JP3857460B2 - Denitration control device - Google Patents

Denitration control device Download PDF

Info

Publication number
JP3857460B2
JP3857460B2 JP07036799A JP7036799A JP3857460B2 JP 3857460 B2 JP3857460 B2 JP 3857460B2 JP 07036799 A JP07036799 A JP 07036799A JP 7036799 A JP7036799 A JP 7036799A JP 3857460 B2 JP3857460 B2 JP 3857460B2
Authority
JP
Japan
Prior art keywords
flow rate
denitration
amount
nox
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07036799A
Other languages
Japanese (ja)
Other versions
JP2000262862A (en
Inventor
哲郎 伊丹
栄治 二井谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP07036799A priority Critical patent/JP3857460B2/en
Publication of JP2000262862A publication Critical patent/JP2000262862A/en
Application granted granted Critical
Publication of JP3857460B2 publication Critical patent/JP3857460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、石炭だきボイラ等の脱硝装置のような化学反応の遅れが大きい系を最適に制御するに好適な脱硝制御装置に関する。
【0002】
【従来の技術】
本発明が生じた技術的背景を説明する。ここでいう脱硝装置とは、還元剤としてNH3を排ガス中に注入し、設置した触媒上で注入したNH3と排ガス中のNOxを反応させて、窒素と水にする装置のことである。
【0003】
NH3+NO+1/4・O2 → N2+3/2・H2
排ガス中のNOxは注入するNH3と上式で示す反応により、窒素と水になるので、基本的には、注入するNH3量は、処理すべきNOx量に見合った量を注入することになる。注入したNH3はNOxとの反応に使用される以外に、触媒表面上に吸着し得る量だけ吸着する。従ってそれを超えて注入するとリークNH3として装置から流出する。一方、注入するNH3量が処理すべきNOx量に対して不足すると、NOxが処理しきれなくなり、出口NOx濃度を所定値以下にすることができなくなる。
【0004】
本発明に係る脱硝制御装置を具備する脱硝制御系に関し、その従来技術になる制御装置の系統図を図5に示す。出口NOx濃度107は出口NOx濃度設定値105と減算器202aにて比較され偏差、すなわち出口NOx濃度偏差108が出力される。出口NOx濃度偏差108はPI(比例・積分)の調節器203aに入力されて、その出力はモル比修正量109である。
【0005】
一方、出口NOx濃度設定値105を関数発生器201bに入力して必要モル比106が演算され、これと先のモル比修正量109とを加算器205cで加算して修正モル比110を計算する。この修正モル比110を入口NOx流量104と乗算器204bで乗算演算して必要NH3流量111を得る。
【0006】
NH3流量112はこの必要NH3流量111と減算器202bで比較され偏差すなわちNH3流量偏差113が算出され、これをPI調節器203cに入力することで、NH3流量調節量114が得れらる。ここで、入口NOx流量104は入口NOx濃度101と燃焼排ガス流量103とを乗算器204aで乗算演算した結果として計算されるが、燃焼排ガス流量103は空気流量102の関数発生器201aによる出力である。
【0007】
従来技術になる出口NOx濃度制御結果を図4に示す。出口NOx濃度501は、NH3吸着量に相応したNH3注入量503になっていないので、a点に示すように設定範囲から大きく逸脱する場合がある。また、リークNH3502についてもb点に示すように、NH3注入量503の過剰投入のため一時的にかなり高くなる。さらに、NH3注入量503自体もc点に示すように一時的にかなり大量に投入されており、無駄・不経済が生じている。
【0008】
この図4では、時間500(単位(sec))、出口NOx濃度501、その設定下限504と設定上限505、またリークNH3量502とその上限506(これら501,502,504,505は単位(ppm))、さらにNH3注入量503(単位(m3/h))いずれもその取りうる最小値〜最大値を0〜100%に無次元化して表示したものである。
