WO2013146599A1 - Emergency stopping method for pressurized fluidized furnace system - Google Patents

Emergency stopping method for pressurized fluidized furnace system Download PDF

Info

Publication number
WO2013146599A1
WO2013146599A1 PCT/JP2013/058330 JP2013058330W WO2013146599A1 WO 2013146599 A1 WO2013146599 A1 WO 2013146599A1 JP 2013058330 W JP2013058330 W JP 2013058330W WO 2013146599 A1 WO2013146599 A1 WO 2013146599A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
air supply
pressurized fluidized
furnace
fluidized furnace
Prior art date
Application number
PCT/JP2013/058330
Other languages
French (fr)
Japanese (ja)
Inventor
隆文 山本
和由 寺腰
邦彦 古閑
敢 折戸
Original Assignee
月島機械株式会社
三機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 月島機械株式会社, 三機工業株式会社 filed Critical 月島機械株式会社
Priority to KR1020147027672A priority Critical patent/KR102067303B1/en
Priority to CN201380013626.XA priority patent/CN104220810B/en
Publication of WO2013146599A1 publication Critical patent/WO2013146599A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C10/00Fluidised bed combustion apparatus
    • F23C10/16Fluidised bed combustion apparatus specially adapted for operation at superatmospheric pressures, e.g. by the arrangement of the combustion chamber and its auxiliary systems inside a pressure vessel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/30Incineration of waste; Incinerator constructions; Details, accessories or control therefor having a fluidised bed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/50Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L5/00Blast-producing apparatus before the fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/10Arrangement of sensing devices
    • F23G2207/102Arrangement of sensing devices for pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2207/00Control
    • F23G2207/30Oxidant supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2208/00Safety aspects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/18Controlling fluidized bed burners
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to an emergency stop method for a pressurized flow furnace system that burns an object to be treated such as sewage sludge, biomass, and municipal waste, and more specifically, suppresses malfunction due to surge of a compressor of a turbocharger.
  • the present invention relates to an emergency stop method for a pressurized fluidized furnace system that suppresses the generation of harmful substances by completely burning an object to be processed remaining in the pressurized fluidized furnace.
  • a pressurized fluidized furnace system has been known as an incineration facility that focuses on effectively taking out the energy of combustion exhaust gas discharged from an incinerator by burning an object to be treated such as sewage sludge, biomass, and municipal waste.
  • the pressurized fluidized furnace system is a pressurized fluidized furnace that combusts a workpiece, a turbine that is rotated by combustion exhaust gas discharged from the pressurized fluidized furnace, and is rotated as the turbine rotates to supply compressed air. It is the system characterized by having the supercharger which mounts the compressor which carries out.
  • the turbine of the turbocharger is driven by combustion exhaust gas generated when the workpiece is completely burned, and the combustion air necessary for burning the workpiece is compressed by the compressed air discharged from the compressor.
  • Self-supporting operation that can cover everything is possible. It has been known that the self-sustained operation can eliminate the need for a fluid blower and an attracting fan, which have been conventionally required, and reduce the running cost.
  • This pressurized fluidized furnace is normally operated at a furnace pressure of about 150 kPa, but in order to avoid equipment damage if the furnace pressure rises above the set value due to the unnecessary operation of equipment during operation. It was necessary to quickly reduce the pressure in the system.
  • the pressurized fluidizing furnace is opened when the compressed air supplied to the pressurized fluidizing furnace is released to the atmosphere in order to reduce the pressure in the pressurized fluidizing furnace.
  • the pressure in the flow path for supplying combustion air to the air drops.
  • the gas in the furnace flows back through the pipe from the dispersion pipe that originally supplies the combustion air into the pressurized fluidized furnace, and flows back together with the gas in the furnace. There was a risk that the fluidized sand clogged the dispersion pipes and piping.
  • the main problem of the present invention is to eliminate such problems.
  • the first invention is a workpiece having a starting burner for heating the fluidized sand filled in the bottom, an auxiliary fuel combustion device to which auxiliary air is supplied via an auxiliary air supply channel, and a combustion air supply pipe.
  • a pressurized fluidizing furnace that combusts the gas
  • a pressure measuring device that measures the pressure of the pressurized fluidized furnace
  • a turbine that is rotated by the combustion exhaust gas discharged from the pressurized fluidized furnace, and a rotation as the turbine rotates.
  • a supercharger that includes a compressor that supplies combustion air to each of the starting burner and the combustion air supply pipe of the pressurized fluidized furnace via a flow path, and combustion exhaust gas discharged from the pressurized fluidized furnace
  • An emergency stop method for a pressurized fluidized furnace system comprising an air preheater for heating combustion air supplied from the supercharger, When a pressure measurement value by the pressure measurement device exceeds a set value, at least one of an auxiliary air supply flow path connected to the auxiliary fuel combustion apparatus or a flow path connecting the combustion air supply pipe and the compressor. Compressed air supply stop process to close one, And a compressed air supply starting step of communicating at least one flow path connecting the compressor and the starter burner of the pressurized flow furnace.
  • an atmosphere release step of communicating with an atmosphere release channel that discharges compressed air supplied from the compressor to the outside is provided. It is characterized by including.
  • the third invention is characterized in that, in addition to the configuration of the second invention, the atmosphere release step is performed before the compressed air supply stop step.
  • the blockage of the flow path connecting the combustion air supply pipe and the compressor is connected to the combustion air supply port of the air preheater at one end. And a flow path extending to the compressor is closed.
  • one end is connected to the combustion air supply port of the air preheater and the extending flow path is closed, so that the relatively low temperature combustion air is brought into contact with the gate valve and heated by the high temperature combustion exhaust gas.
  • the flow path can be closed without being affected by the combustion air, and the durability of the gate valve and the like can be improved.
  • the fifth invention is characterized in that, in addition to the configuration of the first invention, in the compressed air supply start step, one end is connected to the combustion air supply port of the start burner and the extending flow path is communicated.
  • the pressure measuring device is provided in a flow path connecting a combustion exhaust gas exhaust port of the pressurized fluidized furnace and a combustion exhaust gas supply port of the air preheater. It is characterized by that.
  • the pressure measuring device Since the pressure measuring device is installed in the flow path connecting the combustion exhaust gas exhaust port of the pressurized fluidized furnace and the combustion exhaust gas supply port of the air preheater, the pipe length is not affected by the pressure drop. Pressure fluctuation can be accurately measured.
  • the seventh invention is characterized in that, in addition to the configurations of the first to third inventions, the pressure measuring device is provided in a flow path connected to a downstream side of a combustion exhaust gas discharge port of the air preheater.
  • the pressure measuring device Since the pressure measuring device is installed in the flow path connected downstream of the exhaust gas exhaust port of the air preheater, it is necessary to perform correction calculation of the pressure loss of the air preheater. Since it becomes gas, the durability of the pressure measuring device can be improved without being affected by high-temperature combustion exhaust gas.
  • the pressurized fluidized furnace system 1 includes a storage device 10 that stores an object to be processed such as sludge, a pressurized fluidized furnace 20 that combusts the object to be processed supplied from the storage device 10, An air preheater 40 for heating the combustion air supplied to the pressurized fluidized furnace 20 by the combustion exhaust gas discharged from the pressure fluidized furnace 20, a dust collector 50 for removing dust and the like in the combustion exhaust gas, and pressurization driven by the combustion exhaust gas A supercharger 60 for supplying combustion air to the fluidized furnace 20, a white smoke prevention preheater 70 for heating the white smoke prevention air supplied to the flue gas treatment tower 80 by the combustion exhaust gas discharged from the supercharger 60, and And a flue gas treatment tower 80 for removing impurities in the combustion exhaust gas.
  • a storage device 10 that stores an object to be processed such as sludge
  • a pressurized fluidized furnace 20 that combusts the object to be processed supplied from the storage device 10
  • An air preheater 40
  • the object to be treated stored in the storage device 10 is mainly sewage sludge dehydrated to a moisture content of 70 to 85% by mass, and the object to be treated contains combustible organic matter.
  • a to-be-processed object is a water-containing organic substance, it will not be restrict
  • a fixed amount feeder (supply device) 11 for supplying a predetermined amount of the object to be processed to the pressurized flow furnace 20 is disposed at the lower part of the storage device 10, and the object to be processed is pressurized and flowed downstream of the fixed amount feeder 11.
  • a dosing pump 12 is provided for pressure feeding to the furnace 20.
  • the input pump 12 a single screw pump, a piston pump or the like can be used.
  • the pressurized fluidized furnace 20 is a combustion furnace having a predetermined particle size as a fluidized medium and filled with solid particles such as fluidized sand in the lower part of the furnace, and a fluidized bed (hereinafter referred to as a fluidized bed) by combustion air supplied into the furnace.
  • the material to be processed supplied from the outside and auxiliary fuel supplied as necessary are burned while maintaining the fluid state of the sand layer.
  • an auxiliary fuel combustion device 21 for heating the fluidized sand having a particle size of about 400 to 600 ⁇ m filled in the pressurized fluidized furnace 20 is disposed at the lower part of the side wall on one side.
  • a starting burner 22 that heats the fluidized sand at the time of starting is disposed in a portion in the vicinity of the upper side of the auxiliary fuel combustion device 21, and a workpiece supply port 13 ⁇ / b> B is provided in an upper portion of the starting burner 22.
  • a water gun 23 for cooling the combustion exhaust gas is disposed at the upper part of the pressurized fluidized furnace 20, and cooling water can be sprayed into the furnace as necessary.
  • a combustion air supply pipe 24 for supplying combustion air for supplying oxygen necessary for combustion and kinetic energy for maintaining the fluidized state of the fluidized bed is installed in the furnace under the pressurized fluidized furnace 20. .
  • the combustion air supply pipe 24 may be a dispersion pipe in which a plurality of pipes having a plurality of openings are arranged, or a dispersion plate in which a plurality of openings are provided in a plate-shaped iron plate or the like.
  • the auxiliary fuel combustion device 21 is disposed above the combustion air supply pipe (dispersion pipe) 24 in order to heat the fluidized sand filled in the pressurized fluidized furnace 20.
  • a plurality of auxiliary fuel combustion devices 21 are arranged in parallel, similar to the dispersion pipe used as the combustion air supply pipe 24.
  • Auxiliary fuel such as city gas or heavy oil is supplied to the auxiliary fuel combustion device 21 from an auxiliary fuel supply device 29 installed outside the furnace.
  • the auxiliary fuel combustion apparatus 21 is supplied with compressed air supplied from the air supply means 120 as auxiliary air through a pipe (auxiliary air supply flow path) 121 and an auxiliary air supply valve 121C for controlling the supply of auxiliary air. Is done.
  • the supplied compressed air is used for spraying and combustion of auxiliary fuel, and heats the fluidized sand by supplying it into the furnace together with the auxiliary fuel.
  • an air compressor provided separately as the air supply means 120 may be used, the compressor 62 of the supercharger 60 can also be used as the air supply means 120, and one of the combustion air discharged from the compressor 62 is used.
  • the part can also be supplied as auxiliary air.
  • a gas gun or an oil gun can be used as the auxiliary fuel combustion device 21.
  • the starting burner 22 is disposed so as to fall and incline toward the center of the pressurized fluidized furnace 20 in order to heat the upper surface of the fluidized sand at the time of starting.
  • the starting burner 22 is supplied with auxiliary fuel from the auxiliary fuel supply device 29 outside the furnace and compressed air from the compressor 62 of the supercharger 60. Further, as the combustion air of the start burner 22, the blown air generated by the starter blower 65 through the pipe 96 is used.
  • a combustion air supply pipe 24 for supplying combustion air for supplying oxygen used for fluidization and combustion of the fluidized bed is disposed inside the pressurized fluidized furnace 20 at the lower part of the side wall on the other side of the pressurized fluidized furnace 20. ing. The thinned side wall at the top of the pressurized fluidized furnace 20 is heated with combustion gas generated by the combustion of the auxiliary fuel, the object to be processed, sand filtered water, water existing in the object to be processed, etc.
  • a discharge port 90 ⁇ / b> A is formed for discharging the water vapor generated in step 1 to the outside of the furnace.
  • combustion gas or a gas in which combustion gas and water vapor are mixed is referred to as combustion exhaust gas.
  • the combustion air supply pipe 24 is disposed below the auxiliary fuel combustion device 21 in order to supply combustion air evenly to the auxiliary fuel supplied from the auxiliary fuel combustion device 21.
  • the combustion air supply pipe 24 is provided with a plurality of pipes such as a dispersion pipe or a plate-shaped iron plate in which a plurality of pipes having a plurality of openings are arranged in order to supply combustion oxygen and combustion air as fluidized air into the furnace.
  • a dispersion plate provided with a plurality of openings can be used.
  • a plurality of temperature sensors (not shown) for measuring the in-furnace temperature are installed on the side wall of the pressurized flow furnace 20 at predetermined intervals along the height direction.
  • the installation locations are the sand layer and the freeboard section, which are 2 to 3 places each, 4 to 6 places in total.
  • a thermocouple or the like can be used as the temperature sensor.
  • the free board portion refers to the upper layer portion of the sand layer in the pressurized fluidized bed combustion furnace 11.
