JP4771865B2 - Furnace bed temperature and bed height management method associated with coal type switching in a fluidized bed boiler - Google Patents

Furnace bed temperature and bed height management method associated with coal type switching in a fluidized bed boiler Download PDF

Info

Publication number
JP4771865B2
JP4771865B2 JP2006153184A JP2006153184A JP4771865B2 JP 4771865 B2 JP4771865 B2 JP 4771865B2 JP 2006153184 A JP2006153184 A JP 2006153184A JP 2006153184 A JP2006153184 A JP 2006153184A JP 4771865 B2 JP4771865 B2 JP 4771865B2
Authority
JP
Japan
Prior art keywords
bed
furnace
temperature
height
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006153184A
Other languages
Japanese (ja)
Other versions
JP2007322070A (en
Inventor
充弘 櫻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2006153184A priority Critical patent/JP4771865B2/en
Publication of JP2007322070A publication Critical patent/JP2007322070A/en
Application granted granted Critical
Publication of JP4771865B2 publication Critical patent/JP4771865B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

本発明は、流動床ボイラにおける炭種切替に伴う火炉層温・層高管理方法に関し、特に炭種切替に伴い火炉の層温・層高が変化した場合に、迅速かつ的確な対応操作を行うことにより、流動床ボイラを安定して運転することが可能な技術に関する。   The present invention relates to a furnace bed temperature / bed height management method associated with coal type switching in a fluidized bed boiler, and in particular, when a layer temperature / bed height of a furnace changes due to coal type switching, a quick and accurate operation is performed. The present invention relates to a technique that can stably operate a fluidized bed boiler.

流動床ボイラの一種である加圧流動床ボイラは、コンプレッサからの燃焼空気でボイラ内を加圧状態に保ちながら、石灰石を流動媒体(BM:ベッドマテリアル)とする流動層内にCWP(Coal Water Paste:石炭と石灰石と水とを混ぜた燃料)を投入することにより、CWPを燃焼させるようにしたボイラである。   A pressurized fluidized bed boiler, which is a type of fluidized bed boiler, is a CWP (Coal Water) in a fluidized bed using limestone as a fluidized medium (BM: bed material) while keeping the boiler pressurized with combustion air from a compressor. Paste: a boiler in which CWP is burned by introducing a fuel (a mixture of coal, limestone and water).

従来、このような加圧流動床ボイラを備えた火力発電所等では、環境に対する負荷を極力軽減するとともにエネルギー効率を高めて安定した操業を行うため、複数種類の原料炭を切り替えながら使用している。この際、原料炭の炭種毎に、含水量、発熱量、含有成分等が異なるため、加圧流動床ボイラへ供給される原料炭の炭種に応じて加圧流動床ボイラの運転を適切に管理する必要があった。   Conventionally, in a thermal power plant equipped with such a pressurized fluidized bed boiler, in order to reduce the environmental load as much as possible and to increase the energy efficiency and perform stable operation, it is necessary to use multiple types of coking coal while switching. Yes. At this time, since the water content, calorific value, contained components, etc. are different for each coal type of the raw coal, the operation of the pressurized fluidized bed boiler is appropriate depending on the coal type of the raw coal supplied to the pressurized fluidized bed boiler. There was a need to manage.

このような炭種管理方法として「バンカへの石炭供給方法および装置」(特開平8−258960号公報:特許文献1)に、異なる種類の石炭を混合させて燃料として使用する場合に、予め混炭ホッパで異なる種類の石炭を混合する工程をなくすことにより、省力化を図るようにした技術が開示されている。   As such a coal type management method, when a different type of coal is used as a fuel by mixing it with “a method and apparatus for supplying coal to a bunker” (Japanese Patent Laid-Open No. 8-258960: Patent Document 1), a mixed coal is previously used. There has been disclosed a technique for saving labor by eliminating the step of mixing different types of coal in a hopper.

この特許文献1に記載された「バンカへの石炭供給方法および装置」は、バンカユニットに石炭を供給するにあたって、複数系統設けたコンベアからそれぞれ異種類の石炭を予め定めた比率でバンカ別に供給し、各バンカからボイラへ投入する時点で総合的に燃料石炭を所定比率に混合することにより、混炭ホッパで石炭を混合する工程を省略するものである。   The “coal supply method and apparatus to a bunker” described in Patent Document 1 supplies different types of coal to bunker units at a predetermined ratio from a conveyor provided in a plurality of systems when supplying coal to a bunker unit. The process of mixing the coal in the coal hopper is omitted by comprehensively mixing the fuel coal at a predetermined ratio when the bunker is introduced into the boiler.

特開平8−258960号公報JP-A-8-258960

ところで、加圧流動床ボイラへ供給する炭種が切り替わると、層温および層高が変化することが知られている。そして、炭種切替に伴い層温および層高が変化した場合には、安定した操業を行うために、層温および層高が適切な管理値となるような対応操作を行う必要があった。   By the way, it is known that the bed temperature and bed height change when the type of coal supplied to the pressurized fluidized bed boiler is switched. And when layer temperature and bed height changed with coal type change, in order to perform stable operation, it was necessary to perform corresponding operation that bed temperature and bed height become suitable management values.