【0009】
【発明が解決しようとする課題】
従来技術に係るPI(比例・積分)調節器203aによるフィードバック制御装置では、出口NOx濃度の設定値への漸近を目的とするが、触媒上へのNH3吸着量の多少に応じたNH3注入は出来ず、このため、
(1)吸着量が残存しているような負荷下げ時に出口NOxの過剰除去・設定範囲からの下方への逸脱、
(2)過剰なNH3注入によるリークNH3のオーバシュート、
(3)NH3使用総量の過剰による不経済の発生、
等の問題が生じる。
【0010】
【課題を解決するための手段】
前記課題を解決するために、本発明は主として次のような構成を採用する。
【0012】
排ガス中のNOxに対して触媒上でNH3を注入して反応させ、触媒の出口NOx濃度が所定範囲内に入るようにNH3流量を制御する脱硝制御装置において、
触媒の入口NOx流量と、出口NOx濃度設定値とその計測値との偏差と、に基づいて現時点の必要NH3流量を求め、
必要とする脱硝率が現時点からn時間経過時点に得られるように、前記必要NH3流量を補正する必要NH3流量補正器を設け、
前記必要NH3流量補正器は、
前記入口NOx流量に脱硝率を乗算して得られた現時点での反応NOx流量と、前記入口NOx流量にn時間経過時点での必要脱硝率を乗算して得られたn時間経過時点での反応NOx流量と、を加算し、
n時間経過時点での触媒への吸着NH3量必要量から、現時点での触媒への吸着NH3量推算値を、減算し、
前記加算した反応NOx流量と、前記減算した吸着NH3量を時間間隔nの半分の量で除算した量と、の和である総和値を求め、
前記総和値と前記現時点でのNH3流量とを比較して、前記必要NH3流量を補正する補正値を算出する構成とする。
【0013】
また、前記脱硝制御装置において、
前記必要NH3流量補正器への入力は、入口NOx流量、入口NOx濃度、出口NOx濃度、現時点からn時間経過時点の必要脱硝率、予測すべき時点を決める予測スパンn、及び計測されるNH3流量、である脱硝制御装置。
【0014】
また、前記脱硝制御装置において、
前記必要NH3流量補正器は、現時点での吸着NH3量を推算する演算装置、現時点の脱硝率を計算する演算装置、n時間経過後の必要脱硝率からn時間経過後の吸着NH3量の必要量の予測値を計算する関数発生器、を備えている脱硝制御装置。
【0015】
【発明の実施の形態】
本発明の実施形態に係る脱硝制御装置について、図面を用いて以下説明する。図1には、本実施形態に係る脱硝制御装置を示す。従来技術との相違は、必要NH3流量111の演算において、従来技術に係る必要流量すなわち現時点計測ベースの必要NH3流量115に、必要NH3流量補正器300からの出力である必要NH3流量補正値310を加算器205dにて加算した量を、必要NH3流量111として設定するものである。
【0016】
ここにおいて、101は入口NOx濃度、102は空気流量、103は燃焼排ガス流量、104は入口NOx流量、105は出口NOx濃度設定値、106は必要モル比、107は出口NOx濃度、108は出口NOx濃度偏差、109はモル比修正量、110は修正モル比、111は必要NH3流量、112はNH3流量、113はNH3流量偏差、114はNH3流量調節量、115は現時点計測ベースの必要NH3流量、201は関数発生器、202は減算器、203は調節器、204は乗算器、205は加算器、300は必要NH3流量補正器、301はn時間経過後の必要脱硝率、302は予測スパンn、310は必要NH3流量補正値、をそれぞれ表す。
【0017】
必要NH3流量補正器300への入力は、入口NOx流量104、入口NOx濃度101、出口NOx濃度107、n時間経過後の必要脱硝率301、予測スパンn302及びNH3流量112であり、必要NH3流量補正器300からの出力は必要NH3流量補正値310である。
【0018】
ここで、本発明の実施形態に係る脱硝制御装置の特徴についてその基本的概念を記述する。
【0019】
先ず反応時間の遅れを補償するため、必要とする脱硝率が現時点からn分後に得られるように現時点での注入NH3量を設定する。そのために脱硝率が吸着NH3量と関係して決まる量であることを利用し、現時点での吸着NH3量の推定値を基にして、NH3設定量が、現時点からn分後に吸着NH3量として必要な量が残存しているように決める。
【0020】
現時点で吸着NH3が、触媒表面上に単位面積あたりCNH3の量だけあったとする。この状態でNH3を単位時間あたりGNH3 inだけ注入すると、注入されたNH3はいったん触媒表面上に吸着し、そこにおいてNOxと反応する。NOxと反応しなかった余分なNH3は後流にリーク(これをGNH3 leakと記す)していくか、もしくは触媒表面上に吸着する。
【0021】
従って、現時点とn時間経過の間の過程を考えると、注入されたNH3の総量GNH3 in・nは、NOxとの反応の総量R、リークNH3の総量GNH3 leak・n及び吸着NH3の増加分との和に等しい。すなわちn時間経過後の吸着NH3量をCNH3 nとすると、以下の等式が成り立つ。
【0022】

Figure 0003857460
ここで、右辺第1項の反応の総量Rは脱硝装置に流入したNOxが反応した量であるから、入口NOx量と脱硝率ηの積に外ならない。
【0023】
一方、注入NH3は入口NOxに対してモル比SMの割合で設定されるから、入口NOxに対応するモル比SMと脱硝率ηの差分が第2項のリークNH3に外ならない。すなわち、
Figure 0003857460
であるから、結局、
Figure 0003857460
である。
【0024】
ここで、左辺に関して、n時間経過後のNH3流量をGNH3 in,n、右辺に関して、n分後の入口NOxの予想値をNOxn、モル比SMをSMn、とする。このとき左辺と右辺第1項は現時点値とn時間経過後の値との平均値で置き換えて以下を得る。
【0025】
Figure 0003857460
これから分かることは、SMnをn時間経過後の必要脱硝率ηnを得るに必要なモル比に設定しておけば、上式で決まるn時間経過後の注入NH3量GNH3 in,nによって必要な脱硝率ηnを得られる、ということである。
【0026】
実際に計算するには、n時間経過後の吸着量CNH3 nと現時点で吸着量CNH3が必要である。このためには、以下のような実験的に知られた触媒の特性を適用する。すなわち、
モル比SM=func1(吸着量CNH3,入口NOx,運転条件)
及び
脱硝率η=func2(モル比SM,運転条件)
との関数関係を利用する。ここで、func1とfunc2は表示された引数の関数を表現する記号である。これにより、現時点の脱硝率ηから現時点のモル比SM従って吸着量CNH3を知ることができ、また、n時間経過後については必要な脱硝率ηnを設定しておけば対応して、必要モル比SMn、必要吸着量CNH3 nが推算出来る。
【0027】
以上の関係から、n時間経過後において必要な脱硝率ηnを得るためのNH3流量が計算でき、それは上式をn/2で除算することから、
Figure 0003857460
である。
【0028】
図2には、この必要NH3流量補正器300の内容を詳細に示す。
【0029】
(1)脱硝率計算値345の入力による関数発生器の出力としてモル比SM410を計算する。入口NOx流量104とこのモル比SM410との積351を乗算器にて算出する。ここで脱硝率計算値345は入口NOx濃度101と出口NOx濃度107を脱硝率計算器に入力し、その出力として算出される。
【0030】
(2)一方、n時間経過後の必要脱硝率301の入力による関数発生器の出力としてn時間経過後の必要モル比SMn420を計算する。入口NOx流量104とこのモル比SMn420との積353を乗算器にて算出する。
【0031】
(3)上記2つの量を加算器にて加算し量355を算出する。すなわち加算量355とは、
Figure 0003857460
である。
【0032】
(4)一方で入口NOx濃度101と出口NOx濃度107を吸着NH3量推算器370に入力して得られた現時点の吸着NH3量推算値321をn時間経過後の吸着NH3必要量推算値330から差し引き、この330から321を差し引いた量361を予め適切な値に設定されている予測スパンn302の半分の量(n/2)で除算器により除算した量が363である。すなわち、
Figure 0003857460
ここで、n時間経過後の吸着NH3必要量予測値330はn時間経過後の必要脱硝率301を関数発生器に入力してその出力として計算される。
【0033】
また、吸着NH3推算器370の計算内容は次の通りである。まず、モル比SMが吸着NH3、入口NOxから次の実験的に知られた関数で決まる。
【0034】
モル比SM=fucn1(吸着NH3,入口NOx)
すなわち、吸着NH3は入口NOxとモル比SMを与えれば逆にこの関数から計算できる。
【0035】
吸着NH3=func1-1(モル比SM,入口NOx)
一方、脱硝率ηがこのモル比SMから決まり、
脱硝率η=fucn2(モル比SM)
であるから、これも逆に、
モル比SM=fucn2-1(脱硝率η)
と計算することができる。
【0036】
従って、吸着NH3は結局、
Figure 0003857460
のように脱硝率ηと入口NOxが分かれば計算される。
【0037】
図2中の吸着NH3推算器370には入口NOx濃度101と出口NOx濃度107が入力されているが、この二つの量から脱硝率ηが算定され、これと入口NOx濃度101とから上記func3の関数によって吸着NH3が推算されている訳である。
【0038】
(5)以上の(3)の量355と(5)の量363との和が量470である。すなわち、和470とは、入口NOx流量104と脱硝率計算値345或いはn時間経過後の必要脱硝率301とのそれぞれの積351及び353と、吸着NH3量に関する量、すなわち、n時間経過後の必要吸着NH3量予量値330と現時点の吸着NH3量の推算値321との差分361を予測スパンnの半分340で除した量と、を総和した量である。すなわち、
Figure 0003857460
(6)このようにして計算した総和470を現時点でのNH3流量112と比較し減算器にて差を計算し、この差分が、必要NH3流量補正値302として、必要NH3流量補正器300からの出力となる。すなわち、
Figure 0003857460
と算出される。
【0039】
本発明の制御装置による脱硝制御の結果を図3に示す。従来方式による制御結果に比べ、n時間経過後にて必要な吸着NH3量をベースに制御しているので、過脱硝が防げ、出口NOx濃度の下限からの逸脱は回避され(a点)、対応してNH3注入量も最適化されておりリークNH3量の上限からの逸脱の回避(b点)、またNH3注入量の最大流量も抑制されて(c点)いる。
【0040】
【発明の効果】
本発明では、n時間経過後の必要NH3吸着量をベースに制御するので過脱硝が防げて、
(1)出口NOx濃度の下限からの逸脱は回避され、対応してNH3注入量も最適化されており
(2)リークNH3量の上限からの逸脱は回避され、
(3)NH3注入量の最大流量も抑制されている、という効果がある。
【図面の簡単な説明】
【図1】本発明の実施形態に係る脱硝制御装置の全体構成を示す図である。
【図2】図1の必要NH3流量補正器の内容を詳細に示す図である。
【図3】本発明の実施形態に係る制御装置による脱硝制御の結果のトレンドを示す図である。
【図4】従来技術に係る制御装置による脱硝制御結果のトレンドを示す図である。
【図5】従来技術に係る脱硝制御装置の内容を示す図である。
【符号の説明】
101 入口NOx濃度
102 空気流量
103 燃焼排ガス流量
104 入口NOx流量
105 出口NOx濃度設定値
106 必要モル比
107 出口NOx濃度
108 出口NOx濃度偏差
109 モル比修正量
110 修正モル比
111 必要NH3流量
112 NH3流量
113 NH3流量偏差
114 NH3流量調節量
115 現時点計測ベースの必要NH3流量
201 関数発生器
202 減算器
203 調節器
204 乗算器
205 加算器
300 必要NH3流量補正器
301 n時間経過後の必要脱硝率
302 予測スパンn
310 必要NH3流量補正値[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a denitration control apparatus suitable for optimally controlling a system having a large chemical reaction delay such as a denitration apparatus such as a coal fired boiler.
[0002]
[Prior art]
The technical background of the present invention will be described. The denitration device here is a device that injects NH 3 as a reducing agent into exhaust gas and reacts NH 3 injected on the installed catalyst with NO x in the exhaust gas to form nitrogen and water.
[0003]
NH 3 + NO + 1/4 · O 2 → N 2 + 3/2 · H 2 O
The reaction NOx in the exhaust gas is indicated by the above equation and NH 3 to be injected, since the nitrogen and water, basically, NH 3 amount to be injected, to inject an amount corresponding to the NOx amount to be processed Become. In addition to being used for the reaction with NOx, the injected NH 3 is adsorbed by an amount capable of being adsorbed on the catalyst surface. Therefore, if it is injected beyond that, it will flow out from the apparatus as leak NH 3 . On the other hand, if the amount of NH 3 to be injected is insufficient with respect to the amount of NOx to be processed, NOx cannot be completely processed, and the outlet NOx concentration cannot be reduced to a predetermined value or less.
[0004]
FIG. 5 shows a system diagram of a control apparatus according to the related art relating to a denitration control system including the denitration control apparatus according to the present invention. The outlet NOx concentration 107 is compared with the outlet NOx concentration set value 105 by the subtractor 202a, and a deviation, that is, an outlet NOx concentration deviation 108 is output. The outlet NOx concentration deviation 108 is input to a PI (proportional / integral) regulator 203 a, and its output is a molar ratio correction amount 109.
[0005]
On the other hand, the required molar ratio 106 is calculated by inputting the outlet NOx concentration set value 105 to the function generator 201b, and the corrected molar ratio 110 is calculated by adding this and the previous molar ratio correction amount 109 by the adder 205c. . The corrected molar ratio 110 is multiplied by the inlet NOx flow rate 104 and the multiplier 204b to obtain the required NH 3 flow rate 111.
[0006]
The NH 3 flow rate 112 is compared with the necessary NH 3 flow rate 111 by the subtractor 202b to calculate a deviation, that is, an NH 3 flow rate deviation 113, and this is input to the PI controller 203c, whereby an NH 3 flow rate adjustment amount 114 is obtained. Raru. Here, the inlet NOx flow rate 104 is calculated as a result of multiplying the inlet NOx concentration 101 and the combustion exhaust gas flow rate 103 by the multiplier 204a, and the combustion exhaust gas flow rate 103 is an output of the air flow rate 102 by the function generator 201a. .
[0007]
FIG. 4 shows the result of controlling the outlet NOx concentration according to the prior art. Since the outlet NOx concentration 501 is not the NH 3 injection amount 503 corresponding to the NH 3 adsorption amount, it may deviate greatly from the set range as indicated by point a. Further, the leak NH 3 502 also temporarily becomes considerably high due to excessive injection of the NH 3 injection amount 503 as shown at point b. Furthermore, the NH 3 injection amount 503 itself is also temporarily temporarily introduced in a considerably large amount as indicated by point c, causing waste and uneconomical factors.
[0008]
In FIG. 4, the time 500 (unit (sec)), the outlet NOx concentration 501, the setting lower limit 504 and the setting upper limit 505, and the leak NH 3 amount 502 and the upper limit 506 (these 501, 502, 504 and 505 are units ( ppm)) and further, the NH 3 injection amount 503 (unit (m 3 / h)) is a non-dimensional representation of the minimum value to the maximum value that can be taken from 0 to 100%.
[0009]
[Problems to be solved by the invention]
The feedback control device using the PI (proportional / integral) regulator 203a according to the prior art aims at asymptotically approaching the set value of the outlet NOx concentration, but NH 3 injection according to the amount of NH 3 adsorption on the catalyst. For this reason,
(1) Excessive removal of outlet NOx at the time of load reduction where the adsorption amount remains, deviation from the set range downward,
(2) Overshoot of leaked NH 3 due to excessive NH 3 injection,
(3) Generation of uneconomics due to excessive use of NH 3 ,
Such problems arise.
[0010]
[Means for Solving the Problems]
In order to solve the above problems, the present invention mainly adopts the following configuration.
[0012]
In a denitration control device that controls NH3 flow rate so that the NOx concentration of the catalyst falls within a predetermined range by injecting NH3 on the catalyst to react with NOx in the exhaust gas,
Based on the catalyst inlet NOx flow rate, the deviation between the outlet NOx concentration set value and the measured value, the current required NH3 flow rate is obtained,
A necessary NH3 flow rate corrector for correcting the necessary NH3 flow rate is provided so that the required denitration rate can be obtained at the time point when n hours have elapsed from the present time point,
The required NH3 flow rate corrector is
The reaction NOx flow rate obtained by multiplying the NOx flow rate by the inlet NOx flow rate and the NOx flow rate obtained by multiplying the NOx flow rate required by the NOx flow rate required by the inlet NOx flow rate. Add the NOx flow rate,
Subtract the estimated amount of NH3 adsorbed on the catalyst from the required amount of NH3 adsorbed on the catalyst when n hours elapse,
Obtaining a total value which is the sum of the added reaction NOx flow rate and the subtracted adsorbed NH3 amount divided by half the time interval n;
The total value is compared with the current NH3 flow rate to calculate a correction value for correcting the necessary NH3 flow rate.
[0013]
In the denitration control device,
The input to the required NH 3 flow rate corrector includes the inlet NOx flow rate, the inlet NOx concentration, the outlet NOx concentration, the required denitration rate when n hours have elapsed from the present time, the predicted span n that determines the time point to be predicted, and the measured NH 3 flow rate, denitration control device.
[0014]
In the denitration control device,
The necessary NH 3 flow rate compensator includes a computing device for estimating the amount of adsorbed NH 3 at the present time, a computing device for calculating the current denitration rate, and the adsorbed NH 3 amount after n hours from the required denitration rate after n hours A denitration control device comprising a function generator for calculating a predicted value of the required amount of the catalyst.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
A denitration control apparatus according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a denitration control apparatus according to this embodiment. The difference between the prior art, in the calculation of the required flow rate of NH 3 111, the required flow rate i.e. current measurement-based required NH 3 flow rate 115 according to the prior art, required flow rate of NH 3 is the output from necessary NH 3 flow corrector 300 An amount obtained by adding the correction value 310 by the adder 205d is set as the necessary NH 3 flow rate 111.
[0016]
Here, 101 is the inlet NOx concentration, 102 is the air flow rate, 103 is the combustion exhaust gas flow rate, 104 is the inlet NOx flow rate, 105 is the outlet NOx concentration set value, 106 is the required molar ratio, 107 is the outlet NOx concentration, and 108 is the outlet NOx. Concentration deviation, 109 is the corrected molar ratio, 110 is the corrected molar ratio, 111 is the required NH 3 flow rate, 112 is the NH 3 flow rate, 113 is the NH 3 flow rate deviation, 114 is the NH 3 flow rate adjustment amount, and 115 is the current measurement base Required NH 3 flow rate, 201 is a function generator, 202 is a subtractor, 203 is a regulator, 204 is a multiplier, 205 is an adder, 300 is a required NH 3 flow rate corrector, 301 is a required denitration rate after elapse of n hours , 302 represents a predicted span n, and 310 represents a necessary NH 3 flow rate correction value.
[0017]
The input to necessary NH 3 flow corrector 300, inlet NOx flow 104, the inlet NOx concentration 101, the outlet NOx concentration 107, n time after the required denitrification rate 301, an expected span n302 and NH 3 flow rate 112, need NH The output from the 3 flow rate corrector 300 is a required NH 3 flow rate correction value 310.
[0018]
Here, the basic concept of the features of the denitration control apparatus according to the embodiment of the present invention will be described.
[0019]
First, in order to compensate for a delay in the reaction time, the amount of NH 3 injected at the current time is set so that the required denitration rate can be obtained n minutes after the current time. Its denitrification rate due to the use that the amount determined in relation to the adsorption amount of NH 3, based on the estimated value of the adsorption amount of NH 3 at the present time, NH 3 set amount, adsorption NH from the current time after n minutes Decide that the required amount of 3 remains.
[0020]
It is assumed that the amount of NH 3 adsorbed at the present time is the amount of C NH 3 per unit area on the catalyst surface. When NH 3 is injected by G NH3 in per unit time in this state, the injected NH 3 is once adsorbed on the catalyst surface and reacts with NOx there. Excess NH 3 that has not reacted with NOx leaks to the downstream (this is referred to as G NH3 leak ) or is adsorbed on the catalyst surface.
[0021]
Therefore, considering the process between the present time and the lapse of n hours, the total amount of NH 3 injected G NH3 in · n is the total amount R of reaction with NOx, the total amount of leak NH 3 G NH3 leak · n and the adsorbed NH Equal to the sum of 3 increments. That is, if the amount of adsorbed NH 3 after the elapse of n hours is C NH3 n , the following equation holds.
[0022]
Figure 0003857460
Here, the total amount R of the reaction in the first term on the right side is the amount of NOx that has flowed into the denitration device, and therefore does not deviate from the product of the amount of inlet NOx and the denitration rate η.
[0023]
On the other hand, since the injection NH 3 is set at a ratio of the molar ratio SM to the inlet NOx, the difference between the molar ratio SM corresponding to the inlet NOx and the denitration rate η does not deviate from the leak NH 3 in the second term. That is,
Figure 0003857460
So, after all,
Figure 0003857460
It is.
[0024]
Here, regarding the left side, the NH 3 flow rate after elapse of n hours is G NH3 in, n , and regarding the right side, the expected value of the inlet NOx after n minutes is NOx n and the molar ratio SM is SM n . At this time, the first term on the left side and the right side is replaced with the average value of the current value and the value after the lapse of n hours to obtain the following.
[0025]
Figure 0003857460
It can be seen from this that if SM n is set to a molar ratio necessary for obtaining the required denitration rate η n after elapse of n hours, the amount of NH 3 injected after elapse of n hours determined by the above equation G NH3 in, n The necessary denitration rate η n can be obtained.
[0026]
To actually calculate the amount of adsorbed after n times C NH3 n and at present it is necessary adsorption amount C NH3. For this purpose, the following experimentally known characteristics of the catalyst are applied. That is,
Molar ratio SM = func1 (adsorption amount C NH3 , inlet NOx, operating conditions)
And denitration rate η = func2 (molar ratio SM, operating conditions)
Use the functional relationship with. Here, func1 and func2 are symbols representing functions of the displayed arguments. As a result, the present molar ratio SM and the adsorption amount C NH3 can be known from the present denitration rate η, and after n hours, the necessary denitration rate η n can be set correspondingly. The molar ratio SM n and the required adsorption amount C NH3 n are estimated.
[0027]
From the above relationship, the NH 3 flow rate for obtaining the required denitration rate η n after elapse of n hours can be calculated, because the above equation is divided by n / 2.
Figure 0003857460
It is.
[0028]
FIG. 2 shows the details of the necessary NH 3 flow rate corrector 300 in detail.
[0029]
(1) The molar ratio SM410 is calculated as the output of the function generator by inputting the denitration rate calculated value 345. A product 351 of the inlet NOx flow rate 104 and the molar ratio SM410 is calculated by a multiplier. Here, the denitration rate calculated value 345 is calculated as the output of the NOx concentration 101 and the NOx concentration 107 are input to the denitration rate calculator.
[0030]
(2) On the other hand, the required molar ratio SM n 420 after elapse of n hours is calculated as the output of the function generator by inputting the required denitration rate 301 after elapse of n hours. A product 353 of the inlet NOx flow rate 104 and the molar ratio SM n 420 is calculated by a multiplier.
[0031]
(3) The amount 355 is calculated by adding the above two amounts with an adder. That is, the addition amount 355 is
Figure 0003857460
It is.
[0032]
(4) On the other hand, the adsorbed NH 3 amount estimated value 321 obtained by inputting the inlet NOx concentration 101 and the outlet NOx concentration 107 to the adsorbed NH 3 amount estimator 370 is used to estimate the required amount of adsorbed NH 3 after n hours. The amount 361 obtained by subtracting from the value 330 and subtracting 321 from 330 is divided by a divider by a half amount (n / 2) of the predicted span n302 set to an appropriate value in advance, and is 363. That is,
Figure 0003857460
Here, the predicted NH 3 required amount predicted value 330 after elapse of n hours is calculated by inputting the required denitration rate 301 after elapse of n hours into the function generator.
[0033]
The calculation contents of the adsorption NH 3 estimator 370 are as follows. First, the molar ratio SM is determined by the following experimentally known function from the adsorbed NH 3 and the inlet NOx.
[0034]
Molar ratio SM = fucn1 (adsorption NH 3 , inlet NOx)
That is, the adsorbed NH 3 can be calculated from this function conversely if the inlet NOx and the molar ratio SM are given.
[0035]
Adsorption NH 3 = func 1 −1 (molar ratio SM, inlet NOx)
On the other hand, the denitration rate η is determined from this molar ratio SM,
Denitration rate η = fucn2 (molar ratio SM)
So, on the contrary,
Molar ratio SM = fucn2 −1 (denitration rate η)
And can be calculated.
[0036]
Therefore, the adsorbed NH 3 is
Figure 0003857460
If the denitration rate η and the inlet NOx are known as shown in FIG.
[0037]
The inlet NHx concentration 101 and the outlet NOx concentration 107 are input to the adsorption NH 3 estimator 370 in FIG. 2, and the NOx removal rate η is calculated from these two amounts, and the func3 is calculated from this and the inlet NOx concentration 101. Thus, the adsorbed NH 3 is estimated by the function of
[0038]
(5) The sum of the amount 355 of (3) and the amount 363 of (5) is the amount 470. That is, the sum 470 is the products 351 and 353 of the inlet NOx flow rate 104 and the calculated denitration rate 345 or the required denitration rate 301 after elapse of n hours, and the amount related to the amount of adsorbed NH 3 , that is, after elapse of n hours. The amount obtained by dividing the difference 361 between the required adsorption NH 3 amount preliminary value 330 and the estimated value 321 of the current adsorption NH 3 amount by the half 340 of the predicted span n. That is,
Figure 0003857460
(6) The sum 470 calculated in this way is compared with the current NH 3 flow rate 112, and a difference is calculated by a subtractor. This difference is used as the required NH 3 flow rate correction value 302, and the required NH 3 flow rate corrector. Output from 300. That is,
Figure 0003857460
Is calculated.
[0039]
The result of the denitration control by the control device of the present invention is shown in FIG. Compared with the control result by the conventional method, control is based on the amount of adsorbed NH 3 required after n hours has elapsed, thus preventing excessive denitration and avoiding deviation from the lower limit of the outlet NOx concentration (point a). The NH 3 injection amount is also optimized, avoiding deviation from the upper limit of the leaked NH 3 amount (point b), and the maximum flow rate of the NH 3 injection amount is also suppressed (point c).
[0040]
【The invention's effect】
In the present invention, since it controls based on the required amount of NH 3 adsorption after elapse of n hours, excessive denitration can be prevented,
(1) Deviation from the lower limit of the outlet NOx concentration is avoided, and correspondingly, the NH 3 injection amount is also optimized. (2) Deviation from the upper limit of the leak NH 3 amount is avoided,
(3) There is an effect that the maximum flow rate of the NH 3 injection amount is also suppressed.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of a denitration control apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram showing in detail the contents of the necessary NH 3 flow rate corrector of FIG.
FIG. 3 is a diagram showing a trend of a result of denitration control by the control device according to the embodiment of the present invention.
FIG. 4 is a diagram showing a trend of a denitration control result by a control device according to a conventional technique.
FIG. 5 is a diagram showing the contents of a denitration control device according to the prior art.
[Explanation of symbols]
101 inlet NOx concentration 102 air flow 103 flue gas flow rate 104 inlet NOx flow rate 105 outlet NOx concentration setting 106 required molar ratio 107 outlet NOx concentration 108 outlet NOx concentration deviation 109 molar ratio necessary NH 3 flow rate 112 NH correction amount 110 fixes the molar ratio 111 3 Flow rate 113 NH 3 flow rate deviation 114 NH 3 flow rate adjustment amount 115 Required NH 3 flow rate based on current measurement 201 Function generator 202 Subtractor 203 Controller 204 Multiplier 205 Adder 300 Necessary NH 3 flow rate corrector 301 After n hours elapse Required denitration rate 302 Expected span n
310 Required NH 3 flow rate correction value

Claims (6)

排ガス中のNOxに対して触媒上でNH3を注入して反応させ、触媒の出口NOx濃度が所定範囲内に入るようにNH3流量を制御する脱硝制御装置において、
触媒の入口NOx流量と、出口NOx濃度設定値とその計測値との偏差と、に基づいて現時点の必要NH3流量を求め、
必要とする脱硝率が現時点からn時間経過時点に得られるように、前記必要NH3流量を補正する必要NH3流量補正器を設け、
前記必要NH3流量補正器は、
前記入口NOx流量に脱硝率を乗算して得られた現時点での反応NOx流量と、前記入口NOx流量にn時間経過時点での必要脱硝率を乗算して得られたn時間経過時点での反応NOx流量と、を加算し、
n時間経過時点での触媒への吸着NH3量必要量から、現時点での触媒への吸着NH3量推算値を、減算し、
前記加算した反応NOx流量と、前記減算した吸着NH3量を時間間隔nの半分の量で除算した量と、の和である総和値を求め、
前記総和値と前記現時点でのNH3流量とを比較して、前記必要NH3流量を補正する補正値を算出する
ことを特徴とする脱硝制御装置。
In a denitration control device that controls NH3 flow rate so that the NOx concentration of the catalyst falls within a predetermined range by injecting NH3 on the catalyst to react with NOx in the exhaust gas,
Based on the catalyst inlet NOx flow rate, the deviation between the outlet NOx concentration set value and the measured value, the current required NH3 flow rate is obtained,
A necessary NH3 flow rate corrector for correcting the necessary NH3 flow rate is provided so that the required denitration rate can be obtained at the time point when n hours have elapsed from the present time point,
The required NH3 flow rate corrector is
The reaction NOx flow rate obtained by multiplying the NOx flow rate by the inlet NOx flow rate and the NOx flow rate obtained by multiplying the NOx flow rate required by the NOx flow rate required by the inlet NOx flow rate. Add the NOx flow rate,
Subtract the estimated amount of NH3 adsorbed on the catalyst from the required amount of NH3 adsorbed on the catalyst when n hours elapse,
Obtaining a total value which is the sum of the added reaction NOx flow rate and the subtracted adsorbed NH3 amount divided by half the time interval n;
The denitration control device, wherein the total value and the current NH3 flow rate are compared to calculate a correction value for correcting the necessary NH3 flow rate.
請求項1に記載の脱硝制御装置において、
前記必要NH3流量補正器への入力は、入口NOx流量、入口NOx濃度、出口NOx濃度、現時点からn時間経過時点の必要脱硝率、予測すべき時点を決める予測スパンn、及び計測されるNH3流量、である
ことを特徴とする脱硝制御装置。
In the denitration control apparatus according to claim 1,
The input to the required NH3 flow rate compensator is the inlet NOx flow rate, the inlet NOx concentration, the outlet NOx concentration, the required denitration rate when n hours have elapsed from the present time, the predicted span n that determines the time point to be predicted, and the measured NH3 flow rate The denitration control apparatus characterized by the above-mentioned.
請求項1に記載の脱硝制御装置において、
前記必要NH3流量補正器は、現時点での吸着NH3量を推算する演算装置、現時点の脱硝率を計算する演算装置、n時間経過後の必要脱硝率からn時間経過後の吸着NH3量の必要量の予測値を計算する関数発生器、を備えている
ことを特徴とする脱硝制御装置。
In the denitration control apparatus according to claim 1,
The required NH3 flow rate compensator is a calculation device that estimates the amount of adsorbed NH3 at the present time, a calculation device that calculates the current denitration rate, and the required amount of adsorbed NH3 after the elapse of n hours from the required denitration rate after the elapse of n hours A denitration control device comprising: a function generator that calculates a predicted value of.
請求項3に記載の脱硝制御装置において、
前記現時点での吸着NH3量を推算する演算装置の入力が、入口NOx濃度、出口NOx濃度であって、その出力が現時点での吸着NH3量の推算値である
ことを特徴とする脱硝制御装置。
In the denitration control device according to claim 3,
The denitration control apparatus according to claim 1, wherein the input of the calculation device for estimating the amount of adsorbed NH3 at the present time is an inlet NOx concentration and an outlet NOx concentration, and the output is an estimated value of the amount of adsorbed NH3 at the present time.
請求項3に記載の脱硝制御装置において、
前記現時点の脱硝率を計算する演算装置の入力が、入口NOx濃度、出口NOx濃度であって、その出力が現時点での脱硝率である
ことを特徴とする脱硝制御装置。
In the denitration control device according to claim 3,
The denitration control apparatus characterized in that the input of the arithmetic unit for calculating the present denitration rate is the inlet NOx concentration and the outlet NOx concentration, and the output is the present denitration rate.
請求項3に記載の脱硝制御装置において、
前記n時間経過後の必要脱硝率からn時間経過後の吸着NH3量の必要量の予測値を計算する関数発生器の入力が、n時間経過後において必要とされる脱硝率であり、その出力がn時間経過後に当該脱硝率に対応して必要とされる吸着NH3量である
ことを特徴とする脱硝制御装置。
In the denitration control device according to claim 3,
The input of the function generator that calculates the predicted value of the required amount of adsorbed NH3 after elapse of n hours from the required denitration rate after elapse of n hours is the denitration rate required after elapse of n hours, and its output Is the amount of adsorbed NH3 required corresponding to the denitration rate after the elapse of n hours.
JP07036799A 1999-03-16 1999-03-16 Denitration control device Expired - Fee Related JP3857460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07036799A JP3857460B2 (en) 1999-03-16 1999-03-16 Denitration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07036799A JP3857460B2 (en) 1999-03-16 1999-03-16 Denitration control device

Publications (2)

Publication Number Publication Date
JP2000262862A JP2000262862A (en) 2000-09-26
JP3857460B2 true JP3857460B2 (en) 2006-12-13

Family

ID=13429411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07036799A Expired - Fee Related JP3857460B2 (en) 1999-03-16 1999-03-16 Denitration control device

Country Status (1)

Country Link
JP (1) JP3857460B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219337A (en) * 2001-01-30 2002-08-06 Babcock Hitachi Kk Control method and device of denitration device
US7550126B2 (en) 2007-01-25 2009-06-23 Southwest Research Institute NOx augmentation in exhaust gas simulation system
JP5677787B2 (en) * 2010-08-31 2015-02-25 新日鉄住金エンジニアリング株式会社 Denitration control device and denitration control method
CN107138031A (en) * 2017-04-28 2017-09-08 国网天津市电力公司 A kind of denitration efficiency computational methods applied to on-site actual situations

Also Published As

Publication number Publication date
JP2000262862A (en) 2000-09-26

Similar Documents

Publication Publication Date Title
US7784272B2 (en) Control system for an engine aftertreatment system
US8555623B2 (en) Exhaust purification apparatus for internal combustion engine
EP2851532A1 (en) Exhaust gas control apparatus and control method for exhaust gas control apparatus
JP2006017115A (en) Method for operating catalyst used for purifying exhaust gas of internal combustion engine and device for performing the method
US20140033682A1 (en) Method for operating an scr catalyic converter provided for the aftertreatment of exhaust gases of an internal combustion engine
JP2009293606A (en) Control device for exhaust treatment device
JP3857460B2 (en) Denitration control device
US20180306082A1 (en) Exhaust after-treatment system including sliding mode ammonia controller
JP2012057591A (en) Exhaust emission control device
JP5302618B2 (en) Nitrogen oxide treatment equipment
JP4627611B2 (en) Ammonia injection amount control method and apparatus for denitration apparatus and ammonia injection amount correction device
JP2005169331A (en) Denitrification control method and program for the same
JP3831804B2 (en) Exhaust gas denitration equipment
JP3694802B2 (en) Nonlinear optimum state feedback control method and apparatus
JP4690606B2 (en) Denitration control method and denitration control apparatus
JP2014070566A (en) Exhaust cleaning system of internal combustion engine
JP2004190913A (en) Automatic calorific power correction device for coal fired boiler
JP3915142B2 (en) Method and apparatus for controlling ammonia injection amount of denitration apparatus
JP2002219337A (en) Control method and device of denitration device
JP2005133628A (en) Cogeneration system
JP3757597B2 (en) Absorbent slurry flow rate control method and apparatus for flue gas desulfurization apparatus
JP2001129354A (en) Denitration apparatus, combustion apparatus and method of operating the same
JP3537100B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JPH01180220A (en) Denitrification control device for gas turbine plant
JP3546319B2 (en) Apparatus and method for controlling flue gas denitration

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060914

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees