JP3700075B2 - Pressurized fluidized bed combined power plant - Google Patents

Pressurized fluidized bed combined power plant Download PDF

Info

Publication number
JP3700075B2
JP3700075B2 JP01293399A JP1293399A JP3700075B2 JP 3700075 B2 JP3700075 B2 JP 3700075B2 JP 01293399 A JP01293399 A JP 01293399A JP 1293399 A JP1293399 A JP 1293399A JP 3700075 B2 JP3700075 B2 JP 3700075B2
Authority
JP
Japan
Prior art keywords
fluidized bed
pressurized fluidized
gas
valve
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01293399A
Other languages
Japanese (ja)
Other versions
JP2000213306A (en
Inventor
行正 吉成
孝志 麻尾
健 上野
信義 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP01293399A priority Critical patent/JP3700075B2/en
Publication of JP2000213306A publication Critical patent/JP2000213306A/en
Application granted granted Critical
Publication of JP3700075B2 publication Critical patent/JP3700075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加圧流動床ボイラとガスタービンと蒸気タービンとを含む加圧流動床複合発電プラントに係り、特に、プラント通常停止時および緊急停止時の信頼性を向上させるとともに、所内動力を低減する手段に関する。
【0002】
【従来の技術】
図8は、従来の加圧流動床複合発電プラントの系統構成の一例を示す系統図である。この加圧流動床複合発電プラントにおいては、空気圧縮機1と加圧流動床ボイラ6との間の空気供給配管24および加圧流動床ボイラ6とガスタービン2と間の高温ガス供給配管25にボイラバイパス配管41を設置するとともに、高温ガス供給配管25とボイラバイパス配管41との合流点とガスタービン出口配管28との間に高温ガス排出配管29および高温ガス排出弁30を設置し、障害時にボイラバイパス配管41と高温ガス排出配管29に空気および高温ガスを流すことが提案されている。なお、この種の装置として関連するものには、例えば特開平9−50107など挙げられる。
【0003】
【発明が解決しようとする課題】
このような従来の方法では、空気および高温ガスの混合ガスが煙突10に排出されるため、ガスタービン出口配管28から煙突10までの系統を高温のガスに対応可能な設備とする必要がある。
【0004】
この混合ガスを冷却するため、高温ガス排出配管30の接続先を高温排熱回収熱交換器8の入口側に回収することも考えられるが、60%から100%程度のガスを処理する必要があるため、高温排熱回収器8出口の給水がフラッシュしてスチーミングが発生し、機器を損傷することが予想される。また、障害発生時の数秒間は、圧力を制御する必要があり、制御が非常に複雑になることが予想される。さらに、空気圧縮機1と加圧流動床ボイラ6との間の圧力が、一定圧力に保持されるので、ガスタービン停止時に加圧流動床ボイラ6とガスタービン2との間の高温ガスが空気圧縮機1に逆流し、空気圧縮機1を損傷することが予想される。したがって、加圧流動床ボイラ6のガス温度および金属の温度が低下するまで、ガスタービン2を連続的に運転する必要がある。
【0005】
本発明の目的は、プラント通常停止時および緊急停止時、低温排熱回収熱交換器出口の復水および高温排熱回収熱交換器出口の給水のスチーミングを防止し、プラントの信頼性を上げ、停止時の所内動力を低減する手段を備えた加圧流動床複合発電プラントを提供することである。
【0006】
【課題を解決するための手段】
本発明は、上記目的を達成するために、加圧流動床ボイラと加圧流動床ボイラに空気を供給する空気圧縮機と加圧流動床ボイラの高温ガスにより駆動されるガスタービンと加圧流動床ボイラの蒸気により駆動される蒸気タービンとガスタービンおよび蒸気タービンにより駆動される発電機とを含み、空気圧縮機から加圧流動床ボイラに圧縮空気を供給する空気供給配管と加圧流動床ボイラからガスタービンに高温ガスを供給する高温ガス配管とを接続する空気供給弁を設置したボイラバイパス管路を有する空気加圧流動床複合発電プラントにおいて、プラント通常停止時または緊急停止時に閉じる空気圧縮機出口弁を空気供給配管に設け、プラント通常停止時または緊急停止時に閉じるガスタービン入口弁を高温ガス配管に設け、プラント通常停止時または緊急停止時に開き空気圧縮機の出口からガスタービン入口までの間の空気および高温ガスをガスタービンの排ガス出口部に排出する高温ガス排出配管および高温ガス排出弁を設けた加圧流動床複合発電プラントを提案する。
【0007】
本発明は、また、加圧流動床ボイラと加圧流動床ボイラに空気を供給する空気圧縮機と加圧流動床ボイラの高温ガスにより駆動されるガスタービンと加圧流動床ボイラの蒸気により駆動される蒸気タービンとガスタービンおよび蒸気タービンにより駆動される発電機とを含み、空気圧縮機から加圧流動床ボイラに圧縮空気を供給する空気供給配管と加圧流動床ボイラからガスタービンに高温ガスを供給する高温ガス配管とを接続する空気供給弁を設置したボイラバイパス管路を有する空気加圧流動床複合発電プラントにおいて、プラント通常停止時または緊急停止時に閉じる空気圧縮機出口弁を空気供給配管に設け、プラント通常停止時または緊急停止時に閉じるガスタービン入口弁を高温ガス配管に設け、プラント通常停止時または緊急停止時に開き空気圧縮機の出口からガスタービン入口までの間の空気および高温ガスをガスタービンの入口部に排出する高温ガス排出配管および高温ガス排出弁をガスタービン入口弁と並列に設けた加圧流動床複合発電プラントを提案する。
【0008】
いずれの場合も、排出した高温ガスを冷却し希釈するために窒素または空気を供給するガス供給配管およびガス供給弁を追加して設置できる。
【0009】
本発明は、さらに、加圧流動床ボイラと加圧流動床ボイラに空気を供給する空気圧縮機と加圧流動床ボイラの高温ガスにより駆動されるガスタービンと加圧流動床ボイラの蒸気により駆動される蒸気タービンとガスタービンおよび蒸気タービンにより駆動される発電機とを含み、空気圧縮機から加圧流動床ボイラに圧縮空気を供給する空気供給配管と加圧流動床ボイラからガスタービンに高温ガスを供給する高温ガス配管とを接続する空気供給弁を設置したボイラバイパス管路を有する空気加圧流動床複合発電プラントにおいて、プラント通常停止時または緊急停止時に閉じる空気圧縮機出口弁を空気供給配管に設け、プラント通常停止時または緊急停止時に閉じるガスタービン入口弁を高温ガス配管に設け、プラント通常停止時または緊急停止時に開き空気圧縮機出口からガスタービンまでの間の空気および高温ガスを大気に排出する高温ガス排出配管および高温ガス排出弁を設け、排出した高温ガスを冷却し希釈するために窒素または空気を供給するガス供給配管およびガス供給弁を設けた加圧流動床複合発電プラントを提案する。
【0010】
上記いずれの加圧流動床複合発電プラントにおいても、加圧流動床ボイラの圧力および出口温度と、空気圧縮機出口弁,ガスタービン入口弁,空気供給弁の開閉状態とに応じて、空気圧縮機出口弁,ガスタービン入口弁,空気供給弁,高温ガス排出弁,ガス供給弁の開度を制御する高温ガス排出制御装置を設ける。
【0011】
この高温ガス排出制御装置は、空気圧縮機からガスタービン入口弁までの間の減圧完了後、高温ガス排出弁を全閉してからの自然放熱の経過時間を計測するタイマを備えてもよい。
【0012】
【発明の実施の形態】
次に、図1〜図7を参照して、本発明による加圧流動床複合発電プラントの実施例を説明する。
【0013】
《実施例1》
図1は、本発明による加圧流動床複合発電プラントの実施例1の構成を示す系統図である。起動用電動機4を備えた空気圧縮機1は、空気入口弁22から吸い込んだ空気を圧縮し、空気圧縮機出口弁23,空気供給配管24を介して、圧縮空気を加圧流動床ボイラ圧力容器5内の加圧流動床ボイラ6に供給する。加圧流動床ボイラ6からの高圧ガスは、高温ガス配管25,高温ガス除塵装置7,ガスタービン入口弁26を介して、ガスタービン2に供給され、ガスタービン2を駆動し、ガスタービン発電機3により、エネルギーを電力に変換される。ガスタービン2で仕事をした高圧ガスは、ガスタービン出口配管28,高温排熱回収熱交換器8,低温排熱回収熱交換器9を通り、煙突10から大気に排出される。
【0014】
一方、加圧流動床ボイラ6で加熱された水は、汽水分離器21により、水蒸気のみとなり、主蒸気配管34により高圧タービン11に導かれる。高圧タービン11で仕事をした蒸気は、低温再熱蒸気配管35で加圧流動床ボイラ6に戻されて再加熱され、高温再熱蒸気配管36で中圧タービン12に導かれる。中圧タービン12で仕事をした蒸気は、低圧タービン13に導かれる。高圧タービン11,中圧タービン12,低圧タービン13には、共軸の蒸気タービン用発電機14を設置してあり、蒸気エネルギーを電力に変換する。低圧タービン13を通過した蒸気は、復水器15により冷却され、復水される。復水された水は、復水ポンプ16により加圧されて、低圧給水加熱器17,上記低温排熱回収熱交換器9を通り、脱気器18で脱気される。さらに、給水ポンプ19により加圧されて、高圧給水加熱器20,上記高温排熱回収熱交換器8を通り、再び、加圧流動床ボイラ圧力容器5内の加圧流動床ボイラ6に供給される。なお、汽水分離器21は、汽水分離器レベル調節弁37を備えた配管により、復水器15に接続されている。
【0015】
空気圧縮機1の出口とガスタービン2の入口との間には、空気供給弁27を設けたバイパス配管を接続してある。また、加圧流動床ボイラ圧力容器5には、加圧流動床ボイラ圧力容器圧力検出器31を取り付け、高温ガス配管25には、加圧流動床ボイラ温度検出器32を取り付けてある。
【0016】
本実施例1においては、特に、ガスタービン入口弁26よりも上流の高温ガス配管25とガスタービン出口配管28との間に、高温ガス排出弁30を持った高温ガス排出配管29を接続してある。
【0017】
少なくとも加圧流動床ボイラ圧力容器圧力検出器31および加圧流動床ボイラ温度検出器32などからの信号を取り込む高温ガス排出制御装置33は、検出信号に応じて、空気圧縮機出口弁23,ガスタービン入口弁26,空気供給弁27,高温ガス排出弁30の開閉を制御する。
【0018】
本実施例1において、通常運転時、空気圧縮機入口弁22から空気圧縮機1に取り込まれた空気は、空気供給配管24により加圧流動床ボイラ圧力容器5内の加圧流動床ボイラ6に導かれる。加圧流動床ボイラ6からの高温ガスは、高温ガス配管25により高温ガス除塵装置7に導かれ、灰などを除去した後、高温ガス配管25によりガスタービン2に供給され、ガスタービン用発電機3を駆動し、発電する。ガスタービン2からの排ガスは、ガスタービン出口配管28により高温排熱回収熱交換器8および低温排熱回収熱交換器9に導かれ、蒸気タービン系に熱回収された後、煙突10から大気に放出される。
【0019】
一方、加圧流動床ボイラ6で発生した蒸気は、主蒸気配管34,高圧タービン11,低温再熱蒸気配管35,加圧流動床ボイラ6,高温再熱蒸気配管36,中圧タービン12,低圧タービン13を通り、復水器15に至る間に、蒸気タービン用発電機14を駆動し、発電する。復水器15で冷却され凝縮し復水となった水は、復水ポンプ16で昇圧され、低圧給水加熱器17および低温排熱回収熱交換器9で昇温され、脱気器18に供給される。脱気器18に供給された給水は、給水ポンプ19でさらに昇圧され、高圧給水加熱器20および高温排熱回収熱交換器8で昇温された後、加圧流動床ボイラ6に再び供給される。
【0020】
プラント通常停止時は、加圧流動床ボイラ6内の燃料を燃焼させた後、空気圧縮機出口弁23およびガスタービン入口弁26を全閉し、空気供給弁27を開くので、加圧流動床ボイラ6側は、隔離状態となる。これに対して、ガスタービン2側は、起動用電動機4により、ガスタービン2の回転数を10%に降下させて運転される。その際、加圧流動床ボイラ6側の系統は、高温ガス排出配管29の高温ガス排出弁30を開き、ガスタービン出口配管28に高温ガスを排出し、高温排熱回収熱交換器8および低温排熱回収熱交換器9により蒸気タービン系に熱を回収し、煙突10から大気に排気し、減圧する。加圧流動床ボイラ6側の減圧が完了したら、ガスタービン2を停止させまたは低速ターニングさせる。
【0021】
この場合に、高温ガス排出弁30からの排出量は、高温ガスが空気圧縮機1に逆流することを防止するために、ガスタービン入口弁26のリーク量と高温ガス排出量との合計値を回転数が10%の空気圧縮機1の風量と煙突10のドラフト風量との合計値以下にする必要がある。高温ガス排出制御装置33は、加圧流動床ボイラ圧力容器圧力検出器31からの信号と加圧流動床ボイラ出口温度検出器32からの信号とに応じて、高温ガス排出量を制御し、ガスタービン入口弁26のリーク量と高温ガス排出量との合計値を回転数が10%の空気圧縮機1の風量と煙突10のドラフト風量との合計値以下に、高温ガス排出量を制御する。さらに、高温ガス排出弁30からの排出温度は、加圧流動床ボイラ6の温度検出器32からの信号に応じて、ガスタービン出口の設備計画値以内に制御する。
【0022】
一方、蒸気タービン系では、加圧流動床ボイラ6の発生蒸気量が減少し、汽水分離器21の水位が上昇するので、汽水分離器レベル調節弁37を介して、復水器15に復水を十分に回収する。復水器15に回収された給水は、復水器15で冷却し、復水ポンプ16で昇圧し、低圧給水加熱器17および低温排熱回収熱交換器9を介して、脱気器18に供給される。脱気器18に供給された給水は、給水ポンプ19で昇圧し、高圧給水加熱器20および高温排熱回収熱交換器8で昇温した後、汽水分離器21,汽水分離器レベル調節弁37を介して、復水器15に供給され、循環運転状態になる。
【0023】
その結果、加圧流動床ボイラ6側の減圧時の高温ガスは、低温排熱回収熱交換器9および高温排熱回収熱交換器8で復水および給水に熱回収し、復水器15により回収熱を冷却できることになる。
【0024】
特に、加圧流動床ボイラ6側の減圧時の高温ガス量は、回転数が10%の空気圧縮機1の風量と煙突1のドラフト風量と高温ガス排出量およびガスタービン入口弁26の合計値となるが、通常運転時のガス量と比べて非常に少ないために、低温排熱回収熱交換器9出口の復水のスチーミングと高温排熱回収熱交換器8出口の給水のスチーミングとを防止できる。
【0025】
さらに、復水ポンプ16および給水ポンプ19が動作可能であり高温排熱回収熱交換器9および低温排熱回収熱交換器9に給水を供給可能なモードの緊急停止時には、加圧流動床ボイラ6側の減圧時の高温ガスは、低温排熱回収熱交換器9および高温排熱回収熱交換器8で復水および給水に熱回収し、復水器15により回収熱を冷却できるため、プラント通常停止と同様に運転できる。
【0026】
《実施例2》
図2は、本発明による加圧流動床複合発電プラントの実施例2の構成を示す系統図である。実施例2は、ガスタービン出口配管28ではなく、空気供給弁27よりも上流の高温ガス配管25に、高温ガス排出弁30を持った高温ガス排出配管29を接続し、ガスタービン入口弁26をバイパスするようにしてある点が、実施例1と異なっている。
【0027】
実施例2において、プラント通常停止時は、加圧流動床ボイラ6内の燃料を燃焼させた後、空気圧縮機出口弁23およびガスタービン入口弁26を全閉し、空気供給弁27を開くので、加圧流動床ボイラ6側は、隔離状態となる。これに対して、ガスタービン2側は、起動用電動機4により、ガスタービン2の回転数を10%に降下させて運転される。その際、加圧流動床ボイラ6側の系統は、高温ガス排出配管29の高温ガス排出弁30を開き、ガスタービン2の入口部に高温ガスを排出し、ガスタービン2を通過させ、高温排熱回収熱交換器8および低温排熱回収熱交換器9により蒸気タービン系に熱回収し、煙突10から大気に排気し、減圧する。加圧流動床ボイラ6側の減圧が完了したら、ガスタービン2を停止させまたは低速ターニングさせる。
【0028】
実施例2においても、実施例1と同様に運転できるため、低温排熱回収熱交換器9出口の復水のスチーミングと高温排熱回収熱交換器8出口の給水のスチーミングとを防止し、プラント通常停止時および緊急停止時に、プラントの信頼性を高め、停止時の所内動力を低減できる。
【0029】
《実施例3》
図3は、本発明による加圧流動床複合発電プラントの実施例3の構成を示す系統図である。実施例3は、ガスタービン出口配管28ではなく、高温ガス排出弁30を持った高温ガス排出配管29を大気に開放するように接続するとともに、ガス供給弁38を備えたガス供給配管39を併設した点が、実施例1と異なっている。
【0030】
実施例3において、プラント通常停止時は、加圧流動床ボイラ6内の燃料を燃焼させた後、空気圧縮機出口弁23およびガスタービン入口弁26を全閉し、空気供給弁27を開くので、加圧流動床ボイラ6側は、隔離状態となる。これに対して、ガスタービン2側は、起動用電動機4により、ガスタービン2の回転数を10%に降下させて運転される。その際、加圧流動床ボイラ6側の系統は、高温ガス排出配管29の高温ガス排出弁30とガス供給弁38とを開き、ガス供給配管39からのガスにより高温ガスを冷却または希釈した後、大気に排出する。加圧流動床ボイラ6側の減圧が完了したら、ガスタービン2を停止させまたは低速ターニングさせる。
【0031】