従来、層温および層高を適切な管理値とするための対応操作に明確な基準はなく、熟練したオペレータの経験と勘に頼っている面があった。すなわち、炭種切替時に安定した操業を行うための監視項目および対応操作はオペレータにより異なることがあった。このようにオペレータ毎に異なった対応操作を行ったとしても、結果的に安定した操業を行うことができるが、さらに一層安定した操業を行うために、明確な基準を定めることが望まれていた。また、明確な基準に基づかずにオペレータの経験と勘に頼って操業を行った場合には、オペレータの監視負担や対応操作負担が増加するという問題があった。   Conventionally, there is no clear standard for the corresponding operation for setting the layer temperature and the layer height to appropriate control values, and there is an aspect that relies on the experience and intuition of a skilled operator. That is, monitoring items and corresponding operations for performing stable operation at the time of coal type switching may differ depending on the operator. As described above, even if different handling operations are performed for each operator, stable operation can be performed as a result, but in order to perform even more stable operation, it was desired to set a clear standard. . In addition, when the operation is performed based on the experience and intuition of the operator without being based on a clear standard, there is a problem that the monitoring burden on the operator and the corresponding operation burden increase.

なお、上記特許文献1に記載された「バンカへの石炭供給方法および装置」は、複数の炭種を混合して使用する際の省力化を目的としたものであるが、安定操業を行うための明確な基準については何ら言及されていない。   In addition, although the "coal supply method and apparatus to a bunker" described in the said patent document 1 aims at labor-saving at the time of mixing and using a some coal type, in order to perform a stable operation There is no mention of any clear criteria.

本発明は、上述した事情に鑑み提案されたもので、流動床ボイラにおいて投入する原料炭の種類を切り替えた際に、該流動床ボイラの層温・層高の管理基準を明確なものとすることにより、迅速かつ適切な対応操作を行って安定した操業を図ることができるとともに、オペレータの負担を軽減することが可能な流動床ボイラにおける炭種切替に伴う火炉層温・層高管理方法を提供することを目的とする。   The present invention has been proposed in view of the above-described circumstances, and when the type of raw coal to be charged in a fluidized bed boiler is switched, the management standards for the bed temperature and bed height of the fluidized bed boiler are clarified. A furnace bed temperature and bed height management method that accompanies the change of coal type in a fluidized bed boiler that can reduce the burden on the operator as well as being able to perform stable and prompt operations by responding quickly and appropriately. The purpose is to provide.

本発明に係る流動床ボイラにおける炭種切替に伴う火炉層温・層高管理方法は、上述した目的を達成するため、以下の特徴点を備えている。
すなわち、本発明に係る流動床ボイラにおける炭種切替に伴う火炉層温・層高管理方法は、流動床ボイラにおいて投入する原料炭の種類を切り替えた際に、該流動床ボイラの火炉層温・層高を適切に管理するための方法であって、火炉層温の状態を判断するステップと、層高の状態を判断するステップと、層温および層高の状態判断に基づいて、層温および層高を適切な値に修正するステップと、前記層温および層高を適切な値に修正するステップは、層温が上昇するとともに層高が低下した場合に、火炉内へ流動媒体を供給することにより層温および層高を適切な値とするステップと、層温が上昇するとともに層高が低下しない場合に、火炉に供給する石灰石と石炭とを混合する際に石灰石の割合を上昇させることにより層温および層高を適切な値とするステップと、層温が低下するとともに層高が上昇した場合に、火炉内から流動媒体を抜き出すことにより層温および層高を適切な値とするステップと、層温が低下するとともに層高が上昇しない場合に、火炉に供給する石灰石と石炭とを混合する際に石灰石の割合を減少させることにより層温および層高を適切な値とするステップと、を含むことを特徴とする。
In order to achieve the above-described object, the furnace bed temperature / bed height management method accompanying the coal type switching in the fluidized bed boiler according to the present invention has the following features.
That is, the furnace bed temperature / bed height management method associated with the coal type switching in the fluidized bed boiler according to the present invention is the method of switching the type of raw coal supplied to the fluidized bed boiler, A method for appropriately controlling the bed height, the step of determining the state of the furnace bed temperature, the step of judging the state of the bed height, and the bed temperature and The step of correcting the bed height to an appropriate value and the step of correcting the bed temperature and the bed height to appropriate values supply a fluid medium into the furnace when the bed temperature increases and the bed height decreases. To increase the ratio of limestone when mixing the limestone supplied to the furnace and coal when the layer temperature rises and the layer height does not decrease To increase the layer temperature and height When the layer temperature decreases and the layer height rises, the step of setting the layer temperature and the layer height to appropriate values by extracting the fluid medium from the furnace, and the layer temperature decreases. When the bed height does not rise, the step of setting the bed temperature and bed height to appropriate values by reducing the proportion of limestone when mixing the limestone and coal supplied to the furnace is characterized in that .

本発明に係る流動床ボイラにおける炭種切替に伴う火炉層温・層高管理方法は、火炉層温および層高の状態を判断し、判断結果に基づいて所定の操作を行うことを規定して、層温および層高を適切な値に修正することにより、流動床ボイラの層温・層高の管理基準が明確なものとなる。したがって、流動床ボイラにおける炭種切替に応じて、迅速かつ適切な対応操作を行って安定した操業を図ることができるとともに、オペレータの負担を軽減することができる。   The furnace bed temperature / bed height management method associated with the coal type switching in the fluidized bed boiler according to the present invention specifies that the state of the furnace bed temperature and bed height is determined, and that a predetermined operation is performed based on the determination result. By adjusting the bed temperature and bed height to appropriate values, the management standards for bed temperature and bed height of the fluidized bed boiler become clear. Therefore, according to the coal type switching in the fluidized bed boiler, it is possible to perform a prompt and appropriate response operation to achieve stable operation, and to reduce the burden on the operator.

以下、図面を参照して、本発明に係る流動床ボイラにおける炭種切替に伴う火炉層温・層高管理方法の実施形態を説明する。
本発明の実施形態に係る流動床ボイラにおける炭種切替に伴う火炉層温・層高管理方法は、例えば、加圧流動床複合発電方式(PFBC:Pressurized Fluidized Bed Combustion)を採用した発電プラントに適用される。
Hereinafter, an embodiment of a furnace bed temperature / bed height management method associated with coal type switching in a fluidized bed boiler according to the present invention will be described with reference to the drawings.
The furnace bed temperature / bed height management method associated with the coal type switching in the fluidized bed boiler according to the embodiment of the present invention is applied to, for example, a power plant adopting a pressurized fluidized bed combined power generation (PFBC) system. Is done.

この発電プラントは、コンプレッサからの燃焼空気でボイラ内を加圧状態に保ちながら、石灰石を流動媒体(BM:ベッドマテリアル)とする流動層内にCWP(Coal Water Paste:石炭と石灰石と水とを混ぜた燃料)を投入することにより、CWPを効率よく燃焼させることができる。また、流動媒体に石灰石を採用することにより火炉内で脱硫することができるので、硫黄酸化物(SOx)の発生を低く抑えることができる。さらに、流動層燃焼は、燃焼温度が低く抑えられる(約870℃)ため、窒素酸化物(NOx)の発生を低く抑えることができる。   In this power plant, CWP (Coal Water Paste: coal, limestone, and water) is placed in a fluidized bed using limestone as a fluid medium (BM: bed material) while the boiler is kept pressurized with combustion air from the compressor. CWP can be burned efficiently by introducing the mixed fuel). Moreover, since it can desulfurize in a furnace by employ | adopting limestone as a fluid medium, generation | occurrence | production of sulfur oxide (SOx) can be suppressed low. Furthermore, in fluidized bed combustion, the combustion temperature is kept low (about 870 ° C.), so that the generation of nitrogen oxides (NOx) can be kept low.

<加圧流動床ボイラを備えた発電プラント>
図2は、本発明の実施形態に係る流動床ボイラにおける炭種切替に伴う火炉層温・層高管理方法を適用する発電プラントの概略構成を示す模式図である。
本実施形態に係る流動床ボイラにおける炭種切替に伴う火炉層温・層高管理方法を適用する発電プラントは、図2に示すように、2つのボイラ10,20を備えており、ボイラ10,20の火炉11,21内にCWPを投入して燃焼させ、熱交換により発生した蒸気を高圧タービン31、中圧タービン32、および低圧タービン33に導いて各タービンを回転させることにより、発電機41を駆動して電力を発生させる。低圧タービン33を回転させた後の蒸気は、復水器50により復水され、再びボイラ10,20内へ導かれる。
<Power plant with pressurized fluidized bed boiler>
FIG. 2 is a schematic diagram showing a schematic configuration of a power plant to which a furnace bed temperature / bed height management method according to coal type switching in a fluidized bed boiler according to an embodiment of the present invention is applied.
As shown in FIG. 2, the power plant that applies the furnace bed temperature / bed height management method associated with the coal type switching in the fluidized bed boiler according to this embodiment includes two boilers 10, 20. CWP is introduced into 20 furnaces 11 and 21 and burned, and steam generated by heat exchange is guided to the high-pressure turbine 31, the intermediate-pressure turbine 32, and the low-pressure turbine 33 to rotate the turbines, thereby generating the generator 41 To generate electric power. The steam after rotating the low-pressure turbine 33 is condensed by the condenser 50 and guided again into the boilers 10 and 20.

また、ボイラ10,20内で発生した高圧ガスをガスタービン34に導いてガスタービン34を回転させることにより、発電機42を駆動して電力を発生させる。さらに、高圧ガスは、ガスタービン34に同軸に連結されたコンプレッサ35を駆動して、燃焼空気をボイラ10,20へ供給するようになっている。   The high pressure gas generated in the boilers 10 and 20 is guided to the gas turbine 34 to rotate the gas turbine 34, thereby driving the generator 42 to generate electric power. Further, the high pressure gas drives a compressor 35 connected coaxially to the gas turbine 34 to supply combustion air to the boilers 10 and 20.

ボイラ10,20へ燃料を供給する燃料供給系統は、石炭を供給する石炭ホッパ61と、石炭ホッパ61から供給される石炭を粗粉砕する粗粉砕機62と、粗粉砕機62で粉砕された石炭粉を分級する分級機63と、分級機63で分級された石炭粉を中継する中継ホッパ64と、粗粉砕機62で粉砕された石炭粉に水を混入しながらさらに粉砕する微粉砕機65と、石灰石を供給する石灰石ホッパ66と、水、粗粉砕機62で粉砕された石炭粉、微粉砕機65で水を混入しながら粉砕された石炭ペースト、および石灰石を混練する混練機67と、混練機67で混練されたCWPを一時貯留する燃料タンク68と、燃料タンク68から火炉11,21内へCWPを送出する燃料ポンプ69とを備えている。   The fuel supply system that supplies fuel to the boilers 10 and 20 includes a coal hopper 61 that supplies coal, a coarse pulverizer 62 that roughly pulverizes the coal supplied from the coal hopper 61, and coal pulverized by the coarse pulverizer 62. A classifier 63 for classifying the powder, a relay hopper 64 for relaying the coal powder classified by the classifier 63, and a fine pulverizer 65 for further pulverizing the coal powder pulverized by the coarse pulverizer 62 while mixing water. A limestone hopper 66 for supplying limestone, a kneader 67 for kneading water, coal powder pulverized by the coarse pulverizer 62, coal paste pulverized while mixing water by the fine pulverizer 65, and limestone; A fuel tank 68 for temporarily storing the CWP kneaded by the machine 67 and a fuel pump 69 for sending the CWP from the fuel tank 68 into the furnaces 11 and 21 are provided.

2機のボイラ10,20は、それぞれ圧力容器12,22と、圧力容器12,22内に収容された火炉11,21とを備えており、火炉11,21内には水・蒸気管71が挿通されている。復水器50からの水・蒸気管71は、まずB火炉21内に導かれ、続いてA火炉11内へ導かれて熱交換が行われ、汽水分離器72へ導かれて蒸気と水とが分離される。汽水分離器72からの水・蒸気管71は、A火炉11、B火炉21、A火炉11の順で引き回された後、高圧タービン31へ導かれる。   The two boilers 10 and 20 include pressure vessels 12 and 22 and furnaces 11 and 21 accommodated in the pressure vessels 12 and 22, respectively, and a water / steam pipe 71 is provided in the furnaces 11 and 21. It is inserted. The water / steam pipe 71 from the condenser 50 is first led into the B furnace 21 and then into the A furnace 11 for heat exchange, and is led to the brackish water separator 72 for steam and water. Are separated. The water / steam pipe 71 from the brackish water separator 72 is led in the order of the A furnace 11, the B furnace 21, and the A furnace 11, and then led to the high pressure turbine 31.

高圧タービン31は、水・蒸気管71から供給される蒸気により回転する。高圧タービン31を回転させた後の蒸気は、再びB火炉21に導かれて再熱され、中圧タービン32に導かれて中圧タービン32を回転させ、さらに低圧タービン33に導かれて低圧タービン33を回転させる。高圧タービン31、中圧タービン32、および低圧タービン33には、同軸に発電機41が接続されており、各タービン31,32,33が回転することにより発電機41が駆動されて発電が行われる。   The high-pressure turbine 31 is rotated by the steam supplied from the water / steam pipe 71. The steam after rotating the high-pressure turbine 31 is guided again to the B furnace 21 and reheated, guided to the intermediate-pressure turbine 32 to rotate the intermediate-pressure turbine 32, and further guided to the low-pressure turbine 33 to be low-pressure turbine. 33 is rotated. A generator 41 is coaxially connected to the high-pressure turbine 31, the intermediate-pressure turbine 32, and the low-pressure turbine 33, and the generator 41 is driven by the rotation of the turbines 31, 32, and 33 to generate power. .

低圧タービン33を回転させた蒸気は、復水器50に導かれて復水される。復水器50内には、冷却水配管51が配設されている。この冷却水配管51には、深層取水した海水が導かれ、この海水は復水器50内で熱交換を行った後に、再び海中に放流される。   The steam that has rotated the low-pressure turbine 33 is led to the condenser 50 to be condensed. A cooling water pipe 51 is disposed in the condenser 50. The cooling water pipe 51 is guided by deep-sea water, and the sea water is subjected to heat exchange in the condenser 50 and then discharged again into the sea.

復水器50の下流側には、復水ポンプ73、第1給水加熱器74a、第2給水加熱器74b、第3給水加熱器74c、脱気器75、給水ポンプ76、第5給水加熱器74d、第6給水加熱器74eが配設されており、復水の加熱および脱気を行うようになっている。また、復水器50とボイラ20との間の復水給水配管77は、後に詳述する排ガス系統に設けられた2つの排熱回収熱交換器91,93を通過し、排ガスとの間で熱交換を行うようになっている。   On the downstream side of the condenser 50, a condensate pump 73, a first feed water heater 74a, a second feed water heater 74b, a third feed water heater 74c, a deaerator 75, a feed pump 76, and a fifth feed water heater. 74d and the 6th feed water heater 74e are arrange | positioned, and the condensate is heated and deaerated. A condensate water supply pipe 77 between the condenser 50 and the boiler 20 passes through two exhaust heat recovery heat exchangers 91 and 93 provided in an exhaust gas system, which will be described in detail later. Heat exchange is performed.

