JP2009174745A - Draft system in steam power generation facility - Google Patents

Draft system in steam power generation facility Download PDF

Info

Publication number
JP2009174745A
JP2009174745A JP2008012076A JP2008012076A JP2009174745A JP 2009174745 A JP2009174745 A JP 2009174745A JP 2008012076 A JP2008012076 A JP 2008012076A JP 2008012076 A JP2008012076 A JP 2008012076A JP 2009174745 A JP2009174745 A JP 2009174745A
Authority
JP
Japan
Prior art keywords
air
exhaust gas
furnace
heat
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008012076A
Other languages
Japanese (ja)
Other versions
JP5137598B2 (en
Inventor
Michihiro Matsui
倫広 松井
Takaaki Sato
孝明 佐藤
Yasuyuki Sugino
泰之 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugoku Electric Power Co Inc
Original Assignee
Chugoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugoku Electric Power Co Inc filed Critical Chugoku Electric Power Co Inc
Priority to JP2008012076A priority Critical patent/JP5137598B2/en
Publication of JP2009174745A publication Critical patent/JP2009174745A/en
Application granted granted Critical
Publication of JP5137598B2 publication Critical patent/JP5137598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

<P>PROBLEM TO BE SOLVED: To improve heat efficiency in draft by changing a facility location in a draft system, and to improve efficiency in removing a sulfur oxide, a nitrogen oxide (SOx, NOx), ash particles and the like in an exhaust gas. <P>SOLUTION: This ventilation system composed of an air system A and an exhaust gas system E comprises a forced draft fan 3 taking outside air (a) and forcibly feeding it to a furnace 1 as combustion air, an air preheater 5 exchanging heat with the residual heat of the exhaust gas system E from the furnace 1 to heat air (a) taken by the forced draft fan 3 up to a temperature of about 200°C, and an electric dust collector 8 collecting the ash particles in the exhaust gas (e) exchanging heat by the air preheater 5 before being distributed to a chimney 2. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、汽力発電設備に係り、特に火炉内の燃焼に必要な空気を、その火炉の燃焼によって生じた排ガスによって加温、加熱してから供給する汽力発電設備における通風系統に関する。   The present invention relates to a steam power generation facility, and more particularly to a ventilation system in a steam power generation facility that supplies air necessary for combustion in a furnace after heating and heating with air generated by combustion in the furnace.

汽力発電設備は、ボイラで重油又は石炭等の燃料を燃焼し、その熱で高圧高温の蒸気を発生し、蒸気タービン、発電機を回転させて電力を発生させる設備である。汽力発電設備は、ボイラ、タービン、発電機などの主要機器の他に、種々の付属設備から構成される。これらの設備を機能別に分類すると、燃料受入・貯蔵設備、ボイラ設備、蒸気タービン設備、復水・給水系統設備、発電機および電気設備、及び計測制御装置及び諸設備から成る。ここで、燃料受入・貯蔵設備は、取引用計量装置、重原油、LNG、LPG等の燃料タンク、燃料油ポンプ、LNGポンプ、気化器などである。ボイラ設備はボイラ本体、重原油ポンプ、バーナ、通風機、空気予熱器、集じん器、灰処理装置、煙突などである。蒸気タービン設備はタービン本体、潤滑油装置、調速装置などである。復水・給水系統設備は復水器、循環水ポンプ、復水ポンプ、給水加熱器、
1201046705703_0.html
、給水処理装置などである。発電機および電気設備は発電機、励磁機、変圧器、開閉装置、ケーブルなどである。計測制御装置は各種計測装置、監視装置、プラント総括制御装置、自動バーナ装置、計算機制御装置などである。諸設備には所内冷却水設備、所内空気設備、排水処理設備、保安防災設備などがある。
Steam power generation equipment is equipment that burns fuel such as heavy oil or coal in a boiler, generates high-pressure and high-temperature steam with its heat, and rotates a steam turbine and a generator to generate electric power. Steam power generation equipment is composed of various auxiliary equipment in addition to main equipment such as boilers, turbines, and generators. When these facilities are classified by function, they are composed of fuel receiving / storage facilities, boiler facilities, steam turbine facilities, condensate / water supply system facilities, generators and electrical facilities, and measurement control devices and facilities. Here, the fuel receiving / storage facility is a trading metering device, a fuel tank such as heavy crude oil, LNG, or LPG, a fuel oil pump, an LNG pump, a vaporizer, or the like. The boiler equipment includes a boiler body, heavy crude oil pump, burner, ventilator, air preheater, dust collector, ash treatment device, and chimney. The steam turbine equipment includes a turbine body, a lubricating oil device, a speed governor, and the like. Condensate and water supply system facilities include condensers, circulating water pumps, condensate pumps, feed water heaters,
1201046705703_0.html
, Water supply processing equipment. Generators and electrical equipment are generators, exciters, transformers, switchgears, cables and the like. The measurement control device includes various measurement devices, a monitoring device, a plant general control device, an automatic burner device, and a computer control device. The facilities include on-site cooling water equipment, on-site air equipment, wastewater treatment equipment, and safety and disaster prevention equipment.

この重油又は石炭等の燃料を火炉内に送って燃焼させるために、燃焼用空気を供給している。この火炉の燃焼によってボイラで発生した高圧・高温の過熱蒸気をタービンに送り、このタービンで蒸気の熱エネルギーを機械エネルギーに変換し、タービンに直結した発電機を運転して電気エネルギーに変換する。ボイラを出た排ガスは、硫黄・窒素酸化物(SOx、NOx等)、灰粒子等を除去してから、煙突へ送り、大気に放出するようになっている。   Combustion air is supplied in order to send fuel such as heavy oil or coal into the furnace for combustion. The high-pressure and high-temperature superheated steam generated in the boiler by the combustion of this furnace is sent to the turbine, and the heat energy of the steam is converted into mechanical energy by this turbine, and the generator directly connected to the turbine is operated and converted into electric energy. The exhaust gas exiting the boiler removes sulfur / nitrogen oxides (SOx, NOx, etc.), ash particles, etc., and then sends it to the chimney for release to the atmosphere.

そこで、NOxの低減、再熱蒸気温度制御性向上、炉壁の腐食低減、並びにクリンカ付着低減を図ることができるボイラ設備が提案されている。例えば、特許文献1の特開公報「ボイラ設備の排ガス再循環装置」に示すように、ボイラ本体の炉底部に、該ボイラ本体から排出される排ガスの一部を再循環させる再循環ガス系統と、燃焼用空気の一部を供給する空気系統とを、切換可能となるよう接続した装置が提案されている。
特開2002−181307公報
In view of this, there has been proposed a boiler facility capable of reducing NOx, improving reheat steam temperature controllability, reducing furnace wall corrosion, and reducing clinker adhesion. For example, as shown in Japanese Patent Application Laid-Open Publication No. 2003-151780, "Exhaust gas recirculation device for boiler equipment", a recirculation gas system that recirculates a part of the exhaust gas discharged from the boiler body to the furnace bottom of the boiler body; An apparatus has been proposed in which an air system that supplies a part of combustion air is connected so as to be switchable.
JP 2002-181307 A

しかし、特許文献1の「ボイラ設備の排ガス再循環装置」は、炭種に応じて最適な燃焼調整を行うことができ、NOx低減、再熱蒸気温度制御性向上、炉壁の腐食低減、並びにクリンカ付着低減を図るだけのものであり、通風系統全体を安全かつ正確に運転制御し、更に熱効率の向上を図るものではなかった。   However, the “exhaust gas recirculation device for boiler equipment” of Patent Document 1 can perform optimal combustion adjustment according to the coal type, reduce NOx, improve reheat steam temperature controllability, reduce furnace wall corrosion, and It was intended only to reduce clinker adhesion, and did not attempt to control the entire ventilation system safely and accurately, and to further improve thermal efficiency.

本発明は、かかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、通風系統における設備配置を変えることで、通風の熱効率の向上を図ると共に、排ガス中の硫黄・窒素酸化物(SOx、NOx)、灰粒子等の除去効率を高めることができる汽力発電設備における通風系統を提供することにある。   The present invention has been developed to solve such problems. That is, the object of the present invention is to improve the thermal efficiency of ventilation by changing the equipment layout in the ventilation system, and to improve the removal efficiency of sulfur / nitrogen oxides (SOx, NOx), ash particles, etc. in the exhaust gas. It is to provide a ventilation system in a steam power generation facility capable of generating electricity.

本発明の通風系統によれば、火炉(1)内の燃焼に必要な空気(a)を、排ガス(e)によって加温、加熱してから供給するために、空気系統(A)と排ガス系統(E)とから成る汽力発電設備における通風系統であって、外気の空気(a)を取り入れ、前記火炉(1)に燃焼用空気として押し込むための押込通風機(3)と、前記押込通風機(3)で取り入れた空気(a)を、200℃程度に加熱するために、前記火炉(1)からの排ガス系統(E)の余熱で熱交換する空気予熱器(5)と、前記空気予熱器(5)で熱交換した排ガス(e)中の灰粒子を煙突(2)へ送風する前に捕集する電気集塵機(8)と、を備えた、ことを特徴とする汽力発電設備における通風系統が提供される。   According to the ventilation system of the present invention, in order to supply air (a) necessary for combustion in the furnace (1) after heating and heating with the exhaust gas (e), the air system (A) and the exhaust system (E) A ventilating system in a steam power generation facility comprising an outside air (a) and a forced air blower (3) for pushing into the furnace (1) as combustion air, and the forced air ventilator In order to heat the air (a) taken in (3) to about 200 ° C., an air preheater (5) for exchanging heat with the residual heat of the exhaust gas system (E) from the furnace (1), and the air preheating Ventilation in a steam power generation facility comprising: an electric dust collector (8) that collects ash particles in the exhaust gas (e) heat-exchanged in the vessel (5) before blowing to the chimney (2) A system is provided.

前記火炉(1)の排ガス系統(E)下流と、前記空気予熱器(5)と該火炉(1)の空気系統(A)との間に、ガス再循環量を調整すると共に、該火炉(1)の熱吸収割合を可変させるガス再循環通風機(6)を配置することが好ましい。
前記ガス再循環通風機(6)の下流と、前記空気予熱器(5)と該火炉(1)の空気系統(A)との間に、排ガス(e)中の窒素酸化物(NOx)を減少させると共に、前記空気予熱器(5)からの空気(a)を加熱するガス再循環ブースターファン(7)を配置することが好ましい。
While adjusting the amount of gas recirculation between the downstream of the exhaust gas system (E) of the furnace (1) and between the air preheater (5) and the air system (A) of the furnace (1), the furnace ( It is preferable to arrange a gas recirculation ventilator (6) that varies the heat absorption rate of 1).
Nitrogen oxide (NOx) in the exhaust gas (e) is downstream between the gas recirculation ventilator (6) and between the air preheater (5) and the air system (A) of the furnace (1). It is preferable to arrange a gas recirculation booster fan (7) that reduces and heats the air (a) from the air preheater (5).

前記押込通風機(3)と前記空気予熱器(5)の空気系統(A)との間に、該押込通風機(3)から取り入れた空気(a)を、ボイラの補助蒸気又はタ−ビンからの蒸気の熱交換で常温から100℃程度に加温する水蒸気式空気加熱器(4)を配置することが好ましい。
前記火炉(1)と前記空気予熱器(5)の排ガス系統(E)との間に、排ガス(e)中の窒素酸化物(NOx)を除去する脱硝反応器(10)を配置することが好ましい。
前記空気予熱器(5)の排ガス系統(E)の下流に脱硝通風機(DNF)(11)を配置することが好ましい。
Air (a) taken from the forced air blower (3) is supplied between the forced air blower (3) and the air system (A) of the air preheater (5) as auxiliary steam or turbine of the boiler. It is preferable to arrange a steam type air heater (4) that heats from room temperature to about 100 ° C. by heat exchange of steam from.
A denitration reactor (10) for removing nitrogen oxides (NOx) in the exhaust gas (e) may be disposed between the furnace (1) and the exhaust gas system (E) of the air preheater (5). preferable.
It is preferable to arrange a denitration ventilator (DNF) (11) downstream of the exhaust gas system (E) of the air preheater (5).

上記構成の発明では、火炉(1)における燃焼に必要な空気(a)を、重油等の燃料に供給して完全燃焼を図り、燃焼生成ガス(排ガス(e))を火炉(1)の伝熱面に接触させながら流通させ、その余熱を有効利用して煙突(2)から大気に放出させることにより熱効率を高めることができる。
また、ガス再循環通風機(6)により、火炉(1)における燃焼温度を調節することで窒素酸化物(NOx)の低減を図ることができる。
In the invention with the above configuration, air (a) necessary for combustion in the furnace (1) is supplied to fuel such as heavy oil to achieve complete combustion, and combustion product gas (exhaust gas (e)) is transferred to the furnace (1). The heat efficiency can be increased by allowing the heat to flow while being in contact with the hot surface and effectively releasing the residual heat from the chimney (2) to the atmosphere.
Moreover, nitrogen oxide (NOx) can be reduced by adjusting the combustion temperature in the furnace (1) by the gas recirculation ventilator (6).

本発明の汽力発電設備における通風系統は、燃焼に必要な空気を燃料に供給して完全燃焼を図り、燃焼生成ガス(排ガス)をボイラ伝熱面に接触させながら煙道を通して流し、その保有する熱をできるだけ有効に利用して,煙突から大気に放出させる一連の空気、ガスの流動系統である。   The ventilation system in the steam power generation facility of the present invention supplies the air necessary for combustion to the fuel for complete combustion, flows the combustion product gas (exhaust gas) through the flue while contacting the boiler heat transfer surface, and holds it It is a series of air and gas flow systems that use heat as effectively as possible to release it from the chimney to the atmosphere.

以下、本発明の好ましい実施の形態を図面を参照して説明する。
図1は実施例1の汽力発電設備における通風系統を示す系統図である。
実施例1の汽力発電設備における通風系統は、火炉1内の燃焼に必要な空気aを、排ガスeによって加温、加熱してから供給し、その後の排ガスeを煙突2から放出するために、空気系統Aと排ガス系統Eとから成る系統である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system diagram showing a ventilation system in the steam power generation facility of the first embodiment.
In the ventilation system in the steam power generation facility of Example 1, the air a necessary for combustion in the furnace 1 is heated and heated by the exhaust gas e and then supplied, and then the exhaust gas e is discharged from the chimney 2. It is a system composed of an air system A and an exhaust gas system E.

空気系統Aにおける主要な設備としては、押込通風機(FDF)3、水蒸気式空気加熱器(SAH)4及び空気予熱器(AH)5等がある。また、排ガス系統Eにおける主要な設備としては、ガス再循環通風機(GRF)6、ガス再循環ブースターファン(GRBF)7、空気予熱器5及び電気集塵機8等がある。   Major facilities in the air system A include a forced air blower (FDF) 3, a steam air heater (SAH) 4, an air preheater (AH) 5, and the like. The main equipment in the exhaust gas system E includes a gas recirculation ventilator (GRF) 6, a gas recirculation booster fan (GRBF) 7, an air preheater 5, an electric dust collector 8, and the like.

押込通風機(FDF)3は、外気の空気aを取り入れ、火炉1に燃焼用空気として押し込むための通風機である。押込通風機3は、燃焼に必要な空気量を広い範囲の流量域で調整が必要であり安定した状態で運転する必要がある。その構造としては、遠心式ターボファンが多く使われている。また、軸流式は低負荷域での効率が遠心式より優れているという特徴がある。軸流式の押込通風機3は、例えば16枚の羽根が回転軸に連結されており、1分間約2000回転で回り、軸方向に空気を押し出す動翼と、この動翼によって送られる気流の乱れを整える働きをする静翼とから成る。   The forced air ventilator (FDF) 3 is an air ventilator for taking in external air a and forcing it into the furnace 1 as combustion air. The forced draft fan 3 needs to adjust the air amount necessary for combustion in a wide flow rate range and needs to be operated in a stable state. As its structure, centrifugal turbofans are often used. In addition, the axial flow type is characterized in that the efficiency in the low load region is superior to the centrifugal type. The axial flow type forced air blower 3 has, for example, 16 blades connected to a rotating shaft, rotates at about 2000 rotations per minute, and moves a moving blade that pushes air in the axial direction, and an air flow sent by the moving blade. It consists of a stationary blade that works to correct the disturbance.

この押込通風機3、後述する空気予熱器5等の機器には、仕切りを目的としたダンパ装置9をそれぞれに設けている。これらのダンパ装置9は、数枚のダンパを組み合わせて風(煙)を遮断するようになっている。例えば、通常運転中は、90°開き風圧の損失を少なくしている。このダンパの開閉は、モ−タと減速機・リンク機構から成る駆動装置により行う。ダンパ装置9は、ボイラの運転中も風煙道系統から一部切離し、機器の点検も可能になっている。   Equipment such as this push-in ventilator 3 and air preheater 5 to be described later is provided with a damper device 9 for the purpose of partitioning. These damper devices 9 are configured to block wind (smoke) by combining several dampers. For example, during normal operation, the wind pressure loss is reduced by 90 °. The damper is opened and closed by a driving device comprising a motor, a speed reducer and a link mechanism. The damper device 9 is partly disconnected from the wind flue system even during operation of the boiler, and equipment can be inspected.

水蒸気式空気加熱器(SAH)4は、押込通風機3から取り入れた空気aを、ボイラの補助蒸気又はタ−ビンからの蒸気の熱交換で常温から100℃程度に加温する装置である。この水蒸気式空気加熱器4は、押込通風機3と空気予熱器5の空気系統Aとの間に配置する。この蒸気式空気予熱器5の構造は、例えばチューブの中を蒸気、外を空気が通るようになっている。チューブは伝熱面積を大きくするために、フィン付チューブを使用している。水蒸気空気予熱器5のエレメントの温度を、ガス露点以上に保つように蒸気量を温度調節弁で調節する。エレメント温度の指標としての平均温度を用いている。また、水蒸気式空気加熱器4は、ドレンタンク蒸気式空気予熱器で熱交換し、熱水となったドレンを貯めるタンクを備え、ドレンタンクに貯った熱水を送るポンプで、純水と熱の回収を行うドレンポンプとから成り、ドレンタンクの水位は、これを一定に保つように、ドレンタンク水位調節弁でポンプの出口流量を調節するようになっている。   The steam type air heater (SAH) 4 is a device that heats the air a taken in from the forced air blower 3 from room temperature to about 100 ° C. by heat exchange of auxiliary steam of the boiler or steam from the turbine. The steam type air heater 4 is disposed between the forced air blower 3 and the air system A of the air preheater 5. The structure of the steam type air preheater 5 is configured such that, for example, steam passes through a tube and air passes outside. A tube with fins is used to increase the heat transfer area. The amount of steam is adjusted by a temperature control valve so that the temperature of the element of the steam air preheater 5 is maintained at or above the gas dew point. Average temperature is used as an index of element temperature. The steam type air heater 4 is a pump that exchanges heat with a drain tank steam type air preheater and stores the drained hot water, and sends the hot water stored in the drain tank. It consists of a drain pump that recovers heat, and the drain tank water level is adjusted by the drain tank water level control valve so as to keep the drain tank water level constant.

空気予熱器(AH)5は、押込通風機3で取り入れた空気aを、200℃程度に加熱するために、火炉1からの排ガス系統Eの余熱で熱交換する装置である。この空気予熱器5は、水蒸気式空気加熱器4と火炉1との間に設置する。   The air preheater (AH) 5 is a device for exchanging heat with the residual heat of the exhaust gas system E from the furnace 1 in order to heat the air a taken in by the forced air blower 3 to about 200 ° C. The air preheater 5 is installed between the steam air heater 4 and the furnace 1.

この空気予熱器(AH)5は、排ガスeの熱損失を減少し、ボイラ効率を高め、燃焼用空気温度を高めるため、燃焼効率を増加させ、過剰空気量を少なくする。また、点火条件を改善し、使用燃料に対する適応性を増すようになっている。この空気予熱器5の種類は、その伝熱過程により伝熱式と再生式に大別される。   The air preheater (AH) 5 reduces the heat loss of the exhaust gas e, increases the boiler efficiency, and increases the combustion air temperature, thereby increasing the combustion efficiency and reducing the excess air amount. In addition, the ignition conditions are improved and the adaptability to the fuel used is increased. The type of the air preheater 5 is roughly classified into a heat transfer type and a regenerative type depending on the heat transfer process.

例えば、再生式の空気予熱器(AH)5は、エレメントは厚さ0.6〜1.2mmくらいの波鋼板を組み合せて、円筒容器中に収めて伝熱体とし、その中心軸の周りを2〜3rpmで回転させるようにしたもので、煙道部で排ガスeの温度を蓄熱し空気側で放熱することにより、燃焼用空気を効率よく予熱することができる。伝熱体はガス流れに沿って2分割あるいは3分割され、それぞれ高温部、中温部、低温部と呼ばれ、必要に応じて軟鋼板、耐食合金鋼板、エナメルコ−ティング板が使用されており、低温部での低温腐食に対する配慮がされている。セクタクタープレートにより、空気側とガス側の分離を行っている。また、ロ−タとハウジングやロ−タとセクタープレートの隙間からガス側への漏洩空気を少なくするため、ロータにシールプレートを取付けている。   For example, the regenerative air preheater (AH) 5 is composed of a corrugated steel plate having a thickness of about 0.6 to 1.2 mm, which is housed in a cylindrical container as a heat transfer body, and around its central axis. By rotating at 2-3 rpm, the combustion air can be efficiently preheated by accumulating the temperature of the exhaust gas e in the flue and radiating heat on the air side. The heat transfer body is divided into two or three along the gas flow, which are called the high temperature part, the medium temperature part, and the low temperature part, respectively, and a mild steel plate, a corrosion-resistant alloy steel plate, and an enamel coating plate are used as necessary. Consideration is given to low-temperature corrosion in the low-temperature part. The sector side plate separates the air side and the gas side. In addition, a seal plate is attached to the rotor in order to reduce leakage air to the gas side from the gap between the rotor and the housing or between the rotor and the sector plate.

火炉1には、燃料(図示していない)と空気系統Aの高温になった空気aとを混合して供給する。この火炉1での燃焼によってボイラで発生した高圧・高温の過熱蒸気をタービンに送り、このタービンで蒸気の熱エネルギーを機械エネルギーに変換する。このタービンに直結した発電機を運転し電気エネルギーに変換する。   The furnace 1 is supplied with a mixture of fuel (not shown) and air a having a high temperature in the air system A. High-pressure and high-temperature superheated steam generated in the boiler by combustion in the furnace 1 is sent to a turbine, and the heat energy of the steam is converted into mechanical energy by the turbine. A generator directly connected to the turbine is operated and converted into electric energy.

一方、火炉1では1500℃程度の高温の排ガスeは、排ガス系統Eに流通させる。このとき、余熱を有効に利用すると共に、この排ガスe中の硫黄・窒素酸化物(SOx、NOx等)、灰粒子を除去してから煙突2へ送る。   On the other hand, in the furnace 1, the exhaust gas e having a high temperature of about 1500 ° C. is circulated through the exhaust gas system E. At this time, the remaining heat is effectively utilized, and sulfur / nitrogen oxides (SOx, NOx, etc.) and ash particles in the exhaust gas e are removed and then sent to the chimney 2.

火炉1の排ガス系統E下流には、空気予熱器5を配置する。この空気予熱器5では排ガスeの余熱で熱交換して空気aを高温にする。   An air preheater 5 is disposed downstream of the exhaust gas system E of the furnace 1. In the air preheater 5, heat is exchanged by the residual heat of the exhaust gas e to raise the temperature of the air a.

空気予熱器5の下流に電気集塵機8を配置する。この電気集塵機8は、空気予熱器5で熱交換した排ガスe中の灰粒子を煙突2へ送風する前で捕集する。   An electric dust collector 8 is disposed downstream of the air preheater 5. The electric dust collector 8 collects the ash particles in the exhaust gas e heat-exchanged by the air preheater 5 before blowing them to the chimney 2.

更に、火炉1の排ガス系統Eの下流に、ガス再循環通風機(GRF)6及びガス再循環ブースターファン(GRBF)7を配置している。
ガス再循環通風機(GRF)6は、火炉1の排ガス系統Eの下流と、空気予熱器5と火炉1との空気系統Aとの間に、ガス再循環量を調整し、火炉1の熱吸収割合を変化させる通風機である。このガス再循環通風機6は、ボイラ出口の排ガスeを吸引し、再度火炉1の底部から供給する通風機で、ガス再循環量を調整し、火炉1の熱吸収割合を変化させる。過熱器及び再熱器を通過するガスの量と温度を変化させ、再熱器出口蒸気温度を調整する機能を有する。排ガス温度は350〜450℃と高温であり、遠心式ターボファンが用いられている。
Further, a gas recirculation ventilator (GRF) 6 and a gas recirculation booster fan (GRBF) 7 are arranged downstream of the exhaust gas system E of the furnace 1.
The gas recirculation ventilator (GRF) 6 adjusts the amount of gas recirculation between the downstream of the exhaust gas system E of the furnace 1 and the air system A of the air preheater 5 and the furnace 1, and heats the furnace 1. A ventilator that changes the absorption rate. This gas recirculation ventilator 6 is a ventilator that sucks the exhaust gas e at the boiler outlet and supplies it again from the bottom of the furnace 1, adjusts the amount of gas recirculation, and changes the heat absorption rate of the furnace 1. It has the function of adjusting the reheater outlet steam temperature by changing the amount and temperature of gas passing through the superheater and reheater. The exhaust gas temperature is as high as 350 to 450 ° C., and a centrifugal turbofan is used.

ガス再循環ブースターファン7は、ガス再循環通風機6の下流と、空気予熱器5と火炉1との空気系統Aとの間に配置した通風機である。このガス再循環ブースターファン7は、窒素酸化物(NOx)を減少させると共に、加熱するようになっている。   The gas recirculation booster fan 7 is a ventilator disposed downstream of the gas recirculation ventilator 6 and between the air system A of the air preheater 5 and the furnace 1. The gas recirculation booster fan 7 reduces nitrogen oxide (NOx) and heats it.

本発明では、火炉1における燃焼に必要な空気aを、重油等の燃料に供給して完全燃焼を図り、燃焼生成ガスを火炉1の伝熱面に接触させながら流通させ、その余熱を有効利用して煙突2から大気に放出させることにより、熱効率を高めることができる。   In the present invention, air a necessary for combustion in the furnace 1 is supplied to fuel such as heavy oil to achieve complete combustion, and the combustion generated gas is circulated while contacting the heat transfer surface of the furnace 1 to effectively use the remaining heat. Then, the thermal efficiency can be enhanced by discharging the chimney 2 to the atmosphere.

図2は実施例2の汽力発電設備における通風系統を示す系統図である。
実施例2の通風系統では、特に火炉1の排ガス系統E下流に、脱硝反応器10及び脱硝通風機(DNF)11を配置している。
脱硝反応器10は、火炉1と空気予熱器5との間に配置した反応器である。この脱硝反応器10は、排ガス系統E中の窒素酸化物(NOx)を除去する反応器である。
FIG. 2 is a system diagram showing a ventilation system in the steam power generation facility of the second embodiment.
In the ventilation system of Example 2, a denitration reactor 10 and a denitration ventilator (DNF) 11 are arranged particularly downstream of the exhaust gas system E of the furnace 1.
The denitration reactor 10 is a reactor disposed between the furnace 1 and the air preheater 5. The denitration reactor 10 is a reactor that removes nitrogen oxides (NOx) in the exhaust gas system E.

また、この脱硝反応器10と火炉1の間の排ガス系統Eの排ガスeについては、アンモニアにより脱硝することも可能である。   Further, the exhaust gas e of the exhaust gas system E between the denitration reactor 10 and the furnace 1 can be denitrated with ammonia.

空気予熱器5の下流に脱硝通風機(DNF)11を配置する。この脱硝通風機(DNF)11は排ガス系統E中の風損を補填するものである。   A denitration ventilator (DNF) 11 is disposed downstream of the air preheater 5. This denitration ventilator (DNF) 11 compensates for the windage loss in the exhaust gas system E.

更に、排ガス系統E中には、硫黄酸化物(SOx)を除去するために、脱硫反応器(図示していない)とその下流に脱硫通風機(図示していない)を配置することが好ましい。   Further, in the exhaust gas system E, it is preferable to arrange a desulfurization reactor (not shown) and a desulfurization ventilator (not shown) downstream thereof in order to remove sulfur oxides (SOx).

なお、本発明は、通風系統における設備配置を変えることで、通風の熱効率の向上を図ると共に、排ガス中の硫黄・窒素酸化物(SOx、NOx)、灰粒子等の除去効率を高めることができれば、上述した発明の実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。   Note that the present invention can improve the thermal efficiency of ventilation by changing the equipment arrangement in the ventilation system, and can improve the removal efficiency of sulfur / nitrogen oxides (SOx, NOx), ash particles, etc. in the exhaust gas. Of course, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明の汽力発電設備における通風系統は、汽力発電設備の他にコンバインサイクル発電設備などに利用することができる。   The ventilation system in the steam power generation facility of the present invention can be used for a combined cycle power generation facility in addition to the steam power generation facility.

実施例1の汽力発電設備における通風系統を示す系統図である。It is a systematic diagram which shows the ventilation system in the steam power generation equipment of Example 1. FIG. 実施例2の汽力発電設備における通風系統を示す系統図である。It is a systematic diagram which shows the ventilation system in the steam power generation equipment of Example 2. FIG.

符号の説明Explanation of symbols

1 火炉
2 煙突
3 押込通風機
4 水蒸気式空気加熱器
5 空気予熱器
6 ガス再循環通風機
7 ガス再循環ブースターファン
8 電気集塵機
9 ダンパ装置
10 脱硝反応器
11 脱硝通風機
a 空気
e 排ガス
A 空気系統
E 排ガス系統
DESCRIPTION OF SYMBOLS 1 Furnace 2 Chimney 3 Push-in ventilator 4 Steam-type air heater 5 Air preheater 6 Gas recirculation ventilator 7 Gas recirculation booster fan 8 Electric dust collector 9 Damper device 10 Denitration reactor 11 Denitration ventilator a Air e Exhaust gas A Air System E Exhaust gas system

Claims (6)

火炉(1)内の燃焼に必要な空気(a)を、排ガス(e)によって加温、加熱してから供給するために、空気系統(A)と排ガス系統(E)とから成る汽力発電設備における通風系統であって、
外気の空気(a)を取り入れ、前記火炉(1)に燃焼用空気として押し込むための押込通風機(3)と、
前記押込通風機(3)で取り入れた空気(a)を、200℃程度に加熱するために、前記火炉(1)からの排ガス系統(E)の余熱で熱交換する空気予熱器(5)と、
前記空気予熱器(5)で熱交換した排ガス(e)中の灰粒子を煙突(2)へ送風する前に捕集する電気集塵機(8)と、を備えた、ことを特徴とする汽力発電設備における通風系統。
Steam power generation facility comprising an air system (A) and an exhaust gas system (E) for supplying air (a) necessary for combustion in the furnace (1) after being heated and heated by the exhaust gas (e) The ventilation system in
A forced draft fan (3) for taking outside air (a) and pushing it into the furnace (1) as combustion air;
An air preheater (5) for exchanging heat with residual heat of the exhaust gas system (E) from the furnace (1) in order to heat the air (a) taken in by the forced air ventilator (3) to about 200 ° C. ,
An electrostatic precipitator (8) for collecting ash particles in the exhaust gas (e) heat-exchanged by the air preheater (5) before blowing them to the chimney (2). Ventilation system in the facility.
前記火炉(1)の排ガス系統(E)下流と、前記空気予熱器(5)と該火炉(1)の空気系統(A)との間に、
ガス再循環量を調整すると共に、該火炉(1)の熱吸収割合を可変させるガス再循環通風機(6)を配置した、ことを特徴とする請求項1の汽力発電設備における通風系統。
Between the exhaust gas system (E) downstream of the furnace (1) and between the air preheater (5) and the air system (A) of the furnace (1),
The ventilation system in the steam power generation facility according to claim 1, wherein a gas recirculation ventilator (6) for adjusting a gas recirculation amount and varying a heat absorption rate of the furnace (1) is disposed.
前記ガス再循環通風機(6)の下流と、前記空気予熱器(5)と該火炉(1)の空気系統(A)との間に、
排ガス(e)中の窒素酸化物(NOx)を減少させると共に、前記空気予熱器(5)からの空気(a)を加熱するガス再循環ブースターファン(7)を配置した、ことを特徴とする請求項2の汽力発電設備における通風系統。
Downstream of the gas recirculation ventilator (6) and between the air preheater (5) and the air system (A) of the furnace (1),
A gas recirculation booster fan (7) for reducing the nitrogen oxide (NOx) in the exhaust gas (e) and heating the air (a) from the air preheater (5) is disposed. The ventilation system in the steam power generation facility of Claim 2.
前記押込通風機(3)と前記空気予熱器(5)の空気系統(A)との間に、
該押込通風機(3)から取り入れた空気(a)を、ボイラの補助蒸気又はタ−ビンからの蒸気の熱交換で常温から100℃程度に加温する水蒸気式空気加熱器(4)を配置した、ことを特徴とする請求項1の汽力発電設備における通風系統。
Between the push ventilator (3) and the air system (A) of the air preheater (5),
A steam type air heater (4) that heats the air (a) taken from the forced draft fan (3) from room temperature to about 100 ° C by heat exchange of auxiliary steam from the boiler or steam from the turbine is arranged The ventilation system in the steam power generation facility according to claim 1.
前記火炉(1)と前記空気予熱器(5)の排ガス系統(E)との間に、
排ガス(e)中の窒素酸化物(NOx)を除去する脱硝反応器(10)を配置した、ことを特徴とする請求項1の汽力発電設備における通風系統。
Between the furnace (1) and the exhaust gas system (E) of the air preheater (5),
The ventilation system in the steam power generation facility according to claim 1, wherein a denitration reactor (10) for removing nitrogen oxides (NOx) in the exhaust gas (e) is disposed.
前記空気予熱器(5)の排ガス系統(E)の下流に脱硝通風機(DNF)(11)を配置した、ことを特徴とする請求項1の汽力発電設備における通風系統。   The ventilation system in the steam power generation facility according to claim 1, wherein a denitration ventilator (DNF) (11) is disposed downstream of the exhaust gas system (E) of the air preheater (5).
JP2008012076A 2008-01-23 2008-01-23 Ventilation system in steam power generation facilities Active JP5137598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008012076A JP5137598B2 (en) 2008-01-23 2008-01-23 Ventilation system in steam power generation facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008012076A JP5137598B2 (en) 2008-01-23 2008-01-23 Ventilation system in steam power generation facilities

Publications (2)

Publication Number Publication Date
JP2009174745A true JP2009174745A (en) 2009-08-06
JP5137598B2 JP5137598B2 (en) 2013-02-06

Family

ID=41030023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008012076A Active JP5137598B2 (en) 2008-01-23 2008-01-23 Ventilation system in steam power generation facilities

Country Status (1)

Country Link
JP (1) JP5137598B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013181674A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Shutoff damper, and boiler equipped with the same
KR101312726B1 (en) * 2010-12-24 2013-10-01 한국남부발전 주식회사 Ventilating device for generating system
JP2017096532A (en) * 2015-11-20 2017-06-01 株式会社マツダ Regenerative combustion furnace
CN108386865A (en) * 2018-02-05 2018-08-10 长安益阳发电有限公司 A kind of 300MW coal units reduce the control device and method of unburned carbon in flue dust

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060418A (en) * 1983-09-14 1985-04-08 Hitachi Ltd Controller for coal firing boiler
JPH02298719A (en) * 1989-05-11 1990-12-11 Babcock Hitachi Kk Performance diagnosis method for air preheater
JPH02306003A (en) * 1989-05-22 1990-12-19 Babcock Hitachi Kk Pulverized coal burner
JPH03286906A (en) * 1990-04-03 1991-12-17 Babcock Hitachi Kk Boiler
JPH08320103A (en) * 1995-05-25 1996-12-03 Ishikawajima Harima Heavy Ind Co Ltd Primary air temperature control method for coal fired boiler and device used therefor
JP2002162020A (en) * 2000-11-24 2002-06-07 Ishikawajima Harima Heavy Ind Co Ltd Boiler waste smoke processing apparatus
JP2002181307A (en) * 2000-12-15 2002-06-26 Ishikawajima Harima Heavy Ind Co Ltd Exhaust gas recirculating system for boiler equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060418A (en) * 1983-09-14 1985-04-08 Hitachi Ltd Controller for coal firing boiler
JPH02298719A (en) * 1989-05-11 1990-12-11 Babcock Hitachi Kk Performance diagnosis method for air preheater
JPH02306003A (en) * 1989-05-22 1990-12-19 Babcock Hitachi Kk Pulverized coal burner
JPH03286906A (en) * 1990-04-03 1991-12-17 Babcock Hitachi Kk Boiler
JPH08320103A (en) * 1995-05-25 1996-12-03 Ishikawajima Harima Heavy Ind Co Ltd Primary air temperature control method for coal fired boiler and device used therefor
JP2002162020A (en) * 2000-11-24 2002-06-07 Ishikawajima Harima Heavy Ind Co Ltd Boiler waste smoke processing apparatus
JP2002181307A (en) * 2000-12-15 2002-06-26 Ishikawajima Harima Heavy Ind Co Ltd Exhaust gas recirculating system for boiler equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101312726B1 (en) * 2010-12-24 2013-10-01 한국남부발전 주식회사 Ventilating device for generating system
JP2013181674A (en) * 2012-02-29 2013-09-12 Mitsubishi Heavy Ind Ltd Shutoff damper, and boiler equipped with the same
JP2017096532A (en) * 2015-11-20 2017-06-01 株式会社マツダ Regenerative combustion furnace
CN108386865A (en) * 2018-02-05 2018-08-10 长安益阳发电有限公司 A kind of 300MW coal units reduce the control device and method of unburned carbon in flue dust

Also Published As

Publication number Publication date
JP5137598B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP5707546B2 (en) Solar thermal boiler system
RU2491481C1 (en) Device for heat recovery
KR20190026783A (en) Method and system for improving boiler efficiency
JP6034154B2 (en) Waste heat recovery equipment, waste heat recovery method and waste treatment furnace
JP7249109B2 (en) steam generator
WO2016133116A1 (en) Exhaust gas heat recovery system
JP5137598B2 (en) Ventilation system in steam power generation facilities
JP5537195B2 (en) Waste heat recovery system for stoker-type incinerator
JP2014009624A (en) Waste heat utilization method, waste heat utilization system and treatment method of boiler exhaust gas
JP7089626B1 (en) Waste heat recovery device
JP5766527B2 (en) Method and apparatus for controlling once-through boiler
JP7286530B2 (en) Water treatment equipment, power plant, and water treatment method
JP4823998B2 (en) Waste power generation method
JP7455781B2 (en) Ammonia supply unit for power generation plants, ammonia vaporization treatment method for power generation plants, and power generation plants
JP2016041939A (en) Waste power generation system
TWI818615B (en) Methods of operating ammonia fuel supply units, power plants, and boilers
JP5690954B1 (en) Conventional thermal power plant and conventional thermal power generation method
KR102222427B1 (en) Combustion device and power generation system able to internal flue gas recirculation
JP2018119775A (en) Waste-heat utilization power generating system, control device and control method
KR102460565B1 (en) Device for recovering latent heat from exhaust gas including steam generator
JP6552588B2 (en) Heat recovery power generation facility from combustion exhaust gas and control method thereof
JP2010196935A (en) Reheat steam temperature control system
JPH0421086B2 (en)
JP2023124664A (en) Vacuum maintenance device and method for modifying steam turbine system
Vishwakarma et al. To Improve Thermal Efficiency of 27mw Coal Fired Power Plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121113

R150 Certificate of patent or registration of utility model

Ref document number: 5137598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250