この場合に、高温ガス排出弁30からの排出量は、高温ガスが空気圧縮機1に逆流することを防止するために、ガスタービン入口弁26のリーク量と高温ガス排出量との合計値を回転数が10%の空気圧縮機1の風量と煙突10のドラフト風量との合計値以下にする必要がある。高温ガス排出制御装置33は、加圧流動床ボイラ圧力容器圧力検出器31からの信号と加圧流動床ボイラ出口温度検出器32からの信号とに応じて、高温ガス排出量を制御し、ガスタービン入口弁26のリーク量と高温ガス排出量との合計値を回転数が10%の空気圧縮機1の風量と煙突10のドラフト風量との合計値以下に、高温ガス排出量を制御する。さらに、高温ガス排出弁30からの排出温度は、加圧流動床ボイラ6の温度検出器32からの信号に応じて、ガスタービン出口の設備計画値以内に制御する。
【0032】
また、高温ガス排出制御装置33は、ガス供給弁38からの冷却および希釈に必要なガスすなわち窒素または空気も制御するので、高温ガス中の一酸化炭素などの有害成分を希釈し、大気に排出できる。
【0033】
一方、ガスタービン2側は、回転数が10%の空気圧縮機1の風量と煙突10のドラフト風量とガスタービン入口弁26のリーク量との合計値を、低温排熱回収熱交換器9および高温排熱回収熱交換器8の出口を介して、煙突10から大気に放出する。この場合は、ガス量が通常運転時のガス量と比べて非常に少ないので、低温排熱回収熱交換器9出口の復水のスチーミングと高温排熱回収熱交換器8出口の給水のスチーミングとを防止できる。
【0034】
《実施例4》
図4は、本発明による加圧流動床複合発電プラントの実施例4の構成を示す系統図である。実施例4は、実施例1と同様に、ガスタービン入口弁26よりも上流の高温ガス配管25とガスタービン出口配管28との間に、高温ガス排出弁30を持った高温ガス排出配管29を接続した上に、高温ガス排出弁30よりも下流に、ガス供給弁38を備えたガス供給配管39を併設してある。
【0035】
実施例4において、プラント通常停止時は、加圧流動床ボイラ6内の燃料を燃焼させた後、空気圧縮機出口弁23およびガスタービン入口弁26を全閉し、空気供給弁27を開くので、加圧流動床ボイラ6側は、隔離状態となる。これに対して、ガスタービン2側は、起動用電動機4により、ガスタービン2の回転数を10%に降下させて、転される。その際、加圧流動床ボイラ6側の系統は、高温ガス排出配管29の高温ガス排出弁30とガス供給弁38とを開き、ガス供給配管39からのガスにより高温ガスを冷却または希釈しながら、ガスタービン出口配管28を介して、高温排熱回収熱交換器8および低温排熱回収熱交換器9により蒸気タービン系に熱回収した後、煙突10から大気に排出する。加圧流動床ボイラ6側の減圧が完了したら、ガスタービン2を停止させまたは低速ターニングさせる。
【0036】
この場合に、高温ガス排出弁30からの排出量は、高温ガスが空気圧縮機1に逆流することを防止するために、ガスタービン入口弁26のリーク量と高温ガス排出量との合計値を回転数が10%の空気圧縮機1の風量と煙突10のドラフト風量との合計値以下にする必要がある。高温ガス排出制御装置33は、加圧流動床ボイラ圧力容器圧力検出器31からの信号と加圧流動床ボイラ出口温度検出器32からの信号とに応じて、高温ガス排出量を制御し、ガスタービン入口弁26のリーク量と高温ガス排出量との合計値を回転数が10%の空気圧縮機1の風量と煙突10のドラフト風量との合計値以下に、高温ガス排出量を制御する。さらに、高温ガス排出弁30からの排出温度は、加圧流動床ボイラ6の温度検出器32からの信号に応じて、ガスタービン出口の設備計画値以内に制御する。
【0037】
また、高温ガス排出制御装置33は、ガス供給弁38からの冷却および希釈に必要なガスすなわち窒素または空気も制御するので、高温ガス中の一酸化炭素などの有害成分を希釈し、大気に排出できる。
【0038】
一方、ガスタービン2側は、回転数が10%の空気圧縮機1の風量と煙突10のドラフト風量とガスタービン入口弁26のリーク量との合計値を、低温排熱回収熱交換器9および高温排熱回収熱交換器8の出口を介して、煙突10から大気に放出する。この場合は、ガス量が通常運転時のガス量と比べて非常に少ないので、低温排熱回収熱交換器9出口の復水のスチーミングと高温排熱回収熱交換器8出口の給水のスチーミングとを防止できる。
【0039】
なお、実施例4は、実施例1の高温ガス排出弁30よりも下流に、ガス供給弁38を備えたガス供給配管39を併設した例であったが、実施例2の高温ガス排出弁30よりも下流に、ガス供給弁38を備えたガス供給配管39を併設してもよいことは、明らかであろう。
【0040】
また、上記各実施例において、空気圧縮機1の回転数を10%に維持することは、単なる例示であって、本発明は、この数値に限定されない。
【0041】
図5は、本発明による加圧流動床複合発電プラントの各実施例における高温ガス排出制御装置33の制御ロジックの系統構成を示す図である。高温ガス排出弁30(およびガス供給弁38)は、ガスの状態値すなわち加圧流動床ボイラ圧力容器5の圧力検出値31および加圧流動床ボイラ6の温度検出値32と、空気圧縮機出口弁23,ガスタービン入口弁26,空気供給弁27の開閉状態とに応じて制御される。
【0042】
特に、加圧流動床ボイラ6の温度検出値32は、ガスの自燃温度を基準値とするため、高温ガス排出弁30が開いて高温ガスが流れても、局部的な温度上昇を回避できるように制御する。すなわち、未燃分のガスが高温ガス配管25または機器に残っていても、自燃温度以下とし、未燃分の燃焼による温度上昇を防止できるようにする。
【0043】
さらに、空気圧縮機1からガスタービン入口弁26までの間の減圧完了後に、高温ガス排出弁30を全閉すると、空気圧縮機1からガスタービン入口弁26までの間の金属の温度に応じて、空気圧縮機1からガスタービン入口弁26までの間の圧力が上昇することが考えられるが、このような現象に対しては、タイマを設けて自然放熱すると、十分に冷却できる。
【0044】
図6は、本発明による加圧流動床複合発電プラントの各実施例における風量の時間的変化を示す図である。図7は、本発明による加圧流動床複合発電プラントの各実施例における弁23,26,27,30の開閉状態と加圧流動床ボイラ圧力容器6の圧力値31とガスタービン回転数との関係を示す図である。
【0045】
図6および図7に示すように、空気圧縮機出口弁23とガスタービン入口弁26とを全閉にして、空気供給弁27と高温ガス排出弁30とを開くと、加圧流動床ボイラ6の圧力が低下し、ガスタービン回転数が低下する。一方、風量は、高温ガス排出弁30からの風量とガスタービン入口弁26からのリーク量との合計値以下、または、空気圧縮機1の風量と煙突10のドラフト量との合計値以下になるので、高温ガスが、空気圧縮機1の側に逆流することがない。なお、ドラフト量は、煙突10の入口のガス温度と大気温度とに基づいて算出できる。
【0046】
【発明の効果】
本発明によれば、加圧流動床ボイラとガスタービンと蒸気タービンとからなる加圧流動床複合発電プラントにおいて、低温排熱回収熱交換器,高温排熱回収熱交換器出口の復水および給水のスチーミングを防止し、プラント通常停止時および緊急停止時に、プラントの信頼性を高め、停止時の所内動力を低減できる。
【図面の簡単な説明】
【図1】本発明による加圧流動床複合発電プラントの実施例1の構成を示す系統図である。
【図2】本発明による加圧流動床複合発電プラントの実施例2の構成を示す系統図である。
【図3】本発明による加圧流動床複合発電プラントの実施例3の構成を示す系統図である。
【図4】本発明による加圧流動床複合発電プラントの実施例4の構成を示す系統図である。
【図5】本発明による加圧流動床複合発電プラントの各実施例における高温ガス排出制御装置の制御ロジックの系統構成を示す図である。
【図6】本発明による加圧流動床複合発電プラントの各実施例における風量の時間的変化を示す図である。
【図7】本発明による加圧流動床複合発電プラントの各実施例における弁開閉状態と加圧流動床ボイラ圧力容器側圧力とガスタービン回転数との関係を示す図である。
【図8】従来の加圧流動床複合発電プラントの系統構成の一例を示す系統図である。
【符号の説明】
1 空気圧縮機
2 ガスタービン
3 ガスタービン発電機
4 起動用電動機
5 加圧流動床ボイラ圧力容器
6 加圧流動床ボイラ
7 高温ガス除塵装置
8 高温排熱回収熱交換器
9 低温排熱回収熱交換器
10 煙突
11 高圧タービン
12 中圧タービン
13 低圧タービン
14 蒸気タービン用発電機
15 復水器
16 復水ポンプ
17 低圧給水加熱器
18 脱気器
19 給水ポンプ
20 高圧給水加熱器
21 汽水分離器
22 空気入口弁
23 空気圧縮機出口弁
24 空気供給配管
25 高温ガス配管
26 ガスタービン入口弁
27 空気供給弁
28 ガスタービン出口配管
29 高温ガス排出配管
30 高温ガス排出弁
31 加圧流動床ボイラ圧力容器圧力検出器
32 加圧流動床ボイラ温度検出器
33 高温ガス排出制御装置
34 主蒸気配管
35 低温再熱蒸気配管
36 高温再熱蒸気配管
37 汽水分離器レベル調節弁
38 ガス供給弁
39 ガス供給配管
40 加圧流動床ボイラバイパス弁
41 加圧流動床ボイラバイパス配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pressurized fluidized bed combined power plant including a pressurized fluidized bed boiler, a gas turbine, and a steam turbine, and in particular, improves the reliability at the time of normal stop and emergency stop of the plant and reduces in-house power. It is related with the means to do.
[0002]
[Prior art]
FIG. 8 is a system diagram showing an example of a system configuration of a conventional pressurized fluidized bed combined power plant. In this pressurized fluidized bed combined power plant, an air supply pipe 24 between the air compressor 1 and the pressurized fluidized bed boiler 6 and a high temperature gas supply pipe 25 between the pressurized fluidized bed boiler 6 and the gas turbine 2 are provided. A boiler bypass pipe 41 is installed, and a high temperature gas discharge pipe 29 and a high temperature gas discharge valve 30 are installed between the junction of the high temperature gas supply pipe 25 and the boiler bypass pipe 41 and the gas turbine outlet pipe 28. It has been proposed that air and high-temperature gas flow through the boiler bypass pipe 41 and the high-temperature gas discharge pipe 29. An example of a device of this type is JP-A-9-50107.
[0003]
[Problems to be solved by the invention]
In such a conventional method, since a mixed gas of air and high-temperature gas is discharged to the chimney 10, the system from the gas turbine outlet pipe 28 to the chimney 10 needs to be equipment capable of handling high-temperature gas.
[0004]
In order to cool this mixed gas, it is conceivable to recover the connection destination of the high temperature gas discharge pipe 30 to the inlet side of the high temperature exhaust heat recovery heat exchanger 8, but it is necessary to process about 60% to 100% of the gas. Therefore, it is expected that the water supply at the outlet of the high-temperature exhaust heat recovery unit 8 is flushed, steaming occurs, and the equipment is damaged. Further, it is necessary to control the pressure for a few seconds when the failure occurs, and it is expected that the control becomes very complicated. Furthermore, since the pressure between the air compressor 1 and the pressurized fluidized bed boiler 6 is maintained at a constant pressure, the hot gas between the pressurized fluidized bed boiler 6 and the gas turbine 2 is air when the gas turbine is stopped. It is expected that the air flows back to the compressor 1 and damages the air compressor 1. Therefore, it is necessary to operate the gas turbine 2 continuously until the gas temperature and the metal temperature of the pressurized fluidized bed boiler 6 are lowered.
[0005]
The object of the present invention is to prevent steaming of the condensate at the outlet of the low-temperature exhaust heat recovery heat exchanger and the feed water at the outlet of the high-temperature exhaust heat recovery heat exchanger at the time of normal stoppage and emergency stop of the plant, thereby improving the reliability of the plant. Another object of the present invention is to provide a pressurized fluidized bed combined power plant provided with means for reducing in-house power when stopped.
[0006]
[Means for Solving the Problems]
To achieve the above object, the present invention provides a pressurized fluidized bed boiler, an air compressor for supplying air to the pressurized fluidized bed boiler, a gas turbine driven by the high temperature gas of the pressurized fluidized bed boiler, and a pressurized fluidized An air supply pipe and a pressurized fluidized bed boiler for supplying compressed air from an air compressor to a pressurized fluidized bed boiler, including a steam turbine driven by the steam of the floor boiler, a gas turbine and a generator driven by the steam turbine Air compressor closed at normal or emergency stop in an air pressurized fluidized bed combined power plant having a boiler bypass line installed with an air supply valve for connecting a high temperature gas pipe for supplying a high temperature gas to the gas turbine An outlet valve is provided in the air supply piping, and a gas turbine inlet valve that is closed during normal plant shutdown or emergency shutdown is installed in the high-temperature gas piping. Pressurized fluidized bed with high-temperature gas discharge piping and high-temperature gas discharge valve for discharging air and high-temperature gas from the outlet of the air compressor to the gas turbine inlet at the time of stoppage or emergency stop to the exhaust gas outlet of the gas turbine A combined power plant is proposed.
