JP2017075714A - Oxygen combustion boiler facility - Google Patents

Oxygen combustion boiler facility Download PDF

Info

Publication number
JP2017075714A
JP2017075714A JP2015202154A JP2015202154A JP2017075714A JP 2017075714 A JP2017075714 A JP 2017075714A JP 2015202154 A JP2015202154 A JP 2015202154A JP 2015202154 A JP2015202154 A JP 2015202154A JP 2017075714 A JP2017075714 A JP 2017075714A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
dehydrator
oxyfuel
inlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015202154A
Other languages
Japanese (ja)
Other versions
JP6709523B2 (en
Inventor
輝俊 内田
Terutoshi Uchida
輝俊 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2015202154A priority Critical patent/JP6709523B2/en
Publication of JP2017075714A publication Critical patent/JP2017075714A/en
Application granted granted Critical
Publication of JP6709523B2 publication Critical patent/JP6709523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Supply (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxygen combustion boiler facility that inhibits an increase in capacity of a forced draft fan to eliminate the need of additional apparatus for imparting circulation resistance.SOLUTION: In the oxygen combustion boiler facility, a dehydrator 11 for removing water content from an exhaust gas to be recirculated is provided on an inlet side of the forced draft fan 9 in an exhaust gas recirculation line 8R; and a gas gas heater 12 as a heater for heating an exhaust gas on an outlet side of the dehydrator 11 using an exhaust gas on an inlet side of the dehydrator 11 and leading the heated exhaust gas to the forced draft fan 9.SELECTED DRAWING: Figure 1

Description

本発明は、酸素燃焼ボイラ設備に関するものである。   The present invention relates to an oxyfuel boiler facility.

近年の石油及び天然ガスの需要の増大に伴う価格高騰等の情勢から、微粉炭焚ボイラを用いた石炭火力発電設備が重要な役割を占めるようになってきている。従来の微粉炭焚ボイラには、空気を燃焼用ガスとした空気燃焼ボイラが一般に使用されてきた。   Coal-fired power generation facilities using pulverized coal-fired boilers have come to play an important role due to the situation of rising prices accompanying the recent increase in demand for oil and natural gas. An air-fired boiler using air as a combustion gas has been generally used for conventional pulverized coal fired boilers.

石炭燃焼それ自体には、石油・天然ガス燃焼と比較してCO2排出量が多いという問題点があるため、石炭火力への依存比率の上昇に伴うCO2排出量増大は、地球温暖化防止の観点から、回避しなければならない重要な課題である。 Coal combustion itself has the problem of higher CO 2 emissions compared to oil and natural gas combustion, so the increase in CO 2 emissions due to an increase in the dependency ratio on coal thermal power will prevent global warming. From the point of view, this is an important issue that must be avoided.

又、空気燃焼ボイラでは、燃料である微粉炭の搬送用ガス及び燃焼用ガスとして空気が用いられるが、その組成は約八割が窒素、約二割が酸素である。これにより、排ガス中に多量の窒素が含まれることになるため、排ガスから窒素及びCO2を分離回収する作業が面倒になるという問題がある。 In air-fired boilers, air is used as a carrier gas and a combustion gas for pulverized coal as a fuel, and the composition thereof is about 80% nitrogen and about 20% oxygen. As a result, since a large amount of nitrogen is contained in the exhaust gas, there is a problem that the work of separating and recovering nitrogen and CO 2 from the exhaust gas becomes troublesome.

そこで、大気中へのCO2排出量を大幅に削減できる手法として、酸素燃焼ボイラが注目され、その開発が進められている。 Therefore, oxyfuel boilers have attracted attention and are being developed as a method for greatly reducing CO 2 emissions into the atmosphere.

前記酸素燃焼ボイラでは、微粉炭を燃やす酸素燃焼ボイラから排出される排ガスの大半を煙道の中途から抜き出し、この抜き出した排ガスと酸素製造装置で製造した酸素とを混合して酸素濃度を調整した燃焼用ガスを前記酸素燃焼ボイラに供給するようにした排ガス再循環方式が採用されている。この排ガス再循環方式の酸素燃焼ボイラによれば、排ガス中に窒素が含まれず、排出される最終的な排ガスのCO2濃度が飛躍的に高まり、よって、排ガスからのCO2の分離回収作業が容易になる。 In the oxyfuel boiler, most of the exhaust gas discharged from the oxyfuel boiler that burns pulverized coal is extracted from the middle of the flue, and the oxygen concentration is adjusted by mixing the extracted exhaust gas and oxygen produced by an oxygen production apparatus. An exhaust gas recirculation system is employed in which combustion gas is supplied to the oxyfuel boiler. According to oxyfuel combustion boiler of the exhaust gas recirculation system, not included nitrogen in the exhaust gas, CO 2 concentration in the final exhaust gas to be discharged is increased dramatically, therefore, the separation and recovery work of CO 2 from the exhaust gas It becomes easy.

尚、酸素燃焼ボイラと関連する一般的技術水準を示すものとしては、例えば、特許文献1がある。   In addition, there exists patent document 1 as what shows the general technical level relevant to an oxyfuel boiler, for example.

特開2014−59104号公報JP 2014-59104 A

ところで、前記酸素燃焼ボイラにおける酸素燃焼運転時には、前記排ガスを微粉炭の搬送用ガスとしても再循環させるようになっている。このため、石炭を微粉砕するミルに接続される微粉炭管中の水分が高くなり、酸露点(亜硫酸ガスが硫酸となって結露する温度)が下がって腐食の可能性が高まる。又、前記微粉炭管中の水分が高くなると、微粉炭の充分な乾燥ができなくなり、搬送や燃焼にも悪影響が出るため、前記微粉炭の搬送用ガスの再循環ライン途中に脱水装置が設けられ、ミルでの微粉炭の乾燥性を高めるようになっている。   By the way, during the oxyfuel combustion operation in the oxyfuel boiler, the exhaust gas is also recirculated as a pulverized coal carrier gas. For this reason, the water | moisture content in the pulverized coal pipe connected to the mill which pulverizes coal becomes high, an acid dew point (temperature which sulfurous acid gas turns into sulfuric acid and condensation) falls, and the possibility of corrosion increases. In addition, if the moisture in the pulverized coal pipe becomes high, the pulverized coal cannot be sufficiently dried, which adversely affects transportation and combustion. Therefore, a dehydrator is provided in the middle of the recirculation line of the pulverized coal transportation gas. Therefore, the dryness of pulverized coal in the mill is improved.

一方、前記酸素燃焼ボイラにおける空気燃焼運転時には、前記微粉炭の搬送用ガスとして空気が用いられるため、該空気は前記脱水装置を通過させずに迂回させるようになっている。ここで、前記脱水装置は非常に圧力損失の高い機器であるため、空気燃焼運転時と酸素燃焼運転時とで、搬送用ガスの流通系統における圧力損失の合計が大きく変わってくる。これにより、押込通風機を容量の大きいものにしなければならなくなると共に、酸素燃焼運転時に再循環させる排ガスが燃焼用ガスの流通系統にばかり流れることを防止すべく、前記脱水装置と同等の流通抵抗を付与するためのダンパ等の追加機器を燃焼用ガスの流通系統に設けることが必要となっていた。   On the other hand, at the time of air combustion operation in the oxyfuel boiler, air is used as the pulverized coal carrier gas, so that the air is bypassed without passing through the dehydrator. Here, since the dehydrator is a device having a very high pressure loss, the total pressure loss in the carrier gas distribution system varies greatly between the air combustion operation and the oxyfuel combustion operation. As a result, the forced draft fan must have a large capacity, and the flow resistance equivalent to that of the dehydrator is to prevent the exhaust gas recirculated during the oxyfuel combustion operation from flowing only into the combustion gas distribution system. It has been necessary to provide additional equipment such as a damper for imparting the above in the combustion gas distribution system.

本発明は、上記従来の問題点に鑑みてなしたもので、押込通風機の大容量化を阻止して、流通抵抗を付与するための追加機器を不要とし得る酸素燃焼ボイラ設備を提供しようとするものである。   The present invention has been made in view of the above-described conventional problems, and aims to provide an oxyfuel boiler facility that prevents an increase in capacity of a forced air blower and eliminates the need for additional equipment for imparting flow resistance. To do.

本発明は、ボイラから排出される排ガスを燃料の搬送用ガス及び燃焼用ガスとして再循環させる排ガス再循環ラインに押込通風機が設けられた酸素燃焼ボイラ設備であって、
前記押込通風機より少なくとも上流位置で且つ空気燃焼運転時における空気取入口より上流位置に脱水装置が設けられている酸素燃焼ボイラ設備にかかるものである。
The present invention is an oxyfuel boiler facility in which a forced air blower is provided in an exhaust gas recirculation line for recirculating exhaust gas discharged from a boiler as fuel transfer gas and combustion gas,
The present invention relates to an oxyfuel boiler facility in which a dehydrating device is provided at least upstream from the forced air blower and upstream from the air intake during air combustion operation.

前記酸素燃焼ボイラ設備において、前記脱水装置は、前記押込通風機の入側の排ガス再循環ラインに設けられ、
前記押込通風機の入側の排ガス再循環ラインに、前記脱水装置の入側の排ガスによって前記脱水装置の出側の排ガスを加熱する加熱器が設けられることが好ましい。
In the oxyfuel boiler facility, the dehydrator is provided in an exhaust gas recirculation line on the inlet side of the forced air fan,
It is preferable that a heater that heats the exhaust gas on the outlet side of the dehydrator with the exhaust gas on the inlet side of the dehydrator is provided in the exhaust gas recirculation line on the inlet side of the forced draft fan.

前記酸素燃焼ボイラ設備においては、前記脱水装置及び加熱器による排ガスの圧力損失を補うよう前記押込通風機の入側に設けられる補助通風機を備えることが好ましい。   The oxyfuel boiler equipment preferably includes an auxiliary ventilator provided on the inlet side of the pusher ventilator so as to compensate for the pressure loss of the exhaust gas caused by the dehydrator and the heater.

又、前記酸素燃焼ボイラ設備においては、前記排ガスを前記押込通風機と並列に設けられる一次通風機の作動により前記搬送用ガスとして再循環させる分岐排ガス再循環ライン
を備え、
前記脱水装置は、前記一次通風機の入側の分岐排ガス再循環ラインに設けられることが好ましい。
Further, the oxyfuel boiler equipment includes a branch exhaust gas recirculation line that recirculates the exhaust gas as the transfer gas by the operation of a primary ventilator provided in parallel with the forced draft fan,
It is preferable that the dehydrator is provided in a branch exhaust gas recirculation line on the inlet side of the primary ventilator.

前記酸素燃焼ボイラ設備においては、前記一次通風機の入側の分岐排ガス再循環ラインに、前記脱水装置の入側の排ガスによって前記脱水装置の出側の排ガスを加熱する加熱器が設けられることが好ましい。   In the oxyfuel boiler facility, a heater for heating the exhaust gas on the outlet side of the dehydrator by the exhaust gas on the inlet side of the dehydrator may be provided in the branch exhaust gas recirculation line on the inlet side of the primary ventilator. preferable.

前記酸素燃焼ボイラ設備においては、前記排ガス再循環ラインにより再循環される燃焼用ガスに酸素を供給する酸素製造装置を備え、該酸素製造装置からの酸素を、再循環される排ガスに対し前記押込通風機の入側で混合するよう構成することが好ましい。   The oxyfuel boiler equipment includes an oxygen production device that supplies oxygen to the combustion gas recirculated by the exhaust gas recirculation line, and the oxygen from the oxygen production device is pushed into the recirculated exhaust gas. It is preferable that the mixing is performed on the inlet side of the ventilator.

本発明の酸素燃焼ボイラ設備によれば、押込通風機の大容量化を阻止して、流通抵抗を付与するための追加機器を不要とし得るという優れた効果を奏し得る。   According to the oxyfuel boiler equipment of the present invention, it is possible to achieve an excellent effect that an increase in capacity of the forced draft fan is prevented and an additional device for imparting flow resistance can be made unnecessary.

本発明の酸素燃焼ボイラ設備の第一実施例を示す全体概要構成図であって、酸素燃焼運転時の状態を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic block diagram which shows the 1st Example of the oxyfuel boiler equipment of this invention, Comprising: It is a figure which shows the state at the time of oxyfuel operation. 本発明の酸素燃焼ボイラ設備の第一実施例における空気燃焼運転時の状態を示す全体概要構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a whole schematic block diagram which shows the state at the time of the air combustion driving | operation in the 1st Example of the oxyfuel boiler equipment of this invention. 本発明の酸素燃焼ボイラ設備の第一実施例の変形例を示す全体概要構成図であって、酸素燃焼運転時の状態を示す図である。It is a whole schematic block diagram which shows the modification of the 1st Example of the oxyfuel boiler equipment of this invention, Comprising: It is a figure which shows the state at the time of oxyfuel operation. 本発明の酸素燃焼ボイラ設備の第二実施例を示す全体概要構成図であって、酸素燃焼運転時の状態を示す図である。It is a whole schematic block diagram which shows the 2nd Example of the oxyfuel boiler equipment of this invention, Comprising: It is a figure which shows the state at the time of an oxyfuel operation. 本発明の酸素燃焼ボイラ設備の第二実施例における空気燃焼運転時の状態を示す全体概要構成図である。It is a whole schematic block diagram which shows the state at the time of the air combustion driving | operation in the 2nd Example of the oxyfuel boiler equipment of this invention. 本発明の酸素燃焼ボイラ設備の第二実施例の変形例を示す全体概要構成図であって、酸素燃焼運転時の状態を示す図である。It is a whole schematic block diagram which shows the modification of the 2nd Example of the oxyfuel boiler equipment of this invention, Comprising: It is a figure which shows the state at the time of oxyfuel operation. 一般的な酸素燃焼ボイラ設備の一例を示す全体概要構成図であって、酸素燃焼運転時の状態を示す図である。It is a whole outline block diagram which shows an example of general oxyfuel boiler equipment, and is a figure showing the state at the time of oxyfuel operation. 一般的な酸素燃焼ボイラ設備の一例における空気燃焼運転時の状態を示す全体概要構成図である。It is a whole outline block diagram which shows the state at the time of the air combustion driving | running in an example of general oxyfuel boiler equipment.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1及び図2は本発明の酸素燃焼ボイラ設備の第一実施例である。   1 and 2 show a first embodiment of the oxyfuel boiler equipment of the present invention.

図1及び図2に示す酸素燃焼ボイラ設備は、ボイラ1と、ミル2と、予熱器3,4と、排ガスクーラ5と、脱塵装置6と、誘引通風機7(IDF)と、排ガスライン8と、排ガス再循環ライン8Rと、押込通風機9(FDF)と、酸素製造装置10とを備えている。   The oxyfuel boiler equipment shown in FIGS. 1 and 2 includes a boiler 1, a mill 2, preheaters 3 and 4, an exhaust gas cooler 5, a dust removing device 6, an induction fan 7 (IDF), and an exhaust gas line. 8, an exhaust gas recirculation line 8 </ b> R, a forced draft fan 9 (FDF), and an oxygen production apparatus 10.

前記ボイラ1は、燃料を燃焼用ガスにより燃焼させて蒸気を発生し、排ガスを排ガスライン8へ排出するようになっている。前記ミル2は、前記燃料としての石炭を微粉砕するようになっている。前記予熱器3は、前記ミル2へ導入される搬送用ガスを前記ボイラ1から排出される排ガスによって予熱するようになっている。前記予熱器4は、前記ボイラ1から排出される排ガスによって前記燃焼用ガスを予熱するようになっている。前記排ガスクーラ5は、前記予熱器4を通過した排ガスを冷却するようになっている。前記脱塵装置6は、バグフィルタ或いは電気集塵機であって、前記排ガスクーラ5で冷却された排ガス中の煤塵を捕集するようになっている。前記排ガス再循環ライン8Rは、前記脱塵装置6で煤塵が捕集された排ガスを前記誘引通風機7と押込通風機9の作動により前記ボイラ1の燃焼用ガス及び微粉炭の搬送用ガスとして再循環させるようになっている。前記酸素製造装置10は、図1に示す如く、前記ボイラ1の燃焼用ガスとして再循環される排ガスに酸素を供給するようになっている。   The boiler 1 burns fuel with combustion gas to generate steam, and discharges exhaust gas to an exhaust gas line 8. The mill 2 pulverizes coal as the fuel. The preheater 3 preheats the carrier gas introduced into the mill 2 with the exhaust gas discharged from the boiler 1. The preheater 4 preheats the combustion gas with the exhaust gas discharged from the boiler 1. The exhaust gas cooler 5 cools the exhaust gas that has passed through the preheater 4. The dust removing device 6 is a bag filter or an electric dust collector, and collects the dust in the exhaust gas cooled by the exhaust gas cooler 5. In the exhaust gas recirculation line 8R, the exhaust gas in which the dust is collected by the dust removing device 6 is used as the combustion gas for the boiler 1 and the conveying gas for the pulverized coal by the operation of the induction fan 7 and the forced air fan 9. It is designed to recirculate. As shown in FIG. 1, the oxygen production apparatus 10 supplies oxygen to exhaust gas recirculated as combustion gas for the boiler 1.

本第一実施例の場合、前記排ガス再循環ライン8Rにおける押込通風機9の入側に、再循環される排ガスから水分を除去する脱水装置11を設けると共に、該脱水装置11の入側の排ガスによって前記脱水装置11の出側の排ガスを加熱する加熱器としてのガスガスヒータ12を設けてある。尚、前記脱水装置11は、空気燃焼運転時における空気取入口14(図2参照)より上流位置に設けられている。   In the case of the first embodiment, a dehydrator 11 for removing moisture from the recirculated exhaust gas is provided on the inlet side of the forced draft fan 9 in the exhaust gas recirculation line 8R, and the exhaust gas on the inlet side of the dehydrator 11 is provided. Is provided with a gas gas heater 12 as a heater for heating the exhaust gas on the outlet side of the dehydrator 11. The dehydrator 11 is provided upstream of the air intake 14 (see FIG. 2) during the air combustion operation.

尚、前記誘引通風機7の出側の排ガスライン8からは抜出ライン8Dを分岐させ、該抜出ライン8Dから排ガスの一部をCO濃縮ユニットへ送出するようになっている。 The extraction line 8D is branched from the exhaust gas line 8 on the outlet side of the induction fan 7, and a part of the exhaust gas is sent from the extraction line 8D to the CO 2 concentration unit.

又、図1には酸素燃焼運転時の状態を示しているが、図2には空気燃焼運転時の状態を示している。図2に示す空気燃焼運転時の場合、仮想線で示す如く、前記酸素製造装置10、脱水装置11、及びガスガスヒータ12は使用されず、空気取入口14から空気が取り入れられると共に、前記ボイラ1から排出される排ガスは、前記誘引通風機7の出側の排ガスライン8から抜出ライン8Dを経てCO濃縮ユニットではなく、煙突へ送出されるようになっている。因みに、前記脱水装置11及びガスガスヒータ12は、前記抜出ライン8Dの分岐点より下流側における排ガス再循環ライン8Rに設けられている。 FIG. 1 shows the state during the oxyfuel combustion operation, while FIG. 2 shows the state during the air combustion operation. In the case of the air combustion operation shown in FIG. 2, as shown by the phantom line, the oxygen production device 10, the dehydration device 11, and the gas gas heater 12 are not used, and air is taken in from the air intake 14 and the boiler 1. The exhaust gas discharged from the exhaust fan 8 is sent from the exhaust gas line 8 on the outlet side of the induction fan 7 through the extraction line 8D to the chimney instead of the CO 2 concentration unit. Incidentally, the dehydrator 11 and the gas gas heater 12 are provided in the exhaust gas recirculation line 8R on the downstream side of the branch point of the extraction line 8D.

次に、上記第一実施例の作用を説明する。   Next, the operation of the first embodiment will be described.

ミル2で石炭を微粉砕した燃料としての微粉炭は、予熱器3で予熱された搬送用ガスにより乾燥されつつボイラ1へ供給され、該ボイラ1において予熱器4で予熱された燃焼用ガスにより燃焼し、その燃焼熱によって蒸気が発生される。   The pulverized coal as fuel obtained by finely pulverizing coal in the mill 2 is supplied to the boiler 1 while being dried by the carrier gas preheated by the preheater 3, and is supplied by the combustion gas preheated by the preheater 4 in the boiler 1. It burns and steam is generated by the combustion heat.

前記ボイラ1から排ガスライン8へ排出される排ガスは、予熱器3を通過する際に前記搬送用ガスに熱を与え、更に予熱器4を通過する際に前記燃焼用ガスに熱を与える。   The exhaust gas discharged from the boiler 1 to the exhaust gas line 8 gives heat to the carrier gas when passing through the preheater 3 and further gives heat to the combustion gas when passing through the preheater 4.

酸素燃焼ボイラ設備の酸素燃焼運転時には、前記予熱器4を通過した排ガスは、排ガスクーラ5で冷却され、脱塵装置6で煤塵が捕集され、誘引通風機7で昇圧された後、図1に示す如く、脱水装置11で水分が除去される。該脱水装置11で水分が除去された排ガスは、ガスガスヒータ12を通過する際に前記脱水装置11の入側の排ガスによって加熱された後、押込通風機9へ導かれ、該押込通風機9の作動により排ガス再循環ライン8Rから前記ボイラ1の燃焼用ガス及び微粉炭の搬送用ガスとして再循環される。前記燃焼用ガスは、前記予熱器4で予熱された後、酸素製造装置10から酸素が供給され、ボイラ1へ導入される。前記ボイラ1から排出される排ガスの一部は、前記誘引通風機7の出側の排ガスライン8から抜出ライン8Dを経てCO濃縮ユニットへ送出され、排ガスからのCO2の分離回収作業が行われる。 During the oxyfuel combustion operation of the oxyfuel boiler facility, the exhaust gas that has passed through the preheater 4 is cooled by the exhaust gas cooler 5, dust is collected by the dust removing device 6, and pressurized by the induction fan 7, and then FIG. As shown in FIG. 4, the dehydrator 11 removes moisture. The exhaust gas from which moisture has been removed by the dehydrator 11 is heated by the exhaust gas on the inlet side of the dehydrator 11 when passing through the gas gas heater 12, and is then guided to the insufflator 9. By the operation, the gas is recirculated from the exhaust gas recirculation line 8R as the combustion gas for the boiler 1 and the conveying gas for the pulverized coal. After the combustion gas is preheated by the preheater 4, oxygen is supplied from the oxygen production apparatus 10 and introduced into the boiler 1. A part of the exhaust gas discharged from the boiler 1 is sent from the exhaust gas line 8 on the outlet side of the induction fan 7 to the CO 2 concentration unit via the extraction line 8D, and the operation of separating and recovering CO 2 from the exhaust gas is performed. Done.

一方、前記酸素燃焼ボイラ設備の空気燃焼運転時には、図2に示す如く、前記脱水装置11及びガスガスヒータ12は使用されず、前記押込通風機9の入側から空気が導入され、該空気が前記ボイラ1の燃焼用ガス及び微粉炭の搬送用ガスとして使用される。前記燃焼用ガスとして使用される空気は、前記予熱器4で予熱された後、酸素製造装置10から酸素が供給されずに、そのままボイラ1へ導入される。前記ボイラ1から排出される排ガスは、前記誘引通風機7の出側の排ガスライン8から抜出ライン8Dを経てCO濃縮ユニットではなく、煙突へ送出され、大気放出される。 On the other hand, during the air combustion operation of the oxyfuel boiler equipment, as shown in FIG. 2, the dehydrator 11 and the gas gas heater 12 are not used, and air is introduced from the inlet side of the forced air blower 9, and the air is Used as a combustion gas for the boiler 1 and a gas for conveying pulverized coal. The air used as the combustion gas is preheated by the preheater 4 and then introduced into the boiler 1 as it is without being supplied with oxygen from the oxygen production apparatus 10. The exhaust gas discharged from the boiler 1 is sent from the exhaust gas line 8 on the outlet side of the induction fan 7 through the extraction line 8D to the chimney instead of the CO 2 concentration unit, and is released into the atmosphere.

因みに、一般的な酸素燃焼ボイラ設備の場合、図7に示す如く、脱水装置11は、押込通風機9の出側における排ガス再循環ライン8Rから分岐して予熱器3へ通じる排ガス再循環ライン8R−1に設置されていた。つまり、非常に圧力損失の高い機器である脱水装置11が押込通風機9の出側に存在していたため、押込通風機9を容量の大きいものにしなければならなくなると共に、酸素燃焼運転時に再循環させる排ガスが燃焼用ガスの流通系統にばかり流れることを防止すべく、前記脱水装置11と同等の流通抵抗を付与するためのダンパ15(図7の仮想線参照)等の追加機器を燃焼用ガスの流通系統に設けることが必要となっていたわけである。更に、酸素燃焼運転時の押込通風機9の入口ガス温度は、130〜150℃程度であるのに対し、空気燃焼運転時(図8参照)の押込通風機9の入口ガス(空気)温度は、大気温度と略等しく、30℃程度である。このため、押込通風機9の入口ガス温度に関し、空気燃焼運転時と酸素燃焼運転時の温度差が大きくなり、空気燃焼運転と酸素燃焼運転の切替時間も長くなっていたのである。   Incidentally, in the case of a general oxyfuel boiler facility, as shown in FIG. 7, the dehydrator 11 branches from the exhaust gas recirculation line 8 </ b> R on the outlet side of the forced air blower 9 and leads to the preheater 3. -1. In other words, since the dehydrator 11 which is a device having a very high pressure loss exists on the outlet side of the forced air blower 9, it is necessary to make the forced air fan 9 have a large capacity and recirculate during the oxyfuel combustion operation. In order to prevent the exhaust gas to flow only into the combustion gas distribution system, an additional device such as a damper 15 (see the phantom line in FIG. 7) for providing a distribution resistance equivalent to that of the dehydrator 11 is used as the combustion gas. It was necessary to install in the distribution system. Further, the inlet gas temperature of the forced air blower 9 during the oxyfuel combustion operation is about 130 to 150 ° C., whereas the inlet gas (air) temperature of the forced air blower 9 during the air combustion operation (see FIG. 8) is The temperature is substantially equal to the atmospheric temperature and is about 30 ° C. For this reason, with respect to the inlet gas temperature of the forced air blower 9, the temperature difference between the air combustion operation and the oxyfuel combustion operation is large, and the switching time between the air combustion operation and the oxyfuel combustion operation is also long.

しかし、本第一実施例のように、前記脱水装置11を押込通風機9の入側に設置すると、押込通風機9の下流側の搬送用ガスと燃焼用ガスの圧力損失バランスが、空気燃焼運転時と酸素燃焼運転時で変わらなくなる。これにより、押込通風機9を容量の大きいものにしなくて済むと共に、酸素燃焼運転時に再循環させる排ガスが燃焼用ガスの流通系統にばかり流れることを防止すべく、前記脱水装置11と同等の流通抵抗を付与するためのダンパ15(図7の仮想線参照)等の追加機器を燃焼用ガスの流通系統に設けることが不要となる。この結果、酸素燃焼ボイラ設備の運用が制限されることもなくなる。   However, when the dehydrating device 11 is installed on the inlet side of the forced air fan 9 as in the first embodiment, the pressure loss balance between the carrier gas and the combustion gas on the downstream side of the forced air fan 9 becomes air combustion. No change during operation and oxyfuel combustion. This eliminates the need to increase the capacity of the forced air blower 9 and allows the exhaust gas to be recirculated during the oxyfuel combustion operation to flow only in the combustion gas flow system, so that the flow is equivalent to that of the dehydrator 11. It is not necessary to provide an additional device such as a damper 15 (see a virtual line in FIG. 7) for imparting resistance in the combustion gas distribution system. As a result, the operation of the oxyfuel boiler facility is not restricted.

更に、前記押込通風機9の入側の排ガス再循環ライン8Rに、前記脱水装置11の入側の排ガスによって前記脱水装置11の出側の排ガスを加熱する加熱器としてのガスガスヒータ12を設置することで、熱損失が最小限に抑えられると同時に、脱水装置11をコンパクトにし、押込通風機9に流入するガスの乾き度を確保することが可能となる。しかも、前記押込通風機9の入側に脱水装置11及びガスガスヒータ12を設置していない場合、酸素燃焼運転時の押込通風機9の入口ガス温度は、130〜150℃程度となるが、脱水装置11及びガスガスヒータ12の設置により70〜90℃程度に低下するため、空気燃焼運転時の押込通風機9の入口ガス(空気)温度(即ち、大気温度=約30℃)に近づくことになる。これによって、押込通風機9の入口ガス温度に関し、空気燃焼運転時と酸素燃焼運転時の温度差が小さくなり、空気燃焼運転と酸素燃焼運転の切替時間も短縮できる。   Further, a gas gas heater 12 as a heater for heating the exhaust gas on the outlet side of the dehydrating device 11 by the exhaust gas on the inlet side of the dehydrating device 11 is installed in the exhaust gas recirculation line 8R on the inlet side of the forced draft fan 9. As a result, heat loss can be minimized, and at the same time, the dehydrator 11 can be made compact and the dryness of the gas flowing into the forced air blower 9 can be secured. In addition, when the dehydrator 11 and the gas gas heater 12 are not installed on the inlet side of the forced air fan 9, the inlet gas temperature of the forced air fan 9 during the oxyfuel combustion operation is about 130 to 150 ° C. Since the temperature decreases to about 70 to 90 ° C. due to the installation of the apparatus 11 and the gas gas heater 12, it approaches the inlet gas (air) temperature (ie, atmospheric temperature = about 30 ° C.) of the forced air blower 9 during the air combustion operation. . Thereby, regarding the inlet gas temperature of the forced air blower 9, the temperature difference between the air combustion operation and the oxyfuel combustion operation is reduced, and the switching time between the air combustion operation and the oxyfuel combustion operation can be shortened.

こうして、押込通風機9の大容量化を阻止して、流通抵抗を付与するための追加機器を不要とし得る。   In this way, it is possible to prevent an increase in capacity of the forced air blower 9 and eliminate the need for an additional device for imparting distribution resistance.

図3は本発明の酸素燃焼ボイラ設備の第一実施例の変形例であって、図中、図1及び図2と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1及び図2に示す第一実施例と同様である。本変形例の特徴とするところは、図3に示す如く、前記脱水装置11及び加熱器としてのガスガスヒータ12による排ガスの圧力損失を補うよう前記押込通風機9の入側で且つ前記ガスガスヒータ12の出側に補助通風機9´を設けた点にある。   FIG. 3 shows a modification of the first embodiment of the oxyfuel boiler equipment of the present invention. In the figure, the same reference numerals as those in FIGS. Is the same as the first embodiment shown in FIGS. As shown in FIG. 3, this modification is characterized in that it is on the inlet side of the forced air blower 9 and the gas gas heater 12 so as to compensate for the pressure loss of the exhaust gas by the dehydrator 11 and the gas gas heater 12 as a heater. The auxiliary ventilator 9 ′ is provided on the exit side of the.

図3に示す変形例のように補助通風機9´を設けると、前記脱水装置11及び加熱器としてのガスガスヒータ12による排ガスの圧力損失を補うことが可能となり、押込通風機9や誘引通風機7に対して容量的に更に余裕を持たせることができ、好ましい。   When the auxiliary ventilator 9 ′ is provided as in the modification shown in FIG. 3, it becomes possible to compensate for the pressure loss of the exhaust gas caused by the dehydrator 11 and the gas gas heater 12 as a heater, and the forced ventilator 9 and the induction ventilator. 7 can be given a further capacity in terms of capacity, which is preferable.

図4及び図5は本発明の酸素燃焼ボイラ設備の第二実施例であって、図中、図1及び図2と同一の符号を付した部分は同一物を表わしており、基本的な構成は図1及び図2に示す第一実施例と同様である。   4 and 5 show a second embodiment of the oxyfuel boiler equipment according to the present invention. In the figure, the same reference numerals as those in FIGS. Is the same as the first embodiment shown in FIGS.

本第二実施例では、図4及び図5に示す如く、前記排ガス再循環ライン8Rにおける押込通風機9の入側(前記抜出ライン8Dの分岐点より下流側)から分岐して排ガスの一部を予熱器3へ導く分岐排ガス再循環ライン8R´を設け、該分岐排ガス再循環ライン8R´には、前記押込通風機9と並列に配置される一次通風機13を設けてある。前記分岐排ガス再循環ライン8R´における一次通風機13の入側、即ち押込通風機9より少なくとも上流位置で且つ空気燃焼運転時における空気取入口14(図5参照)より上流位置には、再循環される排ガスから水分を除去する脱水装置11を設けると共に、該脱水装置11の入側の排ガスによって前記脱水装置11の出側の排ガスを加熱する加熱器としてのガスガスヒータ12を設けてある。   In the second embodiment, as shown in FIGS. 4 and 5, the exhaust gas is branched from the inlet side of the forced draft fan 9 in the exhaust gas recirculation line 8R (downstream from the branch point of the extraction line 8D). A branch exhaust gas recirculation line 8R ′ that leads the section to the preheater 3 is provided, and the branch exhaust gas recirculation line 8R ′ is provided with a primary ventilator 13 that is arranged in parallel with the forced air blower 9. In the branch exhaust gas recirculation line 8R ′, the recirculation is performed on the inlet side of the primary ventilator 13, that is, at least upstream of the forced ventilator 9 and upstream of the air intake 14 (see FIG. 5) during air combustion operation. A dehydrator 11 for removing moisture from the exhaust gas to be discharged is provided, and a gas gas heater 12 as a heater for heating the exhaust gas on the outlet side of the dehydrator 11 by the exhaust gas on the inlet side of the dehydrator 11 is provided.

尚、図4には酸素燃焼運転時の状態を示しているが、図5には空気燃焼運転時の状態を示している。図5に示す空気燃焼運転時の場合、仮想線で示す如く、前記酸素製造装置10、脱水装置11、及びガスガスヒータ12は使用されず、空気取入口14から空気が取り入れられて押込通風機9及び一次通風機13により圧送されると共に、前記ボイラ1から排出される排ガスは、前記誘引通風機7の出側の排ガスライン8から抜出ライン8Dを経てCO濃縮ユニットではなく、煙突へ送出されるようになっている。 FIG. 4 shows the state during the oxyfuel combustion operation, but FIG. 5 shows the state during the air combustion operation. In the case of the air combustion operation shown in FIG. 5, the oxygen production device 10, the dehydration device 11, and the gas gas heater 12 are not used as shown by the phantom line, and air is taken in from the air intake 14 and the forced air blower 9. And the exhaust gas discharged from the boiler 1 is sent from the exhaust gas line 8 on the outlet side of the induction fan 7 to the chimney instead of the CO 2 concentrating unit via the extraction line 8D. It has come to be.

次に、上記第二実施例の作用を説明する。   Next, the operation of the second embodiment will be described.

酸素燃焼ボイラ設備の酸素燃焼運転時には、予熱器4を通過した排ガスは、排ガスクーラ5で冷却され、脱塵装置6で煤塵が捕集され、誘引通風機7で昇圧された後、図4に示す如く、押込通風機9の作動により排ガス再循環ライン8Rから前記ボイラ1の燃焼用ガスとして再循環される。前記燃焼用ガスは、前記予熱器4で予熱された後、酸素製造装置10から酸素が供給され、ボイラ1へ導入される。前記誘引通風機7で昇圧された排ガスの一部は分岐排ガス再循環ライン8R´へ導かれ、脱水装置11で水分が除去される。該脱水装置11で水分が除去された排ガスは、ガスガスヒータ12を通過する際に前記脱水装置11の入側の排ガスによって加熱された後、一次通風機13へ導かれ、該一次通風機13の作動により分岐排ガス再循環ライン8R´から予熱器3を経由し前記ミル2の微粉炭の搬送用ガスとして再循環される。前記ボイラ1から排出される排ガスの一部は、前記誘引通風機7の出側の排ガスライン8から抜出ライン8Dを経てCO濃縮ユニットへ送出され、排ガスからのCO2の分離回収作業が行われる。 At the time of the oxyfuel combustion operation of the oxyfuel boiler equipment, the exhaust gas that has passed through the preheater 4 is cooled by the exhaust gas cooler 5, dust is collected by the dust removing device 6, and the pressure is increased by the induction blower 7, and then shown in FIG. As shown in the figure, the operation of the forced air blower 9 causes the exhaust gas recirculation line 8 </ b> R to recirculate the combustion gas for the boiler 1. After the combustion gas is preheated by the preheater 4, oxygen is supplied from the oxygen production apparatus 10 and introduced into the boiler 1. Part of the exhaust gas pressurized by the induction fan 7 is guided to the branch exhaust gas recirculation line 8R ′, and moisture is removed by the dehydrator 11. The exhaust gas from which moisture has been removed by the dehydrator 11 is heated by the exhaust gas on the inlet side of the dehydrator 11 when passing through the gas gas heater 12, and is then guided to the primary ventilator 13. By operation, the gas is recirculated from the branch exhaust gas recirculation line 8R ′ via the preheater 3 as a conveying gas for the pulverized coal of the mill 2. A part of the exhaust gas discharged from the boiler 1 is sent from the exhaust gas line 8 on the outlet side of the induction fan 7 to the CO 2 concentration unit via the extraction line 8D, and the operation of separating and recovering CO 2 from the exhaust gas is performed. Done.

一方、前記酸素燃焼ボイラ設備の空気燃焼運転時には、図5に示す如く、前記脱水装置11及びガスガスヒータ12は使用されず、前記押込通風機9及び一次通風機13の入側から空気が導入され、該空気が前記ボイラ1の燃焼用ガス及び微粉炭の搬送用ガスとして使用される。前記燃焼用ガスとして使用される空気は、前記予熱器4で予熱された後、酸素製造装置10から酸素が供給されずに、そのままボイラ1へ導入される。前記ボイラ1から排出される排ガスは、前記誘引通風機7の出側の排ガスライン8から抜出ライン8Dを経てCO濃縮ユニットではなく、煙突へ送出され、大気放出される。 On the other hand, during the air combustion operation of the oxyfuel boiler facility, as shown in FIG. 5, the dehydrator 11 and the gas gas heater 12 are not used, and air is introduced from the inlet side of the push-in ventilator 9 and the primary ventilator 13. The air is used as a combustion gas for the boiler 1 and a conveying gas for pulverized coal. The air used as the combustion gas is preheated by the preheater 4 and then introduced into the boiler 1 as it is without being supplied with oxygen from the oxygen production apparatus 10. The exhaust gas discharged from the boiler 1 is sent from the exhaust gas line 8 on the outlet side of the induction fan 7 through the extraction line 8D to the chimney instead of the CO 2 concentration unit, and is released into the atmosphere.

本第二実施例のように、前記排ガスを前記押込通風機9と並列に設けられる一次通風機13の作動により前記搬送用ガスとして再循環させる分岐排ガス再循環ライン8R´を備え、前記脱水装置11を、前記一次通風機13の入側の分岐排ガス再循環ライン8R´に設けると、一次通風機13が単独で搬送用ガスの圧送を担い、押込通風機9が単独で燃焼用ガスの圧送を担う形となる。このことから、押込通風機9の下流側において、搬送用ガスと燃焼用ガスの圧力損失バランスが、空気燃焼運転時と酸素燃焼運転時で変わってしまうようなことがなくなる。これにより、押込通風機9を容量の大きいものにしなくて済むと共に、酸素燃焼運転時に再循環させる排ガスが燃焼用ガスの流通系統にばかり流れることを防止すべく、前記脱水装置11と同等の流通抵抗を付与するためのダンパ15(図7の仮想線参照)等の追加機器を燃焼用ガスの流通系統に設けることが不要となる。この結果、酸素燃焼ボイラ設備の運用が制限されることもなくなる。   As in the second embodiment, the dehydrating apparatus is provided with a branch exhaust gas recirculation line 8R ′ that recirculates the exhaust gas as the transfer gas by the operation of a primary ventilator 13 provided in parallel with the forced draft fan 9. 11 is provided in the branch exhaust gas recirculation line 8R 'on the inlet side of the primary ventilator 13, the primary ventilator 13 is solely responsible for the transfer of the carrier gas, and the pusher ventilator 9 is solely the pressure of the combustion gas. It will be a form that bears. For this reason, the pressure loss balance between the carrier gas and the combustion gas does not change between the air combustion operation and the oxyfuel combustion operation on the downstream side of the forced air blower 9. This eliminates the need to increase the capacity of the forced air blower 9 and allows the exhaust gas to be recirculated during the oxyfuel combustion operation to flow only in the combustion gas flow system, so that the flow is equivalent to that of the dehydrator 11. It is not necessary to provide an additional device such as a damper 15 (see a virtual line in FIG. 7) for imparting resistance in the combustion gas distribution system. As a result, the operation of the oxyfuel boiler facility is not restricted.

更に、前記一次通風機13の入側の分岐排ガス再循環ライン8R´に、前記脱水装置11の入側の排ガスによって前記脱水装置11の出側の排ガスを加熱する加熱器としてのガスガスヒータ12を設置することで、熱損失が最小限に抑えられると同時に、脱水装置11をコンパクトにし、一次通風機13に流入するガスの乾き度を確保することが可能となる。   Furthermore, a gas gas heater 12 as a heater for heating the exhaust gas on the outlet side of the dehydrating device 11 by the exhaust gas on the input side of the dehydrating device 11 is connected to the branched exhaust gas recirculation line 8R ′ on the inlet side of the primary ventilator 13. By installing, heat loss can be minimized, and at the same time, the dehydrator 11 can be made compact and the dryness of the gas flowing into the primary ventilator 13 can be ensured.

こうして、前記押込通風機9と並列に設けられる一次通風機13を備えた酸素燃焼ボイラ設備の第二実施例においても、第一実施例と同様、押込通風機9の大容量化を阻止して、流通抵抗を付与するための追加機器を不要とし得る。   Thus, in the second embodiment of the oxyfuel boiler facility provided with the primary ventilator 13 provided in parallel with the forced draft fan 9, as in the first embodiment, the increase in the capacity of the forced draft fan 9 is prevented. Further, an additional device for imparting distribution resistance may be unnecessary.

図6は本発明の酸素燃焼ボイラ設備の第二実施例の変形例であって、図中、図4及び図5と同一の符号を付した部分は同一物を表わしており、基本的な構成は図4及び図5に示す第二実施例と同様である。本変形例の特徴とするところは、図6に示す如く、前記酸素製造装置10からの酸素を、再循環される排ガスに対し前記押込通風機9の入側(前記抜出ライン8Dの分岐点より下流側)で混合するよう構成した点にある。   FIG. 6 is a modified example of the second embodiment of the oxyfuel boiler equipment of the present invention. In the figure, the same reference numerals as those in FIGS. Is the same as the second embodiment shown in FIGS. As shown in FIG. 6, the feature of this modification is that the oxygen from the oxygen production apparatus 10 is introduced into the inlet side of the forced air blower 9 with respect to the recirculated exhaust gas (the branch point of the extraction line 8D). It is the point which comprised so that it might mix in a more downstream side.

図6に示す変形例のように、前記酸素製造装置10からの酸素を、再循環される排ガスに対し前記押込通風機9の入側で混合するよう構成すると、前記酸素と排ガスが押込通風機9で撹拌されるため、特別な混合器等を設置しなくても前記酸素と排ガスの混合が促進され、均一なガス分布となる。   When the oxygen from the oxygen production apparatus 10 is mixed with the recirculated exhaust gas on the inlet side of the forced air fan 9 as in the modification shown in FIG. 6, the oxygen and the exhaust gas are forced into the forced air fan. Therefore, even if a special mixer or the like is not installed, mixing of the oxygen and the exhaust gas is promoted and a uniform gas distribution is obtained.

前記押込通風機9で混合された酸素と排ガスは、予熱器4にて予熱され昇温される。これは、予熱器4で予熱された排ガスに対して常温の酸素を注入するのに比べ、再循環される排ガスの温度がボイラ1に至るまでに低下しないことを意味する。即ち、前記予熱器4で予熱された酸素と排ガスの混合ガスは、そのままの温度でボイラ1に供給されるため、燃焼性の向上も期待できる。   The oxygen and exhaust gas mixed by the forced air blower 9 are preheated by the preheater 4 and heated. This means that the temperature of the recirculated exhaust gas does not decrease until reaching the boiler 1 as compared with injecting room temperature oxygen into the exhaust gas preheated by the preheater 4. That is, since the mixed gas of oxygen and exhaust gas preheated by the preheater 4 is supplied to the boiler 1 at the same temperature, an improvement in combustibility can be expected.

又、前記押込通風機9の入側への酸素の混合により、前記予熱器4の高温側(排ガス側)と低温側(再循環される排ガス側)の流量バランスが改善され、予熱器4のガス側温度効率が上がり、予熱器4の出口ガス温度が下げられ、ひいてはその下流側に設置される排ガスクーラ5を小さくできる。   In addition, the mixing of oxygen into the inlet side of the forced air blower 9 improves the flow rate balance between the high temperature side (exhaust gas side) and the low temperature side (exhaust gas side to be recirculated) of the preheater 4. The gas side temperature efficiency is increased, the outlet gas temperature of the preheater 4 is lowered, and the exhaust gas cooler 5 installed on the downstream side can be reduced.

更に又、前記押込通風機9の入側への酸素の混合により、前記押込通風機9の入口ガス温度に関し、空気燃焼運転時と酸素燃焼運転時の温度差が小さくなるため、空気燃焼運転と酸素燃焼運転の切替時間も短縮できる。   Furthermore, since the temperature difference between the air combustion operation and the oxyfuel combustion operation becomes small with respect to the inlet gas temperature of the forced air blower 9 due to the mixing of oxygen into the inlet side of the forced air blower 9, Switching time for oxyfuel combustion operation can also be shortened.

尚、本発明の酸素燃焼ボイラ設備は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The oxyfuel boiler equipment of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

1 ボイラ
2 ミル
3 予熱器
4 予熱器
8R 排ガス再循環ライン
8R´ 分岐排ガス再循環ライン
9 押込通風機
9´ 補助通風機
10 酸素製造装置
11 脱水装置
12 ガスガスヒータ(加熱器)
13 一次通風機
14 空気取入口
DESCRIPTION OF SYMBOLS 1 Boiler 2 Mill 3 Preheater 4 Preheater 8R Exhaust gas recirculation line 8R 'Branch exhaust gas recirculation line 9 Pushing ventilator 9' Auxiliary ventilator 10 Oxygen production apparatus 11 Dehydration apparatus 12 Gas gas heater (heater)
13 Primary ventilator 14 Air intake

Claims (6)

ボイラから排出される排ガスを燃料の搬送用ガス及び燃焼用ガスとして再循環させる排ガス再循環ラインに押込通風機が設けられた酸素燃焼ボイラ設備であって、
前記押込通風機より少なくとも上流位置で且つ空気燃焼運転時における空気取入口より上流位置に脱水装置が設けられている酸素燃焼ボイラ設備。
An oxyfuel boiler facility in which a forced draft fan is provided in an exhaust gas recirculation line for recirculating exhaust gas discharged from a boiler as fuel transfer gas and combustion gas,
An oxyfuel boiler facility in which a dehydrator is provided at least upstream of the forced air blower and upstream of the air intake during air combustion operation.
前記脱水装置は、前記押込通風機の入側の排ガス再循環ラインに設けられ、
前記押込通風機の入側の排ガス再循環ラインに、前記脱水装置の入側の排ガスによって前記脱水装置の出側の排ガスを加熱する加熱器が設けられる請求項1記載の酸素燃焼ボイラ設備。
The dehydrator is provided in the exhaust gas recirculation line on the entry side of the forced air fan,
The oxyfuel boiler equipment according to claim 1, wherein a heater for heating the exhaust gas on the outlet side of the dehydrator by the exhaust gas on the inlet side of the dehydrator is provided in the exhaust gas recirculation line on the inlet side of the forced draft fan.
前記脱水装置及び加熱器による排ガスの圧力損失を補うよう前記押込通風機の入側に設けられる補助通風機を備えた請求項2記載の酸素燃焼ボイラ設備。   The oxyfuel boiler equipment according to claim 2, further comprising an auxiliary ventilator provided on an inlet side of the forced air ventilator so as to compensate for pressure loss of exhaust gas caused by the dehydrator and the heater. 前記排ガスを前記押込通風機と並列に設けられる一次通風機の作動により前記搬送用ガスとして再循環させる分岐排ガス再循環ラインを備え、
前記脱水装置は、前記一次通風機の入側の分岐排ガス再循環ラインに設けられる請求項1記載の酸素燃焼ボイラ設備。
A branch exhaust gas recirculation line that recirculates the exhaust gas as the transfer gas by the operation of a primary ventilator provided in parallel with the forced draft fan;
The oxyfuel boiler equipment according to claim 1, wherein the dehydrator is provided in a branch exhaust gas recirculation line on an inlet side of the primary ventilator.
前記一次通風機の入側の分岐排ガス再循環ラインに、前記脱水装置の入側の排ガスによって前記脱水装置の出側の排ガスを加熱する加熱器が設けられる請求項4記載の酸素燃焼ボイラ設備。   The oxyfuel boiler equipment according to claim 4, wherein a heater for heating the exhaust gas on the outlet side of the dehydrator by the exhaust gas on the inlet side of the dehydrator is provided in the branch exhaust gas recirculation line on the inlet side of the primary ventilator. 前記排ガス再循環ラインにより再循環される燃焼用ガスに酸素を供給する酸素製造装置を備え、該酸素製造装置からの酸素を、再循環される排ガスに対し前記押込通風機の入側で混合するよう構成した請求項5記載の酸素燃焼ボイラ設備。   An oxygen production device is provided for supplying oxygen to the combustion gas recirculated by the exhaust gas recirculation line, and oxygen from the oxygen production device is mixed with the recirculated exhaust gas at the inlet side of the forced air blower. The oxyfuel boiler equipment according to claim 5 configured as described above.
JP2015202154A 2015-10-13 2015-10-13 Oxygen-fired boiler equipment Active JP6709523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015202154A JP6709523B2 (en) 2015-10-13 2015-10-13 Oxygen-fired boiler equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015202154A JP6709523B2 (en) 2015-10-13 2015-10-13 Oxygen-fired boiler equipment

Publications (2)

Publication Number Publication Date
JP2017075714A true JP2017075714A (en) 2017-04-20
JP6709523B2 JP6709523B2 (en) 2020-06-17

Family

ID=58550150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015202154A Active JP6709523B2 (en) 2015-10-13 2015-10-13 Oxygen-fired boiler equipment

Country Status (1)

Country Link
JP (1) JP6709523B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108469032A (en) * 2018-04-17 2018-08-31 山东大学 A kind of white plume elimination system and method based on flue gas recirculating technique

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108469032A (en) * 2018-04-17 2018-08-31 山东大学 A kind of white plume elimination system and method based on flue gas recirculating technique
CN108469032B (en) * 2018-04-17 2023-11-03 山东大学 White smoke plume eliminating system and method based on smoke recycling technology

Also Published As

Publication number Publication date
JP6709523B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP4644725B2 (en) Oxy-combustion boiler system, pulverized-coal-fired boiler remodeling method, oxy-combustion boiler system control device
JP5489254B2 (en) Oxyfuel combustion system and operating method thereof
JP5460040B2 (en) Combined cycle power plant for exhaust gas recirculation and CO2 separation and method of operating such combined cycle power plant
US6202574B1 (en) Combustion method and apparatus for producing a carbon dioxide end product
FI122189B (en) METHOD AND ARRANGEMENT FOR RECOVERY OF HEAT FROM THE COMBUSTION ASH
JP5174618B2 (en) Oxyfuel combustion boiler system and control method for oxygen combustion boiler system
JP2011523997A (en) Method and apparatus for generating power by oxyfuel combustion
US20090297993A1 (en) Method of and System For Generating Power By Oxyfuel Combustion
US20120129112A1 (en) Method Of And A System For Combusting Fuel In An Oxyfuel Combustion Boiler
US8955466B2 (en) Heat recovery system and method
KR20110022634A (en) Method of and system for generating power by oxyfuel combustion
JP6163994B2 (en) Oxygen combustion boiler exhaust gas cooler steam generation prevention device
WO2016098385A1 (en) Method and apparatus for controlling inlet temperature of dedusting apparatus in oxygen combustion boiler equipment
WO2014188790A1 (en) Fossil-fuel power plant and fossil-fuel power plant operation method
CN103574587A (en) Waste heat utilizing system of thermal power plant and thermal power unit
RU2563646C2 (en) Control method of pulverised-coal boiler plant
CN103573311A (en) Steam exhaust energy utilizing system of driving steam turbine of thermal power plant and thermal power unit
JP6709523B2 (en) Oxygen-fired boiler equipment
US20130229012A1 (en) Waste heat utilization for energy efficient carbon capture
CN205897119U (en) High -efficient gas recirculation oxygen boosting combustion system
CN207751005U (en) A kind of stove cigarette recycling coupling fume afterheat becomes energy level and utilizes system
CN106090895A (en) High effective flue gas recirculation oxygen-enriched combustion system
CN102575899B (en) Energy recovery from gases in a blast furnace plant
JP2013057437A (en) Oxygen combustion system and oxygen combustion method
JP2013185783A (en) Oxygen combustion boiler system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200507

R151 Written notification of patent or utility model registration

Ref document number: 6709523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151