  • the pressurized fluidized furnace 20 is also provided with a viewing window (not shown) for confirming the combustion state from the outside.
  • a temperature sensor, a viewing window, and the like are provided with a purge air supply port for avoiding adhesion of fluid sand and contact with combustion exhaust gas. This purge air is supplied from a separately provided air compressor.
  • the air preheater 40 is installed at the rear stage of the pressurized fluidized furnace 20 and indirectly exchanges heat between the combustion exhaust gas discharged from the pressurized fluidized furnace 20 and the combustion air, thereby raising the combustion air to a predetermined temperature. It is a device that warms up. As shown in FIGS. 1 and 3, the air preheater 40 has a combustion exhaust gas supply port 90 ⁇ / b> B from the pressurized fluidized furnace 20 formed at the upper portion of one side wall, and a lower vicinity portion of the supply port 90 ⁇ / b> B. Is formed with a discharge port 91 ⁇ / b> A through which combustion air is discharged from the air preheater 40.
  • the combustion exhaust gas supply port 90B is connected to a discharge port 90A of the pressurized fluidized furnace 20 via a pipe (flow path) 90, and the combustion air discharge port 91A is added via a pipe (flow path) 91. It is connected to the rear part of the combustion air supply pipe 24 of the pressure flow furnace 20.
  • a discharge port 92A for discharging the combustion exhaust gas from the air preheater 40 is formed in the lower part on the other side of the air preheater 40, and a supply port for supplying combustion air into the device in a region near the upper side of the discharge port 92A 95B is formed.
  • the air preheater a shell and tube heat exchanger is preferable.
  • the dust collector 50 is provided in the subsequent stage of the air preheater 40 and is a device that removes impurities such as dust and finely divided fluidized sand contained in the combustion exhaust gas delivered from the air preheater 40.
  • a filter installed in the dust collector 50 for example, a ceramic filter or a bag filter can be used.
  • a supply port 92B for supplying combustion exhaust gas into the device is formed in a lower portion of one side wall.
  • a discharge port 93A for discharging clean combustion exhaust gas from which impurities and the like have been removed to the outside of the device is formed.
  • the combustion exhaust gas supply port 92 ⁇ / b> B is connected to the combustion exhaust gas discharge port 92 ⁇ / b> A of the air preheater 40 through a pipe 92.
  • a vacuum filter (not shown) is provided at a portion between the supply port 92B formed in the lower portion and the discharge port 93A formed in the upper portion in the vertical direction. Impurities and the like in the combustion exhaust gas removed by the filter are temporarily stored at the bottom in the dust collector 50 and then periodically discharged to the outside.
  • the supercharger 60 is provided at the rear stage of the dust collector 50, and is rotated by the turbine 61 rotated by the combustion exhaust gas sent from the dust collector 50, the shaft 63 that transmits the rotation of the turbine 61, and the shaft 63.
  • the compressor 62 generates compressed air by being transmitted.
  • the generated compressed air is supplied to the pressurized fluidized furnace 20 as combustion air.
  • a supply port 93 ⁇ / b> B for supplying clean combustion exhaust gas from which impurities have been removed by the dust collector 50 into the apparatus is formed at a lower portion of the side wall of the turbocharger 60 on the turbine 61 side (a portion orthogonal to the shaft 63).
  • a discharge port 97A for discharging combustion exhaust gas to the outside of the device is formed on the downstream side of the side wall (portion parallel to the shaft 63).
  • a clean combustion exhaust gas supply port 93 ⁇ / b> B is connected to a discharge port 93 ⁇ / b> A of the dust collector 50 through a pipe 93.
  • a supply port 67B for sucking air into the equipment is formed, and above the side wall on the turbine 61 side (perpendicular to the shaft 63).
  • a discharge port 94A for discharging compressed air obtained by increasing the pressure of the sucked air to 0.05 to 0.3 MPa is formed in the device.
  • the outside air supply port 67 ⁇ / b> B sucks air through the pipes 16 and 67. Further, it is also connected to a starter blower 65 that supplies combustion air to the pressurized fluidized furnace 20 at the time of start-up via pipes 66 and 67.
  • the compressed air discharge port 94 ⁇ / b> A is used for starting the pressurized flow furnace 20 via the supply ports 95 ⁇ / b> B of the air preheater 40 through the pipes (flow paths) 94, 95 and the pipes (flow paths) 94, 96. It is connected to the rear part of the burner 22.
  • the starter blower 65 is a device that supplies combustion air to the starter burner 22 and the combustion air supply pipe 24 of the pressurized fluidized furnace 20 when the pressurized fluidized furnace system 1 is started. Further, the starter blower 65 reduces the water vapor generated in the pressurized fluidized furnace 20 due to the interruption of the supply of the object to be processed from the storage device 10, and the rotational speed of the turbine 61 of the supercharger 60 is reduced. Therefore, when the intake of the outside air by the compressor 62 is reduced, it has a function of forcibly supplying the outside air to the compressor 62 via the pipes 66 and 67.
  • the starter blower 65 is connected to the rear portion of the starter burner 22 disposed in the pressurized fluidized furnace 20 via pipes 66, 68, 96, and the combustion air of the air preheater 40 is connected via the pipes 66, 68, 95. Is connected to the supply port 67B of the compressor 62 of the supercharger 60 via pipes 66 and 67.
  • a damper 68C that communicates a part of the pipe 68 that is a bypass flow path far from the connection point with the pipe 67 when viewed from the starter fan 65 is disposed.
  • the damper 68C communicates the pipe 68 from the time when the pressurized fluidized furnace 20 is started (when the starter burner 22 is ignited) until the temperature rise of the pressurized fluidized furnace 20 is completed.
  • the pipe 68 is shut off. That is, from the start of the pressurized fluidized furnace 20 to the completion of the temperature rise of the incinerator, the pressurized fluidized furnace 20 from the starter blower 65 via the starter burner 22 and the air preheater 40 of the pressurized fluidized furnace 20.
  • the combustion air is supplied to the combustion air supply pipe 24, and the combustion air is also supplied to the compressor 62 side of the supercharger 60 through the pipe 67 which is an unclosed air flow path. After that, by closing the damper 68C, the combustion air is supplied from the compressor 62 of the supercharger 60 to the combustion air supply pipe 24 of the pressurized fluidized furnace 20 via the air preheater 40.
  • the white smoke prevention preheater 70 prevents the white smoke of the combustion exhaust gas discharged from the chimney 87 to the outside, and the white smoke prevention supplied from the combustion exhaust gas discharged from the supercharger 60 and the white smoke prevention fan. It is a device that indirectly exchanges heat with industrial air. By the heat exchange treatment, the combustion exhaust gas is cooled and the white smoke prevention air is heated. The flue gas that has been heat-exchanged and cooled by the white smoke prevention preheater 70 is sent to the subsequent flue gas treatment tower 80.
  • a shell and tube heat exchanger, a plate heat exchanger, or the like can be used as the white smoke preventing preheater 70.
  • the flue gas treatment tower 80 is a device that prevents discharge of impurities and the like contained in the combustion exhaust gas outside the equipment, and a chimney 87 is disposed on the upper part of the flue gas treatment tower 80.
  • the flue gas treatment tower 80 has a supply port 98 ⁇ / b> B for supplying the combustion exhaust gas discharged from the white smoke prevention preheater 70 into the apparatus at the lower part of the side wall on one side.
  • a supply port 99B is formed in the lower portion of the side wall on one side of the chimney 87 to supply the white smoke prevention air, which is heated and discharged from the white smoke prevention preheater 70 and exchanged with the exhaust gas, into the chimney 87.
  • the combustion exhaust gas supply port 98B is connected to a combustion exhaust gas discharge port 98A formed in the lower portion of the white smoke prevention preheater 70 via a pipe 98, and the white smoke prevention air supply port 99B is connected to the pipe.
  • 99 is connected to a white smoke prevention air discharge 99 ⁇ / b> A formed in the upper part of the white smoke prevention preheater 70.
  • the white smoke prevention air of the white smoke prevention preheater 70 is supplied to the white smoke prevention preheater 70 via the pipe 103 by the white smoke prevention air blower 101 and indirectly exchanged with the combustion exhaust gas. It is heated and discharged from the discharge port 99A.
  • the combustion exhaust gas at the outlet which tends to be wet and condensed in the air, is mixed with warm and dry white smoke prevention air at the supply port 99B to reduce the relative humidity of the combustion exhaust gas. To prevent white smoke.
  • a spray pipe 84 for spraying water supplied from the outside into the apparatus is arranged on the upper side wall on the other side of the flue gas treatment tower 80, and the intermediate part and the lower part are respectively connected via a circulation pump 83.
  • a spray pipe 85 for spraying caustic soda water containing caustic soda stored at the bottom of the flue gas treatment tower 80 into the apparatus is disposed. Further, the caustic soda water stored in the flue gas processing tower 80 is supplied from a caustic soda tank (not shown) via a caustic soda pump 88 (not shown), and is always maintained at an appropriate amount.
  • the combustion exhaust gas supplied to the flue gas treatment tower 80 is mixed with white smoke prevention air after removing impurities and the like, and is discharged from the chimney 87 to the outside.
  • the emergency stop device includes a warning switch 110C mounted on the pressure sensor 110, a gate valve 95C that controls communication of the pipe 95, a gate valve 96C that controls communication of the pipe 96, and an output state corresponding to the input state. It is comprised by the control apparatus 100 which controls. Note that the pressure sensor 110 is not limited to the one on which the warning switch 110 ⁇ / b> C is mounted, and only needs to output a measurement value to the control device 100.
  • the compressor 62 of the supercharger 60 and the combustion air supply pipe 24 are connected by pipes 91, 94, 96, and 95 through the air preheater 40. Further, the compressor 62 of the supercharger 60 and the starting burner 22 of the pressurized fluidized furnace 20 are connected by pipes 94 and 96.
  • a gate valve 95 ⁇ / b> C that communicates the pipe 95 is arranged in the middle of the pipe 95, and a gate valve that communicates the pipe 96 is arranged in the middle of the pipe 96 (downstream of the branch portion between the pipe 95 and the pipe 96).
  • 96C is arranged.
  • the warning switch 110 ⁇ / b> C is connected to the input side of the control device 100, and gate valves 95 ⁇ / b> C and 96 ⁇ / b> C are connected to the output side of the control device 100.
  • the installation of the pressure sensor 110 is not limited to the pipe 90, and a pipe 92, a pipe 93, a pipe 97, a pipe is added by adding a correction circuit for correcting the pressure loss of the downstream equipment in the control device 100. 98 can also be arranged.
  • the installation of the gate valve 95C is not limited to the pipe 95, and the gate valve 95C can be disposed in the pipe 91 as long as the gate valve 95C can withstand high temperatures. Further, a carbon monoxide concentration meter 98C and an oxygen concentration meter 98D for measuring the capacities of carbon monoxide and oxygen contained in the exhaust gas can be connected to the input side of the control device 100.
  • the pressure in the pressurized fluidized furnace 20 rises to a set value (maximum operable value) or more, the pressure in the piping through which the combustion exhaust gas connected to the downstream side of the pressurized fluidized furnace 20 flows is maintained.
  • the pressure in the pressurized flow furnace 20 is detected by a pressure sensor 110 disposed in the pipe 90 and input to the control device 100 by a warning switch 110C mounted on the pressure sensor (pressure measurement device) 110.
  • the warning switch 20C and the control device 100 are not connected (the pressure in the pressurized flow furnace 20 is higher than the set value), as shown in FIG.
  • the gate valve 95C is closed by a signal from the control device 100, so that the combustion is performed.
  • the air supply pipe 24 and the compressor 96 are shut off (compressed air supply stop process).
  • the auxiliary air supply passage 121 that communicates the air compressor or supercharger 60 that is a supply source and the auxiliary fuel combustion device 21 is shut off.
  • combustion air that connects the compressor 62 of the supercharger 60 and the pressurized fluidized furnace 20 in order to prevent the surge in the supercharger 60 and to burn the workpiece remaining in the pressurized fluidized furnace 20 Communicate the piping through which flows.
  • the gate valve 96C arranged in the pipe 96 communicating with the compressor 62 and the starting burner is opened by the control device 100, and the combustion air is supplied into the pressurized fluidized furnace 20 through the starting burner.
  • compressed air supply start step The combustion air supplied from the compressor 62 to the pressurized fluidized furnace 20 is supplied to the pressurized fluidized furnace 20 from the pipes 94 and 96 and the starting burner 22 and is combusted in the pressurized fluidized furnace 20 to become combustion exhaust gas.
  • Air preheater 40, pipe 92, dust collector 50, pipe 93, supercharger 60, pipe 97, white smoke prevention preheater 70, pipe 98, flue gas treatment tower 80, and chimney 87 are discharged into the atmosphere. Is done.
  • the combustion air supplied from the compressor 62 can also be released to the atmosphere by an atmosphere opening channel (not shown) that branches from the pipe 94 and communicates with the chimney 87 and the like (not shown).
  • an atmosphere opening channel (not shown) that branches from the pipe 94 and communicates with the chimney 87 and the like (not shown).
  • the damper that is normally closed in the flow path is opened.
  • the combustion air supplied from the compressor 62 can be released to the atmosphere, so that even if the compressed air supply process does not operate, surge of the compressor 62 can be prevented. it can.
  • the pressure in the combustion air supply pipe 24 that supplies the combustion air to the pressurized fluidized furnace 20 decreases, and the fluidized sand in the pressurized fluidized furnace 20 may flow back into the combustion air supply pipe 24. Therefore, it is preferable that the timing of releasing the combustion air to the atmosphere is performed after the compressed air supply stop process is completed.
  • a drive is stopped when the numerical value measured by the pressure sensor 110 exceeds a preset value before performing a compressed air supply process, and pressurization flow is carried out from the input pump 12.
  • the supply of the object to be processed into the furnace 20 is stopped.
  • the combustion exhaust gas discharged from the pressurized fluidized furnace 20 is reduced, and the rotation of the turbine 61 of the supercharger 60 is gradually reduced and discharged from the compressor 62.
  • the combustion air is gradually reduced, and the driving of the supercharger 60 is stopped.

Abstract

[Problem] To prevent operational defects in the compressor of a supercharger, thereby preventing the generation of toxic substances caused by the incomplete combustion of a processing subject material remaining in a pressurized fluidized furnace. [Solution] The present invention includes: a compressed air supply termination step wherein, after the pressure in a pressurized fluidized furnace (20) has increased to an abnormal level, an auxiliary air supply flow path (121) connected to an auxiliary fuel combustion device (21), or at least one of the flow paths (91, 94, 95) connecting a combustion air supply pipe (24) and a compressor (24), is closed; and a compressed air supply initiation step wherein at least one of the flow paths (94, 96) connecting a starting burner (22) of the pressurized fluidized furnace (20) and the compressor (62) is opened.

Description

加圧流動炉システムの非常停止方法Emergency stop method for pressurized flow furnace system
 本発明は、下水汚泥、バイオマス、都市ゴミ等の被処理物を燃焼する加圧流動炉システムの非常停止方法に関するものであり、より詳細には、過給機のコンプレッサーのサージによる作動不良を抑制し、加圧流動炉内に残留する被処理物を完全燃焼し有害物質の発生を抑制する加圧流動炉システムの非常停止方法に関するものである。 The present invention relates to an emergency stop method for a pressurized flow furnace system that burns an object to be treated such as sewage sludge, biomass, and municipal waste, and more specifically, suppresses malfunction due to surge of a compressor of a turbocharger. In addition, the present invention relates to an emergency stop method for a pressurized fluidized furnace system that suppresses the generation of harmful substances by completely burning an object to be processed remaining in the pressurized fluidized furnace.
 従来、下水汚泥、バイオマス、都市ゴミ等の被処理物を燃焼し、焼却炉から排出される燃焼排ガスの持つエネルギーを有効に取り出すことに着目した焼却設備として、加圧流動炉システムが知られている。加圧流動炉システムは、被処理物を燃焼させる加圧流動炉と、加圧流動炉から排出される燃焼排ガスによって回動されるタービンとタービンの回動に伴って回動され圧縮空気を供給するコンプレッサーを内装する過給機を有することを特徴とするシステムである。加圧流動動炉システムでは、被処理物を完全燃焼させた際に生じる燃焼排ガスによって過給機のタービンを駆動し、コンプレッサーから排出される圧縮空気によって被処理物の燃焼に必要な燃焼空気を全て賄う自立運転が可能となる。自立運転が可能となることで、従来、必要であった流動ブロワおよび誘引ファンが不要となり、ランニングコストが低減することが知られている。
 この加圧流動炉は、通常150kPa程度の炉内圧力で運転されているが、運転中に機器の作動不要などが原因で炉内圧力が設定値以上に上昇した場合、設備損傷を回避するため、システム内の圧力を早急に低下させることが必要であった。このため、コンプレッサーから供給される圧縮空気を外部に排出するよう圧縮空気の流路の一部が分岐し、白煙防止用空気の流路に合流するなどして圧縮空気を大気に開放する流路が設置されている。
 また、加圧流動床ボイラの分野においては、加圧流動床ボイラの高圧ガスの空気圧縮機への逆流によって空気圧縮機の損傷を防止するために、プラント停止時に、空気圧縮機と加圧流動床ボイラ流動炉を接続する配管と、ガスタービンと加圧流動床ボイラ流動炉を接続する配管を閉塞し、該配管の加圧流動床ボイラ側から分岐をとった形で煙突へ放風する高温ガス排出管路を開放して、空気圧縮機とガスタービンを接続する配管を連通して加圧流動床ボイラ流動炉を空気圧縮機とガスタービンから隔離状態とする停止方法が提案されている(特許文献1参照)。
Conventionally, a pressurized fluidized furnace system has been known as an incineration facility that focuses on effectively taking out the energy of combustion exhaust gas discharged from an incinerator by burning an object to be treated such as sewage sludge, biomass, and municipal waste. Yes. The pressurized fluidized furnace system is a pressurized fluidized furnace that combusts a workpiece, a turbine that is rotated by combustion exhaust gas discharged from the pressurized fluidized furnace, and is rotated as the turbine rotates to supply compressed air. It is the system characterized by having the supercharger which mounts the compressor which carries out. In the pressurized flow reactor system, the turbine of the turbocharger is driven by combustion exhaust gas generated when the workpiece is completely burned, and the combustion air necessary for burning the workpiece is compressed by the compressed air discharged from the compressor. Self-supporting operation that can cover everything is possible. It has been known that the self-sustained operation can eliminate the need for a fluid blower and an attracting fan, which have been conventionally required, and reduce the running cost.
This pressurized fluidized furnace is normally operated at a furnace pressure of about 150 kPa, but in order to avoid equipment damage if the furnace pressure rises above the set value due to the unnecessary operation of equipment during operation. It was necessary to quickly reduce the pressure in the system. For this reason, a part of the flow path of the compressed air branches so as to discharge the compressed air supplied from the compressor to the outside and joins the flow path of the white smoke prevention air to release the compressed air to the atmosphere. Road is installed.
Also, in the field of pressurized fluidized bed boilers, in order to prevent damage to the air compressor due to the reverse flow of the high pressure gas from the pressurized fluidized bed boiler to the air compressor, when the plant is shut down, A high temperature that closes the piping connecting the fluidized bed furnace and the piping connecting the gas turbine and the pressurized fluidized bed boiler, and discharges it from the pressurized fluidized bed boiler side to the chimney. A stop method has been proposed in which a gas discharge pipe is opened, a pipe connecting the air compressor and the gas turbine is communicated, and the pressurized fluidized bed boiler fluidized furnace is separated from the air compressor and the gas turbine ( Patent Document 1).
特開2000-213306号公報JP 2000-213306 A
 しかしながら、加圧流動炉内の圧力が設定値以上に上昇した場合、加圧流動炉内の圧力を低下させるため、加圧流動炉に供給される圧縮空気を大気に開放すると、加圧流動炉に燃焼空気を供給する流路内の圧力は低下する。一方、加圧流動炉内圧力が開放されるまでに時間を要するため、炉内の気体が、本来加圧流動炉内に燃焼空気を供給する分散管から配管を逆流し、炉内気体とともに逆流した流動砂が分散管や配管を閉塞させる恐れがあった。また、炉内には酸素が供給されなくなるため、炉内に残った被処理物が不完全燃焼する恐れがあった。さらに、圧縮空気を開放するために、特許文献1に記載された加圧流動床ボイラ流動炉を空気圧縮機とガスタービンから隔離状態とする方法を採用した場合であっても、炉内には酸素が供給されなくなるため流動炉内に残留した被処理物の不完全燃焼に起因する一酸化炭素、ダイオキシン等の有害物質が設備の外に排出される虞もあった。また、過給機側に温度の低い圧縮空気が供給されるため、過給機が急速に冷却され作動不良などが生じる虞もあった。 However, when the pressure in the pressurized fluidizing furnace rises above a set value, the pressurized fluidizing furnace is opened when the compressed air supplied to the pressurized fluidizing furnace is released to the atmosphere in order to reduce the pressure in the pressurized fluidizing furnace. The pressure in the flow path for supplying combustion air to the air drops. On the other hand, since it takes time to release the pressure in the pressurized fluidized furnace, the gas in the furnace flows back through the pipe from the dispersion pipe that originally supplies the combustion air into the pressurized fluidized furnace, and flows back together with the gas in the furnace. There was a risk that the fluidized sand clogged the dispersion pipes and piping. Further, since oxygen is not supplied into the furnace, there is a possibility that the object to be processed remaining in the furnace may be incompletely burned. Further, in order to release the compressed air, even if the method of separating the pressurized fluidized bed boiler fluidized furnace described in Patent Document 1 from the air compressor and the gas turbine is adopted, Since oxygen is no longer supplied, harmful substances such as carbon monoxide and dioxin resulting from incomplete combustion of the object to be processed remaining in the fluidized furnace may be discharged outside the facility. In addition, since compressed air having a low temperature is supplied to the supercharger side, the supercharger may be rapidly cooled to cause malfunction.
 そこで、本発明の主たる課題は、かかる問題点を解消することにある。 Therefore, the main problem of the present invention is to eliminate such problems.
 上記課題を解決した本発明及び作用効果は次のとおりである。
 すなわち、第1発明は、底部に充填した流動砂を加熱する始動用バーナと補助空気供給流路を介して補助空気が供給される補助燃料燃焼装置と燃焼空気供給管とを備えた被処理物を燃焼させる加圧流動炉と、該加圧流動炉の圧力を測定する圧力測定装置と、前記加圧流動炉から排出される燃焼排ガスによって回動されるタービンとタービンの回動に伴って回動され前記加圧流動炉の前記始動用バーナ及び前記燃焼空気供給管それぞれに流路を介して燃焼空気を供給するコンプレッサーを備える過給機と、前記加圧流動炉から排出される燃焼排ガスによって前記過給機から供給される燃焼空気を加熱する空気予熱器を備えた加圧流動炉システムの非常停止方法であって、
 前記圧力測定装置による圧力測定値が設定値を越えた場合に、前記補助燃料燃焼装置に接続された補助空気供給流路、又は、前記燃焼空気供給管と前記コンプレッサーを接続する流路の少なくとも一つを閉じる圧縮空気供給停止工程と、
 前記加圧流動炉の始動用バーナと前記コンプレッサーを接続する少なくとも一つの流路を連通させる圧縮空気供給開始工程とを含むことを特徴とする。
The present invention and effects obtained by solving the above problems are as follows.
That is, the first invention is a workpiece having a starting burner for heating the fluidized sand filled in the bottom, an auxiliary fuel combustion device to which auxiliary air is supplied via an auxiliary air supply channel, and a combustion air supply pipe. A pressurized fluidizing furnace that combusts the gas, a pressure measuring device that measures the pressure of the pressurized fluidized furnace, a turbine that is rotated by the combustion exhaust gas discharged from the pressurized fluidized furnace, and a rotation as the turbine rotates. And a supercharger that includes a compressor that supplies combustion air to each of the starting burner and the combustion air supply pipe of the pressurized fluidized furnace via a flow path, and combustion exhaust gas discharged from the pressurized fluidized furnace An emergency stop method for a pressurized fluidized furnace system comprising an air preheater for heating combustion air supplied from the supercharger,
When a pressure measurement value by the pressure measurement device exceeds a set value, at least one of an auxiliary air supply flow path connected to the auxiliary fuel combustion apparatus or a flow path connecting the combustion air supply pipe and the compressor. Compressed air supply stop process to close one,
And a compressed air supply starting step of communicating at least one flow path connecting the compressor and the starter burner of the pressurized flow furnace.
 (作用効果)
 圧力測定装置による圧力測定値が設定値を越えた場合に、補助燃料燃焼装置又は燃焼空気供給管と、コンプレッサーとを接続する流路の少なくとも一つを閉じるので、加圧流動炉で生成された燃焼排ガス等が加圧流動炉に燃焼空気等を供給する配管、機器等への浸入を防止することができ、加圧流動炉に充填された流動砂による燃焼空気供給管に形成された開孔部の目詰まり等を防止することができる。
 また、加圧流動炉の始動用バーナとコンプレッサーを連通させるので、加圧流動炉から排出される燃焼排ガスの熱エネルギーを、非常停止後もさほど急激な圧力抵抗を変化させずにコンプレッサー駆動力として消費できるので、過給機のコンプレッサーのサージによる作動不良を抑制でき、必要な酸素を加圧流動炉内へ導入することで、加圧流動炉に残留した被処理物も完全燃焼させることができる。
(Function and effect)
When the pressure measurement value by the pressure measurement device exceeds the set value, at least one of the flow paths connecting the auxiliary fuel combustion device or combustion air supply pipe and the compressor is closed. Opening formed in the combustion air supply pipe made of fluidized sand filled in the pressurized fluidized furnace, which can prevent the combustion exhaust gas etc. from entering the piping and equipment that supplies the combustion air etc. to the pressurized fluidized furnace It is possible to prevent clogging of the part.
In addition, because the pressurized burner starter burner and the compressor are in communication, the thermal energy of the combustion exhaust gas discharged from the pressurized flow furnace can be used as a compressor driving force without changing the pressure resistance so rapidly after an emergency stop. Because it can be consumed, malfunctions due to surges in the compressor of the turbocharger can be suppressed, and by introducing the necessary oxygen into the pressurized fluidized furnace, the workpieces remaining in the pressurized fluidized furnace can be completely burned. .
 第2発明は、第1発明の構成に加え、前記圧力測定値が設定値を越えた場合に、前記コンプレッサーから供給される圧縮空気を外部に排出する大気開放流路を連通する大気開放工程を含むことを特徴とする。 According to a second aspect of the invention, in addition to the configuration of the first aspect of the invention, when the measured pressure value exceeds a set value, an atmosphere release step of communicating with an atmosphere release channel that discharges compressed air supplied from the compressor to the outside is provided. It is characterized by including.
 (作用効果)
 圧力測定値が設定値を越えた場合に、前記コンプレッサーから供給される圧縮空気を外部に排出する大気開放流路を連通するので、加圧流動炉内の圧力を素早く低圧にすることができる。
(Function and effect)
When the measured pressure value exceeds the set value, the atmosphere open flow path for discharging the compressed air supplied from the compressor to the outside communicates, so that the pressure in the pressurized flow furnace can be quickly reduced to a low pressure.
 第3発明は、第2発明の構成に加え、前記圧縮空気供給停止工程よりも前に前記大気開放工程を行うことを特徴とする。 The third invention is characterized in that, in addition to the configuration of the second invention, the atmosphere release step is performed before the compressed air supply stop step.
 (作用効果)
 圧縮空気供給停止工程よりも前に前記大気開放工程を行うので、加圧流動炉内の圧力の上昇を抑制することができる。
(Function and effect)
Since the air release step is performed before the compressed air supply stop step, an increase in pressure in the pressurized fluidized furnace can be suppressed.
 第4発明は、第1発明の構成に加え、前記圧縮空気供給停止工程において、前記燃焼空気供給管と前記コンプレッサーを接続する流路の閉塞は、前記空気予熱器の燃焼空気の供給口に一端を接続し前記コンプレッサーへ延伸する流路を閉塞することを特徴とする。 According to a fourth aspect of the invention, in addition to the configuration of the first aspect of the invention, in the compressed air supply stop step, the blockage of the flow path connecting the combustion air supply pipe and the compressor is connected to the combustion air supply port of the air preheater at one end. And a flow path extending to the compressor is closed.
 (作用効果)
 圧縮空気供給停止工程において、空気予熱器の燃焼空気の供給口に一端を接続し延伸する流路を閉塞するので、比較的低温度の燃焼空気を仕切弁に接触させて高温の燃焼排ガスによって加熱された燃焼空気の影響を与えずに流路を閉塞でき、仕切弁等の耐久性を向上させることができる。
(Function and effect)
In the compressed air supply stop process, one end is connected to the combustion air supply port of the air preheater and the extending flow path is closed, so that the relatively low temperature combustion air is brought into contact with the gate valve and heated by the high temperature combustion exhaust gas. The flow path can be closed without being affected by the combustion air, and the durability of the gate valve and the like can be improved.
 第5発明は、第1発明の構成に加え、前記圧縮空気供給開始工程において、前記始動用バーナの燃焼空気の供給口に一端を接続し延伸する流路を連通することを特徴とする。 The fifth invention is characterized in that, in addition to the configuration of the first invention, in the compressed air supply start step, one end is connected to the combustion air supply port of the start burner and the extending flow path is communicated.
 (作用効果)
 圧縮空気供給開始工程において、始動用バーナの燃焼空気の供給口に一端を接続し延伸する流路を連通するので、始動用バーナに接続された加圧流動炉や空気予熱器等の大きな容量を有する機器を介して過給機のコンプレッサーから供給された燃焼空気を機外に放出できるために、コンプレッサーのサージによる作動不良を抑制することができる。
(Function and effect)
In the compressed air supply start process, one end is connected to the combustion air supply port of the start burner and the extending flow path is connected, so that a large capacity such as a pressurized flow furnace or an air preheater connected to the start burner is provided. Since the combustion air supplied from the compressor of the supercharger can be discharged to the outside of the machine via the device that has it, malfunction due to the surge of the compressor can be suppressed.
 第6発明は、第1~3発明の構成に加え、前記圧力測定装置を前記加圧流動炉の燃焼排ガスの排出口と前記空気予熱器の燃焼排ガスの供給口を接続する流路に設けたことを特徴とする。 In a sixth aspect of the present invention, in addition to the configurations of the first to third aspects, the pressure measuring device is provided in a flow path connecting a combustion exhaust gas exhaust port of the pressurized fluidized furnace and a combustion exhaust gas supply port of the air preheater. It is characterized by that.
 (作用効果)
 圧力測定装置を加圧流動炉の燃焼排ガスの排出口と空気予熱器の燃焼排ガスの供給口を接続する流路に設けたので、配管長さに圧力降下の影響を受けず加圧流動炉の圧力変動を正確に測定することができる。
(Function and effect)
Since the pressure measuring device is installed in the flow path connecting the combustion exhaust gas exhaust port of the pressurized fluidized furnace and the combustion exhaust gas supply port of the air preheater, the pipe length is not affected by the pressure drop. Pressure fluctuation can be accurately measured.
 第7発明は、第1~3発明の構成に加え、前記圧力測定装置を前記空気予熱器の燃焼排ガスの排出口の下流側に接続された流路に設けたことを特徴とする。 The seventh invention is characterized in that, in addition to the configurations of the first to third inventions, the pressure measuring device is provided in a flow path connected to a downstream side of a combustion exhaust gas discharge port of the air preheater.
 (作用効果)
 圧力測定装置を空気予熱器の排気ガスの排出口の下流側に接続された流路に設けたので、空気予熱器の圧力損失の補正演算が必要になるが、燃焼排ガスは熱交換後の低温気体となるので、高温の燃焼排ガスの影響を受けず圧力測定装置の耐久性を向上させることができる。
(Function and effect)
Since the pressure measuring device is installed in the flow path connected downstream of the exhaust gas exhaust port of the air preheater, it is necessary to perform correction calculation of the pressure loss of the air preheater. Since it becomes gas, the durability of the pressure measuring device can be improved without being affected by high-temperature combustion exhaust gas.
 以上の発明によれば、非常停止時における炉内に供給される圧縮空気の供給箇所を限定したので炉内の気体や流動砂が分散管や補助燃焼装置から逆流することを抑制することが可能となる。 According to the above invention, since the supply location of the compressed air supplied into the furnace at the time of emergency stop is limited, it is possible to suppress the gas and fluidized sand in the furnace from flowing backward from the dispersion pipe and the auxiliary combustion device. It becomes.
加圧流動炉システムの説明図である。It is explanatory drawing of a pressurized flow furnace system. 図1の部分拡大図である。It is the elements on larger scale of FIG. 図1の部分拡大図である。It is the elements on larger scale of FIG. 図1の部分拡大図である。It is the elements on larger scale of FIG. 制御装置の説明図である。It is explanatory drawing of a control apparatus. 非常停止装置のフローチャートである。It is a flowchart of an emergency stop device. 非常停止方法のフローチャートである。It is a flowchart of an emergency stop method.
 以下、本発明の本実施形態について添付図面を参照しつつ詳説する。なお、理解を容易にするため、便宜的に方向を示して説明しているが、これらにより構成が限定されるものではない。 Hereinafter, this embodiment of the present invention will be described in detail with reference to the accompanying drawings. In addition, in order to make an understanding easy, although it showed and demonstrated the direction for convenience, the structure is not limited by these.
 加圧流動炉システム1は、図1に示すように、汚泥等の被処理物を貯留する貯留装置10と、貯留装置10から供給された被処理物を燃焼する加圧流動炉20と、加圧流動炉20から排出された燃焼排ガスによって加圧流動炉20に供給する燃焼空気を加熱する空気予熱器40と、燃焼排ガス中の粉塵等を除去する集塵機50と、燃焼排ガスによって駆動され加圧流動炉20に燃焼空気を供給する過給機60と、過給機60から排出された燃焼排ガスによって排煙処理塔80に供給する白煙防止用空気を加熱する白煙防止用予熱器70と、燃焼排ガス内の不純物を除去する排煙処理塔80を備えている。 As shown in FIG. 1, the pressurized fluidized furnace system 1 includes a storage device 10 that stores an object to be processed such as sludge, a pressurized fluidized furnace 20 that combusts the object to be processed supplied from the storage device 10, An air preheater 40 for heating the combustion air supplied to the pressurized fluidized furnace 20 by the combustion exhaust gas discharged from the pressure fluidized furnace 20, a dust collector 50 for removing dust and the like in the combustion exhaust gas, and pressurization driven by the combustion exhaust gas A supercharger 60 for supplying combustion air to the fluidized furnace 20, a white smoke prevention preheater 70 for heating the white smoke prevention air supplied to the flue gas treatment tower 80 by the combustion exhaust gas discharged from the supercharger 60, and And a flue gas treatment tower 80 for removing impurities in the combustion exhaust gas.
 (貯留装置)
 貯留装置10に貯留される被処理物は、主に含水率を70~85%質量に脱水処理された下水汚泥であり、被処理物には、燃焼可能な有機物が含有されている。なお、被処理物は、含水有機物であれば下水汚泥に制限されることはなく、バイオマス、都市ゴミ等であっても良い。
(Storage device)
The object to be treated stored in the storage device 10 is mainly sewage sludge dehydrated to a moisture content of 70 to 85% by mass, and the object to be treated contains combustible organic matter. In addition, if a to-be-processed object is a water-containing organic substance, it will not be restrict | limited to a sewage sludge, Biomass, municipal waste, etc. may be sufficient.
 貯留装置10の下部には、所定量の被処理物を加圧流動炉20に供給する定量フィーダ(供給装置)11が配置され、定量フィーダ11の下流側には、被処理物を加圧流動炉20に圧送する投入ポンプ12が設けられている。なお、投入ポンプ12としては、一軸ネジ式ポンプ、ピストンポンプ等が使用できる。 A fixed amount feeder (supply device) 11 for supplying a predetermined amount of the object to be processed to the pressurized flow furnace 20 is disposed at the lower part of the storage device 10, and the object to be processed is pressurized and flowed downstream of the fixed amount feeder 11. A dosing pump 12 is provided for pressure feeding to the furnace 20. As the input pump 12, a single screw pump, a piston pump or the like can be used.
 (加圧流動炉)
 加圧流動炉20は、流動媒体として所定の粒径を有する、流動砂等の固体粒子が炉内の下部に充填された燃焼炉であり、炉内に供給される燃焼空気によって流動層(以下、砂層という。)の流動状態を維持しつつ、外部から供給される被処理物および必要に応じて供給される補助燃料を燃焼させるものである。
 図1、図2に示すように、一側の側壁の下部には、加圧流動炉20の内部に充填された粒径約400~600μmの流動砂を加熱する補助燃料燃焼装置21が配置され、補助燃料燃焼装置21の上側近傍の部位には、始動時に流動砂を加熱する始動用バーナ22が配置され、始動用バーナ22の上側の部位には、被処理物の供給口13Bが設けられている。
 また、加圧流動炉20の上部には、燃焼排ガスを冷却するためのウォータガン23が配置され、必要に応じ冷却水を炉内に噴霧することができる。
 また、加圧流動炉20の下方には、炉内に燃焼に必要な酸素と流動層の流動状態を維持するための運動エネルギーとを与える燃焼空気を供給する燃焼空気供給管24が設置される。この燃焼空気供給管24は、複数の開孔を有する配管を複数配列した分散管や板状の鉄板等に複数の開口を設けた分散板を用いることが可能である。
(Pressurized flow furnace)
The pressurized fluidized furnace 20 is a combustion furnace having a predetermined particle size as a fluidized medium and filled with solid particles such as fluidized sand in the lower part of the furnace, and a fluidized bed (hereinafter referred to as a fluidized bed) by combustion air supplied into the furnace. The material to be processed supplied from the outside and auxiliary fuel supplied as necessary are burned while maintaining the fluid state of the sand layer.
As shown in FIGS. 1 and 2, an auxiliary fuel combustion device 21 for heating the fluidized sand having a particle size of about 400 to 600 μm filled in the pressurized fluidized furnace 20 is disposed at the lower part of the side wall on one side. A starting burner 22 that heats the fluidized sand at the time of starting is disposed in a portion in the vicinity of the upper side of the auxiliary fuel combustion device 21, and a workpiece supply port 13 </ b> B is provided in an upper portion of the starting burner 22. ing.
Further, a water gun 23 for cooling the combustion exhaust gas is disposed at the upper part of the pressurized fluidized furnace 20, and cooling water can be sprayed into the furnace as necessary.
A combustion air supply pipe 24 for supplying combustion air for supplying oxygen necessary for combustion and kinetic energy for maintaining the fluidized state of the fluidized bed is installed in the furnace under the pressurized fluidized furnace 20. . The combustion air supply pipe 24 may be a dispersion pipe in which a plurality of pipes having a plurality of openings are arranged, or a dispersion plate in which a plurality of openings are provided in a plate-shaped iron plate or the like.
 補助燃料燃焼装置21は、加圧流動炉20に充填された流動砂を加熱するために、燃焼空気供給管(分散管)24の上側に配置されている。また、補助燃料燃焼装置21は、燃焼空気供給管24として用いた分散管と同様に、複数本が並列に配置されている。補助燃料燃焼装置21には、炉外に設置された補助燃料供給装置29から都市ガスや重油等の補助燃料が供給される。また、補助燃料燃焼装置21には、空気供給手段120から供給された圧縮空気が補助空気として配管(補助空気供給流路)121、補助空気の供給を制御する補助空気供給弁121Cを介して供給される。供給された圧縮空気は、補助燃料の噴霧や燃焼に使用され、補助燃料と共に炉内に供給することによって流動砂を加熱する。なお、空気供給手段120として別途設けられた空気圧縮機を用いてもよいが、過給機60のコンプレッサー62を空気供給手段120として使用することもでき、コンプレッサー62から排出される燃焼空気の一部を補助空気として供給することもできる。
 なお、補助燃料燃焼装置21として、ガスガンやオイルガンを使用することもできる。
The auxiliary fuel combustion device 21 is disposed above the combustion air supply pipe (dispersion pipe) 24 in order to heat the fluidized sand filled in the pressurized fluidized furnace 20. A plurality of auxiliary fuel combustion devices 21 are arranged in parallel, similar to the dispersion pipe used as the combustion air supply pipe 24. Auxiliary fuel such as city gas or heavy oil is supplied to the auxiliary fuel combustion device 21 from an auxiliary fuel supply device 29 installed outside the furnace. The auxiliary fuel combustion apparatus 21 is supplied with compressed air supplied from the air supply means 120 as auxiliary air through a pipe (auxiliary air supply flow path) 121 and an auxiliary air supply valve 121C for controlling the supply of auxiliary air. Is done. The supplied compressed air is used for spraying and combustion of auxiliary fuel, and heats the fluidized sand by supplying it into the furnace together with the auxiliary fuel. Although an air compressor provided separately as the air supply means 120 may be used, the compressor 62 of the supercharger 60 can also be used as the air supply means 120, and one of the combustion air discharged from the compressor 62 is used. The part can also be supplied as auxiliary air.
A gas gun or an oil gun can be used as the auxiliary fuel combustion device 21.
 始動用バーナ22は、始動時に流動砂の上面を加熱するために、加圧流動炉20の中心部に向かって立下がり傾斜して配置されている。なお、補助燃料燃焼装置21と同様に、始動用バーナ22には、炉外の補助燃料供給装置29から補助燃料と、過給機60のコンプレッサー62から圧縮空気が供給されている。また、始動用バーナ22の燃焼空気は、配管96を介して起動用ブロワ65の発生した送風空気が使用される。 The starting burner 22 is disposed so as to fall and incline toward the center of the pressurized fluidized furnace 20 in order to heat the upper surface of the fluidized sand at the time of starting. As with the auxiliary fuel combustion device 21, the starting burner 22 is supplied with auxiliary fuel from the auxiliary fuel supply device 29 outside the furnace and compressed air from the compressor 62 of the supercharger 60. Further, as the combustion air of the start burner 22, the blown air generated by the starter blower 65 through the pipe 96 is used.
 加圧流動炉20の他側の側壁の下部には、加圧流動炉20の内部に流動床の流動及び燃焼に用いられる酸素の供給を行う燃焼空気を供給する燃焼空気供給管24が配置されている。加圧流動炉20の上部の細径化された側壁には、補助燃料、被処理物等の燃焼によって発生した燃焼ガスや、砂ろ過水、被処理物に内在する水等が加熱されることで生じた水蒸気などを炉外に排出する排出口90Aが形成されている。なお、本発明では、燃焼ガス、又は燃焼ガスと水蒸気が混合したガスを燃焼排ガスという。 A combustion air supply pipe 24 for supplying combustion air for supplying oxygen used for fluidization and combustion of the fluidized bed is disposed inside the pressurized fluidized furnace 20 at the lower part of the side wall on the other side of the pressurized fluidized furnace 20. ing. The thinned side wall at the top of the pressurized fluidized furnace 20 is heated with combustion gas generated by the combustion of the auxiliary fuel, the object to be processed, sand filtered water, water existing in the object to be processed, etc. A discharge port 90 </ b> A is formed for discharging the water vapor generated in step 1 to the outside of the furnace. In the present invention, combustion gas or a gas in which combustion gas and water vapor are mixed is referred to as combustion exhaust gas.
 燃焼空気供給管24は、補助燃料燃焼装置21から供給された補助燃料に均等に燃焼空気を供給するために、補助燃料燃焼装置21の下側に配置される。また、燃焼空気供給管24には、炉内に燃焼用酸素および流動空気としての燃焼空気を供給するために、複数の開孔を有する配管を複数配列した分散管や板状の鉄板等に複数の開口を設けた分散板を用いることができる。
 加圧流動炉20の側壁には、炉内温度を測定するための温度センサ(図示省略)が高さ方向にそって所定間隔で複数設置されている。設置個所は、砂層およびフリーボード部であり、それぞれ2箇所から3箇所、計4~6箇所となる。温度センサとしては、熱電対等を使用することが出来る。ここで、フリーボード部とは、加圧流動層燃焼炉11の内部において砂層の上層部を指す。これら温度センサは、それぞれの設置位置における炉内温度を示す電気信号を制御装置100に出力する
The combustion air supply pipe 24 is disposed below the auxiliary fuel combustion device 21 in order to supply combustion air evenly to the auxiliary fuel supplied from the auxiliary fuel combustion device 21. The combustion air supply pipe 24 is provided with a plurality of pipes such as a dispersion pipe or a plate-shaped iron plate in which a plurality of pipes having a plurality of openings are arranged in order to supply combustion oxygen and combustion air as fluidized air into the furnace. A dispersion plate provided with a plurality of openings can be used.
A plurality of temperature sensors (not shown) for measuring the in-furnace temperature are installed on the side wall of the pressurized flow furnace 20 at predetermined intervals along the height direction. The installation locations are the sand layer and the freeboard section, which are 2 to 3 places each, 4 to 6 places in total. A thermocouple or the like can be used as the temperature sensor. Here, the free board portion refers to the upper layer portion of the sand layer in the pressurized fluidized bed combustion furnace 11. These temperature sensors output an electrical signal indicating the temperature in the furnace at each installation position to the control device 100.
 加圧流動炉20には、外部から燃焼状況を確認する覗き窓(図示せず)なども設けられている。ところで温度センサや、覗き窓などには、流動砂の付着や、燃焼排ガスの接触を回避するためのパージ空気の供給口が設けられている。このパージ空気は、別途設けられた空気圧縮機から供給される。 The pressurized fluidized furnace 20 is also provided with a viewing window (not shown) for confirming the combustion state from the outside. By the way, a temperature sensor, a viewing window, and the like are provided with a purge air supply port for avoiding adhesion of fluid sand and contact with combustion exhaust gas. This purge air is supplied from a separately provided air compressor.
 (空気予熱器)
 空気予熱器40は、加圧流動炉20の後段に設置され、加圧流動炉20から排出された燃焼排ガスと燃焼空気とを間接的に熱交換することにより、燃焼空気を所定の温度まで昇温する機器である。
 空気予熱器40は、図1、図3に示すように、一側の側壁の上部には、加圧流動炉20からの燃焼排ガスの供給口90Bが形成され、供給口90Bの下側近傍部位には、燃焼空気を空気予熱器40から排出する排出口91Aが形成されている。また、燃焼排ガスの供給口90Bは、配管(流路)90を介して加圧流動炉20の排出口90Aに接続され、燃焼空気の排出口91Aは、配管(流路)91を介して加圧流動炉20の燃焼空気供給管24の後部に接続されている。
(Air preheater)
The air preheater 40 is installed at the rear stage of the pressurized fluidized furnace 20 and indirectly exchanges heat between the combustion exhaust gas discharged from the pressurized fluidized furnace 20 and the combustion air, thereby raising the combustion air to a predetermined temperature. It is a device that warms up.
As shown in FIGS. 1 and 3, the air preheater 40 has a combustion exhaust gas supply port 90 </ b> B from the pressurized fluidized furnace 20 formed at the upper portion of one side wall, and a lower vicinity portion of the supply port 90 </ b> B. Is formed with a discharge port 91 </ b> A through which combustion air is discharged from the air preheater 40. The combustion exhaust gas supply port 90B is connected to a discharge port 90A of the pressurized fluidized furnace 20 via a pipe (flow path) 90, and the combustion air discharge port 91A is added via a pipe (flow path) 91. It is connected to the rear part of the combustion air supply pipe 24 of the pressure flow furnace 20.
 空気予熱器40の他側の下部には、燃焼排ガスを空気予熱器40から排出する排出口92Aが形成され、排出口92Aの上側近傍の部位には、燃焼空気を機器内に供給する供給口95Bが形成されている。空気予熱器としては、シェルアンドチューブ式熱交換器が好ましい。 A discharge port 92A for discharging the combustion exhaust gas from the air preheater 40 is formed in the lower part on the other side of the air preheater 40, and a supply port for supplying combustion air into the device in a region near the upper side of the discharge port 92A 95B is formed. As the air preheater, a shell and tube heat exchanger is preferable.
 (集塵機)
 集塵機50は、空気予熱器40の後段に設けられており、空気予熱器40から送出される燃焼排ガスに含まれるダスト、細粒化された流動砂等の不純物を除去する機器である。
 集塵機50に内装されるフィルタとしては、例えばセラミックフィルタやバグフィルタを用いることができ、集塵機50は、一側の側壁の下部には、燃焼排ガスを機器内に供給する供給口92Bが形成され、上部には、不純物等が取除かれた清浄な燃焼排ガスを機器外に排出する排出口93Aが形成されている。また、燃焼排ガスの供給口92Bは、配管92を介して空気予熱器40の燃焼排ガスの排出口92Aに接続されている。
(Dust collector)
The dust collector 50 is provided in the subsequent stage of the air preheater 40 and is a device that removes impurities such as dust and finely divided fluidized sand contained in the combustion exhaust gas delivered from the air preheater 40.
As a filter installed in the dust collector 50, for example, a ceramic filter or a bag filter can be used. In the dust collector 50, a supply port 92B for supplying combustion exhaust gas into the device is formed in a lower portion of one side wall. In the upper part, a discharge port 93A for discharging clean combustion exhaust gas from which impurities and the like have been removed to the outside of the device is formed. The combustion exhaust gas supply port 92 </ b> B is connected to the combustion exhaust gas discharge port 92 </ b> A of the air preheater 40 through a pipe 92.
 集塵機50内には、下部に形成された供給口92Bと上部に形成された排出口93Aの上下方向に間の部位にバフィルタ(図示省略)が内装されている。フィルタで取除かれた燃焼排ガス中の不純物等は、集塵機50内の底部に一時的に貯留された後、定期的に外部に排出される。 In the dust collector 50, a vacuum filter (not shown) is provided at a portion between the supply port 92B formed in the lower portion and the discharge port 93A formed in the upper portion in the vertical direction. Impurities and the like in the combustion exhaust gas removed by the filter are temporarily stored at the bottom in the dust collector 50 and then periodically discharged to the outside.
 (過給機)
 過給機60は、集塵機50の後段に設けられており、集塵機50から送出される燃焼排ガスによって回動されるタービン61と、タービン61の回動を伝達する軸63と、軸63によって回動を伝達されることによって圧縮空気を生成するコンプレッサー62とから構成されている。生成された圧縮空気は、燃焼空気として加圧流動炉20へ供給される。
 過給機60のタービン61側の側壁の下部(軸63と直交する部位)には、集塵機50によって不純物が除去された清浄な燃焼排ガスを機器内に供給する供給口93Bが形成され、タービン61側の側壁の下流側(軸63と平行する部位)には、燃焼排ガスを機器外に排出する排出口97Aが形成されている。また、清浄な燃焼排ガスの供給口93Bは、配管93を介して集塵機50の排出口93Aに接続されている。
(Supercharger)
The supercharger 60 is provided at the rear stage of the dust collector 50, and is rotated by the turbine 61 rotated by the combustion exhaust gas sent from the dust collector 50, the shaft 63 that transmits the rotation of the turbine 61, and the shaft 63. The compressor 62 generates compressed air by being transmitted. The generated compressed air is supplied to the pressurized fluidized furnace 20 as combustion air.
A supply port 93 </ b> B for supplying clean combustion exhaust gas from which impurities have been removed by the dust collector 50 into the apparatus is formed at a lower portion of the side wall of the turbocharger 60 on the turbine 61 side (a portion orthogonal to the shaft 63). On the downstream side of the side wall (portion parallel to the shaft 63), a discharge port 97A for discharging combustion exhaust gas to the outside of the device is formed. A clean combustion exhaust gas supply port 93 </ b> B is connected to a discharge port 93 </ b> A of the dust collector 50 through a pipe 93.
 過給機60のコンプレッサー62側の側壁の上流側(軸63と平行する部位)には、空気を機器内に吸気する供給口67Bが形成され、タービン61側の側壁の上側(軸63と直交する部位)には、吸気された空気を0.05~0.3MPaに昇圧した圧縮空気を機器外に排出する排出口94Aが形成されている。また、外気の供給口67Bは、配管16、67を介して、空気を吸気する。また、配管66,67を介して始動時に加圧流動炉20に燃焼空気を供給する起動用ブロワ65とも接続される。一方、圧縮空気の排出口94Aは、配管(流路)94、95を介して空気予熱器40の供給口95Bと、配管(流路)94、96を介して加圧流動炉20の始動用バーナ22の後部に接続されている。 On the upstream side of the side wall on the compressor 62 side of the supercharger 60 (part parallel to the shaft 63), a supply port 67B for sucking air into the equipment is formed, and above the side wall on the turbine 61 side (perpendicular to the shaft 63). A discharge port 94A for discharging compressed air obtained by increasing the pressure of the sucked air to 0.05 to 0.3 MPa is formed in the device. The outside air supply port 67 </ b> B sucks air through the pipes 16 and 67. Further, it is also connected to a starter blower 65 that supplies combustion air to the pressurized fluidized furnace 20 at the time of start-up via pipes 66 and 67. On the other hand, the compressed air discharge port 94 </ b> A is used for starting the pressurized flow furnace 20 via the supply ports 95 </ b> B of the air preheater 40 through the pipes (flow paths) 94, 95 and the pipes (flow paths) 94, 96. It is connected to the rear part of the burner 22.
 (起動用ブロワ)
 起動用ブロワ65は、加圧流動炉システム1の始動時に、加圧流動炉20の始動用バーナ22及び燃焼空気供給管24に燃焼空気を供給する機器である。また、起動用ブロワ65は、貯留装置10からの被処理物の供給の中断等によって、加圧流動炉20で発生する水蒸気が低減し、過給機60のタービン61の回転数が低回転になり、コンプレッサー62による外気の吸気が低減した場合に、強制的にコンプレッサー62に配管66,67を介して外気を供給する機能を併せ持っている。
 起動用ブロワ65は、配管66、68、96を介して加圧流動炉20に配置された始動用バーナ22の後部に接続され、配管66、68、95を介して空気予熱器40の燃焼空気の供給口95Bに接続され、配管66、67を介して過給機60のコンプレッサー62の供給口67Bに接続されている。
(Starting blower)
The starter blower 65 is a device that supplies combustion air to the starter burner 22 and the combustion air supply pipe 24 of the pressurized fluidized furnace 20 when the pressurized fluidized furnace system 1 is started. Further, the starter blower 65 reduces the water vapor generated in the pressurized fluidized furnace 20 due to the interruption of the supply of the object to be processed from the storage device 10, and the rotational speed of the turbine 61 of the supercharger 60 is reduced. Therefore, when the intake of the outside air by the compressor 62 is reduced, it has a function of forcibly supplying the outside air to the compressor 62 via the pipes 66 and 67.
The starter blower 65 is connected to the rear portion of the starter burner 22 disposed in the pressurized fluidized furnace 20 via pipes 66, 68, 96, and the combustion air of the air preheater 40 is connected via the pipes 66, 68, 95. Is connected to the supply port 67B of the compressor 62 of the supercharger 60 via pipes 66 and 67.
 配管68の中間部には、バイパス流路である配管68の、起動用送風機65から見て配管67との接続点から遠い部位の連通を行うダンパ68Cが配置されている。ダンパ68Cは、加圧流動炉20の始動時(始動用バーナ22の着火時)から加圧流動炉20の昇温が完了するまで配管68を連通し、加圧流動炉20の昇温完了後に、配管68を遮断する。すなわち、加圧流動炉20の始動時から焼却炉の昇温が完了するまでは、起動用ブロワ65から加圧流動炉20の始動用バーナ22、空気予熱器40を介して加圧流動炉20の燃焼空気供給管24に燃焼空気を供給し、且つ閉じられていない空気流路である配管67を介して過給機60のコンプレッサー62側にも燃焼空気を供給し、焼却炉の昇温完了後は、ダンパ68Cの閉鎖により、過給機60のコンプレッサー62から空気予熱器40を介して加圧流動炉20の燃焼空気供給管24に燃焼空気を供給する。 In the middle of the pipe 68, a damper 68C that communicates a part of the pipe 68 that is a bypass flow path far from the connection point with the pipe 67 when viewed from the starter fan 65 is disposed. The damper 68C communicates the pipe 68 from the time when the pressurized fluidized furnace 20 is started (when the starter burner 22 is ignited) until the temperature rise of the pressurized fluidized furnace 20 is completed. The pipe 68 is shut off. That is, from the start of the pressurized fluidized furnace 20 to the completion of the temperature rise of the incinerator, the pressurized fluidized furnace 20 from the starter blower 65 via the starter burner 22 and the air preheater 40 of the pressurized fluidized furnace 20. The combustion air is supplied to the combustion air supply pipe 24, and the combustion air is also supplied to the compressor 62 side of the supercharger 60 through the pipe 67 which is an unclosed air flow path. After that, by closing the damper 68C, the combustion air is supplied from the compressor 62 of the supercharger 60 to the combustion air supply pipe 24 of the pressurized fluidized furnace 20 via the air preheater 40.
 (白煙防止用予熱器)
 白煙防止用予熱器70は、煙突87から外部に排出される燃焼排ガスの白煙を防止するために、過給機60から排出された燃焼排ガスと白煙防止ファンから供給される白煙防止用空気とを間接的に熱交換する機器である。熱交換処理により、燃焼排ガスは冷却されるとともに白煙防止用空気は昇温される。白煙防止用予熱器70によって熱交換され冷却された燃焼排ガスは、後段の排煙処理塔80に送出される。白煙防止用予熱器70としてシェルアンドチューブ式熱交換器やプレート式熱交換器等を用いることができる。
(Preheater for white smoke prevention)
The white smoke prevention preheater 70 prevents the white smoke of the combustion exhaust gas discharged from the chimney 87 to the outside, and the white smoke prevention supplied from the combustion exhaust gas discharged from the supercharger 60 and the white smoke prevention fan. It is a device that indirectly exchanges heat with industrial air. By the heat exchange treatment, the combustion exhaust gas is cooled and the white smoke prevention air is heated. The flue gas that has been heat-exchanged and cooled by the white smoke prevention preheater 70 is sent to the subsequent flue gas treatment tower 80. A shell and tube heat exchanger, a plate heat exchanger, or the like can be used as the white smoke preventing preheater 70.
 (排煙処理塔)
 排煙処理塔80は、機器外に燃焼排ガスに含まれる不純物等の排出を防止する機器であり、排煙処理塔80の上部には煙突87が配置されている。
 排煙処理塔80は、図1、図4に示すように、一側の側壁の下部には、白煙防止用予熱器70から排出された燃焼排ガスを機器内に供給する供給口98Bが形成され、煙突87の一側の側壁の下部には、白煙防止用予熱器70から排ガスと熱交換され温まって排出された白煙防止用空気を煙突87内に供給する供給口99Bが形成されている。また、燃焼排ガスの供給口98Bは、配管98を介して白煙防止用予熱器70の下部に形成された燃焼排ガスの排出口98Aに接続され、白煙防止用空気の供給口99Bは、配管99を介して白煙防止用予熱器70の上部に形成された白煙防止用空気の排出99Aに接続されている。
 白煙防止用予熱器70の白煙防止用空気は、白煙防止用空気送風機101により配管103を介して白煙防止用予熱器70に供給され、間接的に燃焼排ガスと熱交換されて、排出口99Aから暖められて排出される。煙突87では、湿潤で空気中凝結して霧状になりがちな出口の燃焼排ガスに、暖められて乾いた白煙防止用空気を供給口99Bで混合して、燃焼排ガスの相対湿度を低下させることで白煙防止を図る。
(Smoke exhaust treatment tower)
The flue gas treatment tower 80 is a device that prevents discharge of impurities and the like contained in the combustion exhaust gas outside the equipment, and a chimney 87 is disposed on the upper part of the flue gas treatment tower 80.
As shown in FIGS. 1 and 4, the flue gas treatment tower 80 has a supply port 98 </ b> B for supplying the combustion exhaust gas discharged from the white smoke prevention preheater 70 into the apparatus at the lower part of the side wall on one side. In addition, a supply port 99B is formed in the lower portion of the side wall on one side of the chimney 87 to supply the white smoke prevention air, which is heated and discharged from the white smoke prevention preheater 70 and exchanged with the exhaust gas, into the chimney 87. ing. The combustion exhaust gas supply port 98B is connected to a combustion exhaust gas discharge port 98A formed in the lower portion of the white smoke prevention preheater 70 via a pipe 98, and the white smoke prevention air supply port 99B is connected to the pipe. 99 is connected to a white smoke prevention air discharge 99 </ b> A formed in the upper part of the white smoke prevention preheater 70.
The white smoke prevention air of the white smoke prevention preheater 70 is supplied to the white smoke prevention preheater 70 via the pipe 103 by the white smoke prevention air blower 101 and indirectly exchanged with the combustion exhaust gas. It is heated and discharged from the discharge port 99A. In the chimney 87, the combustion exhaust gas at the outlet, which tends to be wet and condensed in the air, is mixed with warm and dry white smoke prevention air at the supply port 99B to reduce the relative humidity of the combustion exhaust gas. To prevent white smoke.
 排煙処理塔80の他側の側壁の上部には、外部から供給される水を機器内に噴霧する噴霧管84が配置され、中間部と、下部には、それぞれ、循環ポンプ83を介して排煙処理塔80の底部に貯留された苛性ソーダが含有された苛性ソーダ水を機器内に噴霧する噴霧管85が配置されている。また、排煙処理塔80に貯留された苛性ソーダ水は、図示しない苛性ソーダポンプ88を介して図示しない苛性ソーダタンクから供給され、常時適正量に維持されている。 A spray pipe 84 for spraying water supplied from the outside into the apparatus is arranged on the upper side wall on the other side of the flue gas treatment tower 80, and the intermediate part and the lower part are respectively connected via a circulation pump 83. A spray pipe 85 for spraying caustic soda water containing caustic soda stored at the bottom of the flue gas treatment tower 80 into the apparatus is disposed. Further, the caustic soda water stored in the flue gas processing tower 80 is supplied from a caustic soda tank (not shown) via a caustic soda pump 88 (not shown), and is always maintained at an appropriate amount.
 排煙処理塔80に供給された燃焼排ガスは、不純物等を除去されたのち白煙防止用空気と混合され、煙突87から外部に排出される。 The combustion exhaust gas supplied to the flue gas treatment tower 80 is mixed with white smoke prevention air after removing impurities and the like, and is discharged from the chimney 87 to the outside.
 (非常停止装置)
 非常停止装置は、圧力センサ110に実装された警告スイッチ110Cと、配管95の連通を制御する仕切弁95Cと、配管96の連通を制御する仕切弁96Cと、入力状態に対応して出力状態を制御する制御装置100により構成される。なお、圧力センサ110は、警告スイッチ110Cを実装されるものに限定されず、制御装置100に測定値を出力できれば良い。
(Emergency stop device)
The emergency stop device includes a warning switch 110C mounted on the pressure sensor 110, a gate valve 95C that controls communication of the pipe 95, a gate valve 96C that controls communication of the pipe 96, and an output state corresponding to the input state. It is comprised by the control apparatus 100 which controls. Note that the pressure sensor 110 is not limited to the one on which the warning switch 110 </ b> C is mounted, and only needs to output a measurement value to the control device 100.
 過給機60のコンプレッサー62と燃焼空気供給管24は、空気予熱器40を介し、配管91、94、96、95によって接続される。また、過給機60のコンプレッサー62と加圧流動炉20の始動用バーナ22は、配管94、96で接続されている。 The compressor 62 of the supercharger 60 and the combustion air supply pipe 24 are connected by pipes 91, 94, 96, and 95 through the air preheater 40. Further, the compressor 62 of the supercharger 60 and the starting burner 22 of the pressurized fluidized furnace 20 are connected by pipes 94 and 96.
 配管95の中間部には、配管95の連通を行う仕切弁95Cが配置され、配管96の中間部(配管95と配管96の分岐部位の下流側)には、配管96の連通を行う仕切弁96Cが配置されている。 A gate valve 95 </ b> C that communicates the pipe 95 is arranged in the middle of the pipe 95, and a gate valve that communicates the pipe 96 is arranged in the middle of the pipe 96 (downstream of the branch portion between the pipe 95 and the pipe 96). 96C is arranged.
 警告スイッチ110Cは、図5に示すように、制御装置100の入力側に接続され、制御装置100の出力側には、仕切弁95C、96Cが接続されている。なお、圧力センサ110の設置は、配管90に制限されることはなく、下流側機器の圧力損失の補正演算回路を制御装置100内に追加することで、配管92、配管93、配管97、配管98に配置することもできる。また、仕切弁95Cの設置は、配管95に制限されることはなく、仕切弁95Cが高温に耐えられれば、配管91に配置することもできる。また、制御装置100の入力側には、排気ガスに含まれる一酸化炭素、酸素の容量を測定する一酸化炭素濃度計98C、酸素濃度計98Dを接続することもできる。 As shown in FIG. 5, the warning switch 110 </ b> C is connected to the input side of the control device 100, and gate valves 95 </ b> C and 96 </ b> C are connected to the output side of the control device 100. The installation of the pressure sensor 110 is not limited to the pipe 90, and a pipe 92, a pipe 93, a pipe 97, a pipe is added by adding a correction circuit for correcting the pressure loss of the downstream equipment in the control device 100. 98 can also be arranged. The installation of the gate valve 95C is not limited to the pipe 95, and the gate valve 95C can be disposed in the pipe 91 as long as the gate valve 95C can withstand high temperatures. Further, a carbon monoxide concentration meter 98C and an oxygen concentration meter 98D for measuring the capacities of carbon monoxide and oxygen contained in the exhaust gas can be connected to the input side of the control device 100.
 (加圧流動炉システムの非常停止方法)
 次に、加圧流動炉システム1の非常停止方法について説明する。非常停止方法は、図7に示すように、加圧流動炉20内の圧力が燃焼空気供給管24内の圧力よりも高くなることによって燃焼空気供給管24の先部に形成された孔が流動砂により閉塞することを防止する非常停止方法である。
(Emergency stop method for pressurized fluidized furnace system)
Next, an emergency stop method for the pressurized fluidized furnace system 1 will be described. In the emergency stop method, as shown in FIG. 7, the hole formed in the tip of the combustion air supply pipe 24 flows when the pressure in the pressurized fluidized furnace 20 becomes higher than the pressure in the combustion air supply pipe 24. This is an emergency stop method to prevent clogging with sand.
 加圧流動炉20内の圧力が設定値(運転可能最大値)以上に上昇した場合、加圧流動炉20の下流側に接続された燃焼排ガスが流れる配管内の圧力を維持する。加圧流動炉20内の圧力は、配管90に配置された圧力センサ110により検出され、圧力センサ(圧力測定装置)110に実装された警告スイッチ110Cによって制御装置100に入力される。警告スイッチ20Cと制御装置100が非接続(加圧流動炉20内の圧力が設定値より高い)とされた場合、図6に示すように、加圧流動炉20内に充填した小粒化した流動砂が、燃焼空気供給管24の先部に形成された開孔から配管へ逆流することを防止するために、先ず、制御装置100からの信号により、仕切弁95Cを閉とすることで、燃焼空気供給管24とコンプレッサー96とを遮断する(圧縮空気供給停止工程)。また、圧縮空気供給停止工程と同時に、補助燃料燃焼装置の燃焼空気用開口にも流動砂が侵入することを防止するため、噴霧空気が空気供給手段120から供給されている場合は、補助空気の供給源である空気圧縮機、または過給機60と、補助燃料燃焼装置21とを連通する補助空気供給流路121を遮断する。 When the pressure in the pressurized fluidized furnace 20 rises to a set value (maximum operable value) or more, the pressure in the piping through which the combustion exhaust gas connected to the downstream side of the pressurized fluidized furnace 20 flows is maintained. The pressure in the pressurized flow furnace 20 is detected by a pressure sensor 110 disposed in the pipe 90 and input to the control device 100 by a warning switch 110C mounted on the pressure sensor (pressure measurement device) 110. When the warning switch 20C and the control device 100 are not connected (the pressure in the pressurized flow furnace 20 is higher than the set value), as shown in FIG. In order to prevent sand from flowing backward from the opening formed in the front portion of the combustion air supply pipe 24 to the pipe, first, the gate valve 95C is closed by a signal from the control device 100, so that the combustion is performed. The air supply pipe 24 and the compressor 96 are shut off (compressed air supply stop process). In addition, in order to prevent fluid sand from entering the combustion air opening of the auxiliary fuel combustion device at the same time as the compressed air supply stop step, when the spray air is supplied from the air supply means 120, the auxiliary air The auxiliary air supply passage 121 that communicates the air compressor or supercharger 60 that is a supply source and the auxiliary fuel combustion device 21 is shut off.
 次に、過給機60のサージを防止し、加圧流動炉20内に残留した被処理物を燃焼させるために、過給機60のコンプレッサー62と加圧流動炉20とを接続する燃焼空気が流れる配管を連通する。具体的には、コンプレッサー62と始動用バーナを連通する配管96に配置されている仕切弁96Cを、制御装置100により開とし、始動用バーナを介して加圧流動炉20内に燃焼空気を供給する(圧縮空気供給開始工程)。コンプレッサー62から加圧流動炉20に供給された燃焼空気は、配管94、96、始動用バーナ22から加圧流動炉20に供給され、加圧流動炉20内で燃焼され燃焼排ガスとなり、配管90、空気予熱器40、配管92、集塵機50、配管93、過給機60、配管97、白煙防止用予熱器70、配管98、排煙処理塔80、煙突87を流れた後に大気中に放出される。 Next, combustion air that connects the compressor 62 of the supercharger 60 and the pressurized fluidized furnace 20 in order to prevent the surge in the supercharger 60 and to burn the workpiece remaining in the pressurized fluidized furnace 20. Communicate the piping through which flows. Specifically, the gate valve 96C arranged in the pipe 96 communicating with the compressor 62 and the starting burner is opened by the control device 100, and the combustion air is supplied into the pressurized fluidized furnace 20 through the starting burner. (Compressed air supply start step). The combustion air supplied from the compressor 62 to the pressurized fluidized furnace 20 is supplied to the pressurized fluidized furnace 20 from the pipes 94 and 96 and the starting burner 22 and is combusted in the pressurized fluidized furnace 20 to become combustion exhaust gas. , Air preheater 40, pipe 92, dust collector 50, pipe 93, supercharger 60, pipe 97, white smoke prevention preheater 70, pipe 98, flue gas treatment tower 80, and chimney 87 are discharged into the atmosphere. Is done.
 コンプレッサー62から供給される燃焼空気は、配管94から分岐し、煙突87などと連通する大気開放流路(図示省略)によって大気へ開放することも可能である(大気開放工程)。圧力センサ110によって測定された圧力が設定値を越えた場合に、流路に設けられた通常時は閉まっているダンパが開となる。これにより流路は煙突87と連通するため、コンプレッサー62から供給された燃焼空気を大気に開放することができるため、圧縮空気供給工程が稼働しなかった場合でもコンプレッサー62のサージを防止することができる。燃焼空気を大気開放した場合、加圧流動炉20に燃焼空気を供給する燃焼空気供給管24内の圧力が低下し、加圧流動炉20の流動砂が燃焼空気供給管24内に逆流する恐れがあるため、燃焼空気を大気に開放するタイミングは、圧縮空気供給停止工程完了後に行うのが好適である。 The combustion air supplied from the compressor 62 can also be released to the atmosphere by an atmosphere opening channel (not shown) that branches from the pipe 94 and communicates with the chimney 87 and the like (not shown). When the pressure measured by the pressure sensor 110 exceeds the set value, the damper that is normally closed in the flow path is opened. As a result, since the flow path communicates with the chimney 87, the combustion air supplied from the compressor 62 can be released to the atmosphere, so that even if the compressed air supply process does not operate, surge of the compressor 62 can be prevented. it can. When the combustion air is opened to the atmosphere, the pressure in the combustion air supply pipe 24 that supplies the combustion air to the pressurized fluidized furnace 20 decreases, and the fluidized sand in the pressurized fluidized furnace 20 may flow back into the combustion air supply pipe 24. Therefore, it is preferable that the timing of releasing the combustion air to the atmosphere is performed after the compressed air supply stop process is completed.
 貯留装置10の定量フィーダ11と投入ポンプ12については、圧縮空気供給工程を行う前に圧力センサ110によって測定された数値が設定値を超えた時点で駆動を停止し、投入ポンプ12から加圧流動炉20内への被処理物の供給を停止する。被処理物の供給が停止されることによって、加圧流動炉20内から排出される燃焼排ガスは低減し、過給機60のタービン61の回動が徐々に低速となり、コンプレッサー62から排出される燃焼空気が徐々に低減し、過給機60の駆動が停止する。 About the fixed_quantity | feed_rate feeder 11 and the input pump 12 of the storage apparatus 10, a drive is stopped when the numerical value measured by the pressure sensor 110 exceeds a preset value before performing a compressed air supply process, and pressurization flow is carried out from the input pump 12. The supply of the object to be processed into the furnace 20 is stopped. By stopping the supply of the object to be processed, the combustion exhaust gas discharged from the pressurized fluidized furnace 20 is reduced, and the rotation of the turbine 61 of the supercharger 60 is gradually reduced and discharged from the compressor 62. The combustion air is gradually reduced, and the driving of the supercharger 60 is stopped.
1    加圧流動炉システム
20   加圧流動炉
21   補助燃料燃焼装置
22   始動用バーナ
24   燃焼空気供給管
40   空気予熱器  
50   集塵機
60   過給機
61   タービン
62   コンプレッサー
65   起動用ブロワ
70   白煙防止用予熱器
80   排煙処理塔
87   煙突
90   配管(流路)
91   配管(流路)
94   配管(流路)
95   配管(流路)
96   配管(流路)
100  制御装置
110  圧力センサ(圧力測定装置)
121  配管(補助空気供給流路)
DESCRIPTION OF SYMBOLS 1 Pressurized flow furnace system 20 Pressurized flow furnace 21 Auxiliary fuel combustion apparatus 22 Start burner 24 Combustion air supply pipe 40 Air preheater
50 Dust collector 60 Supercharger 61 Turbine 62 Compressor 65 Start blower 70 White smoke prevention preheater 80 Smoke treatment tower 87 Chimney 90 Piping (flow path)
91 Piping (flow path)
94 Piping (flow path)
95 Piping (flow path)
96 Piping (flow path)
100 control device 110 pressure sensor (pressure measuring device)
121 Piping (auxiliary air supply flow path)

Claims (7)

  1.  底部に充填した流動砂を加熱する始動用バーナと補助空気供給流路を介して補助空気が供給される補助燃料燃焼装置と燃焼空気供給管とを備えた被処理物を燃焼させる加圧流動炉と、該加圧流動炉の圧力を測定する圧力測定装置と、前記加圧流動炉から排出される燃焼排ガスによって回動されるタービンとタービンの回動に伴って回動され前記加圧流動炉の前記始動用バーナ及び前記燃焼空気供給管それぞれに流路を介して燃焼空気を供給するコンプレッサーを備える過給機と、前記加圧流動炉から排出される燃焼排ガスによって前記過給機から供給される燃焼空気を加熱する空気予熱器を備えた加圧流動炉システムの非常停止方法であって、
     前記圧力測定装置による圧力測定値が設定値を越えた場合に、前記補助燃料燃焼装置に接続された補助空気供給流路、又は、前記燃焼空気供給管と前記コンプレッサーを接続する流路の少なくとも一つを閉じる圧縮空気供給停止工程と、
     前記加圧流動炉の始動用バーナと前記コンプレッサーを接続する少なくとも一つの流路を連通させる圧縮空気供給開始工程とを含む
     ことを特徴とする加圧流動炉システムの非常停止方法。
    Pressurized fluidized furnace for burning an object to be treated comprising a starting burner for heating fluidized sand filled in the bottom, an auxiliary fuel combustion device supplied with auxiliary air via an auxiliary air supply channel, and a combustion air supply pipe A pressure measuring device that measures the pressure of the pressurized fluidized furnace, a turbine that is rotated by the combustion exhaust gas discharged from the pressurized fluidized furnace, and the pressurized fluidized furnace that is rotated as the turbine rotates And a supercharger having a compressor for supplying combustion air to each of the start burner and the combustion air supply pipe via a flow path, and a combustion exhaust gas discharged from the pressurized fluidized furnace to be supplied from the supercharger. An emergency stop method for a pressurized flow furnace system equipped with an air preheater for heating combustion air comprising:
    When a pressure measurement value by the pressure measurement device exceeds a set value, at least one of an auxiliary air supply flow path connected to the auxiliary fuel combustion apparatus or a flow path connecting the combustion air supply pipe and the compressor. Compressed air supply stop process to close one,
    An emergency stop method for a pressurized fluidized furnace system, comprising: a compressed air supply starting step for communicating at least one flow path connecting the compressor and the starting burner of the pressurized fluidized furnace.
  2.  前記圧力測定値が設定値を越えた場合に、前記コンプレッサーから供給される圧縮空気を外部に排出する大気開放流路を連通する大気開放工程を含む請求項1記載の加圧流動炉システムの非常停止方法。 2. An emergency of the pressurized fluidized furnace system according to claim 1, further comprising an atmosphere opening step of communicating with an atmosphere opening channel for discharging compressed air supplied from the compressor to the outside when the pressure measurement value exceeds a set value. How to stop.
  3.  前記圧縮空気供給停止工程よりも前に前記大気開放工程を行う請求項2記載の加圧流動炉システムの非常停止方法。 The method for emergency stop of a pressurized fluidized furnace system according to claim 2, wherein the air release step is performed before the compressed air supply stop step.
  4.  前記圧縮空気供給停止工程において、前記燃焼空気供給管と前記コンプレッサーを接続する流路の閉塞は、前記空気予熱器の燃焼空気の供給口に一端を接続し前記コンプレッサーへ延伸する流路を閉塞する請求項1記載の加圧流動炉システムの非常停止方法。 In the compressed air supply stop process, the blockage of the flow path connecting the combustion air supply pipe and the compressor closes the flow path extending to the compressor by connecting one end to the combustion air supply port of the air preheater. The emergency stop method for a pressurized fluidized furnace system according to claim 1.
  5.  前記圧縮空気供給開始工程において、前記始動用バーナの燃焼空気の供給口に一端を接続し延伸する流路を連通する請求項1記載の加圧流動炉システムの非常停止方法。 The method of emergency stop of a pressurized fluidized furnace system according to claim 1, wherein, in the compressed air supply start step, one end is connected to a combustion air supply port of the start burner and a flow path extending therethrough is communicated.
  6.  前記圧力測定装置を前記加圧流動炉の燃焼排ガスの排出口と前記空気予熱器の燃焼排ガスの供給口を接続する流路に設けた請求項1~3のいずれか1項に記載の加圧流動炉システムの非常停止方法。 The pressurization according to any one of claims 1 to 3, wherein the pressure measuring device is provided in a flow path connecting a combustion exhaust gas discharge port of the pressurized flow furnace and a combustion exhaust gas supply port of the air preheater. Emergency stop method for fluidized furnace system.
  7.  前記圧力測定装置を前記空気予熱器の燃焼排ガスの排出口の下流側に接続された流路に設けた請求項1~3のいずれか1項に記載の加圧流動炉システムの非常停止方法。 The emergency stop method for a pressurized flow furnace system according to any one of claims 1 to 3, wherein the pressure measuring device is provided in a flow path connected to a downstream side of a combustion exhaust gas discharge port of the air preheater.
PCT/JP2013/058330 2012-03-26 2013-03-22 Emergency stopping method for pressurized fluidized furnace system WO2013146599A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147027672A KR102067303B1 (en) 2012-03-26 2013-03-22 Emergency stopping method for pressurized fluidized furnace system
CN201380013626.XA CN104220810B (en) 2012-03-26 2013-03-22 The emergency stop method of pressurized stream gasification furnace system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012069489A JP5832944B2 (en) 2012-03-26 2012-03-26 Emergency stop method for pressurized flow furnace system
JP2012-069489 2012-03-26

Publications (1)

Publication Number Publication Date
WO2013146599A1 true WO2013146599A1 (en) 2013-10-03

Family

ID=49259852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/058330 WO2013146599A1 (en) 2012-03-26 2013-03-22 Emergency stopping method for pressurized fluidized furnace system

Country Status (4)

Country Link
JP (1) JP5832944B2 (en)
KR (1) KR102067303B1 (en)
CN (1) CN104220810B (en)
WO (1) WO2013146599A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213306A (en) * 1999-01-21 2000-08-02 Hitachi Ltd Pressure fluidized bed compound power plant

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064172Y2 (en) * 1987-04-24 1994-02-02 バブコツク日立株式会社 Reactor pressure control device for fluidized bed combustor
SE458955B (en) * 1987-10-20 1989-05-22 Abb Stal Ab PFBC KRAFTANLAEGGNING
SE464715B (en) * 1987-12-02 1991-06-03 Asea Stal Ab PROVIDED TO REGULATE A PFBC PLANT FOR OPERATING DAMAGE IN A GAS TURBIN FITTING AND A PFBC PLANT WITH EQUIPMENT BEFORE SUCH REGULATION
JP3006625B2 (en) * 1990-10-03 2000-02-07 バブコツク日立株式会社 Pressurized fluidized bed boiler
JP2624891B2 (en) * 1990-11-30 1997-06-25 株式会社日立製作所 Pressurized fluidized bed boiler power plant
JPH0650509A (en) * 1992-07-31 1994-02-22 Ishikawajima Harima Heavy Ind Co Ltd Emergency operating method of pressurized fluidized bed boiler
US5526582A (en) * 1994-03-31 1996-06-18 A. Ahlstrom Corporation Pressurized reactor system and a method of operating the same
JP3621809B2 (en) * 1997-06-27 2005-02-16 三菱重工業株式会社 Gas turbine output increasing method in combined power generation system
JP2003114004A (en) * 2001-10-04 2003-04-18 Babcock Hitachi Kk Emergency pressure reducing system for pressurization fluidized bed boiler

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000213306A (en) * 1999-01-21 2000-08-02 Hitachi Ltd Pressure fluidized bed compound power plant

Also Published As

Publication number Publication date
KR20140148406A (en) 2014-12-31
JP2013200088A (en) 2013-10-03
CN104220810B (en) 2016-09-21
CN104220810A (en) 2014-12-17
JP5832944B2 (en) 2015-12-16
KR102067303B1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP5482792B2 (en) Organic waste treatment system and method
KR20120096459A (en) Method and device for keeping coke furnace chambers hot when a waste heat boiler is stopped
CN102782409A (en) Exhaust gas purification device and temperature control method therefor
JP2006275502A (en) Stoker type incinerator and its operation method
JP5358234B2 (en) Stoker-type incinerator and operation method thereof
JP5956211B2 (en) Operating method of pressurized fluidized furnace system
WO2014156356A1 (en) Pressurized fluidized furnace equipment
JP5832944B2 (en) Emergency stop method for pressurized flow furnace system
JP5956210B2 (en) Start-up method of pressurized flow furnace system
JP5907621B2 (en) Impurity transfer method for pressurized fluidized furnace system
JP2013200087A5 (en)
JP2013200088A5 (en)
JP2013200086A5 (en)
JP7156922B2 (en) Waste treatment equipment and operation method of waste treatment equipment
CN111609415A (en) Self-cleaning heat accumulating type thermal incineration device
JP5491550B2 (en) Pressurized flow furnace system and control method thereof
JP5393068B2 (en) Method and apparatus for combustion treatment of volatile organic compounds
CN212430893U (en) Heat accumulating type heating power incineration device not prone to blockage
JP2023151255A (en) Method of reducing emission of n2o in exhaust gas, and control device
JP5392739B2 (en) Pressurized fluidized incineration equipment and startup operation method of pressurized fluidized incineration equipment
JP2022108479A (en) Sludge incinerator equipment and sludge incineration method
JP2013204898A (en) Pressurizing fluidized furnace system and method of treating odor of the pressurizing fluidized furnace system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147027672

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767344

Country of ref document: EP

Kind code of ref document: A1