A火炉11およびB火炉21の上部には排ガス配管81が接続されており、各火炉11,21内で発生した高圧ガスをガスタービン34へ供給するようになっている。また、各火炉11,21とガスタービン34との間には、脱硝を行うための無触媒脱硝装置82a,82b、煤塵を除去するための1次サイクロン83a,83bおよび2次サイクロン84a,84bが配設されている。なお、1次サイクロン83a,83bおよび2次サイクロン84a,84bで収集した煤塵は、灰クーラ85a,85b,86a,86bを経て灰処理装置へ送出される。   An exhaust gas pipe 81 is connected to the upper part of the A furnace 11 and the B furnace 21, and the high pressure gas generated in each of the furnaces 11 and 21 is supplied to the gas turbine 34. Further, between each furnace 11, 21 and the gas turbine 34, there are non-catalytic denitration devices 82a, 82b for performing denitration, primary cyclones 83a, 83b and secondary cyclones 84a, 84b for removing dust. It is arranged. The dust collected by the primary cyclones 83a and 83b and the secondary cyclones 84a and 84b is sent to the ash treatment apparatus via the ash coolers 85a, 85b, 86a, and 86b.

ガスタービン34には、発電機42およびコンプレッサ35が同軸に接続されており、ガスタービン34が回転することにより、発電機42を駆動して発電を行うとともに、コンプレッサ35を駆動して燃焼空気をボイラ10,20内へ送り込むようになっている。
コンプレッサ35には、プラント起動時にコンプレッサ35を駆動してボイラ10,20へ燃焼空気を送るための起動用モータ43が取り付けられている。
ガスタービン34を回転させた後の排ガスは、第1の排熱回収熱交換器91、脱硝を行うための脱硝装置92、第2の排熱回収熱交換器93、バグフィルタ94を経て、煙突95より大気中へ放散される。
A generator 42 and a compressor 35 are coaxially connected to the gas turbine 34. When the gas turbine 34 rotates, the generator 42 is driven to generate power, and the compressor 35 is driven to generate combustion air. It feeds into the boilers 10 and 20.
A starter motor 43 for driving the compressor 35 and sending combustion air to the boilers 10 and 20 when the plant is started is attached to the compressor 35.
The exhaust gas after rotating the gas turbine 34 passes through a first exhaust heat recovery heat exchanger 91, a denitration device 92 for performing denitration, a second exhaust heat recovery heat exchanger 93, and a bag filter 94, and then a chimney. 95 is released into the atmosphere.

A火炉11およびB火炉21には、循環するBMを一時貯留するためのBMタンク13,23が連通接続されている。なお、図2に示す例では、BMタンク13,23を各ボイラ10,20毎に1機ずつ設けているが、BMタンク13,23を各ボイラ10,20毎に2機ずつ設けてもよい。また、各ボイラ10,20の上部には非常用温水タンク14が配設されている。この非常用温水タンク14は、ボイラ給水系統が停止した際に、ボイラ10,20内の残燃料が燃焼することにより水壁管等が損傷することを防止するための装置で、水頭圧によりボイラ10,20へ給水するようになっている。   BM tanks 13 and 23 for temporarily storing BM to be circulated are connected to A furnace 11 and B furnace 21 in communication. In the example shown in FIG. 2, one BM tank 13, 23 is provided for each boiler 10, 20, but two BM tanks 13, 23 may be provided for each boiler 10, 20. . Further, an emergency hot water tank 14 is disposed above each of the boilers 10 and 20. This emergency hot water tank 14 is a device for preventing water wall pipes and the like from being damaged by combustion of residual fuel in the boilers 10 and 20 when the boiler water supply system is stopped. Water is supplied to 10 and 20.

A火炉11およびB火炉21の下部には、各火炉11,21内に析出した塵芥を回収するための塵芥回収管101が接続されており、回収された塵芥は灰クーラ102,103を経て灰処理装置へ送出される。また、A火炉11およびB火炉21には、ボイラ10,20の起動時等に各火炉11,21内を加熱するための軽油が供給されるようになっている。   The lower part of the A furnace 11 and the B furnace 21 is connected to a dust recovery pipe 101 for recovering the dust deposited in each of the furnaces 11, 21. It is sent to the processing device. The A furnace 11 and the B furnace 21 are supplied with light oil for heating the furnaces 11 and 21 when the boilers 10 and 20 are started.

<火炉層温・層高管理方法>
次に、本発明の実施形態に係る流動床ボイラにおける炭種切替に伴う火炉層温・層高管理方法について説明する。図1は、本発明の実施形態に係る流動床ボイラにおける炭種切替に伴う火炉層温・層高管理方法の手順を示すフローチャートである。
<Furnace layer temperature and height control method>
Next, a furnace bed temperature / bed height management method associated with coal type switching in a fluidized bed boiler according to an embodiment of the present invention will be described. FIG. 1 is a flowchart showing a procedure of a furnace bed temperature / bed height management method associated with coal type switching in a fluidized bed boiler according to an embodiment of the present invention.

図1に示すように、炭種切替に伴って変化する層温・層高を管理するには、まず初めに層温および層高に関する情報を取得する(S1)。そして、層温が管理値(例えば900℃)から上昇しているか否かを判断し(S2)、層温が管理値から上昇している場合には、層高が管理値(例えば4.2m)から低下しているか否かを判断する(S3)。   As shown in FIG. 1, in order to manage the bed temperature and bed height that change with the change of coal type, first, information on the bed temperature and bed height is acquired (S1). Then, it is determined whether or not the layer temperature has risen from a management value (for example, 900 ° C.) (S2). If the layer temperature has risen from the management value, the layer height has a management value (for example, 4.2 m). It is judged whether it has fallen from (S3).

そして、層高が管理値から低下している場合には、BM(ベッドマテリアル)を供給して(S4)、継続監視を行う。一方、層高が管理値から低下していない場合には、L/C(石灰石と石炭との混合比)を所定値(例えば12以下)に変更して(S5)、継続監視を行う。なお、L/Cの変更では、火炉に供給する石灰石と石炭とを混合する際に石灰石の割合を上昇させる。   Then, when the bed height is lower than the management value, BM (bed material) is supplied (S4), and continuous monitoring is performed. On the other hand, when the bed height has not decreased from the control value, L / C (mixing ratio of limestone and coal) is changed to a predetermined value (for example, 12 or less) (S5), and continuous monitoring is performed. In addition, in the change of L / C, when the limestone supplied to a furnace and coal are mixed, the ratio of limestone is raised.

また、層温が管理値(例えば900℃)から上昇していない場合には、層温が管理値(例えば900℃)から低下しているか否かを判断し(S6)、層温が管理値から低下している場合には、層高が管理値(例えば4.2m)から上昇しているか否かを判断する(S7)。   If the layer temperature has not risen from the control value (for example, 900 ° C.), it is determined whether the layer temperature has decreased from the control value (for example, 900 ° C.) (S6). In the case where the height has decreased, it is determined whether or not the bed height has increased from a management value (for example, 4.2 m) (S7).

そして、層高が管理値から上昇している場合には、BM(ベッドマテリアル)を抜き出して(S8)、継続監視を行う。一方、層高が管理値から上昇していない場合には、L/C(石灰石と石炭との混合比)を所定値(例えば12以下)に変更して(S9)、継続監視を行う。なお、L/Cの変更では、火炉に供給する石灰石と石炭とを混合する際に石灰石の割合を減少させる。   Then, when the bed height is rising from the management value, BM (bed material) is extracted (S8), and continuous monitoring is performed. On the other hand, when the bed height has not risen from the control value, L / C (mixing ratio of limestone and coal) is changed to a predetermined value (for example, 12 or less) (S9), and continuous monitoring is performed. In addition, in the change of L / C, when the limestone supplied to a furnace and coal are mixed, the ratio of limestone is reduced.

なお、層温および層高が管理値の範囲内である場合には、適正な運転状態であるため、上述した操作を行うことなく継続監視を行う。   In addition, when the bed temperature and the bed height are within the range of the management value, it is an appropriate operation state, and thus continuous monitoring is performed without performing the above-described operation.

<監視項目>
次に、本実施形態における具体的な監視項目について説明する。
本実施形態では、火炉層温に関して、管理値を900℃以下とし、所定箇所における層温が930℃以上である場合にMFT(メインフューエルトリップ:燃料遮断)を行い、所定箇所における層温が910℃以上である場合に警報を発生する。また、層高に関して、管理値を4.2m以下とする。また、L/Cに関して、管理値を12以下とする。
<Monitor item>
Next, specific monitoring items in the present embodiment will be described.
In the present embodiment, regarding the furnace layer temperature, the control value is set to 900 ° C. or lower, and when the layer temperature at a predetermined location is 930 ° C. or higher, MFT (main fuel trip: fuel cutoff) is performed, and the layer temperature at the predetermined location is 910 An alarm is generated when the temperature is above ℃. In addition, regarding the layer height, the management value is set to 4.2 m or less. Further, regarding L / C, the management value is set to 12 or less.

ここで、層温および層高が安定しない場合には、各火炉に供給する燃料のバイアス値を調整することにより、層温および層高の安定化を図る。また、層温および層高を適切な値とすることができない場合には、加圧流動床ボイラの負荷を低減することにより、層温および層高を適切な値とする。   Here, when the bed temperature and bed height are not stable, the bed temperature and bed height are stabilized by adjusting the bias value of the fuel supplied to each furnace. Further, when the bed temperature and bed height cannot be set to appropriate values, the bed temperature and bed height are set to appropriate values by reducing the load of the pressurized fluidized bed boiler.

なお、層温および層高に関するデータは、火炉に設置された既存の層温計測手段および層高計測手段により取得することができる。また、上述した監視項目における具体的な数値は一例であり、流動床ボイラの規模や運転状況等に応じて適宜変更して実施できることは勿論である。   In addition, the data regarding the bed temperature and bed height can be acquired by the existing bed temperature measurement means and bed height measurement means installed in the furnace. Moreover, the specific numerical value in the monitoring item mentioned above is an example, and of course, it can change and implement suitably according to the scale of the fluidized bed boiler, the operating condition, etc.

本発明に係る流動床ボイラにおける炭種切替に伴う火炉層温・層高管理方法は、例えば、発電プラント等に用いる加圧流動床ボイラにおいて炭種を切り替えることにより層温・層高が変化した場合に、流動床ボイラを安定して運転する際に使用することができる。   The furnace bed temperature / bed height management method associated with the coal type switching in the fluidized bed boiler according to the present invention is such that, for example, the bed temperature / bed height is changed by switching the coal type in a pressurized fluidized bed boiler used in a power plant or the like. In some cases, the fluidized bed boiler can be used when operating stably.

本発明の実施形態に係る流動床ボイラにおける炭種切替に伴う火炉層温・層高管理方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the furnace bed temperature and bed height management method accompanying the coal-type switching in the fluidized bed boiler which concerns on embodiment of this invention. 本発明の実施形態に係る流動床ボイラにおける炭種切替に伴う火炉層温・層高管理方法を適用する発電プラントの概略構成を示す模式図である。It is a mimetic diagram showing a schematic structure of a power plant which applies a furnace bed temperature and bed height management method accompanying coal type change in a fluidized bed boiler concerning an embodiment of the present invention.

符号の説明Explanation of symbols

10,20 ボイラ
11,21 火炉
12,22 圧力容器
13,23 BMタンク
14 非常用温水タンク
31 高圧タービン
32 中圧タービン
33 低圧タービン
34 ガスタービン
35 コンプレッサ
41,42 発電機
43 起動用モータ
50 復水器
51 冷却水配管
61 石炭ホッパ
62 粗粉砕機
63 分級機
64 中継ホッパ
65 微粉砕機
66 石灰石ホッパ
67 混練機
68 燃料タンク
69 燃料ポンプ
71 水・蒸気管
72 汽水分離器
73 復水ポンプ
74a〜74e 給水加熱器
75 脱気器
76 給水ポンプ
77 復水給水配管
81 排ガス配管
82a,82b 無触媒脱硝装置
83a,83b 1次サイクロン
84a,84b 2次サイクロン
85a,85b,86a,86b 灰クーラ
91,93 排熱回収熱交換器
92 脱硝装置
94 バグフィルタ
95 煙突
101 塵芥回収管
102,103 灰クーラ
DESCRIPTION OF SYMBOLS 10,20 Boiler 11,21 Furnace 12,22 Pressure vessel 13,23 BM tank 14 Emergency hot water tank 31 High pressure turbine 32 Medium pressure turbine 33 Low pressure turbine 34 Gas turbine 35 Compressor 41, 42 Generator 43 Start motor 50 Condensate Equipment 51 Cooling water piping 61 Coal hopper 62 Coarse pulverizer 63 Classifier 64 Relay hopper 65 Fine pulverizer 66 Limestone hopper 67 Kneading machine 68 Fuel tank 69 Fuel pump 71 Water / steam pipe 72 Brackish water separator 73 Condensate pumps 74a-74e Feed water heater 75 Deaerator 76 Feed water pump 77 Condensate feed water pipe 81 Exhaust gas pipe 82a, 82b Non-catalytic denitration device 83a, 83b Primary cyclone 84a, 84b Secondary cyclone 85a, 85b, 86a, 86b Ash cooler 91, 93 Exhaust Heat recovery heat exchanger 92 Denitration equipment Device 94 Bag filter 95 Chimney 101 Dust collection tube 102,103 Ash cooler

Claims (1)

流動床ボイラにおいて投入する原料炭の種類を切り替えた際に、該流動床ボイラの火炉層温・層高を適切に管理するための方法であって、
層温の状態を判断するステップと、
層高の状態を判断するステップと、
層温および層高の状態判断に基づいて、層温および層高を適切な値に修正するステップとを有し、
前記層温および層高を適切な値に修正するステップは、
層温が上昇するとともに層高が低下した場合に、火炉内へ流動媒体を供給することにより層温および層高を適切な値とするステップと、
層温が上昇するとともに層高が低下しない場合に、火炉に供給する石灰石と石炭とを混合する際に石灰石の割合を上昇させることにより層温および層高を適切な値とするステップと、
層温が低下するとともに層高が上昇した場合に、火炉内から流動媒体を抜き出すことにより層温および層高を適切な値とするステップと、
層温が低下するとともに層高が上昇しない場合に、火炉に供給する石灰石と石炭とを混合する際に石灰石の割合を減少させることにより層温および層高を適切な値とするステップと、を含むことを特徴とする流動床ボイラにおける炭種切替に伴う火炉層温・層高管理方法。
A method for appropriately managing the furnace bed temperature and bed height of the fluidized bed boiler when the type of coking coal to be charged in the fluidized bed boiler is switched,
Determining the state of the layer temperature;
Determining the height of the building;
Based on the determination of the state of the bed temperature and bed height, and correcting the bed temperature and bed height to appropriate values,
The step of correcting the bed temperature and bed height to appropriate values,
When the bed temperature rises as the bed temperature rises, a step of setting the bed temperature and bed height to appropriate values by supplying a fluid medium into the furnace,
When the layer temperature rises and the layer height does not decrease, the step of setting the layer temperature and the layer height to appropriate values by increasing the proportion of limestone when mixing the limestone and coal supplied to the furnace,
When the bed temperature rises as the bed temperature falls, the step of setting the bed temperature and bed height to appropriate values by extracting the fluid medium from the furnace,
When the bed temperature decreases and the bed height does not rise, the step of setting the bed temperature and bed height to appropriate values by reducing the proportion of limestone when mixing limestone and coal supplied to the furnace, A furnace bed temperature / bed height management method associated with coal type switching in a fluidized bed boiler.
JP2006153184A 2006-06-01 2006-06-01 Furnace bed temperature and bed height management method associated with coal type switching in a fluidized bed boiler Expired - Fee Related JP4771865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006153184A JP4771865B2 (en) 2006-06-01 2006-06-01 Furnace bed temperature and bed height management method associated with coal type switching in a fluidized bed boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006153184A JP4771865B2 (en) 2006-06-01 2006-06-01 Furnace bed temperature and bed height management method associated with coal type switching in a fluidized bed boiler

Publications (2)

Publication Number Publication Date
JP2007322070A JP2007322070A (en) 2007-12-13
JP4771865B2 true JP4771865B2 (en) 2011-09-14

Family

ID=38855046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006153184A Expired - Fee Related JP4771865B2 (en) 2006-06-01 2006-06-01 Furnace bed temperature and bed height management method associated with coal type switching in a fluidized bed boiler

Country Status (1)

Country Link
JP (1) JP4771865B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142734B2 (en) * 2008-01-24 2013-02-13 中国電力株式会社 Control device and control method for pressurized fluidized bed boiler
JP5202560B2 (en) * 2010-03-15 2013-06-05 中国電力株式会社 Operation method and operation management device for pressurized fluidized bed combined power plant during multi-coal combustion test
JP6214330B2 (en) * 2013-10-21 2017-10-18 三菱日立パワーシステムズ株式会社 Chemical looping combustion system
CN106224948B (en) * 2016-09-23 2018-08-10 凤阳海泰科能源环境管理服务有限公司 A kind of adaptive circulating fluidized bed boiler control method
CN112495568B (en) * 2020-12-01 2023-04-07 西安热工研究院有限公司 Coal mill coal type switching device and discrimination method based on specific heat change of coal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508119B2 (en) * 1987-08-11 1996-06-19 宇部興産株式会社 Fluidized bed boiler control method

Also Published As

Publication number Publication date
JP2007322070A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP4771865B2 (en) Furnace bed temperature and bed height management method associated with coal type switching in a fluidized bed boiler
US9175851B2 (en) Method of and an arrangement for recovering heat from bottom ash
EP2304366A2 (en) Method of and system for generating power by oxyfuel combustion
CN102016241A (en) Oxyfuel combusting boiler system and a method of generating power by using the boiler system
JP4495004B2 (en) Heavy oil reformed fuel-fired gas turbine system and operation method thereof
WO2009144369A2 (en) Method of and system for generating power by oxyfuel combustion
JP5092114B2 (en) In-furnace fluidity management method for fluidized media accompanying coal type switching in fluidized bed boiler
JP7455781B2 (en) Ammonia supply unit for power generation plants, ammonia vaporization treatment method for power generation plants, and power generation plants
JP6498433B2 (en) Exhaust heat recovery system, ship equipped with the same, and exhaust heat recovery method
JP4443481B2 (en) Fluid medium clogging diagnosis system
JP5127220B2 (en) Slurry viscosity control method with coal type switching in fluidized bed boiler
JP5967977B2 (en) Reheat boiler, marine propulsion plant, ship, marine propulsion plant control method
JP2008014505A (en) Viscosity management method of cwp (coal water paste) accompanying change of kind of coal in fluidized bed boiler
JP5094043B2 (en) Management method of fly ash ash quantity by changing coal type in fluidized bed boiler
EP0488579B1 (en) Pressurized fluidized-bed boiler power plant
EP2423590A2 (en) Control system, control method, and display method of oxygen combustion boiler plant
JP4514684B2 (en) Stop control method for pressurized fluidized bed plant
WO2017213111A1 (en) Exhaust heat recovery system, ship including same, and exhaust heat recovery method
JP4794472B2 (en) How to deal with cyclone clogging
JP5465747B2 (en) Start-up method of pressurized fluidized bed combined power plant
JP4919635B2 (en) Bed density optimization method and bed density optimization system of fluidized medium in pressurized fluidized bed boiler
JP4646290B2 (en) Operation control system and method for thermal power plant
JP4990642B2 (en) Bed density optimization method and bed density optimization system of fluidized medium in pressurized fluidized bed boiler
JP4937089B2 (en) Cyclone clogging judgment device and cyclone clogging judgment method
JP5807903B2 (en) Heat recovery utilization method and heat recovery utilization system of intermittent operation type waste incineration facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees