、粉砕された石炭が分級される分級部61、及びボイラ1で燃焼可能な粒径の微粉炭67が排出される分配部69を備えている。 Here, the configuration and operation of the mill 15 will be described with reference to FIG. As shown in the figure, the mill 15 is, for example, a vertical roller mill, a pulverizing unit 55 for pulverizing coal, a pulverizing unit driving unit 59 for driving the pulverizing table 57 of the pulverizing unit 55, and the pulverized coal being classified. And a distribution unit 69 from which pulverized coal 67 having a particle size combustible in the boiler 1 is discharged.
 粉砕部55には、例えば、円盤状の粉砕テーブル57を収納する円筒形のハウジング71と、粉砕テーブル57上の外周側を回転する複数の粉砕ローラ73が設けられている。各粉砕ローラ73は、加圧ロッド75と加圧フレーム77を介して加圧シリンダ79に接続され、各粉砕ローラ73を粉砕テーブル57に向けて加圧できるようになっている。粉砕テーブル57には、減速機81を介してミルモータ83が接続され、粉砕テーブル57を設定速度で周方向に回転可能に形成されている。これらにより、給炭管58から粉砕テーブル57の中央に供給された石炭7は、粉砕テーブル57上で遠心力によりうず巻状の軌跡を描いて粉砕テーブル57の外周へ移動し、粉砕テーブル57と粉砕ローラ73との間にかみ込まれて粉砕される。粉砕された石炭は、粉砕テーブル57による遠心力により外周へ移動し、粉砕テーブル57の周りに設けられたスロート85から供給される、例えば、150℃~300℃の燃焼用ガス86により加熱されながら上方の分級部61に吹き上げられる。 The crushing unit 55 is provided with, for example, a cylindrical housing 71 that houses a disc-shaped crushing table 57 and a plurality of crushing rollers 73 that rotate on the outer peripheral side of the crushing table 57. Each grinding roller 73 is connected to a pressure cylinder 79 via a pressure rod 75 and a pressure frame 77 so that each grinding roller 73 can be pressurized toward the grinding table 57. A mill motor 83 is connected to the crushing table 57 via a speed reducer 81 so that the crushing table 57 can be rotated in the circumferential direction at a set speed. As a result, the coal 7 supplied from the coal supply pipe 58 to the center of the crushing table 57 moves to the outer periphery of the crushing table 57 while drawing a spiral trajectory on the crushing table 57 by centrifugal force. It is sandwiched between the pulverizing roller 73 and pulverized. The pulverized coal moves to the outer periphery due to the centrifugal force of the pulverization table 57 and is heated by a combustion gas 86 supplied from a throat 85 provided around the pulverization table 57, for example, 150 ° C. to 300 ° C. It is blown up to the upper classifying part 61.
 分級部61には、サイクロン式の固定式分級器87と回転式分級器89が設けられている。固定式分級器87は、固定フィン91とコーン部93を備えている。回転式分級器89は、回転フィン92とロータ95を備え、分級器モータ94により回転可能に形成されている。これにより、分級部61に吹き上げられた粒子は、重力による分級を受け、粒径の大きな粗粉炭106aは粉砕部55に戻される。さらに、固定式分級器87及び回転式分級器89により分級され、所定粒度以下の微粉炭67と所定粒度以上の粗粉炭106bとに分級され、粗粉炭106bはコーン部93の内壁に沿って粉砕テーブル57上に落下して再粉砕を受ける。微粉炭67は、燃焼用ガスを搬送ガスとして、送炭管96から排出されボイラ1に設置されたバーナへと送り出される。 The classifying unit 61 is provided with a cyclonic fixed classifier 87 and a rotary classifier 89. The fixed classifier 87 includes a fixed fin 91 and a cone portion 93. The rotary classifier 89 includes rotating fins 92 and a rotor 95 and is formed to be rotatable by a classifier motor 94. Thus, the particles blown up to the classification unit 61 are classified by gravity, and the coarse coal 106 a having a large particle size is returned to the pulverization unit 55. Further, it is classified by a fixed classifier 87 and a rotary classifier 89 and classified into pulverized coal 67 having a predetermined particle size or less and coarse coal 106b having a predetermined particle size or more, and the pulverized coal 106b is pulverized along the inner wall of the cone portion 93. It falls on the table 57 and undergoes re-grinding. The pulverized coal 67 is discharged from the coal feeding pipe 96 using the combustion gas as a carrier gas, and is sent out to a burner installed in the boiler 1.
 このように構成されるミル15では、摺動部における粉じん閉塞を防止するため、ミル15運転中は摺動部にシールガスを常時連続して吹き込んでいる。そのため、シールガスとして空気を用いると、その空気が燃焼用ガスに混じってボイラ1に侵入するから、排ガス中のCO濃度を低下する。そこで、本実施例は、ミル15の摺動部のシールガスとして、CO回収装置8で分離回収したCOガスを供給している。 In the mill 15 configured as described above, in order to prevent dust blockage in the sliding portion, the sealing gas is continuously blown into the sliding portion during operation of the mill 15. Therefore, when air is used as the seal gas, the air mixes with the combustion gas and enters the boiler 1, thereby reducing the CO 2 concentration in the exhaust gas. The present embodiment, as the seal gas of the sliding portion of the mill 15, and supplies the separated recovered CO 2 gas in the CO 2 recovery device 8.
 ここで、本実施例の作用ガス供給系統について説明する。作用ガス供給配管51から供給されるCOガスは、テーブル駆動部用配管101、ローラ軸用配管103、回転分級駆動部用配管105、及びローディング用配管107のそれぞれに分岐して供給される。テーブル駆動部用配管101は、粉砕テーブル57の摺動部にCOガスを供給してシールできるようになっている。ローラ軸用配管103は、粉砕ローラ73の回転軸部にCOガスを供給してシールできるようになっている。回転分級駆動部用配管105は、回転式分級器89のロータ95の摺動部にCOガスを供給してシールできるようになっている。ローディング用配管107は、加圧ロッド75と加圧フレーム77と摺動部にCOガスを供給してシールできるようになっている。 Here, the working gas supply system of the present embodiment will be described. The CO 2 gas supplied from the working gas supply pipe 51 is branched and supplied to the table drive section pipe 101, the roller shaft pipe 103, the rotation classification drive section pipe 105, and the loading pipe 107. The pipe 101 for the table driving unit can supply CO 2 gas to the sliding part of the crushing table 57 and seal it. The roller shaft piping 103 can supply CO 2 gas to the rotating shaft portion of the crushing roller 73 and seal it. The rotation classifying drive pipe 105 can supply and seal the sliding portion of the rotor 95 of the rotary classifier 89 with CO 2 gas. The loading pipe 107 is configured to supply CO 2 gas to the pressure rod 75, the pressure frame 77, and the sliding portion so as to be sealed.
 このように構成される本実施例の作用ガス供給系統によれば、ミル15の摺動部のシールガスとしてCO回収装置8で分離回収したCOガスを用いているから、排ガス中のCO濃度を低下させることなく作用ガスを供給できる。その結果、CO回収装置8におけるCO回収効率を高く維持できるとともに、ミル15の摺動部へ微粉炭が侵入することを防止できる。   According to the working gas supply system of this embodiment constituted, since using a CO 2 gas separated and recovered by the CO 2 recovery apparatus 8 as a sealing gas of the sliding portion of the mill 15, CO in the exhaust gas 2 The working gas can be supplied without reducing the concentration. As a result, the higher can be maintained CO 2 recovery efficiency in CO 2 recovery device 8, it is possible to prevent the to the sliding portion of the mill 15 is pulverized coal entering.
 図7に、本発明の実施例6のボイラプラントの構成を示す。本実施例が、図1の実施例1と相違する点は、作用ガス供給配管12を分岐して、実施例5のように、ミル15の摺動部へCOガスを供給する作用ガス供給配管110を設けている点である。その他の構成は、実施例1と同一であることから、同一の符号を付して説明を省略する。 In FIG. 7, the structure of the boiler plant of Example 6 of this invention is shown. The difference between the present embodiment and the first embodiment in FIG. 1 is that the working gas supply pipe 12 is branched to supply the CO 2 gas to the sliding portion of the mill 15 as in the fifth embodiment. This is the point that a pipe 110 is provided. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.
 本実施例によっても、ミル15の摺動部のシールガスとしてCO回収装置8で分離回収したCOガスを供給できるから、CO回収装置8におけるCO回収効率を高く維持できるとともに、ミル15の摺動部へ微粉炭が侵入することを防止できる。 Also according to this example, since it supplies the separated recovered CO 2 gas in the CO 2 recovery apparatus 8 as a sealing gas of the sliding portion of the mill 15, increases with can maintain a CO 2 recovery efficiency in CO 2 recovery device 8, mils It is possible to prevent pulverized coal from entering the 15 sliding portions.
 なお、シールガスの供給先は本実施例に限定される、ミル15の粉じん閉塞が生じるおそれのある摺動部に供給できる。 It should be noted that the supply destination of the seal gas can be supplied to a sliding portion which is limited to the present embodiment and may cause dust blockage in the mill 15.
 図8に、本発明の実施例7のボイラプラントの構成を示す。本実施例が、図2の実施例2と相違する点は、排ガス再循環ライン9を分岐して、実施例5のように、ミル15の摺動部へCOガスを供給する作用ガス供給配管112を設けている点である。その他の構成は、実施例2と同一であることから、同一の符号を付して説明を省略する。 In FIG. 8, the structure of the boiler plant of Example 7 of this invention is shown. The difference between the present embodiment and the second embodiment shown in FIG. 2 is that the exhaust gas recirculation line 9 is branched to supply the CO 2 gas to the sliding portion of the mill 15 as in the fifth embodiment. This is the point that a pipe 112 is provided. Since other configurations are the same as those of the second embodiment, the same reference numerals are given and description thereof is omitted.
 本実施例によれば、ミル15の摺動部のシールガスとして、COリッチの排ガスを供給できるから、CO回収装置8におけるCO回収効率を高く維持できるとともに、ミル15の摺動部へ微粉炭侵入することを防止できる。 According to this embodiment, as the seal gas of the sliding portion of the mill 15, because it supplies the CO 2 rich exhaust gas, it is possible to maintain high CO 2 recovery efficiency of the CO 2 recovery apparatus 8, the sliding portion of the mill 15 It is possible to prevent pulverized coal from entering.
 図9~13を用いて、本発明の実施例8のボイラプラントを説明する。本実施例は、上述した実施例1~7のボイラプラントのボイラ1において、CO回収装置8で分離回収したCOガス、集塵装置5の出口側の煙道11から分岐した排ガス、脱硫装置の出口側の煙道11から分岐した排ガスのうちの少なくとも1つを、ボイラ1の水冷壁の煤吹き用ブロア(ウォールブロア)及び伝熱管の煤吹き用ブロア(スートブロア)の摺動部のシールガスとして供給するようにしたボイラプラントである。 A boiler plant according to an eighth embodiment of the present invention will be described with reference to FIGS. This example, in boiler 1 of the boiler plant of Examples 1 to 7 described above, CO 2 gas separated and recovered by the CO 2 recovery apparatus 8, the exhaust gas branched from the outlet side of the flue 11 of the dust collector 5, desulfurization At least one of the exhaust gases branched from the flue 11 on the outlet side of the apparatus is passed through the sliding parts of the water blow wall blower (wall blower) of the water cooling wall of the boiler 1 and the soot blower blower (soot blower) of the heat transfer tube. It is a boiler plant supplied as seal gas.
 本実施例のボイラ1は、バーナ部121とアフターエアーポート123の2段燃焼式の竪型ボイラであり、バーナ部121とアフターエアーポート123のボイラ1の壁には、火炎の熱を吸収して炉壁を保護する水冷壁125が設けられている。水冷壁125は、複数の水冷管127と、各水冷管127を連結する板状のメンブレン129により形成され、各水冷管127を通流する水により火炎の熱を吸収可能に形成されている。一方、ボイラ1の天井部及び排ガス出口部には、複数の伝熱管131が設けられ、排ガスの熱により水蒸気を発生するようになっている。
The boiler 1 of this embodiment is a two-stage combustion type vertical boiler having a burner part 121 and an after air port 123, and the wall of the boiler 1 of the burner part 121 and the after air port 123 absorbs the heat of the flame. A water cooling wall 125 is provided to protect the furnace wall. The water cooling wall 125 is formed by a plurality of water cooling tubes 127 and a plate-like membrane 129 connecting the water cooling tubes 127, and is formed so as to be able to absorb the heat of the flame by the water flowing through the water cooling tubes 127. On the other hand, a plurality of heat transfer tubes 131 are provided at the ceiling portion and the exhaust gas outlet portion of the boiler 1 so that water vapor is generated by the heat of the exhaust gas.
 一方、水冷管127や伝熱管131に付着した煤(燃焼灰)を除去するため、水冷管127及び伝熱管131に隣接させてウォールブロア133及びスートブロア135が設けられている。ウォールブロア133及びスートブロア135は、円管の周面に形成された噴出孔から煤吹き用ガス、例えば、ボイラ1で生成された水蒸気を噴出し、水冷管127や伝熱管131に付着した煤を吹き飛ばして除去するようになっている。また、ウォールブロア133は、図10の矢印X方向(ウォールブロア133の周方向)に回転可能に水冷壁125に支持されている。一方、スートブロア135は、図11のY方向(スートブロア135の軸方向)に進退可能に、かつ、図12のZ方向(スートブロア135の周方向)に回転可能に、ボイラ1の天井137及びボイラ1の炉壁139に支持されている。 Meanwhile, a wall blower 133 and a soot blower 135 are provided adjacent to the water cooling tube 127 and the heat transfer tube 131 in order to remove soot (combustion ash) adhering to the water cooling tube 127 and the heat transfer tube 131. The wall blower 133 and the soot blower 135 eject the soot blowing gas, for example, water vapor generated by the boiler 1 from the ejection holes formed on the peripheral surface of the circular pipe, and the soot adhering to the water cooling pipe 127 or the heat transfer pipe 131. Blow away and remove. Further, the wall blower 133 is supported by the water cooling wall 125 so as to be rotatable in the arrow X direction of FIG. 10 (the circumferential direction of the wall blower 133). On the other hand, the soot blower 135 can move forward and backward in the Y direction of FIG. 11 (the axial direction of the soot blower 135) and can rotate in the Z direction of FIG. 12 (the circumferential direction of the soot blower 135). Are supported by the furnace wall 139.
 このように構成されるボイラ1において、ボイラ1内の圧力変動等により、ウォールブロア133の摺動部又はスートブロア135の摺動部から、ボイラ1内の高温排ガスが噴出するおそれがある。そのため、各摺動部をシールするシールガス141を用いている。しかし、シールガス141に空気を用いると空気が排ガスに混じって排ガス中のCO濃度が低下する。そこで、本実施例は、CO回収装置8で分離回収したCOガス、集塵装置5の出口側の煙道11から分岐した排ガス、脱硫装置の出口側の煙道11から分岐した排ガスのうちの少なくとも1つを、シールガス141として供給するようにしている。これによれば、排ガス中のCO濃度の低下を抑制でき、かつ、ウォールブロア133及びスートブロア135の摺動部をシールすることができる。なお、伝熱管は、ボイラ1の天井もしくは図示していないボイラ1の側壁に設けられた貫通部を介してボイラ火炉内へと挿入されている。この貫通部にもシールガスを供給することができる。この場合は、シールガスとして集塵装置5により煤塵が捕集・除去された排ガス、又はCO回収装置8に回収されたCOを使用できる。 In the boiler 1 configured as described above, high-temperature exhaust gas in the boiler 1 may be ejected from the sliding portion of the wall blower 133 or the sliding portion of the soot blower 135 due to pressure fluctuation in the boiler 1 or the like. Therefore, a seal gas 141 that seals each sliding portion is used. However, when air is used for the seal gas 141, the air is mixed with the exhaust gas, and the CO 2 concentration in the exhaust gas is reduced. Therefore, in this embodiment, the CO 2 gas separated and recovered by the CO 2 recovery device 8, the exhaust gas branched from the flue 11 on the outlet side of the dust collector 5, and the exhaust gas branched from the flue 11 on the outlet side of the desulfurization device At least one of them is supplied as the seal gas 141. According to this, it is possible to suppress a decrease in CO 2 concentration in the exhaust gas, and can be sealed sliding portion of the wall blower 133 and soot blower 135. The heat transfer tube is inserted into the boiler furnace through a through portion provided on the ceiling of the boiler 1 or a side wall of the boiler 1 (not shown). Seal gas can be supplied also to this penetration part. In this case, exhaust gas dust is collected and removed, or the CO 2 recovered in the CO 2 recovery device 8 can be used by the dust collector 5 as a sealing gas.
 図14に、本発明の実施例9のボイラプラントの構成を示す。本実施例が、図1の実施例1と相違する点は、脱硫装置6の下流側の煙道11から作用ガス供給配管12を分岐するとともに、実施例5のように、ミル15の摺動部へCOガスを供給する作用ガス供給配管110を作用ガス供給配管12に接続している点である。その他の構成は、実施例1と同一であることから、同一の符号を付して説明を省略する。 In FIG. 14, the structure of the boiler plant of Example 9 of this invention is shown. 1 differs from the first embodiment of FIG. 1 in that the working gas supply pipe 12 is branched from the flue 11 on the downstream side of the desulfurization device 6 and the sliding of the mill 15 as in the fifth embodiment. The working gas supply pipe 110 that supplies CO 2 gas to the section is connected to the working gas supply pipe 12. Since other configurations are the same as those of the first embodiment, the same reference numerals are given and description thereof is omitted.
 本実施例によれば、排ガス循環ライン9、16を脱硫装置6の上流側にしたことにより、脱硫装置6で処理する排ガス量が少なくなるので、脱硫装置6を小型にすることができる。実施例2と同様に、作用ガスにCO回収装置8で回収されたCOを用いる場合(実施例1)に比べ、COの分離回収効率を高く保持できる。また、CO回収装置8が圧縮分離法によるものの場合、圧縮機の動力の増加を抑えることができる。また、作用ガスに脱硫装置6で脱硫処理された排ガスを用いていることから、作用ガス中に腐食性の硫黄酸化物が含まれないので、作用ガス供給配管12、軸シール部等の腐食及び閉塞を回避することができる。よって、本実施例によれば、ボイラプラントの製造コストを低く抑えることと、ボイラプラントの各機器の腐食や閉塞等に対する保全性を高めることを両立することが可能となる。 According to the present embodiment, since the exhaust gas circulation lines 9 and 16 are located upstream of the desulfurization device 6, the amount of exhaust gas to be processed by the desulfurization device 6 is reduced, so that the desulfurization device 6 can be reduced in size. As in Example 2, the CO 2 separation and recovery efficiency can be maintained higher than in the case of using CO 2 recovered by the CO 2 recovery device 8 as the working gas (Example 1). Further, when the CO 2 recovery device 8 is based on the compression separation method, an increase in power of the compressor can be suppressed. In addition, since exhaust gas desulfurized by the desulfurization device 6 is used as the working gas, the working gas does not contain corrosive sulfur oxides. Blockage can be avoided. Therefore, according to the present embodiment, it is possible to simultaneously reduce the manufacturing cost of the boiler plant and improve the maintainability against corrosion and blockage of each device of the boiler plant.
 図15に、本発明の実施例10のボイラプラントの構成を示す。本実施例が、実施例9と相違する点は、集塵装置5の流入側の煙道11に第1の熱交換器113を設け、作用ガス供給配管12に第2の熱交換器114を設けている点である。そして、第1の熱交換器113で加熱された熱媒を第2の熱交換器114に流通し、脱硫装置6の下流側から分岐した排ガスを加熱して作用ガスとしている点である。その他の構成は、実施例9と同一であるから、同一の符号を付して説明を省略する。 FIG. 15 shows the configuration of the boiler plant of Example 10 of the present invention. The present embodiment is different from the ninth embodiment in that a first heat exchanger 113 is provided in the flue 11 on the inflow side of the dust collector 5 and a second heat exchanger 114 is provided in the working gas supply pipe 12. It is a point that is provided. And the heat medium heated with the 1st heat exchanger 113 distribute | circulates to the 2nd heat exchanger 114, and is the point which heats the exhaust gas branched from the downstream of the desulfurization apparatus 6, and makes it working gas. Since other configurations are the same as those of the ninth embodiment, the same reference numerals are given and description thereof is omitted.
 脱硫装置6を通過した排ガスは、脱硫処理によって温度が下がっているので、そのまま作用ガスとすると排ガス中の水蒸気が凝縮し、作用ガス供給配管12等のボイラプラントの機器の腐食や閉塞等が発生するおそれがある。そこで、本実施例は、集塵装置5の入口側の第1の熱交換器113で排ガスの熱を回収し、その熱を利用して第2の熱交換器114で排ガスを加熱して作用ガスとする。これによれば、排ガス中に含まれる水蒸気が凝縮しにくくなり、ボイラプラントの各機器の腐食や閉塞等に対する保全性を高めることができる。 Since the temperature of the exhaust gas that has passed through the desulfurization device 6 has been lowered by the desulfurization treatment, if it is used as it is, the water vapor in the exhaust gas will condense, and corrosion or blockage of boiler plant equipment such as the working gas supply pipe 12 will occur. There is a risk. Therefore, in this embodiment, the heat of the exhaust gas is recovered by the first heat exchanger 113 on the inlet side of the dust collector 5, and the exhaust gas is heated by the second heat exchanger 114 using the heat. Use gas. According to this, it becomes difficult to condense the water vapor contained in the exhaust gas, and it is possible to improve the maintainability against corrosion and blockage of each equipment of the boiler plant.
 なお、第1の熱交換器113で回収した熱を必ずしも全て第2の熱交換器114に供給する構成とする必要はない。即ち、第1の熱交換器113で回収した熱の一部は図示しない別の系統へ取り出して冷却・熱交換しても良い。例えば、実施例4のように、排ガス再循環ライン上に第2の熱交換器24を設置し、その熱交換器24に熱を供給する構成や、ボイラ給水、冷却用海水等と熱交換する構成、それらの2以上の組合せとしても良い。また、第1の熱交換器113で集塵装置5の入口側の排ガス温度を90℃以上、140℃以下となるようにすることが望ましい。この集塵装置5の入口側の排ガス温度を90℃以上、140℃以下にする作用・効果については、後述する実施例11~14で説明する。 Note that it is not always necessary to supply all the heat recovered by the first heat exchanger 113 to the second heat exchanger 114. That is, a part of the heat recovered by the first heat exchanger 113 may be taken out to another system (not shown) and cooled / exchanged. For example, as in Example 4, the second heat exchanger 24 is installed on the exhaust gas recirculation line, and heat is exchanged with a configuration for supplying heat to the heat exchanger 24, boiler feed water, cooling seawater, or the like. It is good also as a structure and those 2 or more combinations. In addition, it is desirable that the exhaust gas temperature on the inlet side of the dust collector 5 is 90 ° C. or higher and 140 ° C. or lower with the first heat exchanger 113. The operation and effect of setting the exhaust gas temperature on the inlet side of the dust collector 5 to 90 ° C. or more and 140 ° C. or less will be described in Examples 11 to 14 described later.
 図16に本発明の実施例11のボイラプラントを説明する。図16に示すボイラプラントは、酸素燃焼式のボイラ100を備えている。ボイラ100は、火炉102と、火炉102に取り付けられるバーナ104及びウィンドボックス108とから構成されている。バーナ104は、ウィンドボックス108内に収容された状態で配置される。バーナ104には、燃料の微粉炭が供給される燃料流路と、燃焼用ガスが供給される燃焼用ガス流路が形成されている。 FIG. 16 illustrates a boiler plant according to Example 11 of the present invention. The boiler plant shown in FIG. 16 includes an oxyfuel boiler 100. The boiler 100 includes a furnace 102, a burner 104 and a wind box 108 attached to the furnace 102. The burner 104 is arranged in a state accommodated in the wind box 108. The burner 104 is formed with a fuel flow path to which pulverized coal of fuel is supplied and a combustion gas flow path to which combustion gas is supplied.
 ボイラ100の出口には、排ガスが通流する第1の煙道109が接続されている。第1の煙道109の途中には、上流側から、脱硝装置111、燃焼用ガス加熱器116、排ガス冷却器115、除塵装置(集塵装置)117、誘引送風機119、脱硫装置120、排ガス液化装置122、煙突124が順次配設されている。第1の煙道109には、誘引送風機119と脱硫装置120とを接続する煙道を分岐させて、排ガスの一部を抜き出す排ガス再循環ダクト126が接続されている。排ガス再循環ダクト126には、燃焼用ガスをバーナ104に送る第2の煙道128の途中に接続されている。なお、排ガス再循環ダクト126は、第1の煙道109の脱硫装置120の後流側から分岐させてもよい。 A first flue 109 through which exhaust gas flows is connected to the outlet of the boiler 100. In the middle of the first flue 109, from the upstream side, the denitration device 111, the combustion gas heater 116, the exhaust gas cooler 115, the dust removal device (dust collection device) 117, the induction blower 119, the desulfurization device 120, the exhaust gas liquefaction. A device 122 and a chimney 124 are sequentially arranged. The first flue 109 is connected to an exhaust gas recirculation duct 126 that branches off the flue connecting the induction blower 119 and the desulfurization device 120 and extracts a part of the exhaust gas. The exhaust gas recirculation duct 126 is connected in the middle of a second flue 128 that sends combustion gas to the burner 104. The exhaust gas recirculation duct 126 may be branched from the downstream side of the desulfurization device 120 of the first flue 109.
 第2の煙道128は、一端が空気取入口となり、他端がボイラ100の燃焼用ガス流路に接続されている。第2の煙道128には、排ガス再循環ダクト126が接続される部位の下流側の煙道を分岐させて、第2の煙道128を流れる排ガス(以下、循環排ガスという。)の一部を抜き出す燃料搬送用ダクト132が接続されており、燃料搬送用ダクト132の先の出口は微粉炭器134に接続されている。 The second flue 128 has one end serving as an air intake and the other end connected to the combustion gas flow path of the boiler 100. A part of the flue gas flowing through the second flue 128 (hereinafter referred to as “circulated exhaust gas”) is branched to the second flue 128 by branching the flue downstream of the portion to which the exhaust gas recirculation duct 126 is connected. A fuel transfer duct 132 for extracting the fuel is connected, and the outlet of the fuel transfer duct 132 is connected to a pulverized coal unit 134.
 燃料の石炭は微粉炭器134に供給され、微粉炭器134に収容される図示しない石炭粉砕ミル等によって微粉炭燃焼に適した粒度に粉砕される。粉砕された微粉炭は、燃料搬送用ダクト132から供給された循環排ガスに同伴されて送炭管136を通り、バーナ104の燃料流路に供給されるようになっている。 Fuel coal is supplied to the pulverized coal unit 134 and is pulverized to a particle size suitable for pulverized coal combustion by a coal pulverization mill (not shown) accommodated in the pulverized coal unit 134. The pulverized pulverized coal is accompanied by the circulating exhaust gas supplied from the fuel transfer duct 132, passes through the coal feeding pipe 136, and is supplied to the fuel flow path of the burner 104.
 第2の煙道128及び燃料搬送用ダクト132には、酸素導入配管161の分岐した先の出口がそれぞれ接続されている。分岐した酸素導入配管161にはそれぞれ弁138が配設されている。一方、酸素導入配管161の反対側の入口部には、空気分離装置140が接続されている。これにより、空気分離装置140で生成された酸素が、酸素導入配管161を介して第2の煙道128及び燃料搬送用ダクト132にそれぞれ供給されるようになっている。 The second outlet of the oxygen introduction pipe 161 is connected to the second flue 128 and the fuel transfer duct 132, respectively. A valve 138 is disposed in each of the branched oxygen introduction pipes 161. On the other hand, an air separation device 140 is connected to the inlet portion on the opposite side of the oxygen introduction pipe 161. Thereby, the oxygen produced | generated by the air separation apparatus 140 is each supplied to the 2nd flue 128 and the fuel conveyance duct 132 via the oxygen introduction piping 161. FIG.
 空気分離装置140は、空気から窒素等を分離して濃度95%vd(ドライべースの容積分率)以上の高濃度酸素を生成するものである。空気分離装置140で生成された酸素は、石炭搬送用(バーナ一次)と燃料用(バーナ二次、三次、アフタエア)の二つの弁138の開度をそれぞれ調節することによって分割された後、第2の煙道128と燃料搬送用ダクト132にそれぞれ供給される。酸素は、第2の煙道128及び燃料搬送用ダクト132を流れる循環排ガスと混合されて、実用的な酸素濃度(例えば26%~29%vw:ウェットベースの容積分率)となるように調節される。 The air separation device 140 separates nitrogen and the like from air to generate high concentration oxygen having a concentration of 95% vd (volume fraction of the dry base) or more. The oxygen generated by the air separation device 140 is divided by adjusting the opening degree of the two valves 138 for coal conveyance (burner primary) and fuel (burner secondary, tertiary, and after air), respectively, 2 are supplied to the second flue 128 and the fuel transfer duct 132, respectively. Oxygen is mixed with the circulating exhaust gas flowing through the second flue 128 and the fuel transfer duct 132, and adjusted to a practical oxygen concentration (for example, 26% to 29% vw: volume fraction of wet base). Is done.
 酸素導入配管161が第2の煙道128及び燃料搬送用ダクト132にそれぞれ接続される先端部分には、例えば、酸素導入配管161から供給された酸素を循環排ガス中に噴き付ける、複数のノズルを備えた酸素混合装置143が接続されている。酸素混合装置143から供給された酸素は、酸素混合装置143を通過する循環排ガスと急速かつ均一に混合されるようになっている。 For example, a plurality of nozzles for spraying oxygen supplied from the oxygen introduction pipe 161 into the circulating exhaust gas are provided at the tip portions where the oxygen introduction pipe 161 is connected to the second flue 128 and the fuel transfer duct 132, respectively. The provided oxygen mixing device 143 is connected. Oxygen supplied from the oxygen mixing device 143 is rapidly and uniformly mixed with the circulating exhaust gas passing through the oxygen mixing device 143.
 第1の煙道109、第2の煙道128及び燃料搬送用ダクト132には、燃焼用ガス加熱器116が配設されている。燃焼用ガス加熱器116は、第1の煙道109の脱硝装置111と排ガス冷却器115との間を流れる排ガスと、第2の煙道128の酸素混合装置143の下流側を流れる循環排ガス及び燃料搬送用ダクト132の酸素混合装置143の下流側を流れる循環排ガスとを熱交換するようになっている。これにより、第2の煙道128又は燃料搬送用ダクト132を流れる循環排ガスは、酸素が混合された状態で燃焼用ガス加熱器116に導かれ、第1の煙道109を流れる排ガスとそれぞれ熱交換して加熱される。 A combustion gas heater 116 is disposed in the first flue 109, the second flue 128, and the fuel transfer duct 132. The combustion gas heater 116 includes exhaust gas flowing between the denitration device 111 of the first flue 109 and the exhaust gas cooler 115, circulating exhaust gas flowing downstream of the oxygen mixing device 143 of the second flue 128, and Heat is exchanged with the circulating exhaust gas flowing on the downstream side of the oxygen mixing device 143 of the fuel transfer duct 132. Thereby, the circulating exhaust gas flowing through the second flue 128 or the fuel conveyance duct 132 is guided to the combustion gas heater 116 in a state where oxygen is mixed, and the exhaust gas flowing through the first flue 109 and the heat are respectively heated. Exchange and heat.
 第1の煙道109において排ガス再循環ダクト126の分岐部と脱硫装置120との間、及び、排ガス再循環ダクト126、及び、第2の煙道128において排ガス再循環ダクト126の接続部の上流側には、それぞれダンパ145が配設されている。このダンパ145の開度をそれぞれ調節することにより、第1の煙道109から抜き出される排ガス量が調整されるようになっている。 Between the branch of the exhaust gas recirculation duct 126 and the desulfurization device 120 in the first flue 109, and upstream of the connection portion of the exhaust gas recirculation duct 126 in the exhaust gas recirculation duct 126 and the second flue 128. Dampers 145 are disposed on the sides. By adjusting the opening of each damper 145, the amount of exhaust gas extracted from the first flue 109 is adjusted.
 第2の煙道128において、排ガス再循環ダクト126の接続部と燃料搬送用ダクト132の分岐部との間には、押込み通風ファン147が配設されている。また、燃料搬送用ダクト132の酸素混合装置143の上流側には、一次ガスファン149が配設されている。押込み通風ファン147と一次ガスファン149のファン回転数を調節することで、第2の煙道128を流れる循環排ガス量、つまりバーナ104の燃焼用ガスの供給量と、燃料搬送用ダクト132を流れる循環排ガス量、つまり微粉炭の燃料搬送量が、それぞれ調節されるようになっている。 In the second flue 128, a forced draft fan 147 is disposed between the connection part of the exhaust gas recirculation duct 126 and the branch part of the fuel transfer duct 132. In addition, a primary gas fan 149 is disposed on the upstream side of the oxygen mixing device 143 in the fuel transfer duct 132. By adjusting the fan rotation speed of the forced draft fan 147 and the primary gas fan 149, the amount of circulating exhaust gas flowing through the second flue 128, that is, the amount of combustion gas supplied to the burner 104, and the fuel conveying duct 132 are flown. The amount of circulating exhaust gas, that is, the amount of pulverized coal fuel transported is adjusted.
 排ガス冷却器115は、第1の煙道109を流れる排ガスと図示しない冷却冷媒とを熱交換して排ガスを所定温度まで冷却するものであり、例えば、管内に冷却媒体を通流させ、管外を流れる排ガスと熱交換するチューブ式熱交換器となっている。排ガス冷却器115で使用する冷却媒体は、特に限定されないが、蒸気タービン系の低圧給水や海水を用いることもできる。 The exhaust gas cooler 115 cools the exhaust gas to a predetermined temperature by exchanging heat between the exhaust gas flowing through the first flue 109 and a cooling refrigerant (not shown). It is a tube type heat exchanger that exchanges heat with the exhaust gas flowing through. The cooling medium used in the exhaust gas cooler 115 is not particularly limited, but low-pressure feed water or seawater of a steam turbine system can also be used.
 第1の煙道109の除塵装置117の入口部には除塵装置117に導入される排ガスの温度を検出する図示しない温度検出装置が設けられている。温度検出装置は、検出温度が電気信号に変換されて図示しない制御装置に入力されるようになっている。制御装置は、入力された検出温度と設定温度とを比較して得られた結果に基づいて排ガス冷却器115の収熱量を制御するようになっている。具体的には、温度検出装置により検出される温度が90℃以上140℃以下となるように、排ガス冷却器115の冷却用媒体の流量と温度の少なくとも一方が調節されるようになっている。 A temperature detector (not shown) for detecting the temperature of the exhaust gas introduced into the dust remover 117 is provided at the inlet of the dust remover 117 in the first flue 109. In the temperature detection device, the detected temperature is converted into an electric signal and input to a control device (not shown). The control device controls the amount of heat collected by the exhaust gas cooler 115 based on the result obtained by comparing the input detected temperature with the set temperature. Specifically, at least one of the flow rate and the temperature of the cooling medium of the exhaust gas cooler 115 is adjusted so that the temperature detected by the temperature detection device is 90 ° C. or higher and 140 ° C. or lower.
 ボイラ100には、燃焼用ガスとなる酸素を含む循環排ガスと燃料となる微粉炭が供給されて微粉炭が燃焼される。ボイラ100の燃焼により発生した排ガスは、第1の煙道109に導かれて脱硝装置111に供給され、排ガス中のNOxが除去される。脱硝装置111を出た排ガスは、燃焼用ガス加熱器116に供給されて減温される。燃焼用ガス加熱器116を出た排ガスは、排ガス冷却器115に供給されて設定温度まで減温された後、除塵装置117に導かれ、排ガス中のSOの一部が煤塵成分とともに除去される。排ガスはその後、誘引送風機119を介して脱硫装置120に導かれ、SOxが除去される。脱硫装置120を出た排ガスは、排ガス液化装置122で冷却圧縮され、COが液化された状態で分離された後、煙突124から大気中へ放出される。 The boiler 100 is supplied with circulating exhaust gas containing oxygen as a combustion gas and pulverized coal as fuel, and the pulverized coal is combusted. The exhaust gas generated by the combustion of the boiler 100 is guided to the first flue 109 and supplied to the denitration device 111, and NOx in the exhaust gas is removed. The exhaust gas exiting the denitration device 111 is supplied to the combustion gas heater 116 and the temperature is reduced. The exhaust gas exiting the combustion gas heater 116 is supplied to the exhaust gas cooler 115 and reduced in temperature to a set temperature, and then guided to the dust removing device 117, where a part of SO 3 in the exhaust gas is removed together with the dust component. The Thereafter, the exhaust gas is guided to the desulfurization device 120 via the induction fan 119, and SOx is removed. The exhaust gas exiting the desulfurization device 120 is cooled and compressed by the exhaust gas liquefaction device 122, separated in a state where CO 2 is liquefied, and then released from the chimney 124 into the atmosphere.
 一方、第1の煙道109において、誘引送風機119を通過した排ガスは、その一部が排ガス再循環ダクト126を通じて抜き出され、第2の煙道128に導かれる。第2の煙道128に導かれた排ガスは、再循環ガスとして押込み通風ファン147を通過した後、酸素混合装置143から注入された酸素が混合されて燃焼用ガスとなり、燃焼用ガス加熱器116に導かれる。燃焼用ガス加熱器116で加熱された燃焼用ガスは、バーナ104の燃焼用ガス流路に供給される。 On the other hand, in the first flue 109, a part of the exhaust gas that has passed through the induction fan 119 is extracted through the exhaust gas recirculation duct 126 and guided to the second flue 128. The exhaust gas guided to the second flue 128 passes through the forced draft fan 147 as a recirculation gas, and then mixed with the oxygen injected from the oxygen mixing device 143 to become a combustion gas, and the combustion gas heater 116. Led to. The combustion gas heated by the combustion gas heater 116 is supplied to the combustion gas flow path of the burner 104.
 また、排ガス再循環ダクト126から第2の煙道128に導かれ、押込み通風ファン147を通過した循環排ガスは、その一部が燃料搬送用ダクト132に導かれる。燃料搬送用ダクト132に導かれた循環排ガスは、一次ガスファン149を経由した後、酸素混合装置143から注入された酸素が混合されて燃料搬送用ガスとなり、燃焼用ガス加熱器116に導かれる。燃焼用ガス加熱器116で加熱された燃料搬送用ガスは、微粉炭器134に供給される。続いて、微粉炭器134で粉砕された石炭は、微粉炭器134に供給された燃料搬送用ガスに同伴され、送炭管136を介してバーナ104の燃料流路に供給される。 Further, a part of the circulating exhaust gas guided from the exhaust gas recirculation duct 126 to the second flue 128 and passed through the forced draft fan 147 is guided to the fuel transport duct 132. The circulating exhaust gas guided to the fuel transport duct 132 passes through the primary gas fan 149, and then mixed with oxygen injected from the oxygen mixing device 143 to become a fuel transport gas, which is guided to the combustion gas heater 116. . The fuel carrier gas heated by the combustion gas heater 116 is supplied to the pulverized coal unit 134. Subsequently, the coal pulverized by the pulverized coal unit 134 is accompanied by the fuel conveying gas supplied to the pulverized coal unit 134 and is supplied to the fuel flow path of the burner 104 through the coal feeding pipe 136.
 ボイラ1内の燃焼により発生した高温高圧の蒸気は、図示しない蒸気タービン発電設備等に供給されて発電される。 The high-temperature and high-pressure steam generated by the combustion in the boiler 1 is supplied to a steam turbine power generation facility (not shown) to generate power.
 ところで、酸素燃焼システムでは、例えば、第2の煙道128において、燃焼用ガス加熱器116を通過する前の循環排ガスの温度が70℃~100℃であり、常温の空気と第1の煙道109を流れる排ガスを熱交換する場合と比べて、燃焼用ガス加熱器116の熱交換量が少なくなっている。このため、第1の煙道109にて燃焼用ガス加熱器116を通過後、除塵装置117の入口付近を流れる排ガスは比較的高温(例えば、190℃~200℃)の状態となる。このような排ガスが除塵装置117に供給されると、脱塵効率の悪化や熱損を生じるおそれがある。そのため、各機器を適正かつ安全に運転するには、システム内を循環する排ガスを所定温度に冷却する必要がある。また、酸素燃焼システムでは、高濃度の酸素と循環排ガスを用いて燃料を燃焼させるため、ボイラ出口の排ガスの主成分がCOとHOであるとともに、燃料中のS分により発生するSOxが高濃度となる。このような高濃度のHOやSOxを含む循環排ガス等の温度が低下して、SOや水分の結露が生じると、ダクトや配管、機器類の酸露点腐食が生じ易くなり、また、結露に伴う煤塵の詰まりが生じ易くなる。 In the oxyfuel combustion system, for example, in the second flue 128, the temperature of the circulating exhaust gas before passing through the combustion gas heater 116 is 70 ° C. to 100 ° C., and air at normal temperature and the first flue Compared to the case where the exhaust gas flowing through 109 is subjected to heat exchange, the amount of heat exchange of the combustion gas heater 116 is reduced. Therefore, after passing through the combustion gas heater 116 in the first flue 109, the exhaust gas flowing in the vicinity of the inlet of the dust removing device 117 is in a relatively high temperature (eg, 190 ° C. to 200 ° C.). When such exhaust gas is supplied to the dust removing device 117, there is a risk of deteriorating dust removal efficiency and heat loss. Therefore, in order to operate each device appropriately and safely, it is necessary to cool the exhaust gas circulating in the system to a predetermined temperature. Further, in the oxyfuel combustion system, fuel is burned using high-concentration oxygen and circulating exhaust gas, so that the main components of the exhaust gas at the boiler outlet are CO 2 and H 2 O, and SOx generated due to S in the fuel. Becomes a high concentration. When the temperature of circulating exhaust gas or the like containing such high concentrations of H 2 O and SOx decreases and condensation of SO 3 and moisture occurs, acid dew point corrosion of ducts, pipes, and equipment tends to occur, It becomes easy for clogging of dust accompanying dew condensation to occur.
 本実施例では、第1の煙道109において、燃焼用ガス加熱器116と除塵装置117の間に排ガス冷却器115を設置して、燃焼用ガス加熱器116を通過した排ガスをさらに冷却するようにしているため、除塵装置117の効率悪化や熱損を防ぐことができる。また、除塵装置117の入口付近を流れる排ガスを酸露点以下の温度まで冷却することで、排ガス中のSOは硫酸ミストとなり、この硫酸ミストは排ガス中の煤塵に捕捉された状態で除塵装置117により除去される。 In the present embodiment, in the first flue 109, an exhaust gas cooler 115 is installed between the combustion gas heater 116 and the dust removing device 117 so as to further cool the exhaust gas that has passed through the combustion gas heater 116. Therefore, the efficiency deterioration and heat loss of the dust removing device 117 can be prevented. Further, by cooling the exhaust gas flowing in the vicinity of the inlet of the dust removing device 117 to a temperature below the acid dew point, SO 3 in the exhaust gas becomes sulfuric acid mist, and this sulfuric acid mist is captured by the soot dust in the exhaust gas. Is removed.
 一方、このようにして冷却された排ガスの酸露点は、水露点とほぼ等しくなっているため、例えば、第2の煙道128や燃料搬送用ダクト132に常温の酸素が注入されると、酸素混合装置143の表面や燃焼用ガス加熱器116の入口部にはガス温度低下による結露が生じることがある。この結露を回避するには、煙道内にコンデンサなどを設けて水分濃度を低減する手段が考えられるが、酸素燃焼システムでは、排ガスの水分濃度が25~40%に達するため、潜熱処理による熱ロスが大きく、ドレイン処理量が増加し、また、第2の煙道128や燃料搬送用ダクト132では循環排ガス中の煤塵量が少ないため、硫酸ミストを除去することが難しく、酸露点腐食を生じるおそれがある。 On the other hand, since the acid dew point of the exhaust gas thus cooled is substantially equal to the water dew point, for example, when oxygen at room temperature is injected into the second flue 128 or the fuel transfer duct 132, Condensation may occur on the surface of the mixing device 143 and the inlet of the combustion gas heater 116 due to a decrease in gas temperature. In order to avoid this dew condensation, a means to reduce the moisture concentration by providing a condenser in the flue can be considered. However, in an oxyfuel combustion system, the moisture concentration of the exhaust gas reaches 25 to 40%. , The drain treatment amount increases, and the second flue 128 and the fuel transfer duct 132 have a small amount of soot in the circulating exhaust gas, which makes it difficult to remove sulfuric acid mist and may cause acid dew point corrosion. There is.
 ここで、本実施形態の特徴技術について説明する。図17は、排ガスのSO濃度と酸露点との関係を示す図であり、横軸はSO濃度、縦軸は酸露点(℃)を示している。なお、横軸は、特定の石炭を燃焼させたときのSO濃度に基づいて無次元化したもので、対数軸となっている。排ガス中のSO濃度は、原料石炭中のS分の含有率割合により変化する。 Here, the characteristic technique of the present embodiment will be described. FIG. 17 is a diagram showing the relationship between the SO 3 concentration of the exhaust gas and the acid dew point. The horizontal axis represents the SO 3 concentration and the vertical axis represents the acid dew point (° C.). The horizontal axis is dimensionless based on the SO 3 concentration when specific coal is burned, and is a logarithmic axis. The SO 3 concentration in the exhaust gas varies depending on the content ratio of the S content in the raw coal.
 図17から分かるように、特定の狭いSO濃度の範囲において、原料石炭中のS分含有割合が0.1%~2.0%及び排ガス中の水分濃度が25~40%の範囲(A炭、B炭、C炭)で、原料石炭中のS分の含有割合や排ガス中の水分濃度の影響を受けることなく、僅かのSO濃度の変化で、酸露点温度は、約140℃から約90℃まで急激に変化する。本発明は、この現象を利用するものであり、排ガス冷却器115の収熱量を調整し、除塵装置117の入口付近の排ガス温度を90℃以上140℃以下に保持する。これにより、排ガスの酸露点を大きく低下させ、排ガス再循環ダクト126、第2の煙道128、燃料搬送用ダクト132等を流れるガスの温度を常に酸露点温度以上に保持するものである。ここで、酸露点温度が急激に低下するのは、所定のSO濃度の範囲で見られる現象であり、SO濃度は原料石炭に含まれるS分等が大きく影響することから、炭種や配合等を管理してSO濃度を調整する必要がある。 As can be seen from FIG. 17, in a specific narrow SO 3 concentration range, the S content in the raw coal is in the range of 0.1% to 2.0% and the moisture concentration in the exhaust gas is in the range of 25 to 40% (A Coal, B charcoal, C charcoal) The acid dew point temperature is about 140 ° C. with a slight change in SO 3 concentration without being affected by the S content in the raw coal and the moisture concentration in the exhaust gas. It changes rapidly to about 90 ° C. The present invention utilizes this phenomenon, adjusts the amount of heat collected by the exhaust gas cooler 115, and maintains the exhaust gas temperature near the inlet of the dust remover 117 at 90 ° C or higher and 140 ° C or lower. As a result, the acid dew point of the exhaust gas is greatly reduced, and the temperature of the gas flowing through the exhaust gas recirculation duct 126, the second flue 128, the fuel transfer duct 132, etc. is always kept above the acid dew point temperature. Here, the sudden drop in the acid dew point temperature is a phenomenon observed in a predetermined SO 3 concentration range. Since the SO 3 concentration is greatly influenced by the S content contained in the raw coal, It is necessary to adjust the SO 3 concentration by managing the formulation and the like.
 例えば、除塵装置117の入口側の排ガス温度、つまり温度検出装置により検出された温度が140℃になるように排ガス冷却器115の収熱量を調整することで、排ガス中のSOが煤塵とともに除塵装置117により除去される。その結果、除塵装置117を通過した排ガス中のSO濃度が半減した場合、酸露点温度は、例えば90℃以下まで低下するが、排ガス温度は除塵装置117を通過する前と殆ど同じである。ここで、除塵装置117以降の煙道やダクト等には、燃焼用ガス加熱器116を除いて排ガスや循環排ガス等を加熱する手段がないため、例えば、酸素の注入や放熱等により、循環排ガスの温度は5~20℃低下し、燃焼用ガス加熱器116に至るまでに、120℃程度まで低下することが考えられる。しかし、除塵装置117を通過後の排ガスの酸露点は90℃以下まで低下しているため、循環排ガスが120℃程度まで低下したとしても、酸露点との間には30℃の開きがある。このため、除塵装置117を通過後の排ガスや循環排ガスの温度が酸露点温度を下回ることがなく、酸露点腐食や煤塵の詰まりを防ぐことができる。 For example, by adjusting the amount of heat collected by the exhaust gas cooler 115 so that the exhaust gas temperature on the inlet side of the dust removal device 117, that is, the temperature detected by the temperature detection device becomes 140 ° C., SO 3 in the exhaust gas is removed together with soot dust. Removed by device 117. As a result, when the SO 3 concentration in the exhaust gas that has passed through the dust removing device 117 is halved, the acid dew point temperature decreases to, for example, 90 ° C. or less, but the exhaust gas temperature is almost the same as that before passing through the dust removing device 117. Here, since there are no means for heating the exhaust gas and the circulating exhaust gas except for the combustion gas heater 116 in the flue and duct after the dust removing device 117, the circulating exhaust gas is injected by, for example, oxygen injection or heat dissipation. It is conceivable that the temperature decreases to about 120 ° C. before reaching the combustion gas heater 116. However, since the acid dew point of the exhaust gas after passing through the dust removing device 117 is lowered to 90 ° C. or less, even if the circulating exhaust gas is lowered to about 120 ° C., there is a difference of 30 ° C. between the acid dew point. For this reason, the temperature of the exhaust gas after passing through the dust removal device 117 or the circulating exhaust gas does not fall below the acid dew point temperature, and acid dew point corrosion and dust clogging can be prevented.
 一方、除塵装置117の入口側の排ガス温度が160℃になるように調整した場合、除塵装置117を通過した後の排ガス中のSO濃度が通過する前の排ガスと比べて半減したとしても、酸露点温度は160℃よりも数℃~10℃程度低くなるだけである。このため、除塵装置117を通過した後の排ガスの温度が、放熱等で燃焼用ガス加熱器116に到達するまでに5℃~20℃程度低下すると、排ガス温度が酸露点温度を下回り、煙道やダクト等で酸露点腐食を引き起こす可能性がある。 On the other hand, when the exhaust gas temperature on the inlet side of the dust removal device 117 is adjusted to 160 ° C., even if the SO 3 concentration in the exhaust gas after passing through the dust removal device 117 is halved compared to the exhaust gas before passing through, The acid dew point temperature is only lower by several to 10 ° C than 160 ° C. For this reason, if the temperature of the exhaust gas after passing through the dust removal device 117 decreases by about 5 ° C. to 20 ° C. before reaching the combustion gas heater 116 by heat dissipation or the like, the exhaust gas temperature falls below the acid dew point temperature, and the flue May cause acid dew point corrosion.
 また、除塵装置117の入口側の排ガス温度が80℃になるように調節した場合、除塵装置117を通過した後の排ガス中のSO濃度が通過する前の排ガスと比べて半減したとしても、酸露点温度は80℃よりも数℃~10℃程度低くなるだけである。このため、除塵装置117を通過した後の排ガスの温度が、放熱等で燃焼用ガス加熱器116に到達するまでに5℃~20℃程度低下すると、排ガス温度が酸露点温度を下回り、煙道やダクト等で酸露点腐食を引き起こす可能性がある。 Further, when the exhaust gas temperature on the inlet side of the dust removing device 117 is adjusted to be 80 ° C., even if the SO 3 concentration in the exhaust gas after passing through the dust removing device 117 is halved compared to the exhaust gas before passing through, The acid dew point temperature is only lower by several to 10 ° C than 80 ° C. For this reason, if the temperature of the exhaust gas after passing through the dust removal device 117 decreases by about 5 ° C. to 20 ° C. before reaching the combustion gas heater 116 by heat dissipation or the like, the exhaust gas temperature falls below the acid dew point temperature, and the flue May cause acid dew point corrosion.
 本実施例では、除塵装置117の入口付近の排ガス温度を90℃以上140℃以下に保持しているため、SO濃度を僅かに減少させただけで、酸露点温度を大きく低下させることができる。このため、排ガスから水分を取り除くことなく、排ガスを循環させても、排ガス再循環ダクト126、第2の煙道128、燃料搬送用ダクト132等における酸露点腐食や煤塵の詰まりを防止することができ、プラントの信頼性、安全性を高めることができる。 In this embodiment, the exhaust gas temperature in the vicinity of the inlet of the dust remover 117 is maintained at 90 ° C. or higher and 140 ° C. or lower, so that the acid dew point temperature can be greatly reduced by slightly reducing the SO 3 concentration. . Therefore, even if the exhaust gas is circulated without removing moisture from the exhaust gas, it is possible to prevent acid dew point corrosion and dust clogging in the exhaust gas recirculation duct 126, the second flue 128, the fuel transfer duct 132, and the like. It is possible to improve the reliability and safety of the plant.
 なお、酸素燃焼システムでは排ガス中の水分濃度が高いため、水分結露を防ぐ観点から、除塵装置117を出た循環排ガスの温度低下を防ぐために、除塵装置117以降のダクトや煙道にはヒータ等の周知の保温手段を設けることが好ましい。 In addition, since the moisture concentration in the exhaust gas is high in the oxyfuel combustion system, from the viewpoint of preventing moisture condensation, a heater or the like is provided in the duct or the flue after the dust remover 117 in order to prevent the temperature of the circulating exhaust gas leaving the dust remover 117 from decreasing. It is preferable to provide a known heat retaining means.
 ところで、酸素燃焼システムでは、起動時の空気燃焼運転時と定常時の酸素燃焼運転時でシステム内を流れるガスの組成、流量、熱量が大きく変動し、第1の煙道109において燃焼用ガス加熱器116から出る排ガス温度も運転条件によって大きく変動する。このため、燃焼用ガス加熱器116のみで常時、除塵装置117の入口付近の排ガス温度を管理することは難しい。この点、本実施形態では、排ガス冷却器115をチューブ式熱交換器で構成するとともに第1の煙道109の燃焼用ガス加熱器116の下流側に独立して配置している。このため、排ガスや循環排ガスの流量及び温度、酸素の供給量及び温度等の影響を受けることなく、酸素燃焼システムの運転条件と独立させて常に除塵装置117の入口側の排ガス温度を任意の温度に迅速に調整することができ、その温度で安定に保持することができる。 By the way, in the oxyfuel combustion system, the composition, flow rate, and heat amount of the gas flowing in the system greatly vary during the air combustion operation at startup and during the steady oxyfuel combustion operation, and the combustion gas is heated in the first flue 109. The exhaust gas temperature coming out of the vessel 116 also varies greatly depending on the operating conditions. For this reason, it is difficult to always manage the exhaust gas temperature in the vicinity of the inlet of the dust removing device 117 using only the combustion gas heater 116. In this regard, in the present embodiment, the exhaust gas cooler 115 is configured by a tube heat exchanger and is disposed independently on the downstream side of the combustion gas heater 116 of the first flue 109. Therefore, the exhaust gas temperature on the inlet side of the dust removal device 117 is always set to an arbitrary temperature independently of the operating conditions of the oxyfuel combustion system without being affected by the flow rate and temperature of exhaust gas and circulating exhaust gas, the supply amount and temperature of oxygen, and the like. Can be quickly adjusted and can be kept stable at that temperature.
 また、酸素燃焼運転時には、除塵装置117の入口側の排ガス温度が90℃以上140℃以下となる範囲で、排ガス冷却器115の収熱量をボイラ100の負荷に応じて制御するようにしてもよい。例えば、ボイラ100が定格の負荷で運転されている場合には、排ガス温度が常に一定(例えば120℃)となるように排ガス冷却器115の収熱量を制御し、負荷が低い場合には、排ガス温度が定格負荷と同等もしくは定格負荷条件よりも増減させた温度(例えば100℃)になるように、排ガス冷却器115の収熱量を制御するものとする。 Further, during the oxyfuel combustion operation, the amount of heat collected by the exhaust gas cooler 115 may be controlled according to the load of the boiler 100 in a range where the exhaust gas temperature on the inlet side of the dust removing device 117 is 90 ° C. or higher and 140 ° C. or lower. . For example, when the boiler 100 is operated at a rated load, the amount of heat collected by the exhaust gas cooler 115 is controlled so that the exhaust gas temperature is always constant (for example, 120 ° C.). It is assumed that the amount of heat collected by the exhaust gas cooler 115 is controlled so that the temperature is equal to the rated load or a temperature (for example, 100 ° C.) that is increased or decreased from the rated load condition.
 本実施例では、第2の煙道128や燃料搬送用ダクト132において、循環排ガスよりも低温(例えば常温)の酸素を循環排ガスに混合した後、燃焼用ガス加熱器116で排ガスと熱交換させているため、酸素が燃焼用ガス加熱器116で熱回収される。このため、ボイラ入熱量を高めることができ、プラント効率を向上させることができる。また、排ガス冷却器115での収熱量は、燃焼用ガス加熱器116の後流側の循環排ガスに酸素を混合する場合よりも少なくて済むため、排ガス冷却器115自体をコンパクト化することができ、既存設備に対する追設・改造費用が抑えられるとともに、冷却によるプラントシステム全体の効率低下を最小限に抑制することができる。 In the present embodiment, in the second flue 128 and the fuel transfer duct 132, oxygen having a temperature lower than that of the circulating exhaust gas (for example, room temperature) is mixed with the circulating exhaust gas, and then heat is exchanged with the exhaust gas by the combustion gas heater 116. Therefore, oxygen is recovered by the combustion gas heater 116. For this reason, boiler heat input can be raised and plant efficiency can be improved. In addition, the amount of heat collected in the exhaust gas cooler 115 can be smaller than when oxygen is mixed with the circulating exhaust gas on the downstream side of the combustion gas heater 116, so that the exhaust gas cooler 115 itself can be made compact. In addition to reducing the cost of additional installation and remodeling of existing equipment, it is possible to minimize a decrease in efficiency of the entire plant system due to cooling.
 以下、本発明を適用してなる酸素燃焼システムの実施例12について、図18を参照して説明する。なお、本実施例では、実施例11と異なる点について説明し、同一の構成については同一の符号を付して説明を省略する。 Hereinafter, Example 12 of the oxyfuel combustion system to which the present invention is applied will be described with reference to FIG. In the present embodiment, differences from the eleventh embodiment will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.
 本実施例では、図16の酸素混合装置143に代えて、排ガス再循環ダクト126に酸素混合装置151が設けられている点で、実施例11と構成が相違する。本実施例によれば、空気分離装置140で製造された高濃度の酸素は、第1の煙道109から抜き出された排ガスの一部と混合された後、第2の煙道128及び燃料搬送用ダクト132に分配されるため、第2の煙道128を流れる燃焼用ガスと燃料搬送用ダクト132を流れる燃料搬送用ガスは、酸素濃度が同じになる。本実施例では、燃焼用ガスと燃料搬送用ガスの酸素濃度が同じでよい場合には、簡単な設備で、燃焼用ガスと燃料搬送用ガスの酸素濃度を容易に調整できる利点がある。 This embodiment is different from the embodiment 11 in that an oxygen mixing device 151 is provided in the exhaust gas recirculation duct 126 instead of the oxygen mixing device 143 in FIG. According to the present embodiment, the high-concentration oxygen produced by the air separation device 140 is mixed with a part of the exhaust gas extracted from the first flue 109 and then the second flue 128 and the fuel. Since the gas is distributed to the transfer duct 132, the combustion gas flowing through the second flue 128 and the fuel transfer gas flowing through the fuel transfer duct 132 have the same oxygen concentration. In the present embodiment, when the oxygen concentrations of the combustion gas and the fuel transfer gas may be the same, there is an advantage that the oxygen concentrations of the combustion gas and the fuel transfer gas can be easily adjusted with simple equipment.
 以下、本発明を適用してなるボイラプラントの実施例13について、図19を参照して説明する。なお、本実施例では、実施例12と異なる点について説明し、同一の構成については同一の符号を付して説明を省略する。 Hereinafter, Example 13 of the boiler plant to which the present invention is applied will be described with reference to FIG. In the present embodiment, differences from the twelfth embodiment will be described, and the same components will be denoted by the same reference numerals and description thereof will be omitted.
 本実施例では、図18の酸素混合装置151に加えて、第2の煙道128の燃焼用ガス加熱器116の下流側に、酸素混合装置153が設けられている点で、実施例11と構成が相違する。本実施例によれば、空気分離装置140で製造された酸素の大部分を第2の煙道128の燃焼用ガス加熱器116の上流側に供給し、残りの少量の酸素を燃焼用ガス加熱器116の下流側に供給することで、実施例11よりも燃焼用ガス加熱器116における熱回収効率が若干低下するが、燃焼用ガスと燃料搬送用ガスの酸素濃度を容易に調整できる利点がある。 In this embodiment, in addition to the oxygen mixing device 151 of FIG. 18, the oxygen mixing device 153 is provided on the downstream side of the combustion gas heater 116 of the second flue 128. The configuration is different. According to this embodiment, most of the oxygen produced by the air separation device 140 is supplied to the upstream side of the combustion gas heater 116 of the second flue 128, and the remaining small amount of oxygen is heated by the combustion gas. Although the heat recovery efficiency in the combustion gas heater 116 is slightly lower than that in the eleventh embodiment by supplying to the downstream side of the vessel 116, there is an advantage that the oxygen concentration of the combustion gas and the fuel carrier gas can be easily adjusted. is there.
 図20に、本発明の実施例14のボイラプラントの構成を示す。本実施例が図2の実施例2と相違する点は、燃焼用ガス予熱器4と集塵装置5の間の煙道11に、実施例10の排ガス冷却器115を設置した点である。そして、排ガス冷却器115で集塵装置5に導入される排ガスの温度を90℃以上140℃以下にしている点である。その他の構成は実施例2と同一であるから、同一の符号を付して説明を省略する。 FIG. 20 shows the configuration of the boiler plant of Example 14 of the present invention. This embodiment is different from the second embodiment of FIG. 2 in that the exhaust gas cooler 115 of the tenth embodiment is installed in the flue 11 between the combustion gas preheater 4 and the dust collector 5. And the temperature of the exhaust gas introduced into the dust collector 5 by the exhaust gas cooler 115 is 90 degreeC or more and 140 degrees C or less. Since other configurations are the same as those of the second embodiment, the same reference numerals are given and description thereof is omitted.
 上述の排ガスのSO濃度と酸露点との関係を示す図17に示すとおり、特定の狭いSO濃度の範囲において、酸露点温度は、約140℃から約90℃まで急激に変化する。そのため、排ガス冷却器115の収熱量を調整し、集塵装置5の入口付近の排ガス温度を90℃以上140℃以下に保持することで、排ガスの酸露点を大きく低下させることができる。その結果、集塵装置5で排ガス中のSOの一部が煤塵成分とともに除去される。 As shown in FIG. 17 showing the relationship between the SO 3 concentration of the exhaust gas and the acid dew point, the acid dew point temperature rapidly changes from about 140 ° C. to about 90 ° C. within a specific narrow SO 3 concentration range. Therefore, by adjusting the heat recovery amount of the exhaust gas cooler 115 and maintaining the exhaust gas temperature near the inlet of the dust collector 5 at 90 ° C. or higher and 140 ° C. or lower, the acid dew point of the exhaust gas can be greatly reduced. As a result, a part of SO 3 in the exhaust gas is removed together with the dust component by the dust collector 5.
 例えば、集塵装置5の入口側の排ガス温度を、温度検出装置等で検出し、その温度が140℃になるように排ガス冷却器115の収熱量を調整することで、排ガス中のSOが煤塵とともに集塵装置5により除去される。その結果、集塵装置5を通過した排ガス中のSO濃度が半減した場合、酸露点温度は、例えば90℃以下まで低下するが、排ガス温度は集塵装置5を通過する前と殆ど同じである。 For example, the temperature of the exhaust gas on the inlet side of the dust collector 5 is detected by a temperature detector or the like, and the amount of SO 3 in the exhaust gas is adjusted by adjusting the amount of heat collected by the exhaust gas cooler 115 so that the temperature becomes 140 ° C. It is removed by the dust collector 5 together with the dust. As a result, when the SO 3 concentration in the exhaust gas that has passed through the dust collector 5 is halved, the acid dew point temperature decreases to, for example, 90 ° C. or less, but the exhaust gas temperature is almost the same as that before passing through the dust collector 5. is there.
 ここで、集塵装置5よりも下流の煙道やダクトでは、例えば、酸素の注入や放熱等により排ガスの温度が5~20℃低下し、燃焼用ガス予熱器4に至るまでに、排ガスの温度が120℃程度まで低下することが考えられる。しかし、集塵装置5を通過後の排ガスの酸露点は90℃以下まで低下している。そのため、循環排ガスや作用ガスとする排ガスの温度が120℃程度まで低下したとしても、ガス温度が酸露点よりも30℃高い。このため、循環排ガスや作用ガスの温度が酸露点温度を下回ることがなく、配管等の構成機器の酸腐食や煤塵の詰まりを防ぐことができる。 Here, in the flue and duct downstream of the dust collector 5, the temperature of the exhaust gas is reduced by 5 to 20 ° C. due to, for example, injection of oxygen or heat dissipation, and the exhaust gas is heated up to the combustion gas preheater 4. It is conceivable that the temperature drops to about 120 ° C. However, the acid dew point of the exhaust gas after passing through the dust collector 5 is lowered to 90 ° C. or less. Therefore, even if the temperature of the exhaust gas used as the circulating exhaust gas or the working gas decreases to about 120 ° C., the gas temperature is 30 ° C. higher than the acid dew point. For this reason, the temperature of circulating exhaust gas or working gas does not fall below the acid dew point temperature, and acid corrosion and dust clogging of components such as piping can be prevented.
 なお、上述した実施例1乃至10のボイラプラントのいずれにおいても、燃焼用ガス予熱器4と集塵装置5の間の煙道11に、排ガス冷却器115を設置し、集塵装置5に導入される排ガスの温度を90℃以上140℃以下に制御することができる。 In any of the boiler plants of Examples 1 to 10 described above, an exhaust gas cooler 115 is installed in the flue 11 between the combustion gas preheater 4 and the dust collector 5 and introduced into the dust collector 5. It is possible to control the temperature of the exhaust gas to be 90 ° C. or higher and 140 ° C. or lower.
 特に、実施例1(図1)、実施例2(図2)、実施例4(図4)、実施例6(図7)、実施例7(図8)は、脱硫処理していない排ガスを作用ガスに含んでいるから、排ガス冷却器115を設置することが好ましい。これにより、循環排ガス、作用ガスが通流する配管等の酸腐食を抑制できる。 In particular, Example 1 (FIG. 1), Example 2 (FIG. 2), Example 4 (FIG. 4), Example 6 (FIG. 7), and Example 7 (FIG. 8) are exhaust gases that have not been desulfurized. Since it is contained in the working gas, it is preferable to install the exhaust gas cooler 115. Thereby, acid corrosion of piping etc. through which circulating exhaust gas and working gas flow can be controlled.
 また、集塵装置5で排ガス中のSOを除去しているから、小型の脱硫装置6を用いることができる。 Further, since the SO 3 in the exhaust gas is removed by the dust collector 5, a small desulfurization device 6 can be used.
 1 ボイラ
 2 排ガス
 3 脱硝装置
 4 燃焼用ガス予熱器
 5 集塵装置
 6 脱硫装置
 8 CO回収装置
 9 排ガス再循環ライン
 10 酸素製造装置
 11 煙道
 12 作用ガス供給配管
 15 ミル
 16 ミル用排ガス再循環ライン
 19 CO貯蔵設備
 21 気化器
 22 作用ガス供給送風機
 23 第1の熱交換器
 24 第2の熱交換器
 a 還元剤注入ライン
 b 集塵装置エアレーション用作用ガスライン
 c、d、e 軸シール用作用ガスライン
 f、g 熱交換器スートブロワ用作用ガスライン
 51 作用ガス供給配管
 115 排ガス冷却器
 125 水冷壁
 131 伝熱管
 133 ウォールブロア
 135 スートブロア
1 Boiler 2 gas 3 denitrator 4 combustion gas preheater 5 dust collector 6 desulfurizer 8 CO 2 recovery device 9 the exhaust gas recirculation line 10 air separation unit 11 flue 12 active gas supply pipe 15 mils 16 mils for exhaust gas recirculation Line 19 CO 2 storage equipment 21 Vaporizer 22 Working gas supply blower 23 First heat exchanger 24 Second heat exchanger a Reducing agent injection line b Working gas line for dust collector aeration c, d, e For shaft seal Working gas line f, g Working gas line for heat exchanger soot blower 51 Working gas supply piping 115 Exhaust gas cooler 125 Water cooling wall 131 Heat transfer tube 133 Wall blower 135 Soot blower

Claims (13)

  1.  富酸素ガスを排ガスで希釈した燃焼用ガスで燃焼対象物を燃焼する酸素燃焼式の燃焼装置と、該燃焼装置から排出される排ガスを浄化処理する排ガス処理システムとを備え、該排ガス処理システムは、前記排ガス中の煤塵を捕集する集塵装置と、該集塵装置の下流側の煙道から排ガスを分岐して前記富酸素ガスを希釈する排ガスを供給する分岐流路と、前記排ガスから二酸化炭素(CO)を分離回収するCO回収装置と、前記燃焼装置と前記排ガス処理システムの少なくとも一方の付帯装置で用いられ、前記排ガス中に侵入する作用ガスを供給する作用ガス供給装置を備えてなる燃焼プラントにおいて、
     前記作用ガス供給装置は、前記集塵装置により煤塵が捕集された排ガスと、前記CO回収装置により回収されたCOのうちの少なくとも一方を前記作用ガスとして用いることを特徴とする燃焼プラント。
    An oxyfuel combustion type combustion device that burns an object to be burned with a combustion gas obtained by diluting an oxygen-rich gas with exhaust gas, and an exhaust gas treatment system that purifies exhaust gas discharged from the combustion device, the exhaust gas treatment system comprising: A dust collector that collects dust in the exhaust gas, a branch passage that supplies exhaust gas that diverts the exhaust gas from a flue downstream of the dust collector and dilutes the oxygen-rich gas, and the exhaust gas and the CO 2 recovery apparatus for separating and recovering carbon dioxide (CO 2), and the used combustion apparatus and at least one of the accessory devices of the exhaust gas treatment system, the active gas supply device for supplying a working gas entering said flue gas In the combustion plant provided,
    The working gas supply device, a combustion plant, which comprises using the exhaust gas dust is collected by the dust collector, at least one of the CO 2 recovered by the CO 2 recovery system as the working gas .
  2.  請求項1に記載の燃焼プラントにおいて、
     前記排ガス処理システムは、前記集塵装置から排出される排ガス中の硫黄酸化物を除去する脱硫装置を備えてなり、
     前記作用ガス供給装置は、前記脱硫装置から排出される排ガスを前記作用ガスとして供給することを特徴とする燃焼プラント。
    The combustion plant according to claim 1,
    The exhaust gas treatment system comprises a desulfurization device that removes sulfur oxides in the exhaust gas discharged from the dust collector,
    The working gas supply device supplies an exhaust gas discharged from the desulfurization device as the working gas.
  3.  請求項2に記載の燃焼プラントにおいて、
     前記作用ガス供給装置は、前記作用ガスを、前記集塵装置に流入する排ガスと熱交換して加熱することを特徴とする燃焼プラント。
    The combustion plant according to claim 2,
    The working gas supply device heats the working gas by exchanging heat with the exhaust gas flowing into the dust collector.
  4.  請求項1に記載の排ガス処理システムにおいて、
     前記作用ガス供給装置は、前記集塵装置の出口側の煙道から分岐した作用ガス流路と、前記集塵装置の入口側の煙道に設けられた第1の熱交換器と、前記作用ガス流路に設けられた第2の熱交換器とを有し、第1の熱交換器で加熱された熱媒を第2の熱交換器に流通して前記作用ガスを加熱することを特徴とする燃焼プラント。
    The exhaust gas treatment system according to claim 1,
    The working gas supply device includes a working gas flow path branched from a flue on the outlet side of the dust collector, a first heat exchanger provided in a flue on the inlet side of the dust collector, and the action And a second heat exchanger provided in the gas flow path, wherein the working gas is heated by circulating the heat medium heated by the first heat exchanger to the second heat exchanger. And combustion plant.
  5.  請求項1に記載の燃焼プラントにおいて、
     前記CO回収装置は、COを液体で回収するものであり、
     前記作用ガス供給装置は、前記CO回収装置で回収された液体COを気化する気化器と、気化されたCOを昇圧する送風機と、昇圧されたCOを前記作用ガスとして前記付帯装置に供給する流路とを備えてなることを特徴とする燃焼プラント。
    The combustion plant according to claim 1,
    The CO 2 recovery device recovers CO 2 as a liquid,
    The working gas supply device includes a vaporizer that vaporizes the liquid CO 2 recovered by the CO 2 recovery device, a blower that pressurizes the vaporized CO 2 , and the auxiliary device using the pressurized CO 2 as the working gas. A combustion plant comprising a flow path for supplying to the fuel.
  6.  請求項1に記載の燃焼プラントにおいて、
     前記作用ガス供給装置は、前記付帯装置の摺動部のシールガスとして前記作用ガスを供給することを特徴とする燃焼プラント。
    The combustion plant according to claim 1,
    The said working gas supply apparatus supplies the said working gas as sealing gas of the sliding part of the said incidental apparatus, The combustion plant characterized by the above-mentioned.
  7.  請求項1に記載の燃焼プラントにおいて、
     前記作用ガス供給装置は、前記集塵装置の保守用ガスとして前記作用ガスを供給することを特徴とする燃焼プラント。
    The combustion plant according to claim 1,
    The said working gas supply apparatus supplies the said working gas as maintenance gas of the said dust collector, The combustion plant characterized by the above-mentioned.
  8.  請求項1に記載の燃焼プラントにおいて、
     前記排ガス処理システムは、前記燃焼装置から排出される排ガスに還元剤を添加して排ガス中の窒素酸化物を除去する脱硝装置を備えてなり、
     前記作用ガス供給装置は、前記還元剤を希釈する希釈用ガスとして前記作用ガスを供給することを特徴とする燃焼プラント。
    The combustion plant according to claim 1,
    The exhaust gas treatment system comprises a denitration device that removes nitrogen oxides in the exhaust gas by adding a reducing agent to the exhaust gas discharged from the combustion device,
    The working gas supply device supplies the working gas as a dilution gas for diluting the reducing agent.
  9.  請求項1に記載の燃焼プラントにおいて、
     前記排ガス処理システムは、前記排ガスの熱を回収する熱交換器を備えてなり、
     前記作用ガス供給装置は、前記熱交換器のスカベンジング用ガスとして前記作用ガスを供給することを特徴とする燃焼プラント。
    The combustion plant according to claim 1,
    The exhaust gas treatment system comprises a heat exchanger that recovers the heat of the exhaust gas,
    The working gas supply device supplies the working gas as a scavenging gas for the heat exchanger.
  10.  請求項1に記載の燃焼プラントにおいて、
     前記燃焼装置は、燃焼室を備えるボイラであり、
     前記作用ガス供給装置は、前記ボイラの伝熱管又は水冷壁の煤を除去する除去装置とボイラ壁との摺動部のシールガスとして前記作用ガスを供給することを特徴とする燃焼プラント。
    The combustion plant according to claim 1,
    The combustion device is a boiler including a combustion chamber,
    The said working gas supply apparatus supplies the said working gas as sealing gas of the sliding part of the removal apparatus and boiler wall which remove the soot of the heat exchanger tube or water cooling wall of the said boiler, The combustion plant characterized by the above-mentioned.
  11.  請求項1に記載の燃焼プラントであって、
     前記燃焼プラントは、石炭焚きのボイラプラントであり、
     前記燃焼装置は、石炭を粉砕する粉砕装置を備えてなり、前記作用ガス供給装置は、前記粉砕装置の摺動部のシールガスとして前記作用ガスを供給することを特徴とする燃焼プラント。
    A combustion plant according to claim 1,
    The combustion plant is a coal-fired boiler plant;
    The combustion apparatus includes a pulverizing apparatus that pulverizes coal, and the working gas supply apparatus supplies the working gas as a seal gas for a sliding portion of the pulverizing apparatus.
  12.  請求項2に記載の燃焼プラントにおいて、
     前記作用ガス供給装置は、前記脱硫装置の出口側の煙道から分岐した作用ガス流路と、前記集塵装置の入口側の煙道に設けられた第1の熱交換器と、前記作用ガス流路に設けられた第2の熱交換器とを有し、第1の熱交換器で加熱された熱媒を第2の熱交換器に流通して前記作用ガスを加熱することを特徴とする燃焼プラント。
    The combustion plant according to claim 2,
    The working gas supply device includes a working gas flow path branched from a flue on the outlet side of the desulfurization device, a first heat exchanger provided in a flue on the inlet side of the dust collector, and the working gas. And a second heat exchanger provided in the flow path, wherein the working gas is heated by circulating the heat medium heated by the first heat exchanger to the second heat exchanger. Combustion plant.
  13.  請求項1に記載の燃焼プラントにおいて、
     前記集塵装置の入口側に前記排ガスを冷却する冷却器を備え、該冷却器で前記排ガスを90℃以上140℃以下に冷却することを特徴とする燃焼プラント。
    The combustion plant according to claim 1,
    A combustion plant comprising a cooler for cooling the exhaust gas on an inlet side of the dust collector, wherein the exhaust gas is cooled to 90 ° C. or higher and 140 ° C. or lower with the cooler.
PCT/JP2011/005232 2010-09-16 2011-09-15 Combustion plant WO2012035777A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-207453 2010-09-16
JP2010207453 2010-09-16
JP2010-218457 2010-09-29
JP2010218457 2010-09-29

Publications (1)

Publication Number Publication Date
WO2012035777A1 true WO2012035777A1 (en) 2012-03-22

Family

ID=45831262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005232 WO2012035777A1 (en) 2010-09-16 2011-09-15 Combustion plant

Country Status (1)

Country Link
WO (1) WO2012035777A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878820A (en) * 2012-10-22 2013-01-16 徐州燃控科技股份有限公司 Application process of smoke recirculation on rotary kiln
JP2014119251A (en) * 2012-12-14 2014-06-30 Alstom Technology Ltd Leakage reduction system in power plant operations
CN104456600A (en) * 2014-12-16 2015-03-25 抚顺天赐石灰石开发有限公司 Lime rotary kiln pulverized coal preparing and conveying device
WO2015050090A1 (en) * 2013-10-03 2015-04-09 株式会社Ihi Combustion assisting fluid preheating device for oxygen combustion system
WO2018077729A1 (en) * 2016-10-31 2018-05-03 General Electric Technology Gmbh System and method for removing ash deposits within a boiler
CN108159858A (en) * 2018-01-11 2018-06-15 江苏联慧资源环境科技有限公司 A kind of boiler kiln gas purification technique
WO2020226104A1 (en) * 2019-05-07 2020-11-12 三菱パワー株式会社 Furnace and boiler equipped with same
WO2023112862A1 (en) * 2021-12-14 2023-06-22 日立造船株式会社 Waste incineration facility
US20230243322A1 (en) * 2020-07-21 2023-08-03 Daewoo Shipbuilding & Marine Engineering Co.,Ltd. Apparatus for reducing greenhouse gas emission in vessel cooperated with exhaust gas recirculation and vessel including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197808A (en) * 1987-02-13 1988-08-16 Babcock Hitachi Kk Method of operating coal pulverizer
JPH0526409A (en) * 1991-07-16 1993-02-02 Babcock Hitachi Kk Carbon dioxide recoverying boiler
JPH10110935A (en) * 1996-10-08 1998-04-28 Abb Kk Discharged smoke processing device by rotary regenerative type heat exchanger
JPH10141646A (en) * 1996-11-06 1998-05-29 Babcock Hitachi Kk Cleaning method for gas-gas heater
JP2001286735A (en) * 2000-04-07 2001-10-16 Mitsubishi Heavy Ind Ltd Ammonia supply device for denitration
WO2009110031A1 (en) * 2008-03-06 2009-09-11 株式会社Ihi Method of supplying carbon dioxide to oxygen combustion boiler and apparatus for supplying carbon dioxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197808A (en) * 1987-02-13 1988-08-16 Babcock Hitachi Kk Method of operating coal pulverizer
JPH0526409A (en) * 1991-07-16 1993-02-02 Babcock Hitachi Kk Carbon dioxide recoverying boiler
JPH10110935A (en) * 1996-10-08 1998-04-28 Abb Kk Discharged smoke processing device by rotary regenerative type heat exchanger
JPH10141646A (en) * 1996-11-06 1998-05-29 Babcock Hitachi Kk Cleaning method for gas-gas heater
JP2001286735A (en) * 2000-04-07 2001-10-16 Mitsubishi Heavy Ind Ltd Ammonia supply device for denitration
WO2009110031A1 (en) * 2008-03-06 2009-09-11 株式会社Ihi Method of supplying carbon dioxide to oxygen combustion boiler and apparatus for supplying carbon dioxide

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878820B (en) * 2012-10-22 2015-04-15 徐州燃控科技股份有限公司 Application process of smoke recirculation on rotary kiln
CN102878820A (en) * 2012-10-22 2013-01-16 徐州燃控科技股份有限公司 Application process of smoke recirculation on rotary kiln
JP2014119251A (en) * 2012-12-14 2014-06-30 Alstom Technology Ltd Leakage reduction system in power plant operations
US9845953B2 (en) 2012-12-14 2017-12-19 Arvos Ljungstrom Llc Leakage reduction system in power plant operations
US10082342B2 (en) 2013-10-03 2018-09-25 Ihi Corporation Combustion assisting fluid preheating device for oxygen combustion system
WO2015050090A1 (en) * 2013-10-03 2015-04-09 株式会社Ihi Combustion assisting fluid preheating device for oxygen combustion system
CN104456600A (en) * 2014-12-16 2015-03-25 抚顺天赐石灰石开发有限公司 Lime rotary kiln pulverized coal preparing and conveying device
WO2018077729A1 (en) * 2016-10-31 2018-05-03 General Electric Technology Gmbh System and method for removing ash deposits within a boiler
CN108159858A (en) * 2018-01-11 2018-06-15 江苏联慧资源环境科技有限公司 A kind of boiler kiln gas purification technique
WO2020226104A1 (en) * 2019-05-07 2020-11-12 三菱パワー株式会社 Furnace and boiler equipped with same
JP2020183826A (en) * 2019-05-07 2020-11-12 三菱パワー株式会社 Furnace and boiler including the same
JP7285685B2 (en) 2019-05-07 2023-06-02 三菱重工業株式会社 Furnaces and boilers equipped therewith
US20230243322A1 (en) * 2020-07-21 2023-08-03 Daewoo Shipbuilding & Marine Engineering Co.,Ltd. Apparatus for reducing greenhouse gas emission in vessel cooperated with exhaust gas recirculation and vessel including the same
US11927156B2 (en) * 2020-07-21 2024-03-12 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Apparatus for reducing greenhouse gas emission in vessel cooperated with exhaust gas recirculation and vessel including the same
WO2023112862A1 (en) * 2021-12-14 2023-06-22 日立造船株式会社 Waste incineration facility

Similar Documents

Publication Publication Date Title
WO2012035777A1 (en) Combustion plant
JP5489254B2 (en) Oxyfuel combustion system and operating method thereof
JP4644725B2 (en) Oxy-combustion boiler system, pulverized-coal-fired boiler remodeling method, oxy-combustion boiler system control device
JP3068888B2 (en) Combustion apparatus and operation method thereof
ES2758715T3 (en) Elimination method and equipment for exhaust gas from a combustion system
ES2602428T3 (en) Oxy-fuel combustion with integrated pollution control
CA2827227C (en) Method and system for milling a fuel for an oxy-fuel combustion burner
JP5448858B2 (en) Oxy-combustion power plant and its operation method
JP2012143699A (en) Exhaust gas treating system
JP5183372B2 (en) Oxyfuel combustion boiler system and combustion method
AU2012241496B2 (en) Compression condensate conditioning in the flue gas condenser
KR101435422B1 (en) Gas leakage reduction system
JP5432098B2 (en) Oxyfuel boiler
WO2013073137A1 (en) Pulverized fuel supply method for oxygen combustion boiler, and oxygen combustion boiler system
JP2012137269A (en) Coal fired power generation plant and method of controlling the same
JP5812740B2 (en) Oxyfuel combustion system and operating method thereof
JPH08296835A (en) Pulverized coal fired thermal power generation system
JP2013108680A (en) Exhaust gas treatment system
JP2014059104A (en) Oxyfuel combustion boiler system
US20230134621A1 (en) Carbon Capture System and Method with Exhaust Gas Recirculation
JP2013057437A (en) Oxygen combustion system and oxygen combustion method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11824790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11824790

Country of ref document: EP

Kind code of ref document: A1