JP5432098B2 - Oxyfuel boiler - Google Patents

Oxyfuel boiler Download PDF

Info

Publication number
JP5432098B2
JP5432098B2 JP2010205243A JP2010205243A JP5432098B2 JP 5432098 B2 JP5432098 B2 JP 5432098B2 JP 2010205243 A JP2010205243 A JP 2010205243A JP 2010205243 A JP2010205243 A JP 2010205243A JP 5432098 B2 JP5432098 B2 JP 5432098B2
Authority
JP
Japan
Prior art keywords
exhaust gas
boiler
gas
heat
circulating water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010205243A
Other languages
Japanese (ja)
Other versions
JP2012063041A (en
Inventor
喜治 林
強 柴田
正行 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010205243A priority Critical patent/JP5432098B2/en
Publication of JP2012063041A publication Critical patent/JP2012063041A/en
Application granted granted Critical
Publication of JP5432098B2 publication Critical patent/JP5432098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

本発明は、CO回収を目的とした石炭火力発電プラントに係わり、特に石炭火力発電プラントのCO回収に好適な酸素燃焼ボイラに関するものである。 The present invention relates to a coal-fired power plant for the purpose of CO 2 recovery, and more particularly to an oxyfuel boiler suitable for CO 2 recovery of a coal-fired power plant.

地球温暖化対策として、温室効果ガスの一つであるCO(二酸化炭素)の排出削減の取り組みが世界的に実施されている。火力発電所はCOの排出量が多い設備の一つであり、特に炭素含有量が多く燃焼排ガス中にCOを多量に発生させる石炭を燃焼する石炭ボイラを備えた石炭火力発電プラントは発電量当りのCO排出量が最も多く、早急なCO2削減対策が要望されている。 As a measure against global warming, efforts to reduce emissions of CO 2 (carbon dioxide), one of the greenhouse gases, are being implemented worldwide. Thermal power plant is one of the facilities emissions CO 2 is large, in particular coal-fired power plant including a coal boiler for burning coal to a large amount generate CO 2 in many flue gas carbon content generator The amount of CO 2 emission per unit is the largest, and there is a demand for immediate CO2 reduction measures.

石炭火力発電プラントのCO削減対策としては、発電の高効率化に加えて、石炭ボイラでの燃焼によって発生した燃焼排ガス中からCOの分離・回収が挙げられる。COの分離・回収とは、石炭火力発電プラントで発生した燃焼排ガス中からCOのみを取り出して圧縮・液化し、パイプライン等を通してこの液化させたCOを地下深部等に貯留させる方式である。 Examples of CO 2 reduction measures for coal-fired power plants include separation and recovery of CO 2 from combustion exhaust gas generated by combustion in a coal boiler, in addition to increasing the efficiency of power generation. CO 2 separation / recovery is a method in which only CO 2 is extracted from combustion exhaust gas generated in a coal-fired power plant, compressed and liquefied, and this liquefied CO 2 is stored in a deep underground through a pipeline or the like. is there.

石炭火力発電プラントのCO回収方式の一つとして酸素燃焼方式がある。この方式では、空気から酸素を分離し、分離させた純酸素を石炭ボイラに供給して燃料の石炭を燃焼させて前記石炭ボイラを酸素燃焼ボイラとして使用するように構成したものであり、この酸素燃焼ボイラで石炭を燃焼して生成した燃焼排ガス(主要成分はCO)の一部と純酸素とを混合させた混合ガスを支燃ガスとして酸素燃焼ボイラに供給して石炭を燃焼させる方式である。 There is an oxyfuel combustion method as one of CO 2 recovery methods for a coal-fired power plant. In this method, oxygen is separated from air, the separated pure oxygen is supplied to a coal boiler, the coal of fuel is burned, and the coal boiler is used as an oxyfuel boiler. In a method of burning coal by supplying a mixed gas, which is a mixture of a part of combustion exhaust gas (the main component is CO 2 ) generated by burning coal in a combustion boiler and pure oxygen, to the oxyfuel boiler as a supporting gas. is there.

通常の空気燃焼ボイラで発生した燃焼排ガスには窒素(N)が多く含まれるので、空気燃焼ボイラから排出される排ガスから二酸化炭素(CO)を分離する処理が必要となるが、酸素燃焼ボイラで発生した燃焼排ガスは成分のほとんどがCOであるため、排ガスからCOの分離処理をしないで、そのままCOを回収できる利点がある。 Combustion exhaust gas generated in a normal air-fired boiler contains a large amount of nitrogen (N 2 ), so that it is necessary to separate carbon dioxide (CO 2 ) from the exhaust gas discharged from the air-fired boiler. Since most of the components of the combustion exhaust gas generated in the boiler are CO 2 , there is an advantage that CO 2 can be recovered as it is without separating CO 2 from the exhaust gas.

この酸素燃焼ボイラに供給する支燃ガスとして酸素にCOを混合させるのは、石炭ボイラ内で燃焼する火炎温度を抑制するためである。石炭ボイラに酸素のみを供給して微粉炭を燃焼させる燃焼(純酸素燃焼)では石炭ボイラ内で燃焼する火炎温度が高くなるので、ボイラ材料として高価な耐熱鋼が必要となる点、また、石炭ボイラに設置されたバーナでの支燃ガスの吹き出し流速が低下して火炎形成が困難になる点から、石炭ボイラでは純酸素燃焼は実施されていない。 The reason why CO 2 is mixed with oxygen as a support gas to be supplied to the oxyfuel boiler is to suppress the flame temperature that burns in the coal boiler. Combustion in which only oxygen is supplied to a coal boiler to burn pulverized coal (pure oxygen combustion) raises the flame temperature in the coal boiler, which requires expensive heat-resistant steel as the boiler material. In the coal boiler, pure oxygen combustion is not carried out because the flow rate of the combustion-supporting gas in the burner installed in the boiler is lowered and flame formation becomes difficult.

酸素燃焼ボイラは、排ガスを循環することに構造上の特徴があるが、ボイラの燃焼特性への影響が大きい水分に着目し、排ガス中の水分を除湿しないで循環する方式をウェットリサイクル、水分を除湿した後に循環する方式をドライリサイクルと称して区別している。   Oxyfuel boilers have structural features in circulating exhaust gas, but pay attention to moisture that has a large effect on the combustion characteristics of the boiler. Wet recycling is a method that circulates the exhaust gas without dehumidifying it. The system that circulates after dehumidification is called dry recycling.

排ガス中の水分を除湿する方法としては、除湿装置の設備費と運転に必要となる動力を考慮して、大気で冷却する冷却塔を用いるのが一般的である。すなわち、排ガスを大気温度近くまで冷却して水蒸気を凝縮させることにより、水分を取り除く方法である。   As a method of dehumidifying the moisture in the exhaust gas, it is common to use a cooling tower that is cooled in the atmosphere in consideration of the equipment cost of the dehumidifier and the power required for operation. That is, it is a method of removing moisture by cooling exhaust gas to near atmospheric temperature and condensing water vapor.

この方法の場合、除湿装置後の排ガス中の水分は飽和状態になっている。このため、排ガス循環用の配管内壁に温度が低下した部分があると、水滴がつきやすく、配管材料の腐食が進行するリスクが高まる。   In the case of this method, the water in the exhaust gas after the dehumidifier is saturated. For this reason, if there is a temperature-decreasing portion on the inner wall of the exhaust gas circulation pipe, water droplets are easily attached, and the risk of corrosion of the pipe material increases.

これを防止する方法として、特開2009−270753号公報及び特開2010―54144号公報に記載された酸素燃焼システムの排ガス処理装置が挙げられる。これらの方法では、除湿装置の後段にガスを加熱するための加熱用熱交換器を設置し、排ガス煙道の上流側にある集塵機の前段に熱回収用熱交換器を設置して、これら二つの熱交換器の間で媒体を介して熱の授受を行っている。このような機器構成にすることにより、集塵機前段の高温の排ガスから回収した熱を用いて、除湿装置の後段の低温の排ガスを加熱でき、加熱用に新たに熱源を設けることなく、上記の課題を解決することができる。   As a method for preventing this, there is an exhaust gas treatment apparatus for an oxyfuel combustion system described in Japanese Patent Application Laid-Open Nos. 2009-270753 and 2010-54144. In these methods, a heating heat exchanger for heating the gas is installed after the dehumidifier, and a heat recovery heat exchanger is installed before the dust collector on the upstream side of the flue gas flue. Heat is transferred between two heat exchangers via a medium. By adopting such a device configuration, it is possible to heat the low-temperature exhaust gas after the dehumidifier using the heat recovered from the high-temperature exhaust gas upstream of the dust collector, and to solve the above problems without providing a new heat source for heating. Can be solved.

特開2009−270753号公報JP 2009-270753 A 特開2010―54144号公報JP 2010-54144 A

前記特開2009−270753号公報及び特開2010―54144号公報に記載された酸素燃焼システムにおける排ガス処理装置では、脱硫装置が循環ラインに設置されている。しかしながら、排ガス中に含まれるSOx(硫黄酸化物)もガスと共に循環してボイラへ流入するため、ボイラ内のSOx濃度は通常の空気燃焼に比べて非常に高くなる。   In the exhaust gas treatment apparatus in the oxyfuel combustion system described in JP 2009-270753 A and JP 2010-54144 A, a desulfurization apparatus is installed in a circulation line. However, since SOx (sulfur oxide) contained in the exhaust gas also circulates along with the gas and flows into the boiler, the SOx concentration in the boiler becomes very high compared to normal air combustion.

ボイラでの石炭燃焼によって生成されるSOxは主にSOである。SOはボイラ材料の腐食の点では、あまり問題にならない。一方、SOは、生成量はSOの数パーセント程度であるが、腐食の点でSOよりも問題になる。高温の排ガス中で、SO3が気体の状態で存在しているのであれば、腐食が進行するポテンシャルは高くない。 SOx produced by coal combustion in the boiler is mainly SO 2. SO 2 is not a problem in terms of corrosion of boiler materials. On the other hand, SO 3 is generated weights are number percent of the SO 2, a problem than SO 2 in terms of corrosion. If SO3 exists in a gaseous state in the high-temperature exhaust gas, the potential for corrosion to progress is not high.

しかし、ガス温度が酸露点以下まで下がると、排ガス中の水分と結合して硫酸が生成され、配管材料に対する腐食が進行する。排ガスと共にボイラに流入するSOの量が多くなると、SOの酸化反応によってSOの生成量も多くなり、腐食のポテンシャルは高くなる。したがって、ボイラに循環させる排ガスは、なるべく、温度を高くするのが好ましい。 However, when the gas temperature falls below the acid dew point, it combines with moisture in the exhaust gas to generate sulfuric acid, and corrosion of the piping material proceeds. When the amount of SO 2 flowing into the boiler together with the exhaust gas increases, the amount of SO 3 generated due to the oxidation reaction of SO 2 increases, and the corrosion potential increases. Therefore, it is preferable to raise the temperature of the exhaust gas circulated in the boiler as much as possible.

また、前記特開2009−270753号公報及び特開2010―54144号公報に記載された装置では、集塵装置を通った排ガスの一部が回収ラインに設置された脱硫装置へと流下する構成になっている。集塵装置後の排ガスの温度は約90℃である。   Moreover, in the apparatus described in the said Unexamined-Japanese-Patent No. 2009-270753 and Unexamined-Japanese-Patent No. 2010-54144, it is set as the structure which a part of waste gas which passed the dust collector flows down to the desulfurization apparatus installed in the collection line. It has become. The temperature of the exhaust gas after the dust collector is about 90 ° C.

脱硫装置は、石灰石スラリーを脱硫装置を構成する脱硫塔の上部から噴霧して、SOxを吸収させる構造になっている。この脱硫塔内部では噴霧したスラリーから水分が気化し、この際にガスから気化熱が奪われ、ガス温度が低下する。水分がガスから奪った熱は外気へと放熱されて熱損失となり、プラント効率低下の原因となる。したがって、脱硫装置からの熱損失をできるだけ少なくするのが効率向上の点で好ましい。   The desulfurization apparatus has a structure in which limestone slurry is sprayed from the upper part of a desulfurization tower constituting the desulfurization apparatus to absorb SOx. In this desulfurization tower, moisture is vaporized from the sprayed slurry, and at this time, heat of vaporization is taken from the gas, and the gas temperature is lowered. The heat deprived of moisture from the gas is dissipated to the outside air, resulting in heat loss and a decrease in plant efficiency. Therefore, it is preferable in terms of efficiency improvement to minimize the heat loss from the desulfurizer.

本発明の目的は、除湿後の排ガスを循環するドライリサイクル方式の酸素燃焼ボイラにおいて、ボイラへ循環する排ガスから硫黄酸化物を取り除き、循環ガス配管内壁への水滴の付着を防止して腐食の進行を抑制すると共に、熱損失を低減してプラント効率を増加させることが可能な酸素燃焼ボイラを提供することにある。   The purpose of the present invention is to remove sulfur oxides from exhaust gas circulating to the boiler in a dry recycling type oxyfuel boiler that circulates exhaust gas after dehumidification, and to prevent water droplets from adhering to the inner wall of the circulating gas pipe and to promote corrosion. An oxyfuel boiler capable of suppressing plant heat and reducing heat loss to increase plant efficiency is provided.

本発明の酸素燃焼ボイラは、空気から分離した酸素と、燃料の石炭を燃焼して蒸気需要設備に供給する蒸気を発生させたボイラから排出された排ガスから分岐した排ガスの一部とを混合し、石炭を燃焼させる支燃ガスとして該ボイラに供給するように構成した酸素燃焼ボイラにおいて、前記ボイラから排出された排ガスを流下させるように配設された排ガス系統のうち、該ボイラの排ガス用出口と該ボイラへ排ガスの一部を循環させるために該排ガス系統から排ガスの一部を分岐させる分岐点との間の領域に、排ガスから熱を回収する熱回収器と、該熱回収器の下流側に排ガスの煤塵を除去する集塵装置と、該集塵装置の下流側に排ガスの硫黄酸化物を除去する脱硫装置と、該脱硫装置の下流側に排ガスの水分を除去する冷却除湿装置を順次設置し、前記排ガス系統の該分岐点から分岐した排ガスの一部を該ボイラに循環して供給する排ガス循環系統を配設し、前記排ガス循環系統に排ガスを加熱する再熱器を設置し、前記熱回収器と再熱器との間に循環水を循環させる循環水系統を配設し、この循環水系統を流れる循環水の流量を調節することによって熱回収器で排ガスから回収する熱量を調節することを特徴とする。 The oxyfuel boiler of the present invention is a mixture of oxygen separated from air and a part of the exhaust gas branched from the exhaust gas discharged from the boiler that generates the steam that burns fuel coal and supplies it to the steam demand facility. An oxyfuel boiler configured to supply the boiler as a combustion-supporting gas for burning coal, and an exhaust gas outlet of the boiler in an exhaust gas system arranged to flow down the exhaust gas discharged from the boiler A heat recovery unit for recovering heat from the exhaust gas, and a downstream of the heat recovery unit, in a region between the gas and the branch point for branching a part of the exhaust gas from the exhaust gas system to circulate a part of the exhaust gas to the boiler A dust collecting device for removing the dust of the exhaust gas on the side, a desulfurization device for removing sulfur oxides of the exhaust gas on the downstream side of the dust collecting device, and a cooling and dehumidifying device for removing moisture of the exhaust gas on the downstream side of the desulfurization device Sequentially And location, the part of the exhaust gas branched from the branch point of the exhaust gas system arranged to exhaust gas circulation system for supplying and circulating the said boiler, established a reheater for heating the exhaust gas to the exhaust gas circulation system, A circulating water system for circulating circulating water is arranged between the heat recovery unit and the reheater, and the amount of heat recovered from the exhaust gas by the heat recovery unit is adjusted by adjusting the flow rate of the circulating water flowing through the circulating water system. It is characterized by adjusting .

本発明によれば、除湿後の排ガスを循環するドライリサイクル方式の酸素燃焼ボイラにおいて、ボイラへ循環する排ガスから硫黄酸化物を取り除き、循環ガス配管内壁への水滴の付着を防止して腐食の進行を抑制すると共に、熱損失を低減してプラント効率を増加させることが可能な酸素燃焼ボイラを実現できる。   According to the present invention, in a dry recycling type oxyfuel boiler that circulates exhaust gas after dehumidification, the sulfur oxide is removed from the exhaust gas that circulates to the boiler, and water droplets are prevented from adhering to the inner wall of the circulation gas pipe, thereby causing progress of corrosion. In addition, it is possible to realize an oxyfuel boiler that can reduce plant heat and reduce plant heat efficiency.

本発明の一実施例である酸素燃焼ボイラを備えた石炭火力発電プラントを示す概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram which shows the coal thermal power plant provided with the oxyfuel boiler which is one Example of this invention.

本発明の一実施例である酸素燃焼ボイラについて図面を参照して以下に説明する。   An oxyfuel boiler according to an embodiment of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施例である酸素燃焼ボイラを備えたCO回収に好適な石炭火力発電プラントの構成を示す概略図である。 FIG. 1 is a schematic diagram showing a configuration of a coal-fired power plant suitable for CO 2 recovery equipped with an oxyfuel boiler according to an embodiment of the present invention.

図1において、本発明の一実施例である酸素燃焼ボイラを備えた石炭火力発電プラントは、微粉炭を燃料として、石炭ボイラに別途供給された酸素によってこの微粉炭を燃焼させる酸素燃焼ボイラ1を備えている。   In FIG. 1, a coal-fired power plant equipped with an oxyfuel boiler according to an embodiment of the present invention includes an oxyfuel boiler 1 that uses pulverized coal as fuel and burns the pulverized coal with oxygen separately supplied to the coal boiler. I have.

前記酸素燃焼ボイラ1は微粉炭を燃料とし、空気を供給して微粉炭を燃焼させる通常の空気燃焼ボイラとボイラ自体の構造は同じである。   The oxyfuel boiler 1 uses pulverized coal as fuel, and the structure of a normal air-fired boiler that supplies air and burns pulverized coal is the same as that of the boiler itself.