[0007]
The present invention also includes a pressurized fluidized bed boiler, an air compressor that supplies air to the pressurized fluidized bed boiler, a gas turbine driven by the hot gas of the pressurized fluidized bed boiler, and a steam of the pressurized fluidized bed boiler. A gas turbine and a generator driven by the steam turbine, an air supply pipe for supplying compressed air from the air compressor to the pressurized fluidized bed boiler, and a hot gas from the pressurized fluidized bed boiler to the gas turbine In an air pressurized fluidized bed combined power plant with a boiler bypass line installed with an air supply valve that connects to the hot gas pipe that supplies the air compressor outlet valve that closes at the time of normal or emergency stop of the plant A gas turbine inlet valve is installed in the hot gas piping that closes at a normal or emergency stop of the plant. Pressurized flow with a high-temperature gas discharge pipe and a high-temperature gas discharge valve in parallel with the gas turbine inlet valve that are sometimes opened from the outlet of the air compressor to the gas turbine inlet and discharge the air and hot gas to the inlet of the gas turbine A floor combined power plant is proposed.
[0008]
In either case, a gas supply pipe and a gas supply valve for supplying nitrogen or air can be additionally installed to cool and dilute the discharged hot gas.
[0009]
The present invention further includes a pressurized fluidized bed boiler, an air compressor for supplying air to the pressurized fluidized bed boiler, a gas turbine driven by the hot gas of the pressurized fluidized bed boiler, and a steam of the pressurized fluidized bed boiler. A gas turbine and a generator driven by the steam turbine, an air supply pipe for supplying compressed air from the air compressor to the pressurized fluidized bed boiler, and a hot gas from the pressurized fluidized bed boiler to the gas turbine In an air pressurized fluidized bed combined power plant with a boiler bypass line installed with an air supply valve that connects to the hot gas pipe that supplies the air compressor outlet valve that closes at the time of normal or emergency stop of the plant A gas turbine inlet valve is installed in the hot gas piping that closes when the plant is normally stopped or emergency stopped, and when the plant is normally stopped or emergency A high-temperature gas discharge pipe and a high-temperature gas discharge valve are provided to discharge air and high-temperature gas from the outlet of the air compressor to the gas turbine to the atmosphere at the time of shutdown, and nitrogen or air is supplied to cool and dilute the discharged high-temperature gas. A pressurized fluidized bed combined power plant with a gas supply pipe and a gas supply valve is proposed.
[0010]
In any of the above pressurized fluidized bed combined power plants, depending on the pressure and outlet temperature of the pressurized fluidized bed boiler and the open / closed states of the air compressor outlet valve, gas turbine inlet valve, and air supply valve, the air compressor An outlet valve, a gas turbine inlet valve, an air supply valve, a hot gas discharge valve, and a hot gas discharge control device for controlling the opening degree of the gas supply valve are provided.
[0011]
The high temperature gas discharge control device may include a timer that measures the elapsed time of natural heat radiation after the high temperature gas discharge valve is fully closed after completion of pressure reduction from the air compressor to the gas turbine inlet valve.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of a pressurized fluidized bed combined power plant according to the present invention will be described with reference to FIGS.
[0013]
Example 1
FIG. 1 is a system diagram showing the configuration of Example 1 of a pressurized fluidized bed combined power plant according to the present invention. The air compressor 1 having the starter motor 4 compresses the air sucked from the air inlet valve 22, and compresses the compressed air through the air compressor outlet valve 23 and the air supply pipe 24. 5 is supplied to the pressurized fluidized bed boiler 6. The high-pressure gas from the pressurized fluidized bed boiler 6 is supplied to the gas turbine 2 via the high-temperature gas pipe 25, the high-temperature gas dust removing device 7, and the gas turbine inlet valve 26, and drives the gas turbine 2, thereby generating a gas turbine generator. 3 converts energy into electric power. The high-pressure gas that has worked in the gas turbine 2 passes through the gas turbine outlet pipe 28, the high-temperature exhaust heat recovery heat exchanger 8, and the low-temperature exhaust heat recovery heat exchanger 9, and is discharged from the chimney 10 to the atmosphere.
[0014]
On the other hand, the water heated by the pressurized fluidized bed boiler 6 becomes only steam by the brackish water separator 21 and is led to the high-pressure turbine 11 by the main steam pipe 34. The steam that has worked in the high-pressure turbine 11 is returned to the pressurized fluidized bed boiler 6 through the low-temperature reheat steam pipe 35 and reheated, and is guided to the intermediate-pressure turbine 12 through the high-temperature reheat steam pipe 36. The steam that has worked in the intermediate pressure turbine 12 is guided to the low pressure turbine 13. The high-pressure turbine 11, the intermediate-pressure turbine 12, and the low-pressure turbine 13 are provided with a coaxial steam turbine generator 14 that converts steam energy into electric power. The steam that has passed through the low-pressure turbine 13 is cooled by the condenser 15 and condensed. The condensed water is pressurized by the condensate pump 16, passes through the low-pressure feed water heater 17 and the low-temperature exhaust heat recovery heat exchanger 9, and is deaerated by the deaerator 18. Further, it is pressurized by the feed water pump 19, passes through the high pressure feed water heater 20 and the high temperature exhaust heat recovery heat exchanger 8, and is supplied again to the pressurized fluidized bed boiler 6 in the pressurized fluidized bed boiler pressure vessel 5. The The brackish water separator 21 is connected to the condenser 15 by a pipe provided with a brackish water separator level control valve 37.
[0015]
A bypass pipe provided with an air supply valve 27 is connected between the outlet of the air compressor 1 and the inlet of the gas turbine 2. A pressurized fluidized bed boiler pressure vessel pressure detector 31 is attached to the pressurized fluidized bed boiler pressure vessel 5, and a pressurized fluidized bed boiler temperature detector 32 is attached to the high temperature gas pipe 25.
[0016]
In the first embodiment, in particular, a high-temperature gas discharge pipe 29 having a high-temperature gas discharge valve 30 is connected between the high-temperature gas pipe 25 upstream of the gas turbine inlet valve 26 and the gas turbine outlet pipe 28. is there.
[0017]
The high-temperature gas discharge control device 33 that takes in signals from at least the pressurized fluidized bed boiler pressure vessel pressure detector 31 and the pressurized fluidized bed boiler temperature detector 32, etc. The opening and closing of the turbine inlet valve 26, the air supply valve 27, and the hot gas discharge valve 30 are controlled.
[0018]
In the first embodiment, during normal operation, air taken into the air compressor 1 from the air compressor inlet valve 22 is supplied to the pressurized fluidized bed boiler 6 in the pressurized fluidized bed boiler pressure vessel 5 through the air supply pipe 24. Led. The high-temperature gas from the pressurized fluidized bed boiler 6 is guided to the high-temperature gas dust removing device 7 through the high-temperature gas pipe 25 and, after removing ash and the like, is supplied to the gas turbine 2 through the high-temperature gas pipe 25 and is a gas turbine generator. 3 is driven to generate electricity. The exhaust gas from the gas turbine 2 is led to the high-temperature exhaust heat recovery heat exchanger 8 and the low-temperature exhaust heat recovery heat exchanger 9 by the gas turbine outlet pipe 28 and is recovered by the steam turbine system, and then is discharged from the chimney 10 to the atmosphere. Released.
[0019]
On the other hand, the steam generated in the pressurized fluidized bed boiler 6 is the main steam pipe 34, the high pressure turbine 11, the low temperature reheat steam pipe 35, the pressurized fluidized bed boiler 6, the high temperature reheat steam pipe 36, the intermediate pressure turbine 12, the low pressure. While passing through the turbine 13 and reaching the condenser 15, the steam turbine generator 14 is driven to generate power. The water cooled and condensed by the condenser 15 and condensed into condensate is boosted by the condensate pump 16, heated by the low-pressure feed water heater 17 and the low-temperature exhaust heat recovery heat exchanger 9, and supplied to the deaerator 18. Is done. The feed water supplied to the deaerator 18 is further pressurized by a feed water pump 19, heated by a high-pressure feed water heater 20 and a high-temperature exhaust heat recovery heat exchanger 8, and then supplied again to the pressurized fluidized bed boiler 6. The
[0020]
When the plant is normally stopped, the fuel in the pressurized fluidized bed boiler 6 is burned, and then the air compressor outlet valve 23 and the gas turbine inlet valve 26 are fully closed and the air supply valve 27 is opened. The boiler 6 side is in an isolated state. On the other hand, the gas turbine 2 side is operated by lowering the rotational speed of the gas turbine 2 to 10% by the starting electric motor 4. At that time, the system on the pressurized fluidized bed boiler 6 side opens the high temperature gas discharge valve 30 of the high temperature gas discharge pipe 29, discharges the high temperature gas to the gas turbine outlet pipe 28, and discharges the high temperature exhaust heat recovery heat exchanger 8 and the low temperature. Heat is recovered in the steam turbine system by the exhaust heat recovery heat exchanger 9, exhausted from the chimney 10 to the atmosphere, and decompressed. When the pressure reduction on the pressurized fluidized bed boiler 6 side is completed, the gas turbine 2 is stopped or turned at a low speed.
[0021]
In this case, the discharge amount from the high temperature gas discharge valve 30 is the sum of the leak amount of the gas turbine inlet valve 26 and the high temperature gas discharge amount in order to prevent the high temperature gas from flowing back to the air compressor 1. It is necessary to make it equal to or less than the total value of the air volume of the air compressor 1 whose rotational speed is 10% and the draft volume of the chimney 10. The hot gas discharge control device 33 controls the hot gas discharge amount according to the signal from the pressurized fluidized bed boiler pressure vessel pressure detector 31 and the signal from the pressurized fluidized bed boiler outlet temperature detector 32, and the gas The high-temperature gas discharge amount is controlled so that the total value of the leak amount of the turbine inlet valve 26 and the high-temperature gas discharge amount is equal to or less than the total value of the air amount of the air compressor 1 and the draft amount of the chimney 10 having a rotation speed of 10%. Furthermore, the discharge temperature from the hot gas discharge valve 30 is controlled within the planned facility value of the gas turbine outlet according to the signal from the temperature detector 32 of the pressurized fluidized bed boiler 6.
[0022]
On the other hand, in the steam turbine system, the amount of steam generated in the pressurized fluidized bed boiler 6 decreases, and the water level of the brackish water separator 21 rises, so the condensate 15 is condensed via the brackish water separator level control valve 37. Fully recover. The feed water recovered in the condenser 15 is cooled by the condenser 15, boosted by the condensate pump 16, and supplied to the deaerator 18 through the low-pressure feed water heater 17 and the low-temperature exhaust heat recovery heat exchanger 9. Supplied. The feed water supplied to the deaerator 18 is boosted by the feed water pump 19 and heated by the high-pressure feed water heater 20 and the high-temperature exhaust heat recovery heat exchanger 8, and then the brackish water separator 21 and the brackish water separator level control valve 37. And is supplied to the condenser 15 through a circulation operation state.
[0023]
As a result, the high-temperature gas at the time of depressurization on the pressurized fluidized bed boiler 6 side is recovered by the low-temperature exhaust heat recovery heat exchanger 9 and the high-temperature exhaust heat recovery heat exchanger 8 to condensate and feed water. The recovered heat can be cooled.
[0024]
In particular, the amount of high-temperature gas at the time of pressure reduction on the pressurized fluidized bed boiler 6 side is the sum of the air volume of the air compressor 1 whose rotational speed is 10%, the draft volume of the chimney 1, the high-temperature gas discharge amount, and the gas turbine inlet valve 26. However, since it is very small compared to the amount of gas during normal operation, steaming of the condensate at the outlet of the low temperature exhaust heat recovery heat exchanger 9 and steaming of the feed water at the outlet of the high temperature exhaust heat recovery heat exchanger 8 Can be prevented.
[0025]
Further, during an emergency stop in a mode in which the condensate pump 16 and the feed water pump 19 are operable and the feed water can be supplied to the high temperature exhaust heat recovery heat exchanger 9 and the low temperature exhaust heat recovery heat exchanger 9, the pressurized fluidized bed boiler 6 The high-temperature gas at the time of decompression on the side can be recovered in the condensate and feed water by the low-temperature exhaust heat recovery heat exchanger 9 and the high-temperature exhaust heat recovery heat exchanger 8, and the recovered heat can be cooled by the condenser 15. You can drive as well as stop
[0026]
Example 2
FIG. 2 is a system diagram showing a configuration of a second embodiment of the pressurized fluidized bed combined power plant according to the present invention. In the second embodiment, a high temperature gas discharge pipe 29 having a high temperature gas discharge valve 30 is connected to the high temperature gas pipe 25 upstream of the air supply valve 27 instead of the gas turbine outlet pipe 28, and the gas turbine inlet valve 26 is connected to the high temperature gas discharge pipe 30. The second embodiment is different from the first embodiment in that it is bypassed.
[0027]
In Example 2, when the plant is normally stopped, the fuel in the pressurized fluidized bed boiler 6 is burned, and then the air compressor outlet valve 23 and the gas turbine inlet valve 26 are fully closed and the air supply valve 27 is opened. The pressurized fluidized bed boiler 6 side is in an isolated state. On the other hand, the gas turbine 2 side is operated by lowering the rotational speed of the gas turbine 2 to 10% by the starting electric motor 4. At that time, the system on the pressurized fluidized bed boiler 6 side opens the high-temperature gas discharge valve 30 of the high-temperature gas discharge pipe 29, discharges the high-temperature gas to the inlet of the gas turbine 2, passes the gas turbine 2, and Heat is recovered in the steam turbine system by the heat recovery heat exchanger 8 and the low-temperature exhaust heat recovery heat exchanger 9, exhausted from the chimney 10 to the atmosphere, and decompressed. When the pressure reduction on the pressurized fluidized bed boiler 6 side is completed, the gas turbine 2 is stopped or turned at a low speed.
[0028]
In Example 2, since it can be operated in the same manner as in Example 1, steaming of the condensate at the outlet of the low temperature exhaust heat recovery heat exchanger 9 and steaming of the feed water at the outlet of the high temperature exhaust heat recovery heat exchanger 8 are prevented. It is possible to improve the reliability of the plant and reduce the in-house power at the time of the stop at the time of normal stop and emergency stop of the plant.
[0029]
Example 3
FIG. 3 is a system diagram showing a configuration of a third embodiment of the pressurized fluidized bed combined power plant according to the present invention. In the third embodiment, not a gas turbine outlet pipe 28 but a high-temperature gas discharge pipe 29 having a high-temperature gas discharge valve 30 is connected to open to the atmosphere, and a gas supply pipe 39 having a gas supply valve 38 is also provided. This is different from the first embodiment.
[0030]
In Example 3, when the plant is normally stopped, the fuel in the pressurized fluidized bed boiler 6 is burned, and then the air compressor outlet valve 23 and the gas turbine inlet valve 26 are fully closed and the air supply valve 27 is opened. The pressurized fluidized bed boiler 6 side is in an isolated state. On the other hand, the gas turbine 2 side is operated by lowering the rotational speed of the gas turbine 2 to 10% by the starting electric motor 4. At that time, the system on the pressurized fluidized bed boiler 6 side opens the high-temperature gas discharge valve 30 and the gas supply valve 38 of the high-temperature gas discharge pipe 29 and cools or dilutes the high-temperature gas with the gas from the gas supply pipe 39. , Exhaust to the atmosphere. When the pressure reduction on the pressurized fluidized bed boiler 6 side is completed, the gas turbine 2 is stopped or turned at a low speed.
[0031]
In this case, the discharge amount from the high temperature gas discharge valve 30 is the sum of the leak amount of the gas turbine inlet valve 26 and the high temperature gas discharge amount in order to prevent the high temperature gas from flowing back to the air compressor 1. It is necessary to make it equal to or less than the total value of the air volume of the air compressor 1 whose rotational speed is 10% and the draft volume of the chimney 10. The hot gas discharge control device 33 controls the hot gas discharge amount according to the signal from the pressurized fluidized bed boiler pressure vessel pressure detector 31 and the signal from the pressurized fluidized bed boiler outlet temperature detector 32, and the gas The high-temperature gas discharge amount is controlled so that the total value of the leak amount of the turbine inlet valve 26 and the high-temperature gas discharge amount is equal to or less than the total value of the air amount of the air compressor 1 and the draft amount of the chimney 10 having a rotation speed of 10%. Furthermore, the discharge temperature from the hot gas discharge valve 30 is controlled within the planned facility value of the gas turbine outlet according to the signal from the temperature detector 32 of the pressurized fluidized bed boiler 6.
[0032]
The high-temperature gas discharge control device 33 also controls the gas necessary for cooling and dilution from the gas supply valve 38, that is, nitrogen or air, so that harmful components such as carbon monoxide in the high-temperature gas are diluted and discharged to the atmosphere. it can.
[0033]
On the other hand, the gas turbine 2 side calculates the total value of the air volume of the air compressor 1 whose rotational speed is 10%, the draft volume of the chimney 10 and the leak volume of the gas turbine inlet valve 26, and the low-temperature exhaust heat recovery heat exchanger 9 and It is discharged from the chimney 10 to the atmosphere via the outlet of the high-temperature exhaust heat recovery heat exchanger 8. In this case, since the amount of gas is very small compared to the amount of gas during normal operation, steaming of the condensate at the outlet of the low-temperature exhaust heat recovery heat exchanger 9 and steaming of the feed water at the outlet of the high-temperature exhaust heat recovery heat exchanger 8 are performed. Teaming can be prevented.
[0034]
Example 4
FIG. 4 is a system diagram showing a configuration of a fourth embodiment of the pressurized fluidized bed combined power plant according to the present invention. In the fourth embodiment, similarly to the first embodiment, a high-temperature gas discharge pipe 29 having a high-temperature gas discharge valve 30 is provided between the high-temperature gas pipe 25 upstream of the gas turbine inlet valve 26 and the gas turbine outlet pipe 28. In addition, a gas supply pipe 39 provided with a gas supply valve 38 is provided downstream of the hot gas discharge valve 30.
[0035]
In the fourth embodiment, when the plant is normally stopped, the fuel in the pressurized fluidized bed boiler 6 is burned, and then the air compressor outlet valve 23 and the gas turbine inlet valve 26 are fully closed and the air supply valve 27 is opened. The pressurized fluidized bed boiler 6 side is in an isolated state. On the other hand, the gas turbine 2 is rotated by lowering the rotational speed of the gas turbine 2 to 10% by the starting electric motor 4. At that time, the system on the pressurized fluidized bed boiler 6 side opens the high temperature gas discharge valve 30 and the gas supply valve 38 of the high temperature gas discharge pipe 29 while cooling or diluting the high temperature gas with the gas from the gas supply pipe 39. Then, heat is recovered in the steam turbine system by the high-temperature exhaust heat recovery heat exchanger 8 and the low-temperature exhaust heat recovery heat exchanger 9 via the gas turbine outlet pipe 28 and then discharged from the chimney 10 to the atmosphere. When the pressure reduction on the pressurized fluidized bed boiler 6 side is completed, the gas turbine 2 is stopped or turned at a low speed.
[0036]
In this case, the discharge amount from the high temperature gas discharge valve 30 is the sum of the leak amount of the gas turbine inlet valve 26 and the high temperature gas discharge amount in order to prevent the high temperature gas from flowing back to the air compressor 1. It is necessary to make it equal to or less than the total value of the air volume of the air compressor 1 whose rotational speed is 10% and the draft volume of the chimney 10. The hot gas discharge control device 33 controls the hot gas discharge amount according to the signal from the pressurized fluidized bed boiler pressure vessel pressure detector 31 and the signal from the pressurized fluidized bed boiler outlet temperature detector 32, and the gas The high-temperature gas discharge amount is controlled so that the total value of the leak amount of the turbine inlet valve 26 and the high-temperature gas discharge amount is equal to or less than the total value of the air amount of the air compressor 1 and the draft amount of the chimney 10 having a rotation speed of 10%. Furthermore, the discharge temperature from the hot gas discharge valve 30 is controlled within the planned facility value of the gas turbine outlet according to the signal from the temperature detector 32 of the pressurized fluidized bed boiler 6.
[0037]
The high-temperature gas discharge control device 33 also controls the gas necessary for cooling and dilution from the gas supply valve 38, that is, nitrogen or air, so that harmful components such as carbon monoxide in the high-temperature gas are diluted and discharged to the atmosphere. it can.
[0038]
On the other hand, the gas turbine 2 side calculates the total value of the air volume of the air compressor 1 whose rotational speed is 10%, the draft volume of the chimney 10 and the leak volume of the gas turbine inlet valve 26, and the low-temperature exhaust heat recovery heat exchanger 9 and It is discharged from the chimney 10 to the atmosphere via the outlet of the high-temperature exhaust heat recovery heat exchanger 8. In this case, since the amount of gas is very small compared to the amount of gas during normal operation, steaming of condensate at the outlet of the low-temperature exhaust heat recovery heat exchanger 9 and steaming of the water supply at the outlet of the high-temperature exhaust heat recovery heat exchanger 8 are performed. Teaming can be prevented.
[0039]
The fourth embodiment is an example in which the gas supply pipe 39 including the gas supply valve 38 is provided downstream of the high temperature gas discharge valve 30 of the first embodiment, but the high temperature gas discharge valve 30 of the second embodiment is also provided. It will be apparent that a gas supply pipe 39 including a gas supply valve 38 may be provided downstream of the gas supply valve 38.
[0040]
Moreover, in each said Example, maintaining the rotation speed of the air compressor 1 to 10% is a mere illustration, Comprising: This invention is not limited to this figure.
[0041]
FIG. 5 is a diagram showing a system configuration of the control logic of the hot gas discharge control device 33 in each embodiment of the pressurized fluidized bed combined power plant according to the present invention. The hot gas discharge valve 30 (and the gas supply valve 38) includes a gas state value, that is, a pressure detection value 31 of the pressurized fluidized bed boiler pressure vessel 5, a temperature detection value 32 of the pressurized fluidized bed boiler 6, and an air compressor outlet. Control is performed according to the open / closed state of the valve 23, the gas turbine inlet valve 26, and the air supply valve 27.
[0042]
In particular, since the temperature detection value 32 of the pressurized fluidized bed boiler 6 is based on the self-combustion temperature of the gas, even if the hot gas discharge valve 30 is opened and the hot gas flows, a local temperature rise can be avoided. To control. That is, even if unburned gas remains in the high-temperature gas pipe 25 or the equipment, the temperature is set to the self-burning temperature or less so that temperature rise due to unburned gas combustion can be prevented.
[0043]
Further, after the decompression between the air compressor 1 and the gas turbine inlet valve 26 is completed, when the hot gas discharge valve 30 is fully closed, the temperature of the metal between the air compressor 1 and the gas turbine inlet valve 26 depends on the temperature of the metal. It is conceivable that the pressure between the air compressor 1 and the gas turbine inlet valve 26 increases. However, for such a phenomenon, it is possible to cool sufficiently by providing a timer and naturally dissipating heat.
[0044]
FIG. 6 is a diagram showing temporal changes in the air volume in each example of the pressurized fluidized bed combined power plant according to the present invention. FIG. 7 shows the open / closed state of the valves 23, 26, 27, 30 in each embodiment of the pressurized fluidized bed combined power plant according to the present invention, the pressure value 31 of the pressurized fluidized bed boiler pressure vessel 6, and the rotational speed of the gas turbine. It is a figure which shows a relationship.
[0045]
As shown in FIGS. 6 and 7, when the air compressor outlet valve 23 and the gas turbine inlet valve 26 are fully closed and the air supply valve 27 and the hot gas discharge valve 30 are opened, the pressurized fluidized bed boiler 6 The pressure of the gas turbine decreases, and the rotational speed of the gas turbine decreases. On the other hand, the air volume is equal to or less than the total value of the air volume from the high-temperature gas discharge valve 30 and the leak volume from the gas turbine inlet valve 26 or the total value of the air volume of the air compressor 1 and the draft amount of the chimney 10. Therefore, the hot gas does not flow backward to the air compressor 1 side. The draft amount can be calculated based on the gas temperature at the inlet of the chimney 10 and the atmospheric temperature.
[0046]
【The invention's effect】
According to the present invention, in a pressurized fluidized bed combined power plant composed of a pressurized fluidized bed boiler, a gas turbine, and a steam turbine, the low temperature exhaust heat recovery heat exchanger, the condensate and the feed water at the outlet of the high temperature exhaust heat recovery heat exchanger This prevents the steaming of the plant, improves the reliability of the plant when the plant is normally stopped and during an emergency stop, and reduces the in-house power when the plant is stopped.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a configuration of a first embodiment of a pressurized fluidized bed combined power plant according to the present invention.
FIG. 2 is a system diagram showing a configuration of a second embodiment of the pressurized fluidized bed combined power plant according to the present invention.
FIG. 3 is a system diagram showing a configuration of Example 3 of a pressurized fluidized bed combined power plant according to the present invention.
FIG. 4 is a system diagram showing a configuration of a fourth embodiment of the pressurized fluidized bed combined power plant according to the present invention.
FIG. 5 is a diagram showing a system configuration of a control logic of a hot gas discharge control device in each embodiment of a pressurized fluidized bed combined power plant according to the present invention.
FIG. 6 is a diagram showing temporal changes in air volume in each example of the pressurized fluidized bed combined power plant according to the present invention.
FIG. 7 is a diagram showing a relationship among a valve open / close state, a pressurized fluidized bed boiler pressure vessel side pressure, and a gas turbine rotation speed in each example of the pressurized fluidized bed combined power plant according to the present invention.
FIG. 8 is a system diagram showing an example of a system configuration of a conventional pressurized fluidized bed combined power plant.
[Explanation of symbols]
1 Air compressor
2 Gas turbine
3 Gas turbine generator
4 Starter motor
5 Pressurized fluidized bed boiler pressure vessel
6 Pressurized fluidized bed boiler
7 High temperature gas dust remover
8 High-temperature exhaust heat recovery heat exchanger
9 Low temperature exhaust heat recovery heat exchanger
10 Chimney
11 High-pressure turbine
12 Medium pressure turbine
13 Low pressure turbine
14 Steam turbine generator
15 Condenser
16 Condensate pump
17 Low pressure water heater
18 Deaerator
19 Water supply pump
20 High-pressure feed water heater
21 Brackish water separator
22 Air inlet valve
23 Air compressor outlet valve
24 Air supply piping
25 Hot gas piping
26 Gas turbine inlet valve
27 Air supply valve
28 Gas turbine outlet piping
29 Hot gas discharge piping
30 Hot gas discharge valve
31 Pressurized fluidized bed boiler pressure vessel pressure detector
32 Pressurized fluidized bed boiler temperature detector
33 High-temperature gas discharge control device
34 Main steam piping
35 Low temperature reheat steam piping
36 High-temperature reheat steam piping
37 Brackish water separator level control valve
38 Gas supply valve
39 Gas supply piping
40 Pressurized fluidized bed boiler bypass valve
41 Pressurized fluidized bed boiler bypass piping

Claims (4)

加圧流動床ボイラと前記加圧流動床ボイラに空気を供給する空気圧縮機と前記加圧流動床ボイラの高温ガスにより駆動されるガスタービンと前記加圧流動床ボイラの蒸気により駆動される蒸気タービンと前記ガスタービンおよび蒸気タービンにより駆動される発電機とを含み、前記空気圧縮機から前記加圧流動床ボイラに圧縮空気を供給する空気供給配管と前記加圧流動床ボイラから前記ガスタービンに高温ガスを供給する高温ガス配管とを接続する空気供給弁を設置したボイラバイパス管路を有する空気加圧流動床複合発電プラントにおいて、
プラント通常停止時または緊急停止時に閉じる空気圧縮機出口弁を前記空気供給配管に設け、
プラント通常停止時または緊急停止時に閉じるガスタービン入口弁を前記高温ガス配管に設け、
プラント通常停止時または緊急停止時に開き前記空気圧縮機の出口から前記ガスタービン入口までの間の空気および高温ガスを前記ガスタービンの入口部に排出する高温ガス排出配管および高温ガス排出弁を前記ガスタービン入口弁と並列に設けたことを特徴とする加圧流動床複合発電プラント。
A pressurized fluidized bed boiler, an air compressor for supplying air to the pressurized fluidized bed boiler, a gas turbine driven by the hot gas of the pressurized fluidized bed boiler, and a steam driven by the steam of the pressurized fluidized bed boiler An air supply pipe for supplying compressed air from the air compressor to the pressurized fluidized bed boiler and the pressurized fluidized bed boiler to the gas turbine. In an air pressurized fluidized bed combined power plant having a boiler bypass line installed with an air supply valve for connecting a high temperature gas pipe for supplying a high temperature gas,
An air compressor outlet valve that closes at the time of a normal plant stop or emergency stop is provided in the air supply pipe,
A gas turbine inlet valve that closes at the time of a normal plant stop or emergency stop is provided in the hot gas pipe,
A hot gas discharge pipe and a hot gas discharge valve for opening air and high-temperature gas from the outlet of the air compressor to the gas turbine inlet to the inlet of the gas turbine, which are opened at the time of normal plant stop or emergency stop. A pressurized fluidized bed combined power plant characterized by being provided in parallel with a turbine inlet valve.
請求項1に記載の加圧流動床複合発電プラントにおいて、
排出した高温ガスを冷却し希釈するために窒素または空気を供給するガス供給配管およびガス供給弁を設けたことを特徴とする加圧流動床複合発電プラント。
In the pressurized fluidized bed combined power plant according to claim 1 ,
A pressurized fluidized bed combined power plant comprising a gas supply pipe for supplying nitrogen or air and a gas supply valve for cooling and diluting the discharged high-temperature gas.
請求項1または2に記載の加圧流動床複合発電プラントにおいて、
前記加圧流動床ボイラの圧力および出口温度と、前記空気圧縮機出口弁,前記ガスタービン入口弁,前記空気供給弁の開閉状態とに応じて、前記空気圧縮機出口弁,前記ガスタービン入口弁,前記空気供給弁,前記高温ガス排出弁,前記ガス供給弁の開度を制御する高温ガス排出制御装置を設けたことを特徴とする加圧流動床複合発電プラント。
In the pressurized fluidized bed combined power plant according to claim 1 or 2 ,
Depending on the pressure and outlet temperature of the pressurized fluidized bed boiler and the open / closed state of the air compressor outlet valve, the gas turbine inlet valve, and the air supply valve, the air compressor outlet valve, the gas turbine inlet valve A pressurized fluidized bed combined power plant, comprising: an air supply valve; the high temperature gas discharge valve; and a high temperature gas discharge control device for controlling an opening degree of the gas supply valve.
請求項3に記載の加圧流動床複合発電プラントにおいて、
前記高温ガス排出制御装置が、前記空気圧縮機から前記ガスタービン入口弁までの間の減圧完了後、前記高温ガス排出弁を全閉してからの自然放熱の経過時間を計測するタイマを備えたことを特徴とする加圧流動床複合発電プラント。
In the pressurized fluidized bed combined power plant according to claim 3 ,
The high-temperature gas discharge control device includes a timer that measures an elapsed time of natural heat radiation after the high-temperature gas discharge valve is fully closed after completion of pressure reduction from the air compressor to the gas turbine inlet valve. A pressurized fluidized bed combined power plant characterized by that.
JP01293399A 1999-01-21 1999-01-21 Pressurized fluidized bed combined power plant Expired - Fee Related JP3700075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01293399A JP3700075B2 (en) 1999-01-21 1999-01-21 Pressurized fluidized bed combined power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01293399A JP3700075B2 (en) 1999-01-21 1999-01-21 Pressurized fluidized bed combined power plant

Publications (2)

Publication Number Publication Date
JP2000213306A JP2000213306A (en) 2000-08-02
JP3700075B2 true JP3700075B2 (en) 2005-09-28

Family

ID=11819103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01293399A Expired - Fee Related JP3700075B2 (en) 1999-01-21 1999-01-21 Pressurized fluidized bed combined power plant

Country Status (1)

Country Link
JP (1) JP3700075B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514684B2 (en) * 2005-10-06 2010-07-28 中国電力株式会社 Stop control method for pressurized fluidized bed plant
JP5187731B2 (en) * 2007-11-16 2013-04-24 独立行政法人土木研究所 Pressurized fluidized incineration equipment and startup operation method of pressurized fluidized incineration equipment
JP5956210B2 (en) * 2012-03-26 2016-07-27 月島機械株式会社 Start-up method of pressurized flow furnace system
JP5832944B2 (en) * 2012-03-26 2015-12-16 月島機械株式会社 Emergency stop method for pressurized flow furnace system

Also Published As

Publication number Publication date
JP2000213306A (en) 2000-08-02

Similar Documents

Publication Publication Date Title
CA2722195C (en) Fossil fuel combustion thermal power system including carbon dioxide separation and capture unit
JP5943920B2 (en) Cleaning the exhaust gas recirculation pipe of a gas turbine
JPH1193694A (en) Gas turbine plant
JP2000161014A (en) Combined power generator facility
NO322002B1 (en) Method and apparatus for starting emission-free gas turbine power stations
MX2012006671A (en) Power plant with c02 capture and method to operate such power plant.
JPH09112215A (en) Gas turbine power plant and method of operating thereof
JP5840559B2 (en) Exhaust gas recirculation type gas turbine power plant operating method and exhaust gas recirculation type gas turbine power plant
JP2000337107A (en) Closed gas turbine plant
JPH0693879A (en) Combined plant and operation thereof
JP3700075B2 (en) Pressurized fluidized bed combined power plant
JP3073468B2 (en) Steam-cooled gas turbine combined plant and operation control method thereof
JPH06323162A (en) Steam-cooled gas turbine power plant
JP2006161698A (en) Overload operation device and method for steam turbine
JPH04148035A (en) Vapor cooled gas turbine system
JPH1193693A (en) Method of operating combined cycle power plant, and combined cycle power plant
JP4202583B2 (en) Denitration control method and apparatus for combined cycle power plant
JP3750519B2 (en) Combined plant and operation method thereof
JP3518252B2 (en) Closed steam cooled gas turbine combined plant and gas turbine combined plant
JP4104992B2 (en) Gas turbine power generation system
JP2001090507A (en) Electric power plant
JP3524939B2 (en) Exhaust-reburn combined cycle power plant
JPH0610619A (en) Supply water heating device
JP7153498B2 (en) Combined cycle power plant
JPH0968004A (en) Safety valve operation testing method in combined cycle power plant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees