JP2013057437A - Oxygen combustion system and oxygen combustion method - Google Patents

Oxygen combustion system and oxygen combustion method Download PDF

Info

Publication number
JP2013057437A
JP2013057437A JP2011195612A JP2011195612A JP2013057437A JP 2013057437 A JP2013057437 A JP 2013057437A JP 2011195612 A JP2011195612 A JP 2011195612A JP 2011195612 A JP2011195612 A JP 2011195612A JP 2013057437 A JP2013057437 A JP 2013057437A
Authority
JP
Japan
Prior art keywords
exhaust gas
flue
gas
boiler
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011195612A
Other languages
Japanese (ja)
Inventor
Kenzo Arita
建三 有田
Takahiro Marumoto
隆弘 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2011195612A priority Critical patent/JP2013057437A/en
Publication of JP2013057437A publication Critical patent/JP2013057437A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • Y02E20/344

Landscapes

  • Air Supply (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxygen combustion system and an oxygen combustion method, which reduce NOx in a combustion exhaust gas, and which reduce the corrosion of a recirculation duct, while adjusting an exhaust gas flow rate supplied to a COrecovery device so as not to exceed a capacity of the COrecovery device, even if the COrecovery device has the limited capacity.SOLUTION: The oxygen combustion system generates steam by combusting fuel by an oxygen combustion boiler 1, and also comprises: a flue 30 located between a desulfurization device 6 and the COrecovery device 8; a bypass flue 28 connected to the flue 30 at the upstream side of the COrecovery device 8 after being branched from the flue 30; a control damper 29 arranged at an inlet of the bypass flue 28 and controlling a bypass exhaust gas rate; a condenser 7 arranged at the bypass flue 28 and having a refrigerant supply amount adjusting valve 26; and a control system for adjusting either of the adjusting valve 26 and the damper 29 on the basis of a temperature and a flow rate of the exhaust gas measured by a measurer 20 which is arranged at the flue 30 at the front flow side of the COrecovery device 8 being the outlet side of the bypass flue 28.

Description

本発明はボイラなどの固体燃料などの燃焼装置に空気の他に酸素を供給して燃料の燃焼を行う酸素燃焼システムと酸素燃焼方法に関する。   The present invention relates to an oxyfuel combustion system and an oxyfuel combustion method in which fuel is burned by supplying oxygen in addition to air to a combustion apparatus such as a solid fuel such as a boiler.

ボイラなどの燃焼装置における前記酸素燃焼システムにおいては、燃焼装置から排出する排ガスを少なくとも集塵、脱硫した後に、浄化した排ガスよりCOを分離回収するためにCO回収装置を脱硫装置よりも下流側の排ガス煙道(ダクト)に配置している。 In the oxyfuel combustion system in a combustion apparatus such as a boiler, at least the exhaust gas discharged from the combustion apparatus is collected and desulfurized, and then the CO 2 recovery apparatus is disposed downstream of the desulfurization apparatus in order to separate and recover the CO 2 from the purified exhaust gas. It is arranged in the exhaust flue (duct) on the side.

事業用ボイラの排煙脱硫処理には湿式排煙脱硫法がよく採用されているが、脱硫装置の下流側の排ガスは水分で飽和している。これは酸素燃焼でなく空気燃焼を実施している場合でも同様であり、排ガスを煙突へ排気する前にヒーター等で加熱して白煙が大気中に排出されるのを防止している。   The wet flue gas desulfurization method is often used for flue gas desulfurization treatment of commercial boilers, but the exhaust gas downstream of the desulfurization unit is saturated with moisture. This is the same even when air combustion is carried out instead of oxygen combustion, and the white smoke is prevented from being discharged into the atmosphere by heating with a heater or the like before exhaust gas is exhausted to the chimney.

ボイラの酸素燃焼システムにおいては排ガスを再循環ダクト経由でボイラに再循環する必要があることから、排ガスの取出し口を脱硫装置下流側の煙道へ設ける場合には再循環ダクトの低温腐食を防ぐため、再循環ダクトの前流側の排ガスダクトに凝縮器を設け、水分を低減させる必要がある。また、前記再循環ダクトに供給しない排ガスは凝縮器の下流側の煙道(ダクト)に設けたCO回収装置でCOを分離される。以下の特許文献1、2にはボイラの酸素燃焼システムにおける排煙脱硫処理系が開示されている。 In boiler oxyfuel combustion systems, exhaust gas needs to be recirculated to the boiler via the recirculation duct. Therefore, when the exhaust gas outlet is installed in the flue downstream of the desulfurization unit, low-temperature corrosion of the recirculation duct is prevented. Therefore, it is necessary to provide a condenser in the exhaust gas duct on the upstream side of the recirculation duct to reduce moisture. Further, the exhaust gas not supplied to the recirculation duct is separated into CO 2 by a CO 2 recovery device provided in a flue (duct) on the downstream side of the condenser. Patent Documents 1 and 2 below disclose a flue gas desulfurization treatment system in an oxyfuel combustion system of a boiler.

特許文献1には煙道の酸露点腐食を抑制する酸素燃焼システムが開示されており、脱硫装置の下流側の煙道に凝縮器を設け、再循環ガス取り入れ口を凝縮器の下流側であって、CO分離設備の上流側の煙道に配置してボイラに供給する酸素燃焼システムが開示されている。 Patent Document 1 discloses an oxyfuel combustion system that suppresses acid dew point corrosion of a flue. A condenser is provided in the flue downstream of the desulfurization unit, and a recirculation gas intake is provided downstream of the condenser. Thus, an oxyfuel combustion system that is disposed in a flue upstream of a CO 2 separation facility and is supplied to a boiler is disclosed.

また、特許文献2においては、集塵装置と脱硫装置と凝縮器とCO分離設備がボイラ排ガス煙道の上流側から順次配置される酸素燃焼システムにおいて、集塵装置と脱硫装置の間の煙道に再循環ガス取り入れ口を設けてボイラに再循環するか、又は凝縮器とCO分離設備の間の煙道に再循環ガス取り入れ口を設けてボイラに排ガスを再循環する構成が開示されている。特許文献2記載の発明は再循環排ガスをボイラのアフターガスポートに供給して、フューエルNOxの生成量を減らすことを目的としている。 In Patent Document 2, in an oxyfuel combustion system in which a dust collector, a desulfurizer, a condenser, and a CO 2 separation facility are sequentially arranged from the upstream side of a boiler exhaust gas flue, the smoke between the dust collector and the desulfurizer. A configuration is disclosed in which a recirculation gas intake is provided in the road and recirculated to the boiler, or a recirculation gas intake is provided in the flue between the condenser and the CO 2 separation facility to recirculate the exhaust gas to the boiler. ing. The invention described in Patent Document 2 aims to reduce the amount of fuel NOx produced by supplying recirculated exhaust gas to an aftergas port of a boiler.

また、酸素燃焼システムではないが、特許文献3にはボイラなどの排ガス中のCOを固化回収するために、CO固化回収装置の上流側の煙道に設けた凝縮器と除湿装置で排ガスを十分冷却して水分を除く構成が開示されている。 Further, although not an oxyfuel combustion system, Patent Document 3 discloses exhaust gas by a condenser and a dehumidifier provided in a flue upstream of a CO 2 solidification recovery device in order to solidify and recover CO 2 in exhaust gas such as a boiler. The structure which cools fully and removes a water | moisture content is disclosed.

特開2009−270753号公報JP 2009-270753 A 特開2010−107129号公報JP 2010-107129 A 特開2004−148158号公報JP 2004-148158 A

前記特許文献1〜3にはボイラ排ガスからのCOを液化又は固化して分離する前に、排ガス中の水分を凝縮器で凝縮分離することが開示されている。しかし、特許文献1〜3記載の発明は、CO回収装置に供給される排ガス流量の調整機能を有しているものではないため、排ガス量が増えると、CO回収装置には大容量の圧縮機を設置する必要があり、全体としてプラント運用における効率が良くない。 Patent Documents 1 to 3 disclose that moisture in exhaust gas is condensed and separated by a condenser before CO 2 from boiler exhaust gas is liquefied or solidified and separated. However, since the inventions described in Patent Documents 1 to 3 do not have a function of adjusting the flow rate of exhaust gas supplied to the CO 2 recovery device, when the amount of exhaust gas increases, the CO 2 recovery device has a large capacity. It is necessary to install a compressor, and the efficiency in plant operation as a whole is not good.

前記酸素燃焼システムにおいては、排ガスからCOを回収するためのCO回収装置と、空気から燃焼用の酸素ガスを分離する空気分離装置の消費動力が大きく、空気燃焼よりも送電端効率(タービンにつながれた発電機が発電したそのものの電力量から計算される発電端効率から発電所で使用された電力量を差し引いた正味電力量から計算される)が低下する。このため、ボイラ給水による排ガスの冷却や、排ガスによる酸素ガスの予熱など、システムの切替えに伴い、熱バランスを維持しながら発電出力の低下を抑えるシステム系統が提案されている。 In the oxyfuel combustion system, the power consumption of the CO 2 recovery device for recovering CO 2 from the exhaust gas and the air separation device for separating the oxygen gas for combustion from the air is larger, and the power transmission end efficiency (turbine than the air combustion) (Calculated from the net electric energy obtained by subtracting the electric energy used at the power plant from the power generation efficiency calculated from the electric energy generated by the generator connected to the power generator). For this reason, a system system that suppresses a decrease in power generation output while maintaining a heat balance has been proposed along with system switching such as cooling of exhaust gas by boiler feed water and preheating of oxygen gas by exhaust gas.

ところで、CO回収装置は複数段の圧縮機と冷却器を用いて被処理ガス(ここではボイラ排ガス)の圧縮と冷却を行う装置であり、熱効率が最適となるように各段の圧力が決定される。また、排ガス中にHOが20〜30vol%含まれることから各段階でドレインが大量に発生するため、ボイラの排ガス処理系には別途水分を除去する凝縮器や吸着塔を設置する水分除去の工程を有している。CO回収装置は、ボイラの酸素燃焼システムにおける排ガスダクト(煙道)の最も下流側に接続されており、少なくとも集塵、脱硫された排ガスが常時供給される。 By the way, the CO 2 recovery device is a device that compresses and cools the gas to be treated (here, boiler exhaust gas) using a plurality of stages of compressors and coolers, and the pressure of each stage is determined so that the thermal efficiency is optimized. Is done. In addition, since 20-30 vol% of H 2 O is contained in the exhaust gas, a large amount of drain is generated at each stage. Therefore, a moisture removal system in which a condenser and an adsorption tower for removing moisture are separately installed in the exhaust gas treatment system of the boiler. It has the process of. The CO 2 recovery device is connected to the most downstream side of the exhaust gas duct (flue) in the boiler oxyfuel combustion system, and at least dust collected and desulfurized exhaust gas is constantly supplied.

ボイラの燃料供給量等の変動によりCO回収装置へ供給される排ガス量は時間的に変動する。CO回収装置の容量を超えて排ガス量が増加した場合は、排ガス煙道(ダクト)内圧が上昇し、漏洩が発生するため、ダクト内圧を維持するように煙突へバイパスされ、排気される。しかし、この場合には所内動力を大量に消費して生成した高純度の酸素ガスを用いて生成した高濃度のCOガスを大気へ放出することになり、非効率である。 The amount of exhaust gas supplied to the CO 2 recovery device varies with time due to fluctuations in the fuel supply amount of the boiler and the like. When the amount of exhaust gas increases beyond the capacity of the CO 2 recovery device, the exhaust gas flue (duct) internal pressure rises and leakage occurs, so that it is bypassed to the chimney and exhausted to maintain the duct internal pressure. However, in this case, high-concentration CO 2 gas generated using high-purity oxygen gas generated by consuming a large amount of in-house power is released to the atmosphere, which is inefficient.

CO回収装置の容量を十分に大きくすれば排気の必要はなくなるが、機器の大型化により消費動力が増大して送電端効率を低下させ、機器コストも増加する。 If the capacity of the CO 2 recovery device is made sufficiently large, there is no need for exhaust, but the power consumption increases due to the increase in the size of the equipment, the power transmission end efficiency is lowered, and the equipment cost also increases.

そこで、本発明の課題は、燃焼排ガスの低NOx化を図り、かつ限られた容量のCO回収装置であっても、CO回収装置に供給される排ガス流量をCO回収装置の容量を超えないように調整しながら、ボイラに再循環する排ガスの水分を低減し、再循環ダクトの腐食を低減し、燃料の燃焼性の改善を図った酸素燃焼システムと酸素燃焼方法を提供することである。 An object of the present invention, achieving low NOx of the combustion exhaust gas, and even the CO 2 recovery apparatus limited capacity, the capacity of the exhaust gas flow rate supplied to the CO 2 recovery apparatus CO 2 recovery apparatus By providing an oxyfuel combustion system and oxyfuel combustion method that reduce the moisture in the exhaust gas recirculated to the boiler, reduce the corrosion of the recirculation duct, and improve the fuel flammability is there.

本発明の上記課題は、次の解決手段により解決される。
請求項1記載の発明は、空気から分離した高酸素濃度ガス18と再循環排ガス31の混合ガス15を燃焼用ガスとして燃料を燃焼させて蒸気を発生させるボイラ1と、当該ボイラ1より発生する排ガスが通流する煙道30と、該煙道30に設けた排ガス中の硫黄酸化物を除くための脱硫装置6と、該脱硫装置6の下流側の煙道30に設けた排ガス中のCOを液化するCO回収装置8と、前記煙道30から抜き出した排ガスを燃料の搬送ガスおよび/また燃焼用ガスの一部としてボイラ1へ導くための排ガス再循環流路(図示せず)を備えた酸素燃焼システムにおいて、前記脱硫装置6と前記CO回収装置8の間の煙道30に凝縮器7を設け、該凝縮器7内への排ガス冷却用の冷媒の供給量を調整する冷媒供給量調整弁26を有する冷媒供給路33を設け、該凝縮器7と前記CO回収装置8の間の煙道30に排ガスの温度と流量の少なくともいずれかを計測する計測器20を設け、該計測器20で計測した排ガスの温度と流量の少なくともいずれかの値に基づき前記冷媒供給量調整弁26の開度を制御して前記凝集器7への冷媒27の供給量を調整してCO回収装置8への排ガス供給量を調整する制御系を設けたことを特徴とする酸素燃焼システムである。
The above-described problems of the present invention are solved by the following solution means.
The invention according to claim 1 is generated from a boiler 1 that generates steam by burning fuel using a mixed gas 15 of a high oxygen concentration gas 18 separated from air and a recirculated exhaust gas 31 as a combustion gas. A flue 30 through which the exhaust gas flows, a desulfurization device 6 for removing sulfur oxides in the exhaust gas provided in the flue 30, and a CO in the exhaust gas provided in the flue 30 on the downstream side of the desulfurization device 6 a CO 2 recovery device 8 for liquefying 2, exhaust gas recirculation passage for guiding to the boiler 1 to the extracted exhaust gas from the flue 30 as part of the carrier gas and / or combustion gases of the fuel (not shown) Is provided with a condenser 7 in the flue 30 between the desulfurization device 6 and the CO 2 recovery device 8, and the supply amount of refrigerant for exhaust gas cooling into the condenser 7 is adjusted. Cooling having a refrigerant supply amount adjustment valve 26 The supply path 33 is provided, provided the condenser 7 and the CO 2 measuring instrument 20 in the flue 30 for measuring at least one of temperature and flow rate of the exhaust gas between the recovery device 8, the exhaust gas measured by the measuring instrument 20 Supply of the exhaust gas to the CO 2 recovery device 8 by adjusting the supply amount of the refrigerant 27 to the aggregator 7 by controlling the opening of the refrigerant supply amount adjustment valve 26 based on at least one of the temperature and the flow rate of An oxyfuel combustion system provided with a control system for adjusting the amount.

請求項2記載の発明は、空気から分離した高酸素濃度ガス18と再循環排ガス31の混合ガス15を燃焼用ガスとして燃料を燃焼させて蒸気を発生させるボイラ1と、当該ボイラ1より発生する排ガスが通流する煙道30と、該煙道30に設けた排ガス中の硫黄酸化物を除くための脱硫装置6と、該脱硫装置6の下流側の煙道30に設けた排ガス中のCOを液化するCO回収装置8と、前記煙道30から抜き出した排ガスを燃料の搬送ガスおよび/また燃焼用ガスの一部としてボイラ1へ導くための排ガス再循環流路(図示せず)を備えた酸素燃焼システムにおいて、前記脱硫装置6の後流側の煙道30から分岐した後、前記CO回収装置8の上流側の煙道30に接続し、バイパス排ガス量を制御する制御ダンパ29を入口部に設けたバイパス煙道28を設け、該バイパス煙道28に凝縮器7を設置し、該凝縮器7内への排ガス冷却用の冷媒の供給量を調整する冷媒供給量調整弁26を有する冷媒供給路33を設け、前記排ガスの温度と流量の少なくともいずれかを計測する計測器20を前記バイパス煙道28出口側であって前記CO回収装置8の前流側の煙道30に設け、該計測器20で計測した排ガスの温度と流量の少なくともいずれかの値に基づき前記凝集器7へ供給する冷媒供給量を調整する前記冷媒供給量調整弁26と前記制御ダンパ29の開度を調節する制御系を設けたことを特徴とする酸素燃焼システムである。 The invention according to claim 2 is generated from the boiler 1 which generates steam by burning fuel using the mixed gas 15 of the high oxygen concentration gas 18 separated from the air and the recirculated exhaust gas 31 as a combustion gas. A flue 30 through which the exhaust gas flows, a desulfurization device 6 for removing sulfur oxides in the exhaust gas provided in the flue 30, and a CO in the exhaust gas provided in the flue 30 on the downstream side of the desulfurization device 6 a CO 2 recovery device 8 for liquefying 2, exhaust gas recirculation passage for guiding to the boiler 1 to the extracted exhaust gas from the flue 30 as part of the carrier gas and / or combustion gases of the fuel (not shown) In the oxyfuel combustion system comprising: a control damper for branching from the flue 30 on the downstream side of the desulfurization device 6 and then connecting to the flue 30 on the upstream side of the CO 2 recovery device 8 to control the amount of bypass exhaust gas 29 at the entrance A bypass flue 28 is provided, a condenser 7 is installed in the bypass flue 28, and a refrigerant supply path 33 having a refrigerant supply amount adjustment valve 26 that adjusts the supply amount of refrigerant for cooling exhaust gas into the condenser 7. And a measuring device 20 for measuring at least one of the temperature and flow rate of the exhaust gas is provided in the flue 30 on the outlet side of the bypass flue 28 and on the upstream side of the CO 2 recovery device 8, and the measuring device A control system for adjusting the refrigerant supply amount adjustment valve 26 for adjusting the refrigerant supply amount supplied to the aggregator 7 and the opening degree of the control damper 29 based on at least one of the temperature and flow rate of the exhaust gas measured in 20 This is an oxyfuel combustion system.

請求項3記載の発明は、空気から分離した高酸素濃度ガス18と再循環排ガス31の混合ガス15を燃焼用ガスとして燃料を燃焼させて蒸気を発生するボイラ1から発生する排ガスを脱硫処理した後、排ガス中のCOを液化するCO回収処理を行い、また前記排ガスを燃料の搬送ガスおよび/また燃焼用ガスの一部としてボイラへ再循環する酸素燃焼方法において、脱硫処理後であってCO回収処理の前の排ガスを冷媒27により冷却して凝縮処理し、該冷媒27により冷却した排ガスの温度と流量の少なくともいずれかの値に基づき前記排ガスを凝集処理する冷媒27の供給量を調整することを特徴とする酸素燃焼方法である。 In the invention according to claim 3, the exhaust gas generated from the boiler 1 that generates steam by burning the fuel using the mixed gas 15 of the high oxygen concentration gas 18 separated from the air and the recirculated exhaust gas 31 as combustion gas is desulfurized. after performs the CO 2 recovery process for liquefying CO 2 in the exhaust gas, and in oxyfuel combustion process for recycling to the boiler the exhaust gas as part of the carrier gas and / or combustion gases of the fuel, even after desulfurized Then, the exhaust gas before the CO 2 recovery treatment is cooled and condensed by the refrigerant 27, and the supply amount of the refrigerant 27 for aggregating the exhaust gas based on at least one of the temperature and flow rate of the exhaust gas cooled by the refrigerant 27 This is an oxyfuel combustion method characterized by adjusting the above.

請求項4記載の発明は、空気から分離した高酸素濃度ガス18と再循環排ガス31の混合ガス15を燃焼用ガスとして燃料を燃焼させて蒸気を発生するボイラ1から発生する排ガスを脱硫処理した後、排ガス中のCOを液化するCO回収処理を行い、また前記排ガスを燃料の搬送ガスおよび/また燃焼用ガスの一部としてボイラへ再循環する酸素燃焼方法において、脱硫処理後であってCO回収処理前の排ガスの一部又は全部をバイパス路に抜き出して、該バイパス路に抜き出した分岐排ガスを冷媒27により冷却して凝縮処理をし、その後、再び前記CO回収処理前の排ガスと合流させ、同時に前記合流後の排ガスの温度と流量の少なくともいずれかの値に基づき、前記バイパス路に抜き出す分岐排ガス抜き出し量及びバイパス路に抜き出した分岐排ガスの凝縮処理をする冷媒27の供給量を調整して、CO回収処理用の排ガス供給量を調整することを特徴とする酸素燃焼方法である。 In the invention according to claim 4, the exhaust gas generated from the boiler 1 that generates steam by burning the fuel using the mixed gas 15 of the high oxygen concentration gas 18 separated from the air and the recirculated exhaust gas 31 as combustion gas is desulfurized. after performs the CO 2 recovery process for liquefying CO 2 in the exhaust gas, and in oxyfuel combustion process for recycling to the boiler the exhaust gas as part of the carrier gas and / or combustion gases of the fuel, even after desulfurized Then, a part or all of the exhaust gas before the CO 2 recovery treatment is extracted to the bypass passage, the branch exhaust gas extracted to the bypass passage is cooled by the refrigerant 27 and condensed, and then again before the CO 2 recovery treatment. A branch exhaust gas extraction amount and a bypass that are combined with exhaust gas and simultaneously extracted to the bypass passage based on at least one of the temperature and flow rate of the exhaust gas after the merge. In this oxyfuel combustion method, the supply amount of the refrigerant 27 for condensing the branched exhaust gas extracted into the passage is adjusted to adjust the exhaust gas supply amount for CO 2 recovery treatment.

(作用)
本発明は、CO回収装置に供給される排ガスの温度を下げ、水分を凝縮器で凝縮させることによってガス体積と水分量を減少させ、供給排ガスの圧力が常に一定以下となるように作用する。例えば図4に図示するようにCO回収装置の圧縮機(図示せず)へ供給される排ガス流量が時間的に変動し、図示するように排ガス流量が圧縮機容量を超える場合には、凝縮器を作動させ、排ガスの一部または全部を通流するように排ガスダンパを操作し、水分を取り除き、体積を低減して排ガス量を低減する。排ガス圧が一定値以下であれば、凝縮器は作動せず、排ガスも通流しないように排ガスダンパを操作することもできる。
(Function)
The present invention lowers the temperature of the exhaust gas supplied to the CO 2 recovery device, condenses the water with a condenser, thereby reducing the gas volume and the amount of water, and acts so that the pressure of the supplied exhaust gas is always below a certain level. . For example, as shown in FIG. 4, when the exhaust gas flow rate supplied to the compressor (not shown) of the CO 2 recovery device fluctuates with time, the exhaust gas flow rate exceeds the compressor capacity as shown in FIG. The exhaust gas damper is operated so that a part or all of the exhaust gas flows, the moisture is removed, the volume is reduced, and the amount of exhaust gas is reduced. If the exhaust gas pressure is below a certain value, the condenser does not operate and the exhaust gas damper can be operated so that the exhaust gas does not flow.

図5は圧縮機L1、L2の流量Qと効率ηの関係を示しており、圧縮機L1へ供給される排ガス量を圧縮機L1の定格流量Q1に保つことにより、最も効率の良い条件で圧縮機L1を運転することができて、大容量の圧縮機L2の定格流量Q2以下の流量域Q1で運転するよりも効率が良いため送電端効率の低下を抑制し、かつ初期コストを低減できる。 CO回収装置をバイパスすれば、高純度の酸素を用いて製造した高濃度のCOガスを大気へ放出することになる。さらに、CO濃度の高い排ガスの排出は人間の健康上望ましくないため、別途排ガスを希釈する措置が必要となる。また、排ガスを大気へ排出すると温室効果ガスの増加につながり、また高濃度COを排出することから環境負荷も高くなるため、別途希釈措置が必要である。 FIG. 5 shows the relationship between the flow rate Q of the compressors L1 and L2 and the efficiency η. By maintaining the exhaust gas amount supplied to the compressor L1 at the rated flow rate Q1 of the compressor L1, compression is performed under the most efficient conditions. The machine L1 can be operated, and the efficiency is better than operating in the flow rate region Q1 of the large capacity compressor L2, which is equal to or less than the rated flow rate Q2. If the CO 2 recovery device is bypassed, high-concentration CO 2 gas produced using high-purity oxygen is released to the atmosphere. Furthermore, since emission of exhaust gas having a high CO 2 concentration is undesirable for human health, a measure for diluting the exhaust gas is required separately. Further, exhaust gas discharged into the atmosphere leads to an increase in greenhouse effect gas, and since high concentration CO 2 is discharged, the environmental load becomes high, so a separate dilution measure is necessary.

CO回収装置に供給される排ガス量の変動幅に対してCO回収装置の吸込容量が十分に大きければ、運転時の排ガス量の変動に対して逃がし弁を作動させることなく排ガス全量を処理することは可能であるが、所内動力に占める圧縮機の動力が増大してプラント効率の低下を招き、機器コストも大幅に増大することになる。 If the suction capacity of the CO 2 recovery device relative fluctuation range of the exhaust gas amount supplied to the CO 2 recovery apparatus is sufficiently large, treating an exhaust gas total amount without operating the relief valve for variations in the amount of exhaust gas during operation Although it is possible, the power of the compressor occupying the in-house power increases, leading to a decrease in plant efficiency and a significant increase in equipment cost.

請求項1、3記載の発明によれば、ボイラ酸素燃焼系において凝縮器などで排ガスの温度または水分量を調整してCO回収装置へ流入する排ガス流量を調整することで、限られた容量のCO回収装置であっても効率よく運転し、所内動力を低減したボイラ酸素燃焼系の運用が可能になる。 According to the first and third aspects of the invention, in the boiler oxyfuel combustion system, the exhaust gas flow rate flowing into the CO 2 recovery device is adjusted by adjusting the temperature or moisture content of the exhaust gas with a condenser or the like, so that the capacity is limited. Even a CO 2 recovery device of this type can operate efficiently and operate a boiler oxyfuel combustion system with reduced in-house power.

請求項2、4記載の発明によれば、請求項1、3記載の発明の効果に加えて、CO回収装置へ流入する排ガス流量を排ガスバイパス路への流量調節で更に容易に行うことができる。 According to the second and fourth aspects of the invention, in addition to the effects of the first and third aspects, the flow rate of the exhaust gas flowing into the CO 2 recovery device can be further easily adjusted by adjusting the flow rate to the exhaust gas bypass passage. it can.

本発明の一実施例のCO回収装置、凝縮器、脱硫装置、煙突の配設例であって排ガス量の調整手段を設けた酸素燃焼システムの構成図である。1 is a configuration diagram of an oxyfuel combustion system that is an example of arrangement of a CO 2 recovery device, a condenser, a desulfurization device, and a chimney according to an embodiment of the present invention and that is provided with means for adjusting an exhaust gas amount. 本発明の他の実施例のCO回収装置、凝縮器、脱硫装置、煙突の配設例であり、脱硫装置とCO回収装置を接続する煙道から分岐した煙道へ凝縮器を接続し、凝縮器へ通流する排ガス量を調整する手段を設けた酸素燃焼システムの構成図である。It is an arrangement example of a CO 2 recovery device, a condenser, a desulfurization device, and a chimney of another embodiment of the present invention, connecting the condenser to the flue branched from the flue connecting the desulfurization device and the CO 2 recovery device, It is a block diagram of the oxyfuel combustion system provided with the means to adjust the amount of exhaust gas flowing through the condenser. 本発明を実施する酸素燃焼システムの一例を示し、当該システムにおけるCO回収装置、凝縮器、脱硫装置、煙突の配置例を示す酸素燃焼システムの構成図である。Shows an example of an oxygen combustion system embodying the present invention, CO 2 recovery apparatus in the system, condensers, desulfurizer is a configuration diagram of the oxyfuel combustion system showing an arrangement example of a chimney. 酸素燃焼システムのCO回収装置へ供給される排ガス流量のトレンドの一例を表す概念図であり、排ガス流量は時間τ1、τ2、τ3の間に圧縮機の容量Q1を超過する場合があることの一例を示しており、より大きな容量Q2を持つ圧縮機では容量超過のおそれは低いことを示している。It is a conceptual diagram showing an example of the trend of the exhaust gas flow rate supplied to the CO 2 recovery device of the oxyfuel combustion system, and the exhaust gas flow rate may exceed the compressor capacity Q1 during the time τ1, τ2, and τ3. An example is shown, which indicates that the compressor having a larger capacity Q2 is less likely to exceed the capacity. 酸素燃焼システムのCO回収装置に備えられる圧縮機の流量と効率の関係の一例を示す概念図である。An example of the relationship between flow rate and efficiency of the compressor provided in the CO 2 recovery system of the oxygen combustion system is a conceptual diagram showing a. 本発明の比較例であるCO回収装置、煙突、凝縮器、当該凝縮器をバイパスして煙突へ排ガスを排気するバイパスダクトを配設した酸素燃焼システムの構成図である。CO 2 recovery system which is a comparative example of the present invention, chimney, condenser, a block diagram of an oxygen combustion system the bypass duct is disposed to exhaust the exhaust gas to bypass the condenser to the chimney.

以下、本発明の実施例を図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

石炭焚ボイラを備えた酸素燃焼システムを本発明の一実施例として説明するが、本発明は燃料種により限定されるものではなく、石炭以外の燃料を用いるものにも適用できる。   An oxyfuel combustion system equipped with a coal fired boiler will be described as an embodiment of the present invention, but the present invention is not limited by the fuel type, and can be applied to a fuel using a fuel other than coal.

図3に本実施例の石炭焚ボイラに適用される酸素燃焼システムを示す。
本酸素燃焼システムは、ボイラ1と、該ボイラ1に空気から酸素ガス18を分離して供給する空気分離装置17と、ボイラ1の燃料である石炭13の粉砕装置12と、脱硝装置2、集塵装置5、脱硫装置6の少なくとも一つからなるボイラの排ガス処理系と、脱硝装置2と集塵装置5の間に配置される再生式熱交換器3と冷却器4、前記排ガス処理系で少なくとも集塵されたSOxとNOxを除去された排ガスを冷却する凝縮器7、該凝縮器7で冷却した排ガスから炭酸ガス(CO)11を分離回収するCO回収装置8、該CO回収装置8から排出したオフガス23を排出する煙突9と前記各装置を接続するように配設された配管および煙道(ダクト)30から構成される。
FIG. 3 shows an oxyfuel combustion system applied to the coal fired boiler of this embodiment.
The present oxyfuel combustion system includes a boiler 1, an air separation device 17 that supplies oxygen gas 18 separated from the air to the boiler 1, a pulverizer 12 for coal 13 that is fuel for the boiler 1, a denitration device 2, a collector. A boiler exhaust gas treatment system comprising at least one of a dust device 5 and a desulfurization device 6, a regenerative heat exchanger 3 and a cooler 4 disposed between the denitration device 2 and the dust collector 5, and the exhaust gas treatment system. A condenser 7 that cools the exhaust gas from which at least the collected SOx and NOx are removed, a CO 2 recovery device 8 that separates and recovers carbon dioxide (CO 2 ) 11 from the exhaust gas cooled by the condenser 7, and the CO 2 recovery A chimney 9 for discharging off-gas 23 discharged from the device 8 and a pipe and a flue (duct) 30 arranged so as to connect the respective devices.

再生式熱交換器3はボイラ1の排ガスと再循環する排ガスの熱交換手段であり、冷却器4は空気燃焼熱バランスを維持するために設けられた排ガスの冷却手段である。煙道30に設けられた複数の排ガス取出し口16(ボイラ1と脱硝装置2の間、集塵装置5と脱硫装置6の間、脱硫装置6と凝縮器7の間の各煙道30などに設ける)の少なくとも一箇所から取り出した排ガスは燃焼ガス15として再びボイラ1へ導かれる再循環排ガス31および石炭13の粉砕装置12へ導かれる石炭搬送ガス14となる。空気分離装置17で空気から分離された酸素ガス18は、燃焼ガス15と石炭搬送ガス14として供給される再循環排ガス31と混合されてボイラ1へ供給され、燃焼に用いられる。   The regenerative heat exchanger 3 is heat exchange means for the exhaust gas recirculated with the exhaust gas from the boiler 1, and the cooler 4 is exhaust gas cooling means provided to maintain an air combustion heat balance. A plurality of exhaust gas outlets 16 provided in the flue 30 (between the boiler 1 and the denitration device 2, between the dust collector 5 and the desulfurization device 6, each flue 30 between the desulfurization device 6 and the condenser 7, etc. The exhaust gas taken out from at least one place is provided as the combustion gas 15 and the recirculated exhaust gas 31 which is led again to the boiler 1 and the coal carrier gas 14 which is led to the pulverizing device 12 of the coal 13. The oxygen gas 18 separated from the air by the air separation device 17 is mixed with the combustion gas 15 and the recirculated exhaust gas 31 supplied as the coal carrier gas 14, supplied to the boiler 1, and used for combustion.

凝縮器7で凝縮水10を除去された排ガスは、CO回収装置8に導かれ、排ガス中のCOが液化されて液化CO11として回収され、残りのガスはオフガス23として空気分離装置17で酸素ガス18を分離した図示しない残ガスと共に煙突9より排気される。 Exhaust gas that is removed condensed water 10 in the condenser 7 is led to the CO 2 recovery device 8, CO 2 in the exhaust gas is recovered as a liquefied CO 2 11 is liquefied, the remaining gas air separation unit as off 23 The oxygen gas 18 is separated by 17 and exhausted from the chimney 9 together with a residual gas (not shown).

図1に本発明の一実施例の酸素燃焼システムの中の脱硫装置6、凝縮器7、CO回収装置8及び煙突9を煙道30に配設した構成と凝縮器7を中心とした制御系統を示し、図6には本発明の比較例となる酸素燃焼システムの中の脱硫装置6、凝縮器7、CO回収装置8及び煙突9を煙道30に配設した構成と凝縮器7を中心とした制御系統を示す。 FIG. 1 shows a configuration in which a desulfurization device 6, a condenser 7, a CO 2 recovery device 8, and a chimney 9 in an oxyfuel combustion system according to an embodiment of the present invention are arranged in a flue 30, and control centering on the condenser 7. FIG. 6 shows a system in which a desulfurization device 6, a condenser 7, a CO 2 recovery device 8 and a chimney 9 in an oxyfuel system as a comparative example of the present invention are arranged in a flue 30 and the condenser 7. The control system centering on is shown.

図3に示す酸素燃焼システムにおいてはCO回収装置8で液化される排ガスは、少なくとも脱硫装置6を経た排ガスであり、凝縮器7で水分を調整された後に処理される。図6に示す比較例では凝縮器7とCO回収装置8の間の煙道30には煙突9へ排ガスを流すバイパスダクト22が分岐しており、煙道30に設けたバイパスダクト22の分岐部に圧力ダンパ21を設置して、通常バイパスダクト22は閉止されている。 In the oxyfuel combustion system shown in FIG. 3, exhaust gas liquefied by the CO 2 recovery device 8 is exhaust gas that has passed through at least the desulfurization device 6, and is processed after moisture is adjusted by the condenser 7. In the comparative example shown in FIG. 6, a bypass duct 22 for flowing exhaust gas to the chimney 9 is branched in the flue 30 between the condenser 7 and the CO 2 recovery device 8, and the bypass duct 22 provided in the flue 30 is branched. The pressure damper 21 is installed in the part, and the bypass duct 22 is normally closed.

図4に示すようにCO回収装置8へ流入する排ガス流量を縦軸に、時間を横軸にとると、細線に示すように排ガス流量は変動しており、時間τ1、τ2、τ3の間にCO回収装置8が備える圧縮機L1の容量Q1を超え、吸い込み圧を排ガス圧力が超える場合があり、排ガスの漏洩や煙道(ダクト)30が破損する危険がある。このため図6に示す比較例では時間τ1、τ2、τ3の間には圧力ダンパ21が作動し、バイパスダクト22へ排ガスを通流して煙道30の圧力を維持し、図4に示す太線のように流量は容量Q1以下に維持される。このとき、図6のバイパスダクト22を流れる排ガスは空気分離装置17で酸素ガス18を分離した後の窒素を主体とするガスとCO回収装置8のオフガス23と共に煙突9から大気へ無駄に放出される。 As shown in FIG. 4, when the exhaust gas flow rate flowing into the CO 2 recovery device 8 is plotted on the vertical axis and time is plotted on the horizontal axis, the exhaust gas flow rate fluctuates as shown by thin lines, and the time τ 1 , τ 2 , τ 3 may exceed the capacity Q1 of the compressor L1 provided in the CO 2 recovery device 8 and the exhaust gas pressure may exceed the suction pressure, and there is a risk that the exhaust gas leaks or the flue (duct) 30 is damaged. For this reason, in the comparative example shown in FIG. 6, the pressure damper 21 operates during the time τ 1 , τ 2 , τ 3 , and the exhaust gas flows to the bypass duct 22 to maintain the pressure of the flue 30. The flow rate is maintained at the capacity Q1 or less as shown by the thick line. At this time, the exhaust gas flowing through the bypass duct 22 in FIG. 6 is wasted to the atmosphere from the chimney 9 together with the nitrogen-based gas after the oxygen gas 18 is separated by the air separation device 17 and the off-gas 23 of the CO 2 recovery device 8. Is done.

しかし図1に示す本発明の酸素燃焼システムにおいては、凝縮器7において排ガスの主組成であるCOとHOの中のHOは空気や海水と熱交換して温度を下げられて容易に水分が凝縮する。数百MWの石炭火力発電所の脱硫装置6は湿式脱硫法が広く採用されており、この場合には脱硫装置6の出口の排ガスは水蒸気で飽和し、ガス温度は70〜80℃程度となっている。凝縮器7の出口の煙道30にガス流量とガス温度を計測する手段20を設け、当該計測手段20の信号24を元に凝縮器7の冷媒流量を冷媒配管33に設けた制御弁26の弁開度を該制御弁26内に設けられた図示しない制御系により調整することでCO回収装置8へ流入する排ガスの流量及び温度を制御して、CO回収装置8へ供給する流量を制御して凝縮水10を除去し、一定流量の排ガスをCO回収装置8へ供給する。 However, in the oxyfuel combustion system of the present invention shown in FIG. 1, H 2 O in of CO 2 and H 2 O is a main composition of the exhaust gas in the condenser 7 is reduced in temperature by the air or sea water heat exchanger Water easily condenses. A wet desulfurization method is widely used for a desulfurization apparatus 6 of a coal fired power plant of several hundred MW. In this case, the exhaust gas at the outlet of the desulfurization apparatus 6 is saturated with water vapor, and the gas temperature is about 70 to 80 ° C. ing. Means 20 for measuring the gas flow rate and gas temperature are provided in the flue 30 at the outlet of the condenser 7, and the refrigerant flow rate of the condenser 7 is provided in the refrigerant pipe 33 based on the signal 24 of the measurement means 20. The flow rate supplied to the CO 2 recovery device 8 is controlled by controlling the flow rate and temperature of the exhaust gas flowing into the CO 2 recovery device 8 by adjusting the valve opening by a control system (not shown) provided in the control valve 26. The condensed water 10 is removed by control, and the exhaust gas having a constant flow rate is supplied to the CO 2 recovery device 8.

なお、図4に示すガス流量の時間的変化は2,3日程度のボイラ負荷変動に基づくものであり、周期が長いので制御弁26の開度の制御で十分CO回収装置8へ流入する排ガスの流量と温度が調整可能である。 Note that the temporal change in the gas flow rate shown in FIG. 4 is based on boiler load fluctuations of about a few days, and since the cycle is long, it sufficiently flows into the CO 2 recovery device 8 by controlling the opening degree of the control valve 26. The flow rate and temperature of the exhaust gas can be adjusted.

凝縮器7は熱媒体同士が直接接触しないノンリーク式の熱交換器を用いて、冷媒27には水、海水等を使用し、ポンプ25によって強制的に通流させる。   The condenser 7 uses a non-leak heat exchanger in which the heat media do not directly contact each other, and water, seawater or the like is used as the refrigerant 27 and is forced to flow by the pump 25.

図2に本発明の他の実施例を示す。脱硫装置6とCO回収装置8と間の煙道30にバイパスダクト28を配設し、当該バイパスダクト28に凝縮器7を設け、排ガスの全部または一部をバイパスダクト28内に通流して、再びCO回収装置8の上流側の煙道30に戻す。前記凝縮器7の冷媒流量は冷媒配管33に設けた制御弁26で調整する。 FIG. 2 shows another embodiment of the present invention. A bypass duct 28 is disposed in the flue 30 between the desulfurization device 6 and the CO 2 recovery device 8, the condenser 7 is provided in the bypass duct 28, and all or part of the exhaust gas is passed through the bypass duct 28. Then, it returns to the flue 30 upstream of the CO 2 recovery device 8 again. The refrigerant flow rate of the condenser 7 is adjusted by a control valve 26 provided in the refrigerant pipe 33.

また、前記CO回収装置8の上流側の煙道30へのバイパスダクト28の入口接続部には制御ダンパ29を設け、バイパスダクト28の出口接続部より後流側であって、CO回収装置8の前流側の煙道30にはガス流量・ガス温度の計測手段20を設ける。計測手段20の信号24を元に、前記バイパスダクト28の入口接続部に設けられた排ガスダンパ29の開度をダンパ29内に設けられた制御系により調節し、バイパスダクト28内を流れる排ガス流量を制御する。同時に計測手段20の信号24を元に凝縮器7の冷媒流量を冷媒流路33に設けた制御弁26の弁開度も該制御弁26内に設けられた制御系により調整する。
こうしてCO回収装置8へ流入する排ガスの流量及び温度を制御ダンパ29と制御弁26で容易にコントロール出来るので、CO回収装置8の容量を超えることはない。
In addition, a control damper 29 is provided at the inlet connection portion of the bypass duct 28 to the flue 30 upstream of the CO 2 recovery device 8, and is located downstream from the outlet connection portion of the bypass duct 28, and CO 2 recovery is performed. A gas flow rate / gas temperature measuring means 20 is provided in the flue 30 on the upstream side of the apparatus 8. Based on the signal 24 of the measuring means 20, the opening degree of the exhaust gas damper 29 provided at the inlet connection portion of the bypass duct 28 is adjusted by a control system provided in the damper 29, and the exhaust gas flow rate flowing in the bypass duct 28. To control. At the same time, the opening degree of the control valve 26 provided in the refrigerant flow path 33 is also adjusted by the control system provided in the control valve 26 based on the signal 24 of the measuring means 20.
Thus, since the flow rate and temperature of the exhaust gas flowing into the CO 2 recovery device 8 can be easily controlled by the control damper 29 and the control valve 26, the capacity of the CO 2 recovery device 8 is not exceeded.

1 ボイラ 2 脱硝装置
3 再生式熱交換器 4 冷却器
5 集塵装置 6 脱硫装置
7 凝縮器 8 CO回収装置
9 煙突 10 凝縮水
11 炭酸ガス(CO) 12 石炭の粉砕装置
13 石炭 14 石炭搬送ガス
15 燃焼ガス 16 排ガス取出し口
17 空気分離装置 18 酸素ガス
20 ガス流量・ガス温度の計測手段
21 圧力ダンパ 22 バイパスダクト
23 オフガス 24 制御信号
25 冷媒ポンプ 26 制御弁
27 冷媒 28 バイパスダクト
29 制御ダンパ 30 煙道
31 再循環ガス 33 冷媒配管
1 boiler 2 denitration apparatus 3 regenerative heat exchanger 4 cooler 5 dust collector 6 desulfurizer 7 condenser 8 CO 2 recovery apparatus 9 chimney 10 condensate 11 carbon dioxide (CO 2) 12 coal mill 13 Coal 14 Coal Carrier gas 15 Combustion gas 16 Exhaust gas outlet 17 Air separation device 18 Oxygen gas 20 Gas flow rate / gas temperature measuring means 21 Pressure damper 22 Bypass duct 23 Off gas 24 Control signal 25 Refrigerant pump 26 Control valve 27 Refrigerant 28 Bypass duct 29 Control damper 30 Flue 31 Recirculation gas 33 Refrigerant piping

Claims (4)

空気から分離した高酸素濃度ガスと再循環排ガスの混合ガスを燃焼用ガスとして燃料を燃焼させて蒸気を発生させるボイラと、当該ボイラより発生する排ガスが通流する煙道と、該煙道に設けた排ガス中の硫黄酸化物を除くための脱硫装置と、該脱硫装置の下流側の煙道に設けた排ガス中のCOを液化するCO回収装置と、前記煙道から抜き出した排ガスを燃料の搬送ガスおよび/また燃焼用ガスの一部としてボイラへ導くための排ガス再循環流路を備えた酸素燃焼システムにおいて、
前記脱硫装置と前記CO回収装置の間の煙道に凝縮器を設け、
該凝縮器内への排ガス冷却用の冷媒の供給量を調整する冷媒供給量調整弁を有する冷媒供給路を設け、
該凝縮器と前記CO回収装置の間の煙道に排ガスの温度と流量の少なくともいずれかを計測する計測器を設け、
該計測器で計測した排ガスの温度と流量の少なくともいずれかの値に基づき前記冷媒供給量調整弁の開度を制御して前記凝集器への冷媒の供給量を調整してCO回収装置への排ガス供給量を調整する制御系を設けた
ことを特徴とする酸素燃焼システム。
A boiler that generates steam by burning a fuel using a mixed gas of high oxygen concentration gas separated from air and recirculated exhaust gas as combustion gas, a flue through which exhaust gas generated from the boiler flows, and the flue A desulfurization device for removing sulfur oxides in the provided exhaust gas, a CO 2 recovery device for liquefying CO 2 in the exhaust gas provided in the flue downstream of the desulfurization device, and an exhaust gas extracted from the flue In an oxyfuel combustion system with an exhaust gas recirculation flow path leading to a boiler as part of a fuel carrier gas and / or combustion gas,
Providing a condenser in the flue between the desulfurization unit and the CO 2 recovery unit;
Providing a refrigerant supply path having a refrigerant supply amount adjustment valve for adjusting the supply amount of refrigerant for exhaust gas cooling into the condenser;
A measuring device for measuring at least one of temperature and flow rate of exhaust gas is provided in a flue between the condenser and the CO 2 recovery device;
Based on at least one of the temperature and the flow rate of the exhaust gas measured by the measuring instrument, the opening of the refrigerant supply amount adjusting valve is controlled to adjust the refrigerant supply amount to the aggregator and to the CO 2 recovery device. An oxyfuel combustion system provided with a control system for adjusting the exhaust gas supply amount.
空気から分離した高酸素濃度ガスと再循環排ガスの混合ガスを燃焼用ガスとして燃料を燃焼させて蒸気を発生させるボイラと、当該ボイラより発生する排ガスが通流する煙道と、該煙道に設けた排ガス中の硫黄酸化物を除くための脱硫装置と、該脱硫装置の下流側の煙道に設けた排ガス中のCOを液化するCO回収装置と、前記煙道から抜き出した排ガスを燃料の搬送ガスおよび/また燃焼用ガスの一部としてボイラへ導くための排ガス再循環流路を備えた酸素燃焼システムにおいて、
前記脱硫装置の後流側の煙道から分岐した後、前記CO回収装置の上流側の煙道に接続し、バイパス排ガス量を制御する制御ダンパを入口部に設けたバイパス煙道を設け、
該バイパス煙道に凝縮器を設置し、
該凝縮器内への排ガス冷却用の冷媒の供給量を調整する冷媒供給量調整弁を有する冷媒供給路を設け、
前記排ガスの温度と流量の少なくともいずれかを計測する計測器を前記バイパス煙道出口側であって前記CO回収装置の前流側の煙道に設け、
該計測器で計測した排ガスの温度と流量の少なくともいずれかの値に基づき前記凝集器へ供給する冷媒供給量を調整する前記冷媒供給量調整弁と前記制御ダンパの開度を調節する制御系を設けた
ことを特徴とする酸素燃焼システム。
A boiler that generates steam by burning a fuel using a mixed gas of high oxygen concentration gas separated from air and recirculated exhaust gas as combustion gas, a flue through which exhaust gas generated from the boiler flows, and the flue A desulfurization device for removing sulfur oxides in the provided exhaust gas, a CO 2 recovery device for liquefying CO 2 in the exhaust gas provided in the flue downstream of the desulfurization device, and an exhaust gas extracted from the flue In an oxyfuel combustion system with an exhaust gas recirculation flow path leading to a boiler as part of a fuel carrier gas and / or combustion gas,
After branching from the flue on the downstream side of the desulfurization device, connected to the flue on the upstream side of the CO 2 recovery device, and provided with a bypass flue provided with a control damper at the inlet for controlling the amount of bypass exhaust gas,
Install a condenser in the bypass flue,
Providing a refrigerant supply path having a refrigerant supply amount adjustment valve for adjusting the supply amount of refrigerant for exhaust gas cooling into the condenser;
A measuring instrument for measuring at least one of the temperature and flow rate of the exhaust gas is provided in the flue on the bypass flue outlet side and on the upstream side of the CO 2 recovery device,
A control system for adjusting the refrigerant supply amount adjusting valve for adjusting the refrigerant supply amount supplied to the aggregator based on at least one of the temperature and flow rate of the exhaust gas measured by the measuring instrument and the opening degree of the control damper; An oxyfuel combustion system characterized by being provided.
空気から分離した高酸素濃度ガスと再循環排ガスの混合ガスを燃焼用ガスとして燃料を燃焼させて蒸気を発生するボイラから発生する排ガスを脱硫処理した後、排ガス中のCOを液化するCO回収処理を行い、また前記排ガスを燃料の搬送ガスおよび/また燃焼用ガスの一部としてボイラへ再循環する酸素燃焼方法において、
脱硫処理後であってCO回収処理の前の排ガスを冷媒により冷却して凝縮処理し、該冷媒により冷却した排ガスの温度と流量の少なくともいずれかの値に基づき前記排ガスを凝集処理する冷媒の供給量を調整する
ことを特徴とする酸素燃焼方法。
After the exhaust gas generated from the boiler a high oxygen concentration gas and mixed gas of recirculated exhaust gas separated from the air by a fuel is burned as a combustion gas to generate steam desulfurizing, CO 2 liquefying CO 2 in the exhaust gas In an oxyfuel combustion method of performing a recovery process and recirculating the exhaust gas to a boiler as part of a fuel carrier gas and / or combustion gas,
The refrigerant after the desulfurization treatment and before the CO 2 recovery treatment is cooled and condensed with a refrigerant, and the exhaust gas is subjected to agglomeration treatment based on at least one of the temperature and flow rate of the exhaust gas cooled by the refrigerant. An oxygen combustion method characterized by adjusting a supply amount.
空気から分離した高酸素濃度ガスと再循環排ガスの混合ガスを燃焼用ガスとして燃料を燃焼させて蒸気を発生するボイラから発生する排ガスを脱硫処理した後、排ガス中のCOを液化するCO回収処理を行い、また前記排ガスを燃料の搬送ガスおよび/また燃焼用ガスの一部としてボイラへ再循環する酸素燃焼方法において、
脱硫処理後であってCO回収処理の前の排ガスの一部又は全部をバイパス路に抜き出して、該バイパス路に抜き出した分岐排ガスを冷媒により冷却して凝縮処理をし、
その後、再び前記CO回収処理前の排ガスと合流させ、
同時に前記合流後の排ガスの温度と流量の少なくともいずれかの値に基づき、前記バイパス路に抜き出す分岐排ガス抜き出し量及びバイパス路に抜き出した分岐排ガスの凝縮処理をする冷媒の供給量を調整して、CO回収処理用の排ガス供給量を調整する
ことを特徴とする酸素燃焼方法。
After the exhaust gas generated from the boiler a high oxygen concentration gas and mixed gas of recirculated exhaust gas separated from the air by a fuel is burned as a combustion gas to generate steam desulfurizing, CO 2 liquefying CO 2 in the exhaust gas In an oxyfuel combustion method of performing a recovery process and recirculating the exhaust gas to a boiler as part of a fuel carrier gas and / or combustion gas,
A part or all of the exhaust gas after the desulfurization process and before the CO 2 recovery process is extracted to the bypass passage, the branch exhaust gas extracted to the bypass passage is cooled with a refrigerant, and condensed.
Thereafter, it is joined again with the exhaust gas before the CO 2 recovery treatment,
At the same time, based on the value of at least one of the temperature and flow rate of the exhaust gas after joining, adjusting the branch exhaust gas extraction amount to be extracted to the bypass passage and the supply amount of refrigerant for performing the condensation treatment of the branch exhaust gas extracted to the bypass passage, An oxygen combustion method characterized by adjusting an exhaust gas supply amount for CO 2 recovery treatment.
JP2011195612A 2011-09-08 2011-09-08 Oxygen combustion system and oxygen combustion method Withdrawn JP2013057437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011195612A JP2013057437A (en) 2011-09-08 2011-09-08 Oxygen combustion system and oxygen combustion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011195612A JP2013057437A (en) 2011-09-08 2011-09-08 Oxygen combustion system and oxygen combustion method

Publications (1)

Publication Number Publication Date
JP2013057437A true JP2013057437A (en) 2013-03-28

Family

ID=48133472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011195612A Withdrawn JP2013057437A (en) 2011-09-08 2011-09-08 Oxygen combustion system and oxygen combustion method

Country Status (1)

Country Link
JP (1) JP2013057437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218717A1 (en) * 2022-05-13 2023-11-16 三菱重工業株式会社 Power generation facility, exhaust gas treatment system, and exhaust gas treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218717A1 (en) * 2022-05-13 2023-11-16 三菱重工業株式会社 Power generation facility, exhaust gas treatment system, and exhaust gas treatment method

Similar Documents

Publication Publication Date Title
JP5489254B2 (en) Oxyfuel combustion system and operating method thereof
JP4644725B2 (en) Oxy-combustion boiler system, pulverized-coal-fired boiler remodeling method, oxy-combustion boiler system control device
EP2431579B1 (en) Multipurpose thermal power plant system
JP5320423B2 (en) Thermal power plant, steam turbine equipment, and control method thereof
JP2012158996A (en) Thermal power plant with carbon dioxide capture scrubbing equipment
CN105091016B (en) Coal-fired oxygen plant with heat integration
JP2009138748A (en) Combined cycle power plant for recirculating exhaust gas and separating co2 and operation method of such a combined cycle power plant
AU2007310516A1 (en) Method of and apparatus for CO2 capture in oxy-combustion
US20100107592A1 (en) System and method for reducing corrosion in a gas turbine system
JP5448858B2 (en) Oxy-combustion power plant and its operation method
RU2662751C2 (en) Coal fired oxy plant with heat integration
JP6796140B2 (en) Carbon dioxide capture system, thermal power generation equipment, and carbon dioxide capture method
EP4006324A1 (en) Gas turbine plant
WO2012035777A1 (en) Combustion plant
US20130247845A1 (en) Heat recovery and utilization system
JP5432098B2 (en) Oxyfuel boiler
AU2013313605A1 (en) Heat recovery system and heat recovery method
JP2012137269A (en) Coal fired power generation plant and method of controlling the same
JP2013057437A (en) Oxygen combustion system and oxygen combustion method
US10641173B2 (en) Gas turbine combined cycle optimized for post-combustion CO2 capture
KR20180111344A (en) Exhaust gas processing system of the furnace
KR101592766B1 (en) Combined cycle power generation system
KR101592765B1 (en) Combined cycle power generation system
US20230134621A1 (en) Carbon Capture System and Method with Exhaust Gas Recirculation
JP2017075714A (en) Oxygen combustion boiler facility

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140616

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141202