前記酸素燃焼ボイラ1では、燃料である石炭をミル2で粉砕して微粉炭にし、この微粉炭をミル2から石炭供給系統47を通じて酸素燃焼ボイラ1に供給している。そして前記酸素燃焼ボイラ1に別途供給された循環排ガス及び酸素と共に前記微粉炭をこの酸素燃焼ボイラ1で燃焼させるものである。   In the oxyfuel boiler 1, coal as fuel is pulverized into pulverized coal by the mill 2, and the pulverized coal is supplied from the mill 2 to the oxyfuel boiler 1 through the coal supply system 47. Then, the pulverized coal is combusted in the oxyfuel boiler 1 together with the circulating exhaust gas and oxygen separately supplied to the oxyfuel boiler 1.

前記酸素燃焼ボイラ1で燃料の微粉炭を酸素と共に燃焼して発生した燃焼排ガスは、酸素燃焼ボイラ1の排ガス出口21から排ガスとして排ガス系統41に排出されるが、この排ガスは酸素燃焼ボイラ1の下流に設置された脱硝装置3に排ガス系統41を通じて導入され、この脱硝装置3によって酸素燃焼ボイラ1から排出した排ガス中に含まれた窒素酸化物(NOx)の濃度を所望の値になるように低減させる。   Combustion exhaust gas generated by burning pulverized coal of fuel together with oxygen in the oxyfuel boiler 1 is discharged from the exhaust gas outlet 21 of the oxyfuel boiler 1 to the exhaust gas system 41 as exhaust gas. The nitrogen oxide (NOx) concentration introduced into the exhaust gas discharged from the oxyfuel boiler 1 by the exhaust gas system 41 is introduced into the downstream NOx removal device 3 through the exhaust gas system 41 so as to have a desired value. Reduce.

次に脱硝装置3を流下した排ガスは、脱硝装置3の下流に設置されたガス予熱器4に排ガス系統41を通じて導入され、このガス予熱器4によって排ガス系統41を流下する排ガスの熱を利用して、供給ガス系統45、46を流れる酸素燃焼ボイラ1に供給される供給ガスと熱交換して加熱する。   Next, the exhaust gas flowing down the denitration device 3 is introduced into the gas preheater 4 installed downstream of the denitration device 3 through the exhaust gas system 41, and the heat of the exhaust gas flowing down the exhaust gas system 41 is utilized by the gas preheater 4. Then, heat is exchanged with the supply gas supplied to the oxyfuel boiler 1 flowing through the supply gas systems 45 and 46 and heated.

次にガス予熱器4を流下した排ガスは、ガス予熱器4の下流に設置された熱回収器5に排ガス系統41を通じて導入される。   Next, the exhaust gas flowing down the gas preheater 4 is introduced through the exhaust gas system 41 to the heat recovery unit 5 installed downstream of the gas preheater 4.

熱回収器5では、伝熱媒体である水を後述する再熱器10との間で循環する循環水系統51を配設しており、排ガス系統41を流れる高温の排ガスと循環水系統51を流れる低温の循環水との間で非接触の熱交換を行い、排ガスから熱を回収する。   In the heat recovery device 5, a circulating water system 51 that circulates water, which is a heat transfer medium, with a reheater 10 to be described later is disposed, and the high-temperature exhaust gas flowing through the exhaust gas system 41 and the circulating water system 51 are Non-contact heat exchange is performed with flowing low-temperature circulating water to recover heat from the exhaust gas.

次に熱回収器5を流下した排ガスは、熱回収器5の下流に設置された集塵装置6に排ガス系統41を通じて導入され、この集塵装置6によって排ガス中に含まれた粉塵を除去する。   Next, the exhaust gas flowing down the heat recovery device 5 is introduced into the dust collector 6 installed downstream of the heat recovery device 5 through the exhaust gas system 41, and the dust contained in the exhaust gas is removed by the dust collector 6. .

次に集塵装置6を流下した排ガスは、集塵装置6の下流に設置された脱硫装置7に排ガス系統41を通じて導入され、この脱硫装置7によって排ガス中の硫黄酸化物(SOx)の濃度を所望の値になるように低減する。   Next, the exhaust gas flowing down the dust collector 6 is introduced into a desulfurizer 7 installed downstream of the dust collector 6 through an exhaust gas system 41, and the desulfurizer 7 reduces the concentration of sulfur oxide (SOx) in the exhaust gas. Reduce to a desired value.

脱硫装置7では、脱硫装置7を構成する脱硫塔で排ガスの煙道の上部から石灰石スラリーを噴霧することによりSOxを吸収し、脱硫塔の下部からスラリーを回収する。   In the desulfurization apparatus 7, SOx is absorbed by spraying limestone slurry from the upper part of the flue of the exhaust gas in the desulfurization tower constituting the desulfurization apparatus 7, and the slurry is recovered from the lower part of the desulfurization tower.

次に脱硫装置7を流下した排ガスは、脱硫装置7の下流に設置された冷却除湿装置8に排ガス系統41を通じて導入され、この冷却除湿装置8によって水冷方式により大気に熱を放熱させ、排ガスの温度を大気温度近くまで低下させる。このとき、排ガスに含まれる水蒸気が凝縮して液滴となり、ドレンとして回収される。   Next, the exhaust gas flowing down the desulfurization device 7 is introduced into the cooling and dehumidifying device 8 installed downstream of the desulfurization device 7 through the exhaust gas system 41, and the cooling and dehumidifying device 8 dissipates heat to the atmosphere by a water cooling method. Reduce the temperature to near atmospheric temperature. At this time, water vapor contained in the exhaust gas is condensed into droplets and collected as drain.

次に冷却除湿装置8を流下した排ガスは、排ガス系統41の分岐点22にて回収ガス系統42と循環ガス系統43に分岐する。そして、分岐点22から分岐して回収ガス系統42を流下した排ガスの一部は、CO液化装置9に導入され、このCO液化装置9に備えられた圧縮装置(図示せず)を用いて排ガスを圧縮してCOを液化し、回収用タンクに送って液化したCOを回収する。 Next, the exhaust gas flowing down the cooling and dehumidifying device 8 branches into the recovered gas system 42 and the circulating gas system 43 at the branch point 22 of the exhaust gas system 41. A part of the exhaust gas flowing down the stripping gas lines 42 branched from the branch point 22 is introduced into the CO 2 liquefier 9, using the CO compressor provided in 2 liquefaction unit 9 (not shown) The exhaust gas is compressed to liquefy CO 2 and sent to a recovery tank to recover the liquefied CO 2 .

一方、排ガス系統41の分岐点22から分岐して循環ガス系統43を流下した排ガスの他の一部は、再熱器10に導入される。   On the other hand, another part of the exhaust gas branched from the branch point 22 of the exhaust gas system 41 and flowing down the circulating gas system 43 is introduced into the reheater 10.

前記再熱器10には、排ガス系統41に設置した熱回収器5で加熱された伝熱媒体の水が循環水系統51を通じて導入されており、循環ガス系統43を流下する循環排ガスとの間で非接触の熱交換を行う。   In the reheater 10, water of the heat transfer medium heated by the heat recovery unit 5 installed in the exhaust gas system 41 is introduced through the circulating water system 51, and between the circulating exhaust gas flowing down the circulating gas system 43. In non-contact heat exchange.

循環水系統51を流れる循環水は熱回収器5によって排ガス系統41を流下する高温の排ガスで加熱されており、また、循環ガス系統43を流れる循環排ガスは冷却除湿装置8によって冷却されているため、循環水系統51を流れる循環水の方が循環ガス系統43を流下する循環排ガスより高温になっており、この循環水によって循環排ガスを加熱することができる。   The circulating water flowing through the circulating water system 51 is heated by the high temperature exhaust gas flowing down the exhaust gas system 41 by the heat recovery unit 5, and the circulating exhaust gas flowing through the circulating gas system 43 is cooled by the cooling and dehumidifying device 8. The circulating water flowing through the circulating water system 51 is hotter than the circulating exhaust gas flowing down the circulating gas system 43, and the circulating exhaust gas can be heated by this circulating water.

更に再熱器10を流下した排ガスは循環ガス系統43を流下し、酸素供給系統44から供給される酸素ガスと混合され、この混合ガスが酸素燃焼ボイラ1に供給されて微粉炭燃焼の支燃ガスとして利用される。   Further, the exhaust gas flowing down the reheater 10 flows down the circulation gas system 43 and is mixed with oxygen gas supplied from the oxygen supply system 44, and this mixed gas is supplied to the oxyfuel boiler 1 to support combustion of pulverized coal combustion. Used as gas.

前記酸素供給系統44の上流には空気分離装置11が設置されており、この空気分離装置11では、深冷分離方式により空気から酸素のみを取り出し、酸素を主成分とする酸素ガス(不純物としてわずかに窒素等も含む)が生成される。   An air separation device 11 is installed upstream of the oxygen supply system 44. In the air separation device 11, only oxygen is extracted from the air by a cryogenic separation method, and oxygen gas containing oxygen as a main component (a slight amount of impurities as impurities). (Including nitrogen and the like).

そして空気分離装置11が生成した酸素ガスと、ボイラから排出された二酸化炭素を主成分とする排ガスとを混合した混合ガスを酸素燃焼ボイラ1に供給して微粉炭燃焼の支燃ガスとして利用する。   And the mixed gas which mixed the oxygen gas which the air separation apparatus 11 produced | generated and the waste gas which has the carbon dioxide discharged | emitted from the boiler as a main component is supplied to the oxygen combustion boiler 1, and is utilized as a combustion support gas of pulverized coal combustion. .

この支燃ガスは、酸素供給系統44から供給された酸素ガスと、循環ガス系統43から供給された排ガスとが混合した混合ガスであり、前記循環ガス系統43から分岐した1次供給ガス系統45と2次供給ガス系統46を通じて、それぞれガス予熱器4に導入される。   This combustion support gas is a mixed gas in which the oxygen gas supplied from the oxygen supply system 44 and the exhaust gas supplied from the circulation gas system 43 are mixed, and the primary supply gas system 45 branched from the circulation gas system 43. Are introduced into the gas preheater 4 through the secondary supply gas system 46.

ガス予熱器4では、前述したように排ガス系統41を流下する高温の排ガスによって、1次供給ガス系統45及び2次供給ガス系統45、46を流れる混合ガスを加熱する。   In the gas preheater 4, the mixed gas flowing through the primary supply gas system 45 and the secondary supply gas systems 45 and 46 is heated by the high temperature exhaust gas flowing down the exhaust gas system 41 as described above.

更にガス予熱器4を流下した1次供給ガス系統45の供給ガスは、ガス予熱器4の下流に設置されたミル2に導入され、ここで石炭の粉砕・乾燥によって生成された微粉炭と共に、燃料ガス系統47を通して、酸素燃焼ボイラ1に供給される。   Furthermore, the supply gas of the primary supply gas system 45 that has flowed down the gas preheater 4 is introduced into the mill 2 installed downstream of the gas preheater 4, where pulverized coal generated by pulverization and drying of coal is used. It is supplied to the oxyfuel boiler 1 through the fuel gas system 47.

一方、ガス予熱器4を流下した2次供給ガス系統46の供給ガスも酸素燃焼ボイラ1に供給され、微粉炭を燃焼するための酸素ガスを含んだ支燃ガスとして利用される。
On the other hand, the supply gas of the secondary supply gas system 46 flowing down the gas preheater 4 is also supplied to the oxyfuel boiler 1 and used as a combustion support gas containing oxygen gas for burning pulverized coal.

本実施例の酸素燃焼ボイラ1では、前記集塵装置6の前段の排ガス系統41に熱回収器5を設置している。熱回収器5を通過することで排ガス系統41を流下する排ガスの温度が低下するが、前記熱回収器5によってこの温度を調整することで、排ガス中に含まれるSOを灰に吸着させることができる。 In the oxyfuel boiler 1 of the present embodiment, the heat recovery unit 5 is installed in the exhaust gas system 41 in the previous stage of the dust collector 6. By passing through the heat recovery device 5, the temperature of the exhaust gas flowing down the exhaust gas system 41 is lowered. By adjusting this temperature by the heat recovery device 5, SO 3 contained in the exhaust gas is adsorbed on the ash. Can do.

即ち、排ガス系統41を流下して、ガス予熱器4を通過した排ガスは高温であり、SOはガスの状態になっている。ここで、前記熱回収器5による温度の調節によって排ガス温度を低下させ、SOの酸露点以下の温度になると、SOはミスト状になり、排ガス中に含まれる灰に吸着する。 That is, the exhaust gas flowing down the exhaust gas system 41 and passing through the gas preheater 4 is high temperature, and SO 3 is in a gas state. Here, to reduce the exhaust gas temperature by adjusting the temperature by the heat recovery unit 5, at the acid dew point below the temperature of the SO 3, SO 3 becomes mist, adsorbed to ash contained in the flue gas.

集塵装置6で排ガス中の灰を除去するので、集塵装置6の前段でSOを灰に吸着させることができれば、集塵装置6で灰と共にSOを除去できる。排ガス中に含まれるSOの量は、同じ硫黄酸化物であるSOの数パーセント程度であり、非常に少ない。 Since the ash in the exhaust gas is removed by the dust collector 6, if the SO 3 can be adsorbed to the ash at the front stage of the dust collector 6, the SO 3 can be removed together with the ash by the dust collector 6. The amount of SO 3 contained in the exhaust gas is about a few percent of SO 2 which is the same sulfur oxide, and is very small.

しかしながら、SOが水分と結合して配管の内壁に付着すると、酸腐食が発生するので、SOを除去することは腐食防止の点で重要である。 However, when SO 3 is combined with moisture and adheres to the inner wall of the pipe, acid corrosion occurs. Therefore, removing SO 3 is important in terms of preventing corrosion.

また、集塵装置6の後段の排ガス系統41に脱硫装置7が設置されているが、脱硫装置7で除去するSOxは主にSOであり、SOは灰に吸着させて除去するのが近年の一般的な方法である。 Although desulfurization apparatus 7 downstream of the exhaust gas system 41 of the dust collecting device 6 is installed, SOx which is removed by the desulfurization device 7 is mainly SO 2, SO 3 has to remove by adsorption on the ash This is a common method in recent years.

以上の点から、熱回収器5で回収する排ガスの熱量については、少なくとも、排ガスの温度がSOの酸露点以下となるように調整するのが好ましい。 From the above points, it is preferable that the amount of heat of the exhaust gas recovered by the heat recovery device 5 is adjusted so that the temperature of the exhaust gas is at least the SO 3 acid dew point.

さらに、集塵装置6の後段の排ガス系統41には脱硫装置7が設置されており、前述したように、脱硫装置7を構成する脱硫塔で排ガス煙道に上から石灰石スラリーを噴霧することで、排ガス中のSOを吸収させている。 Furthermore, the desulfurization device 7 is installed in the exhaust gas system 41 downstream of the dust collector 6, and as described above, the limestone slurry is sprayed from above onto the exhaust gas flue in the desulfurization tower constituting the desulfurization device 7. , SO 2 in the exhaust gas is absorbed.

また、脱硫装置7を通過した排ガスを酸素燃焼ボイラ1へ循環させることにより、酸素燃焼ボイラ1での燃焼ガスに含まれる硫黄分が低減され、ボイラ内でのHSの生成量を抑え、水管の硫化腐食を防止することができる。 Further, by circulating the exhaust gas that has passed through the desulfurization device 7 to the oxyfuel boiler 1, the sulfur content contained in the combustion gas in the oxyfuel boiler 1 is reduced, and the amount of H 2 S produced in the boiler is suppressed, Sulfide corrosion of the water pipe can be prevented.

脱硫装置7で石灰石スラリーの噴霧の際に、スラリーに含まれる水分が気化し、排ガスの熱が奪われるが、ここで水分が保有した熱は大気へ放熱されるのみである。すなわち、排ガスの熱を無駄に系外へ排出していることになり、プラント効率の低下要因にもなる。   When the limestone slurry is sprayed by the desulfurization device 7, the moisture contained in the slurry is vaporized and the heat of the exhaust gas is taken away, but the heat held by the moisture here is only released to the atmosphere. In other words, the heat of the exhaust gas is exhausted to the outside of the system, which causes a decrease in plant efficiency.

脱硫装置7では、脱硫装置7を構成する脱硫塔入口のガス温度が低くても、脱硫の性能が変わることはない。   In the desulfurization apparatus 7, even if the gas temperature at the inlet of the desulfurization tower constituting the desulfurization apparatus 7 is low, the desulfurization performance does not change.

したがって、排ガスが保有する熱を無駄に系外へ排出するよりは、排ガスの熱を回収して再生熱として利用した方が効率向上を図れる。   Therefore, efficiency can be improved by recovering the heat of the exhaust gas and using it as regeneration heat rather than wastefully discharging the heat held by the exhaust gas to the outside of the system.

このような点から、本実施例の酸素燃焼ボイラ1を備えた石炭火力発電プラントでは、熱回収器5によって排ガスからできるだけ熱を回収し、回収した熱を循環ガス系統43に設置された再熱器10で循環ガスの加熱に利用することで、排ガスの熱が無駄に系外へ排出されるのを抑制でき、この結果、プラントの効率が向上できる。   From this point, in the coal-fired power plant equipped with the oxyfuel boiler 1 of the present embodiment, heat is recovered from the exhaust gas as much as possible by the heat recovery device 5, and the recovered heat is reheated installed in the circulating gas system 43. By using the circulation gas for heating the circulation gas in the vessel 10, it is possible to suppress waste heat from being exhausted out of the system, and as a result, the efficiency of the plant can be improved.

回収する熱量の調整は、熱回収器5と再生器10との間に配設された循環水系統51を流れる循環水の流量を調整することにより実施できる。循環水系統51を流れる循環水流量を多くすれば熱回収器5で排ガスから回収する熱量は多くなり、再熱器10での排ガスへの加熱量も多くなる。   The amount of heat to be recovered can be adjusted by adjusting the flow rate of the circulating water flowing through the circulating water system 51 disposed between the heat recovery unit 5 and the regenerator 10. If the flow rate of circulating water flowing through the circulating water system 51 is increased, the amount of heat recovered from the exhaust gas by the heat recovery device 5 increases, and the amount of heating of the exhaust gas by the reheater 10 also increases.

再熱器10には、冷却除湿装置8を通過した排ガスが排ガス系統41から分岐した循環ガス系統43を通じて導入される。冷却除湿装置8を通過して冷却された排ガスは水分が飽和状態にあるため、循環ガス系統43の配管内壁に温度が低い箇所があると、そこで水蒸気が凝縮して水滴が付着する。配管内壁に付着した水滴は、配管材料の腐食進行のポテンシャルを高める。   Exhaust gas that has passed through the cooling and dehumidifying device 8 is introduced into the reheater 10 through a circulation gas system 43 branched from the exhaust gas system 41. Since the exhaust gas cooled by passing through the cooling and dehumidifying device 8 is saturated with moisture, if there is a place with a low temperature on the inner wall of the piping of the circulating gas system 43, the water vapor condenses there and water droplets adhere. Water droplets adhering to the inner wall of the pipe increase the potential for corrosion progression of the pipe material.

そこで、本実施例の酸素燃焼ボイラ1では、循環ガス系統43の配管内壁への循環ガス系統43の配管内壁に水滴が付着することによる配管材料の腐食を抑制するために、前記再熱器10によって循環ガス系統43を流れる排ガスを加熱してガスの温度を上昇させているので、排ガス中の水蒸気の凝縮を防ぐことができ、この結果、循環ガス系統43の配管の腐食を抑制することが可能となる。   Therefore, in the oxyfuel boiler 1 of the present embodiment, the reheater 10 is used to suppress corrosion of the piping material due to water droplets adhering to the inner wall of the circulating gas system 43 to the inner wall of the circulating gas system 43. Since the exhaust gas flowing through the circulation gas system 43 is heated to increase the gas temperature, condensation of water vapor in the exhaust gas can be prevented, and as a result, corrosion of the piping of the circulation gas system 43 can be suppressed. It becomes possible.

脱硝装置7を冷却除湿装置8の上流側に設置するのが適切である理由は、脱硝装置7の出口は水分が多いので、この脱硝装置7の下流側に設置した冷却除湿装置8によって該脱硝装置7から排出される水分をなるべく多く除去できることが好ましいことによる。この結果、循環ガス系統43の腐食を確実に防止することが可能となる。   The reason why it is appropriate to install the denitration device 7 on the upstream side of the cooling and dehumidifying device 8 is that the outlet of the denitration device 7 has a large amount of water. This is because it is preferable to remove as much water as possible from the device 7. As a result, corrosion of the circulating gas system 43 can be reliably prevented.

上述した本発明の実施例の酸素燃焼ボイラによれば、除湿した排ガスを循環するドライリサイクル方式の酸素燃焼ボイラにおいて、脱硫装置によって脱硫処理が施され、除湿装置によって除湿された排ガスを循環する場合に、除湿装置後の水分が飽和状態にある排ガスを加熱することにより、排ガス中の水蒸気が凝縮することにより配管内壁に水滴が付着するのを抑制できる。   According to the oxyfuel boiler of the embodiment of the present invention described above, in the dry recycling type oxyfuel boiler that circulates the dehumidified exhaust gas, when the desulfurization treatment is performed by the desulfurizer and the exhaust gas dehumidified by the dehumidifier is circulated. Furthermore, by heating the exhaust gas in which the moisture after the dehumidifier is saturated, it is possible to suppress water droplets from adhering to the inner wall of the pipe due to condensation of water vapor in the exhaust gas.

さらに、排ガスを加熱するための熱源として、脱硫装置の上流に設置した熱回収器を用いて排ガスから回収した熱を利用することにより、脱硫装置での系外へ排出される熱損失を抑制することができ、プラントの効率を向上させることができる。   Furthermore, by using the heat recovered from the exhaust gas using a heat recovery device installed upstream of the desulfurization device as a heat source for heating the exhaust gas, the heat loss discharged outside the system in the desulfurization device is suppressed. And the efficiency of the plant can be improved.

以上説明したように、本実施例によれば、除湿後の排ガスを循環するドライリサイクル方式の酸素燃焼ボイラにおいて、ボイラへ循環する排ガスから硫黄酸化物を取り除き、循環ガス配管内壁への水滴の付着を防止して腐食の進行を抑制すると共に、熱損失を低減してプラント効率を増加させることが可能な酸素燃焼ボイラを実現できる。   As described above, according to the present embodiment, in a dry recycling type oxyfuel boiler that circulates exhaust gas after dehumidification, sulfur oxide is removed from the exhaust gas that circulates to the boiler, and water droplets adhere to the inner wall of the circulating gas pipe. It is possible to realize an oxyfuel boiler that can suppress the progress of corrosion and reduce heat loss and increase plant efficiency.

本発明は石炭火力発電プラントのCO回収に好適な酸素燃焼ボイラに適用できる。 The present invention can be applied to an oxyfuel boiler suitable for CO 2 recovery of a coal-fired power plant.

1:酸素燃焼ボイラ、2:ミル、3:脱硝装置、4:ガス予熱器、5:熱回収器、6:集塵装置、7:脱硫装置、8:冷却除湿装置、9:CO液化装置、10:再熱器、11:空気分離機、21:排ガス出口、22:分岐点、41:排ガス系統、42:回収ガス系統、43:循環ガス系統、44:酸素供給系統、45:一次供給ガス系統、46:二次供給ガス系統、47:燃料ガス系統、51:循環水系統。 1: oxyfuel combustion boiler, 2: Mill, 3: denitration unit, 4: Gas preheater, 5: heat recovery unit, 6: dust collector, 7: desulfurizer, 8: cooling dehumidifier, 9: CO 2 liquefier 10: Reheater, 11: Air separator, 21: Exhaust gas outlet, 22: Branch point, 41: Exhaust gas system, 42: Recovery gas system, 43: Circulating gas system, 44: Oxygen supply system, 45: Primary supply Gas system, 46: secondary supply gas system, 47: fuel gas system, 51: circulating water system.

Claims (2)

空気から分離した酸素と、燃料の石炭を燃焼して蒸気需要設備に供給する蒸気を発生させたボイラから排出された排ガスから分岐した排ガスの一部とを混合し、石炭を燃焼させる支燃ガスとして該ボイラに供給するように構成した酸素燃焼ボイラにおいて、
前記ボイラから排出された排ガスを流下させるように配設された排ガス系統のうち、該ボイラの排ガス用出口と該ボイラへ排ガスの一部を循環させるために該排ガス系統から排ガスの一部を分岐させる分岐点との間の領域に、排ガスから熱を回収する熱回収器と、該熱回収器の下流側に排ガスの煤塵を除去する集塵装置と、該集塵装置の下流側に排ガスの硫黄酸化物を除去する脱硫装置と、該脱硫装置の下流側に排ガスの水分を除去する冷却除湿装置を順次設置し、
前記排ガス系統の該分岐点から分岐した排ガスの一部を該ボイラに循環して供給する排ガス循環系統を配設し、
前記排ガス循環系統に排ガスを加熱する再熱器を設置し
前記熱回収器と再熱器との間に循環水を循環させる循環水系統を配設し、この循環水系統を流れる循環水の流量を調節することによって熱回収器で排ガスから回収する熱量を制御することを特徴とする酸素燃焼ボイラ。
Combustion gas that burns coal by mixing oxygen separated from air and part of the exhaust gas branched from the exhaust gas discharged from the boiler that generated the steam that burns the fuel coal and supplies it to the steam demand facility As an oxyfuel boiler configured to supply the boiler as
Of the exhaust gas system arranged to flow down the exhaust gas discharged from the boiler, a part of the exhaust gas is branched from the exhaust gas system in order to circulate a part of the exhaust gas to the boiler exhaust gas outlet and the boiler A heat recovery device that recovers heat from the exhaust gas, a dust collector that removes dust from the exhaust gas downstream of the heat recovery device, and a downstream of the dust collector. A desulfurization device that removes sulfur oxides and a cooling and dehumidification device that removes moisture from the exhaust gas are sequentially installed downstream of the desulfurization device.
An exhaust gas circulation system that circulates and supplies a part of the exhaust gas branched from the branch point of the exhaust gas system to the boiler is disposed,
A reheater for heating the exhaust gas is installed in the exhaust gas circulation system ,
A circulating water system for circulating circulating water is arranged between the heat recovery unit and the reheater, and the amount of heat recovered from the exhaust gas by the heat recovery unit is adjusted by adjusting the flow rate of the circulating water flowing through the circulating water system. An oxyfuel boiler characterized by being controlled .
請求項1に記載の酸素燃焼ボイラにおいて、
前記熱回収器と前記再熱器との間に、排ガスとの伝熱を行う媒体として水を循環させる
循環水系統を配設したことを特徴とする酸素燃焼ボイラ。
In the oxyfuel boiler according to claim 1,
An oxyfuel boiler characterized in that a circulating water system for circulating water as a medium for transferring heat with exhaust gas is disposed between the heat recovery unit and the reheater.
JP2010205243A 2010-09-14 2010-09-14 Oxyfuel boiler Active JP5432098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010205243A JP5432098B2 (en) 2010-09-14 2010-09-14 Oxyfuel boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010205243A JP5432098B2 (en) 2010-09-14 2010-09-14 Oxyfuel boiler

Publications (2)

Publication Number Publication Date
JP2012063041A JP2012063041A (en) 2012-03-29
JP5432098B2 true JP5432098B2 (en) 2014-03-05

Family

ID=46058938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010205243A Active JP5432098B2 (en) 2010-09-14 2010-09-14 Oxyfuel boiler

Country Status (1)

Country Link
JP (1) JP5432098B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101652164B1 (en) * 2014-07-10 2016-09-09 주식회사 포스코건설 Particles pre-treatment process device of boiler and exhausting gas treatment method of heating power station using the same
CN108469032B (en) * 2018-04-17 2023-11-03 山东大学 White smoke plume eliminating system and method based on smoke recycling technology
KR102166989B1 (en) * 2018-10-17 2020-10-16 한국생산기술연구원 Phosphorus recovery system in pressurized oxygen combustion ash
CN114538751B (en) * 2020-11-25 2023-12-19 上海源晗能源技术有限公司 Nitrogen-free gas glass kiln oxygen+CO 2 Method, system and device for circulating combustion
JP2023062584A (en) * 2021-10-21 2023-05-08 三菱重工業株式会社 CO2 recovery system and CO2 recovery method
CN116899353B (en) * 2023-09-14 2023-12-05 广州松和环保科技股份有限公司 High-temperature flue gas purifying device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5840404A (en) * 1981-09-04 1983-03-09 バブコツク日立株式会社 Economizer having air preheating function
JP4644725B2 (en) * 2008-05-07 2011-03-02 株式会社日立製作所 Oxy-combustion boiler system, pulverized-coal-fired boiler remodeling method, oxy-combustion boiler system control device
JP5350996B2 (en) * 2009-11-25 2013-11-27 バブコック日立株式会社 Oxygen combustion system exhaust gas treatment equipment

Also Published As

Publication number Publication date
JP2012063041A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
ES2602428T3 (en) Oxy-fuel combustion with integrated pollution control
JP4644725B2 (en) Oxy-combustion boiler system, pulverized-coal-fired boiler remodeling method, oxy-combustion boiler system control device
JP5432098B2 (en) Oxyfuel boiler
AU2013248181B2 (en) A method of treating a carbon dioxide rich flue gas and a flue gas treatment system
JP3068888B2 (en) Combustion apparatus and operation method thereof
CA2824740C (en) Combustion exhaust gas treatment system and method of treating combustion exhaust gas
JP5448858B2 (en) Oxy-combustion power plant and its operation method
WO2011152552A1 (en) Exhaust gas treatment system and method
JP5976812B2 (en) Exhaust gas treatment system
WO2012035777A1 (en) Combustion plant
US8802043B2 (en) Method for controlling acidic compounds produced for oxy-combustion processes
KR102021983B1 (en) Integrated condenser capable of recovering latent heat and removing pollutants of exhaust gas and power generation system using pressurized oxygen combustion comprising the same
JP5377371B2 (en) Oxy-combustion coal-fired power generation system
JP6173734B2 (en) Exhaust gas treatment system
WO2014038412A1 (en) Heat recovery system and heat recovery method
EP2584256B1 (en) Oxygen preheating in oxyfuel combustion system
JP6796140B2 (en) Carbon dioxide capture system, thermal power generation equipment, and carbon dioxide capture method
JP5944042B2 (en) Exhaust gas treatment system and exhaust gas treatment method
JP2012137269A (en) Coal fired power generation plant and method of controlling the same
Wu et al. Technology options for clean coal power generation with CO2 capture
JP2014059104A (en) Oxyfuel combustion boiler system
KR101695497B1 (en) Method for improving efficiency of oxy fuel combustion power generation system
JP2010127605A (en) Boiler plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5432098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250