JP2000213306A - Pressure fluidized bed compound power plant - Google Patents

Pressure fluidized bed compound power plant

Info

Publication number
JP2000213306A
JP2000213306A JP11012933A JP1293399A JP2000213306A JP 2000213306 A JP2000213306 A JP 2000213306A JP 11012933 A JP11012933 A JP 11012933A JP 1293399 A JP1293399 A JP 1293399A JP 2000213306 A JP2000213306 A JP 2000213306A
Authority
JP
Japan
Prior art keywords
gas
pressurized fluidized
air
valve
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11012933A
Other languages
Japanese (ja)
Other versions
JP3700075B2 (en
Inventor
Yukimasa Yoshinari
行正 吉成
Takashi Mao
孝志 麻尾
Takeshi Ueno
健 上野
Nobuyoshi Mishima
信義 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP01293399A priority Critical patent/JP3700075B2/en
Publication of JP2000213306A publication Critical patent/JP2000213306A/en
Application granted granted Critical
Publication of JP3700075B2 publication Critical patent/JP3700075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PROBLEM TO BE SOLVED: To reduce in-plant power at the stoppage and to improve reliability at the stoppage by providing a means for stopping steaming of condensate at an outlet of a low temperature waste heat recovery heat exchanger and steaming of feed water at an outlet of a high temperature waste heat recovery heat exchanger at the normal plant stopping and emergency stopping. SOLUTION: A high temperature gas discharge pipe 29 having a high temperature gas discharge valve 30 is connected between a high temperature gas pipe 25 at the upstream of a gas turbine inlet valve 26 and a gas turbine outlet pipe 28. By a control device 33 for inputting a signals of a pressure detector 31 a temperature sensor 32 and the like of a pressure fluidized bed boiler pressure vessel 5, at the normal plant stopping, fuel inside a pressure fluidized bed boiler 6 is burned, thereafter an air compressor outlet valve 23 and the gas turbine inlet valve 26 are fully closed, an air supply valve 27 is opened, to isolate a boiler 6 side. Next, the high temperature gas discharge valve 30 is opened, and the high temperature gas is discharged to reduce pressure on the boiler 6 side. Operation of a gas turbine 2 is stopped after completion of pressure reduction of the boiler 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加圧流動床ボイラ
とガスタービンと蒸気タービンとを含む加圧流動床複合
発電プラントに係り、特に、プラント通常停止時および
緊急停止時の信頼性を向上させるとともに、所内動力を
低減する手段に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined pressurized fluidized-bed power plant including a pressurized fluidized-bed boiler, a gas turbine and a steam turbine, and more particularly to an improvement in reliability during a normal stop and an emergency stop of the plant. And means for reducing internal power.

【0002】[0002]

【従来の技術】図8は、従来の加圧流動床複合発電プラ
ントの系統構成の一例を示す系統図である。この加圧流
動床複合発電プラントにおいては、空気圧縮機1と加圧
流動床ボイラ6との間の空気供給配管24および加圧流
動床ボイラ6とガスタービン2と間の高温ガス供給配管
25にボイラバイパス配管41を設置するとともに、高
温ガス供給配管25とボイラバイパス配管41との合流
点とガスタービン出口配管28との間に高温ガス排出配
管29および高温ガス排出弁30を設置し、障害時にボ
イラバイパス配管41と高温ガス排出配管29に空気お
よび高温ガスを流すことが提案されている。なお、この
種の装置として関連するものには、例えば特開平9−5
0107など挙げられる。
2. Description of the Related Art FIG. 8 is a system diagram showing an example of a system configuration of a conventional pressurized fluidized bed combined cycle power plant. In this pressurized fluidized bed combined cycle power plant, an air supply pipe 24 between the air compressor 1 and the pressurized fluidized bed boiler 6 and a hot gas supply pipe 25 between the pressurized fluidized bed boiler 6 and the gas turbine 2 are connected. In addition to installing the boiler bypass pipe 41, a hot gas discharge pipe 29 and a hot gas discharge valve 30 are installed between the junction of the hot gas supply pipe 25 and the boiler bypass pipe 41 and the gas turbine outlet pipe 28. It has been proposed to flow air and hot gas through the boiler bypass pipe 41 and the hot gas discharge pipe 29. Related devices of this type include, for example, JP-A-9-5
0107 and the like.

【0003】[0003]

【発明が解決しようとする課題】このような従来の方法
では、空気および高温ガスの混合ガスが煙突10に排出
されるため、ガスタービン出口配管28から煙突10ま
での系統を高温のガスに対応可能な設備とする必要があ
る。
In such a conventional method, since a mixed gas of air and high-temperature gas is discharged to the chimney 10, the system from the gas turbine outlet pipe 28 to the chimney 10 is adapted for high-temperature gas. It must be possible equipment.

【0004】この混合ガスを冷却するため、高温ガス排
出配管30の接続先を高温排熱回収熱交換器8の入口側
に回収することも考えられるが、60%から100%程
度のガスを処理する必要があるため、高温排熱回収器8
出口の給水がフラッシュしてスチーミングが発生し、機
器を損傷することが予想される。また、障害発生時の数
秒間は、圧力を制御する必要があり、制御が非常に複雑
になることが予想される。さらに、空気圧縮機1と加圧
流動床ボイラ6との間の圧力が、一定圧力に保持される
ので、ガスタービン停止時に加圧流動床ボイラ6とガス
タービン2との間の高温ガスが空気圧縮機1に逆流し、
空気圧縮機1を損傷することが予想される。したがっ
て、加圧流動床ボイラ6のガス温度および金属の温度が
低下するまで、ガスタービン2を連続的に運転する必要
がある。
In order to cool this mixed gas, it is conceivable to recover the connection of the high-temperature gas exhaust pipe 30 to the inlet side of the high-temperature exhaust heat recovery heat exchanger 8, but about 60% to 100% of the gas is treated. High-temperature exhaust heat recovery unit 8
It is expected that the outlet water supply will flush and steaming will occur, damaging the equipment. In addition, it is necessary to control the pressure for a few seconds at the time of the occurrence of the failure, and it is expected that the control will be very complicated. Further, since the pressure between the air compressor 1 and the pressurized fluidized-bed boiler 6 is maintained at a constant pressure, the high-temperature gas between the pressurized fluidized-bed boiler 6 and the gas turbine 2 is reduced when the gas turbine is stopped. Flows back to the compressor 1,
It is expected that the air compressor 1 will be damaged. Therefore, it is necessary to continuously operate the gas turbine 2 until the gas temperature of the pressurized fluidized-bed boiler 6 and the metal temperature decrease.

【0005】本発明の目的は、プラント通常停止時およ
び緊急停止時、低温排熱回収熱交換器出口の復水および
高温排熱回収熱交換器出口の給水のスチーミングを防止
し、プラントの信頼性を上げ、停止時の所内動力を低減
する手段を備えた加圧流動床複合発電プラントを提供す
ることである。
SUMMARY OF THE INVENTION It is an object of the present invention to prevent steam condensing at the outlet of the low-temperature exhaust heat recovery heat exchanger and steaming of the feed water at the outlet of the high-temperature exhaust heat recovery heat exchanger at the time of a normal shutdown of the plant and an emergency shutdown. It is an object of the present invention to provide a pressurized fluidized bed combined cycle power plant equipped with a means for improving the performance and reducing the internal power during stoppage.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、加圧流動床ボイラと加圧流動床ボイラに
空気を供給する空気圧縮機と加圧流動床ボイラの高温ガ
スにより駆動されるガスタービンと加圧流動床ボイラの
蒸気により駆動される蒸気タービンとガスタービンおよ
び蒸気タービンにより駆動される発電機とを含み、空気
圧縮機から加圧流動床ボイラに圧縮空気を供給する空気
供給配管と加圧流動床ボイラからガスタービンに高温ガ
スを供給する高温ガス配管とを接続する空気供給弁を設
置したボイラバイパス管路を有する空気加圧流動床複合
発電プラントにおいて、プラント通常停止時または緊急
停止時に閉じる空気圧縮機出口弁を空気供給配管に設
け、プラント通常停止時または緊急停止時に閉じるガス
タービン入口弁を高温ガス配管に設け、プラント通常停
止時または緊急停止時に開き空気圧縮機の出口からガス
タービン入口までの間の空気および高温ガスをガスター
ビンの排ガス出口部に排出する高温ガス排出配管および
高温ガス排出弁を設けた加圧流動床複合発電プラントを
提案する。
In order to achieve the above object, the present invention provides a pressurized fluidized bed boiler, an air compressor for supplying air to the pressurized fluidized bed boiler, and a hot gas of the pressurized fluidized bed boiler. Including a driven gas turbine and a steam turbine driven by steam from a pressurized fluidized bed boiler, and a generator driven by the gas turbine and the steam turbine, and supplying compressed air from the air compressor to the pressurized fluidized bed boiler In a pressurized fluidized bed combined cycle power plant with a boiler bypass line equipped with an air supply valve that connects an air supply pipe and a hot gas pipe that supplies hot gas from a pressurized fluidized bed boiler to a gas turbine, the plant normally shuts down An air compressor outlet valve that closes at the time of an emergency or emergency stop is provided in the air supply piping, and the gas turbine inlet valve that closes at the time of a plant normal stop or an emergency stop is set at a high level. A high-temperature gas discharge pipe and a high-temperature gas discharge valve that are provided in the gas pipe and open during normal or emergency stop of the plant and discharge air and high-temperature gas from the outlet of the air compressor to the gas turbine inlet to the exhaust gas outlet of the gas turbine. We propose a pressurized fluidized-bed combined cycle power plant equipped with.

【0007】本発明は、また、加圧流動床ボイラと加圧
流動床ボイラに空気を供給する空気圧縮機と加圧流動床
ボイラの高温ガスにより駆動されるガスタービンと加圧
流動床ボイラの蒸気により駆動される蒸気タービンとガ
スタービンおよび蒸気タービンにより駆動される発電機
とを含み、空気圧縮機から加圧流動床ボイラに圧縮空気
を供給する空気供給配管と加圧流動床ボイラからガスタ
ービンに高温ガスを供給する高温ガス配管とを接続する
空気供給弁を設置したボイラバイパス管路を有する空気
加圧流動床複合発電プラントにおいて、プラント通常停
止時または緊急停止時に閉じる空気圧縮機出口弁を空気
供給配管に設け、プラント通常停止時または緊急停止時
に閉じるガスタービン入口弁を高温ガス配管に設け、プ
ラント通常停止時または緊急停止時に開き空気圧縮機の
出口からガスタービン入口までの間の空気および高温ガ
スをガスタービンの入口部に排出する高温ガス排出配管
および高温ガス排出弁をガスタービン入口弁と並列に設
けた加圧流動床複合発電プラントを提案する。
The present invention also provides a pressurized fluidized bed boiler, an air compressor for supplying air to the pressurized fluidized bed boiler, a gas turbine driven by hot gas from the pressurized fluidized bed boiler, and a pressurized fluidized bed boiler. An air supply pipe for supplying compressed air from an air compressor to a pressurized fluidized bed boiler, including a steam turbine driven by steam, a gas turbine, and a generator driven by the steam turbine; In an air pressurized fluidized bed combined cycle power plant having a boiler bypass line installed with an air supply valve connecting a high temperature gas pipe for supplying high temperature gas to the A gas turbine inlet valve that is installed in the air supply pipe and closes when the plant is normally stopped or in an emergency stop is installed in the high-temperature gas pipe, and when the plant is normally stopped Alternatively, a hot gas discharge pipe and hot gas discharge valve that open during an emergency stop and discharge air and hot gas from the outlet of the air compressor to the gas turbine inlet to the gas turbine inlet are provided in parallel with the gas turbine inlet valve. We propose a pressurized fluidized bed combined cycle power plant.

【0008】いずれの場合も、排出した高温ガスを冷却
し希釈するために窒素または空気を供給するガス供給配
管およびガス供給弁を追加して設置できる。
In any case, a gas supply pipe and a gas supply valve for supplying nitrogen or air for cooling and diluting the discharged high-temperature gas can be additionally provided.

【0009】本発明は、さらに、加圧流動床ボイラと加
圧流動床ボイラに空気を供給する空気圧縮機と加圧流動
床ボイラの高温ガスにより駆動されるガスタービンと加
圧流動床ボイラの蒸気により駆動される蒸気タービンと
ガスタービンおよび蒸気タービンにより駆動される発電
機とを含み、空気圧縮機から加圧流動床ボイラに圧縮空
気を供給する空気供給配管と加圧流動床ボイラからガス
タービンに高温ガスを供給する高温ガス配管とを接続す
る空気供給弁を設置したボイラバイパス管路を有する空
気加圧流動床複合発電プラントにおいて、プラント通常
停止時または緊急停止時に閉じる空気圧縮機出口弁を空
気供給配管に設け、プラント通常停止時または緊急停止
時に閉じるガスタービン入口弁を高温ガス配管に設け、
プラント通常停止時または緊急停止時に開き空気圧縮機
出口からガスタービンまでの間の空気および高温ガスを
大気に排出する高温ガス排出配管および高温ガス排出弁
を設け、排出した高温ガスを冷却し希釈するために窒素
または空気を供給するガス供給配管およびガス供給弁を
設けた加圧流動床複合発電プラントを提案する。
The present invention further provides a pressurized fluidized bed boiler, an air compressor for supplying air to the pressurized fluidized bed boiler, a gas turbine driven by hot gas from the pressurized fluidized bed boiler, and a pressurized fluidized bed boiler. An air supply pipe for supplying compressed air from an air compressor to a pressurized fluidized bed boiler, including a steam turbine driven by steam, a gas turbine, and a generator driven by the steam turbine; In an air pressurized fluidized bed combined cycle power plant having a boiler bypass line installed with an air supply valve connecting a high temperature gas pipe for supplying high temperature gas to the A gas turbine inlet valve that is installed in the air supply piping and that closes when the plant is normally stopped or when the emergency is stopped is installed in the high-temperature gas piping,
A hot gas exhaust pipe and a hot gas exhaust valve that open during normal or emergency shutdown of the plant and discharge air and hot gas from the air compressor outlet to the gas turbine are provided to the atmosphere to cool and dilute the discharged hot gas. For this purpose, we propose a pressurized fluidized bed combined cycle power plant equipped with a gas supply pipe and a gas supply valve for supplying nitrogen or air.

【0010】上記いずれの加圧流動床複合発電プラント
においても、加圧流動床ボイラの圧力および出口温度
と、空気圧縮機出口弁,ガスタービン入口弁,空気供給
弁の開閉状態とに応じて、空気圧縮機出口弁,ガスター
ビン入口弁,空気供給弁,高温ガス排出弁,ガス供給弁
の開度を制御する高温ガス排出制御装置を設ける。
[0010] In any of the above pressurized fluidized bed combined cycle power plants, the pressure and outlet temperature of the pressurized fluidized bed boiler and the open / close states of the air compressor outlet valve, gas turbine inlet valve, and air supply valve are determined according to the following conditions. An air compressor outlet valve, gas turbine inlet valve, air supply valve, high-temperature gas discharge valve, and a high-temperature gas discharge control device for controlling the opening of the gas supply valve are provided.

【0011】この高温ガス排出制御装置は、空気圧縮機
からガスタービン入口弁までの間の減圧完了後、高温ガ
ス排出弁を全閉してからの自然放熱の経過時間を計測す
るタイマを備えてもよい。
This high-temperature gas discharge control device includes a timer for measuring the elapsed time of natural heat radiation after the high-temperature gas discharge valve is fully closed after the pressure reduction from the air compressor to the gas turbine inlet valve is completed. Is also good.

【0012】[0012]

【発明の実施の形態】次に、図1〜図7を参照して、本
発明による加圧流動床複合発電プラントの実施例を説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an embodiment of a pressurized fluidized bed combined cycle power plant according to the present invention will be described with reference to FIGS.

【0013】《実施例1》図1は、本発明による加圧流
動床複合発電プラントの実施例1の構成を示す系統図で
ある。起動用電動機4を備えた空気圧縮機1は、空気入
口弁22から吸い込んだ空気を圧縮し、空気圧縮機出口
弁23,空気供給配管24を介して、圧縮空気を加圧流
動床ボイラ圧力容器5内の加圧流動床ボイラ6に供給す
る。加圧流動床ボイラ6からの高圧ガスは、高温ガス配
管25,高温ガス除塵装置7,ガスタービン入口弁26
を介して、ガスタービン2に供給され、ガスタービン2
を駆動し、ガスタービン発電機3により、エネルギーを
電力に変換される。ガスタービン2で仕事をした高圧ガ
スは、ガスタービン出口配管28,高温排熱回収熱交換
器8,低温排熱回収熱交換器9を通り、煙突10から大
気に排出される。
Embodiment 1 FIG. 1 is a system diagram showing a configuration of an embodiment 1 of a combined pressurized fluidized-bed power plant according to the present invention. The air compressor 1 including the starting motor 4 compresses the air sucked from the air inlet valve 22, and compresses the compressed air via the air compressor outlet valve 23 and the air supply pipe 24 into a pressurized fluidized bed boiler pressure vessel. The feed is supplied to the pressurized fluidized-bed boiler 6 in 5. The high-pressure gas from the pressurized fluidized-bed boiler 6 is supplied to a high-temperature gas pipe 25, a high-temperature gas dust remover 7, and a gas turbine inlet valve 26.
Is supplied to the gas turbine 2 via the
And the gas turbine generator 3 converts the energy into electric power. The high-pressure gas that has worked in the gas turbine 2 passes through the gas turbine outlet pipe 28, the high-temperature exhaust heat recovery heat exchanger 8, and the low-temperature exhaust heat recovery heat exchanger 9, and is discharged from the chimney 10 to the atmosphere.

【0014】一方、加圧流動床ボイラ6で加熱された水
は、汽水分離器21により、水蒸気のみとなり、主蒸気
配管34により高圧タービン11に導かれる。高圧ター
ビン11で仕事をした蒸気は、低温再熱蒸気配管35で
加圧流動床ボイラ6に戻されて再加熱され、高温再熱蒸
気配管36で中圧タービン12に導かれる。中圧タービ
ン12で仕事をした蒸気は、低圧タービン13に導かれ
る。高圧タービン11,中圧タービン12,低圧タービ
ン13には、共軸の蒸気タービン用発電機14を設置し
てあり、蒸気エネルギーを電力に変換する。低圧タービ
ン13を通過した蒸気は、復水器15により冷却され、
復水される。復水された水は、復水ポンプ16により加
圧されて、低圧給水加熱器17,上記低温排熱回収熱交
換器9を通り、脱気器18で脱気される。さらに、給水
ポンプ19により加圧されて、高圧給水加熱器20,上
記高温排熱回収熱交換器8を通り、再び、加圧流動床ボ
イラ圧力容器5内の加圧流動床ボイラ6に供給される。
なお、汽水分離器21は、汽水分離器レベル調節弁37
を備えた配管により、復水器15に接続されている。
On the other hand, the water heated by the pressurized fluidized-bed boiler 6 becomes only steam by the steam separator 21 and is guided to the high-pressure turbine 11 by the main steam pipe 34. The steam that has worked in the high-pressure turbine 11 is returned to the pressurized fluidized-bed boiler 6 in the low-temperature reheat steam pipe 35, reheated, and guided to the medium-pressure turbine 12 in the high-temperature reheat steam pipe 36. The steam that has worked in the medium pressure turbine 12 is led to the low pressure turbine 13. The high-pressure turbine 11, the intermediate-pressure turbine 12, and the low-pressure turbine 13 are provided with coaxial steam turbine generators 14, which convert steam energy into electric power. The steam that has passed through the low-pressure turbine 13 is cooled by the condenser 15,
It is condensed. The condensed water is pressurized by a condensate pump 16, passes through a low-pressure feed water heater 17, the low-temperature exhaust heat recovery heat exchanger 9, and is deaerated by a deaerator 18. Further, it is pressurized by the feed water pump 19, passes through the high pressure feed water heater 20, the high temperature exhaust heat recovery heat exchanger 8, and is supplied again to the pressurized fluidized bed boiler 6 in the pressurized fluidized bed boiler pressure vessel 5. You.
The brackish water separator 21 has a brackish water separator level control valve 37.
Is connected to the condenser 15 by a pipe having

【0015】空気圧縮機1の出口とガスタービン2の入
口との間には、空気供給弁27を設けたバイパス配管を
接続してある。また、加圧流動床ボイラ圧力容器5に
は、加圧流動床ボイラ圧力容器圧力検出器31を取り付
け、高温ガス配管25には、加圧流動床ボイラ温度検出
器32を取り付けてある。
A bypass pipe provided with an air supply valve 27 is connected between the outlet of the air compressor 1 and the inlet of the gas turbine 2. Further, a pressurized fluidized-bed boiler pressure vessel pressure detector 31 is attached to the pressurized fluidized-bed boiler pressure vessel 5, and a pressurized fluidized-bed boiler temperature detector 32 is attached to the high-temperature gas pipe 25.

【0016】本実施例1においては、特に、ガスタービ
ン入口弁26よりも上流の高温ガス配管25とガスター
ビン出口配管28との間に、高温ガス排出弁30を持っ
た高温ガス排出配管29を接続してある。
In the first embodiment, a high-temperature gas discharge pipe 29 having a high-temperature gas discharge valve 30 is provided between the high-temperature gas pipe 25 upstream of the gas turbine inlet valve 26 and the gas turbine outlet pipe 28. Connected.

【0017】少なくとも加圧流動床ボイラ圧力容器圧力
検出器31および加圧流動床ボイラ温度検出器32など
からの信号を取り込む高温ガス排出制御装置33は、検
出信号に応じて、空気圧縮機出口弁23,ガスタービン
入口弁26,空気供給弁27,高温ガス排出弁30の開
閉を制御する。
The hot gas discharge control device 33 which takes in signals from at least the pressure vessel pressure detector 31 of the pressurized fluidized-bed boiler pressure sensor 31 and the pressurized fluidized-bed boiler temperature detector 32, etc. 23, the opening and closing of the gas turbine inlet valve 26, the air supply valve 27, and the high temperature gas discharge valve 30 are controlled.

【0018】本実施例1において、通常運転時、空気圧
縮機入口弁22から空気圧縮機1に取り込まれた空気
は、空気供給配管24により加圧流動床ボイラ圧力容器
5内の加圧流動床ボイラ6に導かれる。加圧流動床ボイ
ラ6からの高温ガスは、高温ガス配管25により高温ガ
ス除塵装置7に導かれ、灰などを除去した後、高温ガス
配管25によりガスタービン2に供給され、ガスタービ
ン用発電機3を駆動し、発電する。ガスタービン2から
の排ガスは、ガスタービン出口配管28により高温排熱
回収熱交換器8および低温排熱回収熱交換器9に導か
れ、蒸気タービン系に熱回収された後、煙突10から大
気に放出される。
In the first embodiment, during normal operation, air taken into the air compressor 1 from the air compressor inlet valve 22 is supplied to the pressurized fluidized bed in the pressurized fluidized bed boiler pressure vessel 5 by the air supply pipe 24. It is led to the boiler 6. The high-temperature gas from the pressurized fluidized-bed boiler 6 is guided to the high-temperature gas dust remover 7 by the high-temperature gas pipe 25 to remove ash and the like, and then supplied to the gas turbine 2 by the high-temperature gas pipe 25 to generate a gas turbine generator. 3 to generate electricity. Exhaust gas from the gas turbine 2 is led to a high-temperature exhaust heat recovery heat exchanger 8 and a low-temperature exhaust heat recovery heat exchanger 9 by a gas turbine outlet pipe 28, and is recovered by a steam turbine system. Released.

【0019】一方、加圧流動床ボイラ6で発生した蒸気
は、主蒸気配管34,高圧タービン11,低温再熱蒸気
配管35,加圧流動床ボイラ6,高温再熱蒸気配管3
6,中圧タービン12,低圧タービン13を通り、復水
器15に至る間に、蒸気タービン用発電機14を駆動
し、発電する。復水器15で冷却され凝縮し復水となっ
た水は、復水ポンプ16で昇圧され、低圧給水加熱器1
7および低温排熱回収熱交換器9で昇温され、脱気器1
8に供給される。脱気器18に供給された給水は、給水
ポンプ19でさらに昇圧され、高圧給水加熱器20およ
び高温排熱回収熱交換器8で昇温された後、加圧流動床
ボイラ6に再び供給される。
On the other hand, the steam generated by the pressurized fluidized bed boiler 6 is supplied to the main steam pipe 34, the high pressure turbine 11, the low temperature reheat steam pipe 35, the pressurized fluidized bed boiler 6, the high temperature reheat steam pipe 3
6, while passing through the medium pressure turbine 12 and the low pressure turbine 13 and reaching the condenser 15, the steam turbine generator 14 is driven to generate power. The water cooled and condensed by the condenser 15 to become condensed water is pressurized by the condensate pump 16 and is supplied to the low pressure feed water heater 1.
7 and the low-temperature exhaust heat recovery heat exchanger 9,
8 is supplied. The feedwater supplied to the deaerator 18 is further pressurized by a feedwater pump 19, heated by a high-pressure feedwater heater 20 and a high-temperature exhaust heat recovery heat exchanger 8, and then supplied again to the pressurized fluidized-bed boiler 6. You.

【0020】プラント通常停止時は、加圧流動床ボイラ
6内の燃料を燃焼させた後、空気圧縮機出口弁23およ
びガスタービン入口弁26を全閉し、空気供給弁27を
開くので、加圧流動床ボイラ6側は、隔離状態となる。
これに対して、ガスタービン2側は、起動用電動機4に
より、ガスタービン2の回転数を10%に降下させて運
転される。その際、加圧流動床ボイラ6側の系統は、高
温ガス排出配管29の高温ガス排出弁30を開き、ガス
タービン出口配管28に高温ガスを排出し、高温排熱回
収熱交換器8および低温排熱回収熱交換器9により蒸気
タービン系に熱を回収し、煙突10から大気に排気し、
減圧する。加圧流動床ボイラ6側の減圧が完了したら、
ガスタービン2を停止させまたは低速ターニングさせ
る。
When the plant is normally stopped, after the fuel in the pressurized fluidized bed boiler 6 is burned, the air compressor outlet valve 23 and the gas turbine inlet valve 26 are fully closed and the air supply valve 27 is opened. The pressure fluidized bed boiler 6 side is in an isolated state.
On the other hand, the gas turbine 2 is operated by the starting motor 4 with the rotation speed of the gas turbine 2 lowered to 10%. At this time, the system on the pressurized fluidized-bed boiler 6 side opens the high-temperature gas discharge valve 30 of the high-temperature gas discharge pipe 29, discharges the high-temperature gas to the gas turbine outlet pipe 28, and outputs the high-temperature exhaust heat recovery heat exchanger 8 and the low-temperature The heat is recovered in the steam turbine system by the exhaust heat recovery heat exchanger 9 and exhausted from the chimney 10 to the atmosphere.
Reduce pressure. When the decompression of the pressurized fluidized-bed boiler 6 is completed,
The gas turbine 2 is stopped or turned slowly.

【0021】この場合に、高温ガス排出弁30からの排
出量は、高温ガスが空気圧縮機1に逆流することを防止
するために、ガスタービン入口弁26のリーク量と高温
ガス排出量との合計値を回転数が10%の空気圧縮機1
の風量と煙突10のドラフト風量との合計値以下にする
必要がある。高温ガス排出制御装置33は、加圧流動床
ボイラ圧力容器圧力検出器31からの信号と加圧流動床
ボイラ出口温度検出器32からの信号とに応じて、高温
ガス排出量を制御し、ガスタービン入口弁26のリーク
量と高温ガス排出量との合計値を回転数が10%の空気
圧縮機1の風量と煙突10のドラフト風量との合計値以
下に、高温ガス排出量を制御する。さらに、高温ガス排
出弁30からの排出温度は、加圧流動床ボイラ6の温度
検出器32からの信号に応じて、ガスタービン出口の設
備計画値以内に制御する。
In this case, in order to prevent the hot gas from flowing back to the air compressor 1, the amount of discharge from the high-temperature gas discharge valve 30 is determined by the difference between the leak amount of the gas turbine inlet valve 26 and the high-temperature gas discharge amount. Air compressor 1 whose total number of rotations is 10%
And the draft volume of the chimney 10 must be equal to or less than the total value. The hot gas discharge control device 33 controls the amount of hot gas discharge according to the signal from the pressurized fluidized bed boiler pressure vessel pressure detector 31 and the signal from the pressurized fluidized bed boiler outlet temperature detector 32, The high-temperature gas discharge amount is controlled so that the total value of the leak amount and the high-temperature gas discharge amount of the turbine inlet valve 26 is equal to or less than the total value of the air flow amount of the air compressor 1 and the draft amount of the chimney 10 whose rotation speed is 10%. Further, the discharge temperature from the high-temperature gas discharge valve 30 is controlled within the equipment plan value at the gas turbine outlet according to the signal from the temperature detector 32 of the pressurized fluidized-bed boiler 6.

【0022】一方、蒸気タービン系では、加圧流動床ボ
イラ6の発生蒸気量が減少し、汽水分離器21の水位が
上昇するので、汽水分離器レベル調節弁37を介して、
復水器15に復水を十分に回収する。復水器15に回収
された給水は、復水器15で冷却し、復水ポンプ16で
昇圧し、低圧給水加熱器17および低温排熱回収熱交換
器9を介して、脱気器18に供給される。脱気器18に
供給された給水は、給水ポンプ19で昇圧し、高圧給水
加熱器20および高温排熱回収熱交換器8で昇温した
後、汽水分離器21,汽水分離器レベル調節弁37を介
して、復水器15に供給され、循環運転状態になる。
On the other hand, in the steam turbine system, the amount of steam generated by the pressurized fluidized bed boiler 6 decreases, and the water level of the steam separator 21 rises.
The condensate is sufficiently collected in the condenser 15. The feedwater collected in the condenser 15 is cooled by the condenser 15, pressurized by the condenser pump 16, and sent to the deaerator 18 via the low-pressure feedwater heater 17 and the low-temperature exhaust heat recovery heat exchanger 9. Supplied. The pressure of the feed water supplied to the deaerator 18 is increased by a feed water pump 19 and raised by a high-pressure feed water heater 20 and a high-temperature exhaust heat recovery heat exchanger 8, and then the steam separator 21 and the brackish water separator level control valve 37. Is supplied to the condenser 15 through the above-mentioned state, and enters a circulating operation state.

【0023】その結果、加圧流動床ボイラ6側の減圧時
の高温ガスは、低温排熱回収熱交換器9および高温排熱
回収熱交換器8で復水および給水に熱回収し、復水器1
5により回収熱を冷却できることになる。
As a result, the high-temperature gas at the time of decompression on the side of the pressurized fluidized-bed boiler 6 is recovered by the low-temperature exhaust heat recovery heat exchanger 9 and the high-temperature exhaust heat recovery heat exchanger 8 as condensate water and feed water, and condensed. Vessel 1
By means of 5, the recovered heat can be cooled.

【0024】特に、加圧流動床ボイラ6側の減圧時の高
温ガス量は、回転数が10%の空気圧縮機1の風量と煙
突1のドラフト風量と高温ガス排出量およびガスタービ
ン入口弁26の合計値となるが、通常運転時のガス量と
比べて非常に少ないために、低温排熱回収熱交換器9出
口の復水のスチーミングと高温排熱回収熱交換器8出口
の給水のスチーミングとを防止できる。
In particular, the amount of high-temperature gas at the time of decompression on the pressurized fluidized-bed boiler 6 side includes the air volume of the air compressor 1 having a rotation speed of 10%, the draft air volume of the chimney 1, the high-temperature gas discharge volume, and the gas turbine inlet valve 26. However, since it is very small compared to the gas amount during normal operation, the steaming of the condensed water at the outlet of the low-temperature exhaust heat recovery heat exchanger 9 and the supply of the water at the outlet of the high-temperature exhaust heat recovery heat exchanger 8 are performed. Steaming can be prevented.

【0025】さらに、復水ポンプ16および給水ポンプ
19が動作可能であり高温排熱回収熱交換器9および低
温排熱回収熱交換器9に給水を供給可能なモードの緊急
停止時には、加圧流動床ボイラ6側の減圧時の高温ガス
は、低温排熱回収熱交換器9および高温排熱回収熱交換
器8で復水および給水に熱回収し、復水器15により回
収熱を冷却できるため、プラント通常停止と同様に運転
できる。
Further, when the condensing pump 16 and the feed water pump 19 are operable and the water supply can be supplied to the high-temperature exhaust heat recovery heat exchanger 9 and the low-temperature exhaust heat recovery heat exchanger 9 in an emergency stop, the pressurized flow is stopped. The high-temperature gas at the time of decompression on the floor boiler 6 side is recovered by the low-temperature exhaust heat recovery heat exchanger 9 and the high-temperature exhaust heat recovery heat exchanger 8 into condensed water and feedwater, and the recovered heat can be cooled by the condenser 15 The operation can be performed in the same manner as the normal stop of the plant.

【0026】《実施例2》図2は、本発明による加圧流
動床複合発電プラントの実施例2の構成を示す系統図で
ある。実施例2は、ガスタービン出口配管28ではな
く、空気供給弁27よりも上流の高温ガス配管25に、
高温ガス排出弁30を持った高温ガス排出配管29を接
続し、ガスタービン入口弁26をバイパスするようにし
てある点が、実施例1と異なっている。
Embodiment 2 FIG. 2 is a system diagram showing the configuration of Embodiment 2 of a combined pressurized fluidized-bed power plant according to the present invention. In the second embodiment, instead of the gas turbine outlet pipe 28, the hot gas pipe 25 upstream of the air supply valve 27,
This embodiment is different from the first embodiment in that a high-temperature gas discharge pipe 29 having a high-temperature gas discharge valve 30 is connected and a gas turbine inlet valve 26 is bypassed.

【0027】実施例2において、プラント通常停止時
は、加圧流動床ボイラ6内の燃料を燃焼させた後、空気
圧縮機出口弁23およびガスタービン入口弁26を全閉
し、空気供給弁27を開くので、加圧流動床ボイラ6側
は、隔離状態となる。これに対して、ガスタービン2側
は、起動用電動機4により、ガスタービン2の回転数を
10%に降下させて運転される。その際、加圧流動床ボ
イラ6側の系統は、高温ガス排出配管29の高温ガス排
出弁30を開き、ガスタービン2の入口部に高温ガスを
排出し、ガスタービン2を通過させ、高温排熱回収熱交
換器8および低温排熱回収熱交換器9により蒸気タービ
ン系に熱回収し、煙突10から大気に排気し、減圧す
る。加圧流動床ボイラ6側の減圧が完了したら、ガスタ
ービン2を停止させまたは低速ターニングさせる。
In the second embodiment, when the plant is normally stopped, the fuel in the pressurized fluidized-bed boiler 6 is burned, then the air compressor outlet valve 23 and the gas turbine inlet valve 26 are fully closed, and the air supply valve 27 is closed. Is opened, the pressurized fluidized-bed boiler 6 side is in an isolated state. On the other hand, the gas turbine 2 is operated by the starting motor 4 with the rotation speed of the gas turbine 2 lowered to 10%. At that time, the system on the pressurized fluidized-bed boiler 6 side opens the high-temperature gas discharge valve 30 of the high-temperature gas discharge pipe 29, discharges the high-temperature gas to the inlet of the gas turbine 2, passes through the gas turbine 2, and discharges the high-temperature gas. The heat is recovered to the steam turbine system by the heat recovery heat exchanger 8 and the low-temperature exhaust heat recovery heat exchanger 9, exhausted to the atmosphere from the chimney 10, and depressurized. When the depressurization on the pressurized fluidized-bed boiler 6 side is completed, the gas turbine 2 is stopped or turned at a low speed.

【0028】実施例2においても、実施例1と同様に運
転できるため、低温排熱回収熱交換器9出口の復水のス
チーミングと高温排熱回収熱交換器8出口の給水のスチ
ーミングとを防止し、プラント通常停止時および緊急停
止時に、プラントの信頼性を高め、停止時の所内動力を
低減できる。
In the second embodiment, since the operation can be performed in the same manner as in the first embodiment, the steaming of the condensed water at the outlet of the low-temperature exhaust heat recovery heat exchanger 9 and the steaming of the feedwater at the outlet of the high-temperature exhaust heat recovery heat exchanger 8 can be performed. , The reliability of the plant can be improved at the time of a normal stop of the plant and at the time of an emergency stop, and the internal power at the time of the stop can be reduced.

【0029】《実施例3》図3は、本発明による加圧流
動床複合発電プラントの実施例3の構成を示す系統図で
ある。実施例3は、ガスタービン出口配管28ではな
く、高温ガス排出弁30を持った高温ガス排出配管29
を大気に開放するように接続するとともに、ガス供給弁
38を備えたガス供給配管39を併設した点が、実施例
1と異なっている。
Third Embodiment FIG. 3 is a system diagram showing a configuration of a third embodiment of a combined pressurized fluidized-bed power plant according to the present invention. In the third embodiment, a hot gas discharge pipe 29 having a hot gas discharge valve 30 is used instead of the gas turbine outlet pipe 28.
The first embodiment is different from the first embodiment in that a gas supply pipe 39 provided with a gas supply valve 38 is provided in addition to a gas supply valve 38 connected to the atmosphere.

【0030】実施例3において、プラント通常停止時
は、加圧流動床ボイラ6内の燃料を燃焼させた後、空気
圧縮機出口弁23およびガスタービン入口弁26を全閉
し、空気供給弁27を開くので、加圧流動床ボイラ6側
は、隔離状態となる。これに対して、ガスタービン2側
は、起動用電動機4により、ガスタービン2の回転数を
10%に降下させて運転される。その際、加圧流動床ボ
イラ6側の系統は、高温ガス排出配管29の高温ガス排
出弁30とガス供給弁38とを開き、ガス供給配管39
からのガスにより高温ガスを冷却または希釈した後、大
気に排出する。加圧流動床ボイラ6側の減圧が完了した
ら、ガスタービン2を停止させまたは低速ターニングさ
せる。
In the third embodiment, when the plant is normally stopped, after the fuel in the pressurized fluidized bed boiler 6 is burned, the air compressor outlet valve 23 and the gas turbine inlet valve 26 are fully closed, and the air supply valve 27 is closed. Is opened, the pressurized fluidized-bed boiler 6 side is in an isolated state. On the other hand, the gas turbine 2 is operated by the starting motor 4 with the rotation speed of the gas turbine 2 lowered to 10%. At that time, the system on the pressurized fluidized-bed boiler 6 side opens the high-temperature gas discharge valve 30 and the gas supply valve 38 of the high-temperature gas discharge pipe 29, and opens the gas supply pipe 39.
After cooling or diluting the high-temperature gas with the gas from, it is discharged to the atmosphere. When the depressurization on the pressurized fluidized-bed boiler 6 side is completed, the gas turbine 2 is stopped or turned at a low speed.

【0031】この場合に、高温ガス排出弁30からの排
出量は、高温ガスが空気圧縮機1に逆流することを防止
するために、ガスタービン入口弁26のリーク量と高温
ガス排出量との合計値を回転数が10%の空気圧縮機1
の風量と煙突10のドラフト風量との合計値以下にする
必要がある。高温ガス排出制御装置33は、加圧流動床
ボイラ圧力容器圧力検出器31からの信号と加圧流動床
ボイラ出口温度検出器32からの信号とに応じて、高温
ガス排出量を制御し、ガスタービン入口弁26のリーク
量と高温ガス排出量との合計値を回転数が10%の空気
圧縮機1の風量と煙突10のドラフト風量との合計値以
下に、高温ガス排出量を制御する。さらに、高温ガス排
出弁30からの排出温度は、加圧流動床ボイラ6の温度
検出器32からの信号に応じて、ガスタービン出口の設
備計画値以内に制御する。
In this case, the amount of discharge from the high-temperature gas discharge valve 30 is determined by comparing the amount of leakage of the gas turbine inlet valve 26 with the amount of high-temperature gas discharge in order to prevent the high-temperature gas from flowing back to the air compressor 1. Air compressor 1 whose total number of rotations is 10%
And the draft volume of the chimney 10 must be equal to or less than the total value. The hot gas discharge control device 33 controls the amount of hot gas discharge according to the signal from the pressurized fluidized bed boiler pressure vessel pressure detector 31 and the signal from the pressurized fluidized bed boiler outlet temperature detector 32, The high-temperature gas discharge amount is controlled so that the total value of the leak amount and the high-temperature gas discharge amount of the turbine inlet valve 26 is equal to or less than the total value of the air flow amount of the air compressor 1 and the draft amount of the chimney 10 whose rotation speed is 10%. Further, the discharge temperature from the high-temperature gas discharge valve 30 is controlled within the equipment plan value at the gas turbine outlet according to the signal from the temperature detector 32 of the pressurized fluidized-bed boiler 6.

【0032】また、高温ガス排出制御装置33は、ガス
供給弁38からの冷却および希釈に必要なガスすなわち
窒素または空気も制御するので、高温ガス中の一酸化炭
素などの有害成分を希釈し、大気に排出できる。
Since the high-temperature gas discharge control device 33 also controls the gas required for cooling and dilution from the gas supply valve 38, that is, nitrogen or air, it dilutes harmful components such as carbon monoxide in the high-temperature gas, Can be released to the atmosphere.

【0033】一方、ガスタービン2側は、回転数が10
%の空気圧縮機1の風量と煙突10のドラフト風量とガ
スタービン入口弁26のリーク量との合計値を、低温排
熱回収熱交換器9および高温排熱回収熱交換器8の出口
を介して、煙突10から大気に放出する。この場合は、
ガス量が通常運転時のガス量と比べて非常に少ないの
で、低温排熱回収熱交換器9出口の復水のスチーミング
と高温排熱回収熱交換器8出口の給水のスチーミングと
を防止できる。
On the other hand, on the gas turbine 2 side, the rotation speed is 10
% Of the air flow of the air compressor 1, the draft air volume of the chimney 10, and the leak amount of the gas turbine inlet valve 26 via the outlets of the low-temperature exhaust heat recovery heat exchanger 9 and the high-temperature exhaust heat recovery heat exchanger 8. And release it from the chimney 10 to the atmosphere. in this case,
Prevents steaming of condensed water at the outlet of the low-temperature exhaust heat recovery heat exchanger 9 and steaming of the feedwater at the outlet of the high-temperature exhaust heat recovery heat exchanger 8 because the gas amount is very small compared to the gas amount during normal operation. it can.

【0034】《実施例4》図4は、本発明による加圧流
動床複合発電プラントの実施例4の構成を示す系統図で
ある。実施例4は、実施例1と同様に、ガスタービン入
口弁26よりも上流の高温ガス配管25とガスタービン
出口配管28との間に、高温ガス排出弁30を持った高
温ガス排出配管29を接続した上に、高温ガス排出弁3
0よりも下流に、ガス供給弁38を備えたガス供給配管
39を併設してある。
Fourth Embodiment FIG. 4 is a system diagram showing a configuration of a fourth embodiment of a combined pressurized fluidized-bed power plant according to the present invention. In the fourth embodiment, as in the first embodiment, a high-temperature gas discharge pipe 29 having a high-temperature gas discharge valve 30 is provided between a high-temperature gas pipe 25 upstream of the gas turbine inlet valve 26 and a gas turbine outlet pipe 28. After connecting, hot gas exhaust valve 3
Downstream from 0, a gas supply pipe 39 provided with a gas supply valve 38 is also provided.

【0035】実施例4において、プラント通常停止時
は、加圧流動床ボイラ6内の燃料を燃焼させた後、空気
圧縮機出口弁23およびガスタービン入口弁26を全閉
し、空気供給弁27を開くので、加圧流動床ボイラ6側
は、隔離状態となる。これに対して、ガスタービン2側
は、起動用電動機4により、ガスタービン2の回転数を
10%に降下させて、転される。その際、加圧流動床ボ
イラ6側の系統は、高温ガス排出配管29の高温ガス排
出弁30とガス供給弁38とを開き、ガス供給配管39
からのガスにより高温ガスを冷却または希釈しながら、
ガスタービン出口配管28を介して、高温排熱回収熱交
換器8および低温排熱回収熱交換器9により蒸気タービ
ン系に熱回収した後、煙突10から大気に排出する。加
圧流動床ボイラ6側の減圧が完了したら、ガスタービン
2を停止させまたは低速ターニングさせる。
In the fourth embodiment, when the plant is normally stopped, after fuel in the pressurized fluidized bed boiler 6 is burned, the air compressor outlet valve 23 and the gas turbine inlet valve 26 are fully closed, and the air supply valve 27 is closed. Is opened, the pressurized fluidized-bed boiler 6 side is in an isolated state. On the other hand, the gas turbine 2 is rotated by the starting motor 4 while the rotation speed of the gas turbine 2 is reduced to 10%. At that time, the system on the pressurized fluidized-bed boiler 6 side opens the high-temperature gas discharge valve 30 and the gas supply valve 38 of the high-temperature gas discharge pipe 29, and opens the gas supply pipe 39.
While cooling or diluting the hot gas with the gas from
After the heat is recovered to the steam turbine system by the high-temperature exhaust heat recovery heat exchanger 8 and the low-temperature exhaust heat recovery heat exchanger 9 via the gas turbine outlet pipe 28, the exhaust gas is discharged from the chimney 10 to the atmosphere. When the depressurization on the pressurized fluidized-bed boiler 6 side is completed, the gas turbine 2 is stopped or turned at a low speed.

【0036】この場合に、高温ガス排出弁30からの排
出量は、高温ガスが空気圧縮機1に逆流することを防止
するために、ガスタービン入口弁26のリーク量と高温
ガス排出量との合計値を回転数が10%の空気圧縮機1
の風量と煙突10のドラフト風量との合計値以下にする
必要がある。高温ガス排出制御装置33は、加圧流動床
ボイラ圧力容器圧力検出器31からの信号と加圧流動床
ボイラ出口温度検出器32からの信号とに応じて、高温
ガス排出量を制御し、ガスタービン入口弁26のリーク
量と高温ガス排出量との合計値を回転数が10%の空気
圧縮機1の風量と煙突10のドラフト風量との合計値以
下に、高温ガス排出量を制御する。さらに、高温ガス排
出弁30からの排出温度は、加圧流動床ボイラ6の温度
検出器32からの信号に応じて、ガスタービン出口の設
備計画値以内に制御する。
In this case, in order to prevent the hot gas from flowing back to the air compressor 1, the amount of discharge from the high-temperature gas discharge valve 30 is determined by the difference between the amount of leakage from the gas turbine inlet valve 26 and the amount of high-temperature gas discharge. Air compressor 1 whose total number of rotations is 10%
And the draft volume of the chimney 10 must be equal to or less than the total value. The hot gas discharge control device 33 controls the amount of hot gas discharge according to the signal from the pressurized fluidized bed boiler pressure vessel pressure detector 31 and the signal from the pressurized fluidized bed boiler outlet temperature detector 32, The high-temperature gas discharge amount is controlled so that the total value of the leak amount and the high-temperature gas discharge amount of the turbine inlet valve 26 is equal to or less than the total value of the air flow amount of the air compressor 1 and the draft amount of the chimney 10 whose rotation speed is 10%. Further, the discharge temperature from the high-temperature gas discharge valve 30 is controlled within the equipment plan value at the gas turbine outlet according to the signal from the temperature detector 32 of the pressurized fluidized-bed boiler 6.

【0037】また、高温ガス排出制御装置33は、ガス
供給弁38からの冷却および希釈に必要なガスすなわち
窒素または空気も制御するので、高温ガス中の一酸化炭
素などの有害成分を希釈し、大気に排出できる。
Since the high-temperature gas discharge control device 33 also controls the gas required for cooling and dilution from the gas supply valve 38, that is, nitrogen or air, it dilutes harmful components such as carbon monoxide in the high-temperature gas, Can be released to the atmosphere.

【0038】一方、ガスタービン2側は、回転数が10
%の空気圧縮機1の風量と煙突10のドラフト風量とガ
スタービン入口弁26のリーク量との合計値を、低温排
熱回収熱交換器9および高温排熱回収熱交換器8の出口
を介して、煙突10から大気に放出する。この場合は、
ガス量が通常運転時のガス量と比べて非常に少ないの
で、低温排熱回収熱交換器9出口の復水のスチーミング
と高温排熱回収熱交換器8出口の給水のスチーミングと
を防止できる。
On the other hand, on the gas turbine 2 side, the rotation speed is 10
% Of the air flow of the air compressor 1, the draft air volume of the chimney 10, and the leak amount of the gas turbine inlet valve 26 via the outlets of the low-temperature exhaust heat recovery heat exchanger 9 and the high-temperature exhaust heat recovery heat exchanger 8. And release it from the chimney 10 to the atmosphere. in this case,
Prevents steaming of condensed water at the outlet of the low-temperature exhaust heat recovery heat exchanger 9 and steaming of the feedwater at the outlet of the high-temperature exhaust heat recovery heat exchanger 8 because the gas amount is very small compared to the gas amount during normal operation. it can.

【0039】なお、実施例4は、実施例1の高温ガス排
出弁30よりも下流に、ガス供給弁38を備えたガス供
給配管39を併設した例であったが、実施例2の高温ガ
ス排出弁30よりも下流に、ガス供給弁38を備えたガ
ス供給配管39を併設してもよいことは、明らかであろ
う。
The fourth embodiment is an example in which a gas supply pipe 39 having a gas supply valve 38 is provided downstream of the high-temperature gas discharge valve 30 of the first embodiment. It will be clear that a gas supply pipe 39 with a gas supply valve 38 may be provided downstream of the discharge valve 30.

【0040】また、上記各実施例において、空気圧縮機
1の回転数を10%に維持することは、単なる例示であ
って、本発明は、この数値に限定されない。
In each of the above embodiments, maintaining the rotation speed of the air compressor 1 at 10% is merely an example, and the present invention is not limited to this value.

【0041】図5は、本発明による加圧流動床複合発電
プラントの各実施例における高温ガス排出制御装置33
の制御ロジックの系統構成を示す図である。高温ガス排
出弁30(およびガス供給弁38)は、ガスの状態値すな
わち加圧流動床ボイラ圧力容器5の圧力検出値31およ
び加圧流動床ボイラ6の温度検出値32と、空気圧縮機
出口弁23,ガスタービン入口弁26,空気供給弁27
の開閉状態とに応じて制御される。
FIG. 5 shows a hot gas emission control device 33 in each embodiment of the pressurized fluidized bed combined cycle power plant according to the present invention.
3 is a diagram showing a system configuration of control logic of FIG. The high-temperature gas discharge valve 30 (and the gas supply valve 38) is connected to the gas state value, that is, the detected pressure value 31 of the pressurized fluidized-bed boiler pressure vessel 5 and the detected temperature value 32 of the pressurized fluidized-bed boiler 6, and the air compressor outlet. Valve 23, gas turbine inlet valve 26, air supply valve 27
Is controlled according to the open / closed state of.

【0042】特に、加圧流動床ボイラ6の温度検出値3
2は、ガスの自燃温度を基準値とするため、高温ガス排
出弁30が開いて高温ガスが流れても、局部的な温度上
昇を回避できるように制御する。すなわち、未燃分のガ
スが高温ガス配管25または機器に残っていても、自燃
温度以下とし、未燃分の燃焼による温度上昇を防止でき
るようにする。
In particular, the temperature detection value 3 of the pressurized fluidized bed boiler 6
The control 2 controls the local temperature rise to be avoided even when the high-temperature gas discharge valve 30 is opened and the high-temperature gas flows because the self-combustion temperature of the gas is used as a reference value. That is, even if the unburned gas remains in the high-temperature gas pipe 25 or the equipment, the temperature is set to the self-combustion temperature or lower, so that the temperature rise due to the combustion of the unburned material can be prevented.

【0043】さらに、空気圧縮機1からガスタービン入
口弁26までの間の減圧完了後に、高温ガス排出弁30
を全閉すると、空気圧縮機1からガスタービン入口弁2
6までの間の金属の温度に応じて、空気圧縮機1からガ
スタービン入口弁26までの間の圧力が上昇することが
考えられるが、このような現象に対しては、タイマを設
けて自然放熱すると、十分に冷却できる。
Further, after the pressure reduction from the air compressor 1 to the gas turbine inlet valve 26 is completed, the high-temperature gas discharge valve 30
Is fully closed, the gas compressor inlet valve 2
It is conceivable that the pressure between the air compressor 1 and the gas turbine inlet valve 26 rises according to the temperature of the metal up to 6, but a timer is provided for such a phenomenon. When heat is dissipated, it can be cooled sufficiently.

【0044】図6は、本発明による加圧流動床複合発電
プラントの各実施例における風量の時間的変化を示す図
である。図7は、本発明による加圧流動床複合発電プラ
ントの各実施例における弁23,26,27,30の開
閉状態と加圧流動床ボイラ圧力容器6の圧力値31とガ
スタービン回転数との関係を示す図である。
FIG. 6 is a diagram showing a temporal change of the air volume in each embodiment of the pressurized fluidized bed combined cycle power plant according to the present invention. FIG. 7 shows the open / closed state of the valves 23, 26, 27, and 30, the pressure value 31 of the pressurized fluidized-bed boiler pressure vessel 6, and the gas turbine speed in each embodiment of the combined pressurized fluidized-bed power plant according to the present invention. It is a figure showing a relation.

【0045】図6および図7に示すように、空気圧縮機
出口弁23とガスタービン入口弁26とを全閉にして、
空気供給弁27と高温ガス排出弁30とを開くと、加圧
流動床ボイラ6の圧力が低下し、ガスタービン回転数が
低下する。一方、風量は、高温ガス排出弁30からの風
量とガスタービン入口弁26からのリーク量との合計値
以下、または、空気圧縮機1の風量と煙突10のドラフ
ト量との合計値以下になるので、高温ガスが、空気圧縮
機1の側に逆流することがない。なお、ドラフト量は、
煙突10の入口のガス温度と大気温度とに基づいて算出
できる。
As shown in FIGS. 6 and 7, the air compressor outlet valve 23 and the gas turbine inlet valve 26 are fully closed.
When the air supply valve 27 and the hot gas discharge valve 30 are opened, the pressure of the pressurized fluidized bed boiler 6 decreases, and the number of revolutions of the gas turbine decreases. On the other hand, the air volume is equal to or less than the total value of the air volume from the high-temperature gas discharge valve 30 and the leak amount from the gas turbine inlet valve 26, or equal to or less than the total value of the air volume of the air compressor 1 and the draft amount of the chimney 10. Therefore, the hot gas does not flow back to the air compressor 1 side. The draft amount is
It can be calculated based on the gas temperature at the inlet of the chimney 10 and the atmospheric temperature.

【0046】[0046]

【発明の効果】本発明によれば、加圧流動床ボイラとガ
スタービンと蒸気タービンとからなる加圧流動床複合発
電プラントにおいて、低温排熱回収熱交換器,高温排熱
回収熱交換器出口の復水および給水のスチーミングを防
止し、プラント通常停止時および緊急停止時に、プラン
トの信頼性を高め、停止時の所内動力を低減できる。
According to the present invention, in a pressurized fluidized bed combined cycle power plant comprising a pressurized fluidized bed boiler, a gas turbine and a steam turbine, a low temperature exhaust heat recovery heat exchanger and a high temperature exhaust heat recovery heat exchanger outlet are provided. This prevents water condensing and steaming of the water supply, improves the reliability of the plant during normal stoppage of the plant and emergency stoppage, and reduces the internal power during stoppage.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による加圧流動床複合発電プラントの実
施例1の構成を示す系統図である。
FIG. 1 is a system diagram showing a configuration of a first embodiment of a combined pressurized fluidized-bed power plant according to the present invention.

【図2】本発明による加圧流動床複合発電プラントの実
施例2の構成を示す系統図である。
FIG. 2 is a system diagram showing a configuration of a second embodiment of a combined pressurized fluidized-bed power plant according to the present invention.

【図3】本発明による加圧流動床複合発電プラントの実
施例3の構成を示す系統図である。
FIG. 3 is a system diagram showing a configuration of a third embodiment of a combined pressurized fluidized-bed power plant according to the present invention.

【図4】本発明による加圧流動床複合発電プラントの実
施例4の構成を示す系統図である。
FIG. 4 is a system diagram showing a configuration of a fourth embodiment of a combined pressurized fluidized-bed power plant according to the present invention.

【図5】本発明による加圧流動床複合発電プラントの各
実施例における高温ガス排出制御装置の制御ロジックの
系統構成を示す図である。
FIG. 5 is a diagram showing a system configuration of a control logic of a high-temperature gas emission control device in each embodiment of the pressurized fluidized bed combined cycle power plant according to the present invention.

【図6】本発明による加圧流動床複合発電プラントの各
実施例における風量の時間的変化を示す図である。
FIG. 6 is a diagram showing a temporal change of air flow in each embodiment of the combined pressurized fluidized bed power plant according to the present invention.

【図7】本発明による加圧流動床複合発電プラントの各
実施例における弁開閉状態と加圧流動床ボイラ圧力容器
側圧力とガスタービン回転数との関係を示す図である。
FIG. 7 is a diagram showing a relationship between a valve opening / closing state, a pressurized fluidized-bed boiler pressure vessel side pressure, and a gas turbine speed in each embodiment of the combined pressurized fluidized-bed power generation plant according to the present invention.

【図8】従来の加圧流動床複合発電プラントの系統構成
の一例を示す系統図である。
FIG. 8 is a system diagram showing an example of a system configuration of a conventional pressurized fluidized bed combined cycle power plant.

【符号の説明】[Explanation of symbols]

1 空気圧縮機 2 ガスタービン 3 ガスタービン発電機 4 起動用電動機 5 加圧流動床ボイラ圧力容器 6 加圧流動床ボイラ 7 高温ガス除塵装置 8 高温排熱回収熱交換器 9 低温排熱回収熱交換器 10 煙突 11 高圧タービン 12 中圧タービン 13 低圧タービン 14 蒸気タービン用発電機 15 復水器 16 復水ポンプ 17 低圧給水加熱器 18 脱気器 19 給水ポンプ 20 高圧給水加熱器 21 汽水分離器 22 空気入口弁 23 空気圧縮機出口弁 24 空気供給配管 25 高温ガス配管 26 ガスタービン入口弁 27 空気供給弁 28 ガスタービン出口配管 29 高温ガス排出配管 30 高温ガス排出弁 31 加圧流動床ボイラ圧力容器圧力検出器 32 加圧流動床ボイラ温度検出器 33 高温ガス排出制御装置 34 主蒸気配管 35 低温再熱蒸気配管 36 高温再熱蒸気配管 37 汽水分離器レベル調節弁 38 ガス供給弁 39 ガス供給配管 40 加圧流動床ボイラバイパス弁 41 加圧流動床ボイラバイパス配管 DESCRIPTION OF SYMBOLS 1 Air compressor 2 Gas turbine 3 Gas turbine generator 4 Starting motor 5 Pressurized fluidized bed boiler pressure vessel 6 Pressurized fluidized bed boiler 7 High temperature gas dust removing device 8 High temperature exhaust heat recovery heat exchanger 9 Low temperature exhaust heat recovery heat exchange Device 10 Chimney 11 High-pressure turbine 12 Medium-pressure turbine 13 Low-pressure turbine 14 Generator for steam turbine 15 Condenser 16 Condensate pump 17 Low-pressure feedwater heater 18 Deaerator 19 Feedwater pump 20 High-pressure feedwater heater 21 Steam separator 22 Air Inlet valve 23 Air compressor outlet valve 24 Air supply pipe 25 High temperature gas pipe 26 Gas turbine inlet valve 27 Air supply valve 28 Gas turbine outlet pipe 29 High temperature gas discharge pipe 30 High temperature gas discharge valve 31 Pressurized fluidized bed boiler pressure vessel pressure detection Vessel 32 pressurized fluidized-bed boiler temperature detector 33 high-temperature gas emission control device 34 main steam pipe 35 low Reheat steam pipe 36 hot reheat steam pipe 37 steam separator level control valve 38 the gas supply valve 39 the gas supply pipe 40 PFBC boiler bypass valve 41 PFBC boiler bypass pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 上野 健 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 (72)発明者 三島 信義 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 Fターム(参考) 3G081 BA02 BA11 BC07 BD00 DA04 DA06 DA21  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ken Ueno 3-1-1 Sachimachi, Hitachi-shi, Ibaraki Pref. Hitachi, Ltd. Hitachi Plant (72) Inventor Nobuyoshi Mishima 3-1-1 Sachimachi, Hitachi-shi, Ibaraki No. 1 F term in Hitachi, Ltd. Hitachi Plant (reference) 3G081 BA02 BA11 BC07 BD00 DA04 DA06 DA21

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 加圧流動床ボイラと前記加圧流動床ボイ
ラに空気を供給する空気圧縮機と前記加圧流動床ボイラ
の高温ガスにより駆動されるガスタービンと前記加圧流
動床ボイラの蒸気により駆動される蒸気タービンと前記
ガスタービンおよび蒸気タービンにより駆動される発電
機とを含み、前記空気圧縮機から前記加圧流動床ボイラ
に圧縮空気を供給する空気供給配管と前記加圧流動床ボ
イラから前記ガスタービンに高温ガスを供給する高温ガ
ス配管とを接続する空気供給弁を設置したボイラバイパ
ス管路を有する空気加圧流動床複合発電プラントにおい
て、 プラント通常停止時または緊急停止時に閉じる空気圧縮
機出口弁を前記空気供給配管に設け、 プラント通常停止時または緊急停止時に閉じるガスター
ビン入口弁を前記高温ガス配管に設け、 プラント通常停止時または緊急停止時に開き前記空気圧
縮機の出口から前記ガスタービン入口までの間の空気お
よび高温ガスを前記ガスタービンの排ガス出口部に排出
する高温ガス排出配管および高温ガス排出弁を設けたこ
とを特徴とする加圧流動床複合発電プラント。
1. A pressurized fluidized bed boiler, an air compressor for supplying air to the pressurized fluidized bed boiler, a gas turbine driven by hot gas of the pressurized fluidized bed boiler, and steam of the pressurized fluidized bed boiler And an air supply pipe for supplying compressed air from the air compressor to the pressurized fluidized-bed boiler, and the pressurized fluidized-bed boiler, comprising: a steam turbine driven by an air compressor; and a generator driven by the gas turbine and the steam turbine. An air pressurized fluidized bed combined cycle power plant having a boiler bypass line provided with an air supply valve for connecting a high temperature gas pipe for supplying a high temperature gas to the gas turbine from above A gas outlet valve is provided in the air supply pipe, and a gas turbine inlet valve that closes during a normal stop or an emergency stop of the plant is connected to the high-temperature gas pipe. A high-temperature gas discharge pipe and a high-temperature gas discharge valve that are opened during normal or emergency stop of a plant and discharge air and high-temperature gas from an outlet of the air compressor to an inlet of the gas turbine to an exhaust gas outlet of the gas turbine. And a combined pressurized fluidized bed power plant.
【請求項2】 加圧流動床ボイラと前記加圧流動床ボイ
ラに空気を供給する空気圧縮機と前記加圧流動床ボイラ
の高温ガスにより駆動されるガスタービンと前記加圧流
動床ボイラの蒸気により駆動される蒸気タービンと前記
ガスタービンおよび蒸気タービンにより駆動される発電
機とを含み、前記空気圧縮機から前記加圧流動床ボイラ
に圧縮空気を供給する空気供給配管と前記加圧流動床ボ
イラから前記ガスタービンに高温ガスを供給する高温ガ
ス配管とを接続する空気供給弁を設置したボイラバイパ
ス管路を有する空気加圧流動床複合発電プラントにおい
て、 プラント通常停止時または緊急停止時に閉じる空気圧縮
機出口弁を前記空気供給配管に設け、 プラント通常停止時または緊急停止時に閉じるガスター
ビン入口弁を前記高温ガス配管に設け、 プラント通常停止時または緊急停止時に開き前記空気圧
縮機の出口から前記ガスタービン入口までの間の空気お
よび高温ガスを前記ガスタービンの入口部に排出する高
温ガス排出配管および高温ガス排出弁を前記ガスタービ
ン入口弁と並列に設けたことを特徴とする加圧流動床複
合発電プラント。
2. A pressurized fluidized bed boiler, an air compressor for supplying air to the pressurized fluidized bed boiler, a gas turbine driven by hot gas of the pressurized fluidized bed boiler, and steam of the pressurized fluidized bed boiler And an air supply pipe for supplying compressed air from the air compressor to the pressurized fluidized-bed boiler, and the pressurized fluidized-bed boiler, comprising: a steam turbine driven by an air compressor; and a generator driven by the gas turbine and the steam turbine. An air pressurized fluidized bed combined cycle power plant having a boiler bypass line provided with an air supply valve for connecting a high temperature gas pipe for supplying a high temperature gas to the gas turbine from above A gas outlet valve is provided in the air supply pipe, and a gas turbine inlet valve that closes during a normal stop or an emergency stop of the plant is connected to the high-temperature gas pipe. A high-temperature gas discharge pipe and a high-temperature gas discharge valve which are opened at the time of a plant normal stop or an emergency stop to discharge air and a high-temperature gas from an outlet of the air compressor to an inlet of the gas turbine to an inlet of the gas turbine. A combined pressurized fluidized-bed power generation plant, which is provided in parallel with the gas turbine inlet valve.
【請求項3】 請求項1または2に記載の加圧流動床複
合発電プラントにおいて、 排出した高温ガスを冷却し希釈するために窒素または空
気を供給するガス供給配管およびガス供給弁を設けたこ
とを特徴とする加圧流動床複合発電プラント。
3. The pressurized fluidized bed combined cycle power plant according to claim 1, further comprising a gas supply pipe and a gas supply valve for supplying nitrogen or air for cooling and diluting the discharged hot gas. A combined pressurized fluidized-bed power plant characterized by the following.
【請求項4】 加圧流動床ボイラと前記加圧流動床ボイ
ラに空気を供給する空気圧縮機と前記加圧流動床ボイラ
の高温ガスにより駆動されるガスタービンと前記加圧流
動床ボイラの蒸気により駆動される蒸気タービンと前記
ガスタービンおよび蒸気タービンにより駆動される発電
機とを含み、前記空気圧縮機から前記加圧流動床ボイラ
に圧縮空気を供給する空気供給配管と前記加圧流動床ボ
イラから前記ガスタービンに高温ガスを供給する高温ガ
ス配管とを接続する空気供給弁を設置したボイラバイパ
ス管路を有する空気加圧流動床複合発電プラントにおい
て、 プラント通常停止時または緊急停止時に閉じる空気圧縮
機出口弁を前記空気供給配管に設け、 プラント通常停止時または緊急停止時に閉じるガスター
ビン入口弁を前記高温ガス配管に設け、 プラント通常停止時または緊急停止時に開き前記空気圧
縮機出口からガスタービンまでの間の空気および高温ガ
スを大気に排出する高温ガス排出配管および高温ガス排
出弁を設け、 排出した高温ガスを冷却し希釈するために窒素または空
気を供給するガス供給配管およびガス供給弁を設けたこ
とを特徴とする加圧流動床複合発電プラント。
4. A pressurized fluidized bed boiler, an air compressor for supplying air to the pressurized fluidized bed boiler, a gas turbine driven by hot gas of the pressurized fluidized bed boiler, and steam of the pressurized fluidized bed boiler And an air supply pipe for supplying compressed air from the air compressor to the pressurized fluidized-bed boiler, and the pressurized fluidized-bed boiler, comprising: a steam turbine driven by an air compressor; and a generator driven by the gas turbine and the steam turbine. An air pressurized fluidized bed combined cycle power plant having a boiler bypass line provided with an air supply valve for connecting a high temperature gas pipe for supplying a high temperature gas to the gas turbine from above A gas outlet valve is provided in the air supply pipe, and a gas turbine inlet valve that closes during a normal stop or an emergency stop of the plant is connected to the high-temperature gas pipe. Provided with a high-temperature gas discharge pipe and a high-temperature gas discharge valve that open during normal or emergency stop of the plant and discharge air and high-temperature gas from the air compressor outlet to the gas turbine to the atmosphere, and cool the discharged high-temperature gas A combined pressurized fluidized-bed power plant comprising a gas supply pipe and a gas supply valve for supplying nitrogen or air for dilution.
【請求項5】 請求項1ないし4のいずれか一項に記載
の加圧流動床複合発電プラントにおいて、 前記加圧流動床ボイラの圧力および出口温度と、前記空
気圧縮機出口弁,前記ガスタービン入口弁,前記空気供
給弁の開閉状態とに応じて、前記空気圧縮機出口弁,前
記ガスタービン入口弁,前記空気供給弁,前記高温ガス
排出弁,前記ガス供給弁の開度を制御する高温ガス排出
制御装置を設けたことを特徴とする加圧流動床複合発電
プラント。
5. The pressurized fluidized bed combined cycle power plant according to claim 1, wherein a pressure and an outlet temperature of the pressurized fluidized bed boiler, the air compressor outlet valve, and the gas turbine are provided. A high temperature for controlling the opening of the air compressor outlet valve, the gas turbine inlet valve, the air supply valve, the high-temperature gas discharge valve, and the gas supply valve according to the open / close state of the inlet valve and the air supply valve. A combined pressurized fluidized-bed power plant comprising a gas emission control device.
【請求項6】 請求項5に記載の加圧流動床複合発電プ
ラントにおいて、 前記高温ガス排出制御装置が、前記空気圧縮機から前記
ガスタービン入口弁までの間の減圧完了後、前記高温ガ
ス排出弁を全閉してからの自然放熱の経過時間を計測す
るタイマを備えたことを特徴とする加圧流動床複合発電
プラント。
6. The pressurized fluidized-bed combined cycle power plant according to claim 5, wherein the high-temperature gas discharge control device discharges the high-temperature gas after completing the pressure reduction from the air compressor to the gas turbine inlet valve. A pressurized fluidized bed combined cycle power plant comprising a timer for measuring an elapsed time of natural heat release after the valve is fully closed.
JP01293399A 1999-01-21 1999-01-21 Pressurized fluidized bed combined power plant Expired - Fee Related JP3700075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01293399A JP3700075B2 (en) 1999-01-21 1999-01-21 Pressurized fluidized bed combined power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01293399A JP3700075B2 (en) 1999-01-21 1999-01-21 Pressurized fluidized bed combined power plant

Publications (2)

Publication Number Publication Date
JP2000213306A true JP2000213306A (en) 2000-08-02
JP3700075B2 JP3700075B2 (en) 2005-09-28

Family

ID=11819103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01293399A Expired - Fee Related JP3700075B2 (en) 1999-01-21 1999-01-21 Pressurized fluidized bed combined power plant

Country Status (1)

Country Link
JP (1) JP3700075B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100621A (en) * 2005-10-06 2007-04-19 Chugoku Electric Power Co Inc:The Stop control method for pressurized fluidized bed plant
JP2009121777A (en) * 2007-11-16 2009-06-04 Public Works Research Institute Pressurized fluidized incineration equipment and starting operation method of the same
WO2013146599A1 (en) * 2012-03-26 2013-10-03 月島機械株式会社 Emergency stopping method for pressurized fluidized furnace system
KR20140147830A (en) * 2012-03-26 2014-12-30 츠키시마기카이가부시키가이샤 Activation method for pressurized fluidized furnace system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007100621A (en) * 2005-10-06 2007-04-19 Chugoku Electric Power Co Inc:The Stop control method for pressurized fluidized bed plant
JP4514684B2 (en) * 2005-10-06 2010-07-28 中国電力株式会社 Stop control method for pressurized fluidized bed plant
JP2009121777A (en) * 2007-11-16 2009-06-04 Public Works Research Institute Pressurized fluidized incineration equipment and starting operation method of the same
WO2013146599A1 (en) * 2012-03-26 2013-10-03 月島機械株式会社 Emergency stopping method for pressurized fluidized furnace system
CN104220810A (en) * 2012-03-26 2014-12-17 月岛机械株式会社 Emergency stopping method for pressurized fluidized furnace system
KR20140147830A (en) * 2012-03-26 2014-12-30 츠키시마기카이가부시키가이샤 Activation method for pressurized fluidized furnace system
KR20140148406A (en) 2012-03-26 2014-12-31 츠키시마기카이가부시키가이샤 Emergency stopping method for pressurized fluidized furnace system
KR102067302B1 (en) 2012-03-26 2020-01-16 츠키시마기카이가부시키가이샤 Activation method for pressurized fluidized furnace system
KR102067303B1 (en) 2012-03-26 2020-01-16 츠키시마기카이가부시키가이샤 Emergency stopping method for pressurized fluidized furnace system

Also Published As

Publication number Publication date
JP3700075B2 (en) 2005-09-28

Similar Documents

Publication Publication Date Title
JP4540472B2 (en) Waste heat steam generator
JPH1193694A (en) Gas turbine plant
JPH06264763A (en) Combined plant system
JP2000161014A (en) Combined power generator facility
JP2000337107A (en) Closed gas turbine plant
JPH1037713A (en) Combined cycle power plant
JPH0693879A (en) Combined plant and operation thereof
JPH10196316A (en) Combined power generating plant and closed air cooling gas turbine system
JP3700075B2 (en) Pressurized fluidized bed combined power plant
JP2006161698A (en) Overload operation device and method for steam turbine
JPH112105A (en) Combined cycle power generation plant
JP3750519B2 (en) Combined plant and operation method thereof
JP4488631B2 (en) Combined cycle power generation facility and operation method thereof
JP2003201862A (en) Combined cycle generating system
JP2000154704A (en) Combined cycle power generation plant
JP3518252B2 (en) Closed steam cooled gas turbine combined plant and gas turbine combined plant
JP4090668B2 (en) Combined cycle power generation facility
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JPS61213401A (en) Waste-heat recovery boiler
JP4090584B2 (en) Combined cycle power plant
JP3065794B2 (en) Feed water heating device
JP2001090507A (en) Electric power plant
JPH0814009A (en) Operation control method for pressurized fluidized bed boiler type composite cycle power plant
JP2716442B2 (en) Waste heat recovery boiler device
JP3300079B2 (en) Water supply system and exhaust heat recovery boiler for combined cycle plant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees