JP2000262862A - Denitration control apparatus - Google Patents

Denitration control apparatus

Info

Publication number
JP2000262862A
JP2000262862A JP11070367A JP7036799A JP2000262862A JP 2000262862 A JP2000262862 A JP 2000262862A JP 11070367 A JP11070367 A JP 11070367A JP 7036799 A JP7036799 A JP 7036799A JP 2000262862 A JP2000262862 A JP 2000262862A
Authority
JP
Japan
Prior art keywords
flow rate
denitration
amount
nox
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11070367A
Other languages
Japanese (ja)
Other versions
JP3857460B2 (en
Inventor
Tetsuo Itami
哲郎 伊丹
Eiji Niitani
栄治 二井谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP07036799A priority Critical patent/JP3857460B2/en
Publication of JP2000262862A publication Critical patent/JP2000262862A/en
Application granted granted Critical
Publication of JP3857460B2 publication Critical patent/JP3857460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent over-denitration and to avoid the deviation of outlet NOx concn. from a lower limit by controlling denitration on the basis of adsorbed NH3 quantity necessary after the elapse of (n) hr from the present point of time. SOLUTION: In a denitration control apparatus injecting NH3 into exhaust gas to react the same with NOx in the exhaust gas on a catalyst and controlling a flow rate of NH3 so that the outlet NOx concn. of the catalyst enters a predetermined range, a necessary NH3 flow rate correcting device 300 calculating the necessary NH3 flow rate at the present point of time on the basis of the inlet NOx flow rate of the catalyst, an outlet NOx concn. set value and the deviation between both measured values and correcting a necessary NH3 flow rate 111 so that a necessary denitration rate is obtained after the elapse of (n) hr from the present point of time is provided. The necessary NH3 flow rate correcting device 300 adds the reacted NOx flow rate at the present point of time and the reacted NOx flow rate after the elapse of (n) hr and substrates the estimate value of adsorbed NH3 quantity to the catalyst at the present point of time from the necessary adsorbed NH3 quantity to the catalyst after the elapse of (n) hr and calculates a correction value 310 correcting a necessary NH3 flow rate on the basis of the added value and the substracted value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、石炭だきボイラ等
の脱硝装置のような化学反応の遅れが大きい系を最適に
制御するに好適な脱硝制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a denitration control apparatus suitable for optimally controlling a system having a large delay in a chemical reaction, such as a denitration apparatus for a coal-fired boiler or the like.

【0002】[0002]

【従来の技術】本発明が生じた技術的背景を説明する。
ここでいう脱硝装置とは、還元剤としてNH3を排ガス
中に注入し、設置した触媒上で注入したNH3と排ガス
中のNOxを反応させて、窒素と水にする装置のことで
ある。
2. Description of the Related Art The technical background of the present invention will be described.
The denitration device referred to here is a device that injects NH 3 as a reducing agent into exhaust gas, and reacts the injected NH 3 with NOx in the exhaust gas on an installed catalyst to form nitrogen and water.

【0003】 NH3+NO+1/4・O2 → N2+3/2・H2O 排ガス中のNOxは注入するNH3と上式で示す反応によ
り、窒素と水になるので、基本的には、注入するNH3
量は、処理すべきNOx量に見合った量を注入すること
になる。注入したNH3はNOxとの反応に使用される以
外に、触媒表面上に吸着し得る量だけ吸着する。従って
それを超えて注入するとリークNH3として装置から流
出する。一方、注入するNH3量が処理すべきNOx量に
対して不足すると、NOxが処理しきれなくなり、出口
NOx濃度を所定値以下にすることができなくなる。
[0003] NH 3 + NO + / · O 2 → N 2 + 3/2 · H 2 O NOx in exhaust gas is converted into nitrogen and water by the reaction shown in the above formula with NH 3 to be injected. NH 3 to be injected
As for the amount, an amount corresponding to the amount of NOx to be processed is injected. The injected NH 3 is not only used for the reaction with NOx but also adsorbs in an amount that can be adsorbed on the catalyst surface. Therefore, if it is injected beyond this, it flows out of the apparatus as leak NH 3 . On the other hand, if the amount of NH 3 to be injected is insufficient for the amount of NOx to be processed, the NOx cannot be processed completely, and the outlet NOx concentration cannot be reduced to a predetermined value or less.

【0004】本発明に係る脱硝制御装置を具備する脱硝
制御系に関し、その従来技術になる制御装置の系統図を
図5に示す。出口NOx濃度107は出口NOx濃度設定
値105と減算器202aにて比較され偏差、すなわち
出口NOx濃度偏差108が出力される。出口NOx濃度
偏差108はPI(比例・積分)の調節器203aに入
力されて、その出力はモル比修正量109である。
FIG. 5 shows a system diagram of a conventional control apparatus for a denitration control system having a denitration control apparatus according to the present invention. The outlet NOx concentration 107 is compared with an outlet NOx concentration set value 105 by a subtractor 202a, and a deviation, that is, an outlet NOx concentration deviation 108 is output. The outlet NOx concentration deviation 108 is input to a PI (proportional / integral) controller 203a, and its output is a molar ratio correction amount 109.

【0005】一方、出口NOx濃度設定値105を関数
発生器201bに入力して必要モル比106が演算さ
れ、これと先のモル比修正量109とを加算器205c
で加算して修正モル比110を計算する。この修正モル
比110を入口NOx流量104と乗算器204bで乗
算演算して必要NH3流量111を得る。
On the other hand, the outlet NOx concentration set value 105 is input to a function generator 201b to calculate a required molar ratio 106, and the calculated molar ratio 106 and the previous molar ratio correction amount 109 are added to an adder 205c.
And the corrected molar ratio 110 is calculated. The corrected molar ratio 110 is multiplied by an inlet NOx flow rate 104 and a multiplier 204b to obtain a required NH 3 flow rate 111.

【0006】NH3流量112はこの必要NH3流量11
1と減算器202bで比較され偏差すなわちNH3流量
偏差113が算出され、これをPI調節器203cに入
力することで、NH3流量調節量114が得れらる。こ
こで、入口NOx流量104は入口NOx濃度101と燃
焼排ガス流量103とを乗算器204aで乗算演算した
結果として計算されるが、燃焼排ガス流量103は空気
流量102の関数発生器201aによる出力である。
[0006] NH 3 flow rate of 112 this necessary flow rate of NH 3 11
1 is subtracted from the subtractor 202b to calculate a deviation, that is, an NH 3 flow deviation 113, which is input to the PI controller 203c, whereby an NH 3 flow adjustment amount 114 is obtained. Here, the inlet NOx flow rate 104 is calculated as a result of multiplying the inlet NOx concentration 101 and the flue gas flow rate 103 by the multiplier 204a, and the flue gas flow rate 103 is an output of the air flow rate 102 by the function generator 201a. .

【0007】従来技術になる出口NOx濃度制御結果を
図4に示す。出口NOx濃度501は、NH3吸着量に相
応したNH3注入量503になっていないので、a点に
示すように設定範囲から大きく逸脱する場合がある。ま
た、リークNH3502についてもb点に示すように、
NH3注入量503の過剰投入のため一時的にかなり高
くなる。さらに、NH3注入量503自体もc点に示す
ように一時的にかなり大量に投入されており、無駄・不
経済が生じている。
FIG. 4 shows the result of controlling the concentration of outlet NOx according to the prior art. Outlet NOx concentration 501, so not in NH 3 injection rate 503 commensurate with the adsorbed NH 3 amount, there are cases where significant departure from the set range, as shown in a point. Also, as shown at point b, the leak NH 3 502
Due to the excessive injection of the NH 3 injection amount 503, the temperature temporarily becomes considerably high. Further, the NH 3 injection amount 503 itself is temporarily injected in a considerably large amount as shown at point c, resulting in wasteful and uneconomical operation.

【0008】この図4では、時間500(単位(se
c))、出口NOx濃度501、その設定下限504と
設定上限505、またリークNH3量502とその上限
506(これら501,502,504,505は単位
(ppm))、さらにNH3注入量503(単位(m3
h))いずれもその取りうる最小値〜最大値を0〜10
0%に無次元化して表示したものである。
In FIG. 4, time 500 (unit (se)
c)), the outlet NOx concentration 501, the set lower limit 504 and the set upper limit 505, the leak NH 3 amount 502 and its upper limit 506 (the 501, 502, 504, and 505 are in units (ppm)), and the NH 3 injection amount 503 (Unit (m 3 /
h)) In each case, the possible minimum value to maximum value are 0 to 10
This is displayed by making it non-dimensional to 0%.

【0009】[0009]

【発明が解決しようとする課題】従来技術に係るPI
(比例・積分)調節器203aによるフィードバック制
御装置では、出口NOx濃度の設定値への漸近を目的と
するが、触媒上へのNH3吸着量の多少に応じたNH3
入は出来ず、このため、(1)吸着量が残存しているよ
うな負荷下げ時に出口NOxの過剰除去・設定範囲から
の下方への逸脱、(2)過剰なNH3注入によるリーク
NH3のオーバシュート、(3)NH3使用総量の過剰に
よる不経済の発生、等の問題が生じる。
SUMMARY OF THE INVENTION Conventional PI
In accordance with the feedback control system (proportional-integral) controller 203a, but for the purpose of asymptotic to the set value of the outlet NOx concentration, NH 3 injection can not according to some adsorbed NH 3 amount on the catalyst, this Therefore, (1) excessive removal of outlet NOx at the time of load reduction such that the amount of adsorption remains, deviating downward from the set range, (2) overshoot of leaked NH 3 due to excessive NH 3 injection, (3) ) Problems such as the occurrence of uneconomics due to excessive use of the total amount of NH 3 occur.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
に、本発明は主として次のような構成を採用する。
In order to solve the above problems, the present invention mainly employs the following configuration.

【0011】排ガス中のNOxに対して触媒上でNH3
注入して反応させ、触媒の出口NOx濃度が所定範囲内
に入るようにNH3流量を制御する脱硝制御装置におい
て、触媒の入口NOx流量と、出口NOx濃度設定値とそ
の計測値との偏差と、に基づいて現時点の必要NH3
量を求め、必要とする脱硝率が現時点からn時間経過時
点に得られるように、前記必要NH3流量を補正する必
要NH3流量補正器を設ける脱硝制御装置。
In a denitration control device for injecting NH 3 on the catalyst to react with NOx in the exhaust gas and controlling the flow rate of NH 3 so that the NOx concentration at the outlet of the catalyst falls within a predetermined range, the NOx at the inlet of the catalyst is controlled. The required NH 3 flow rate at the present time is obtained based on the flow rate and the deviation between the set value of the outlet NOx concentration and the measured value, and the required NH 3 flow rate is obtained so that the required denitration rate can be obtained after n hours from the present time. 3 Denitration control device equipped with NH 3 flow rate corrector that needs to correct flow rate.

【0012】また、前記脱硝制御装置において、前記必
要NH3流量補正器は、前記入口NOx流量に脱硝率を乗
算して得られた現時点での反応NOx流量と、前記入口
NOx流量にn時間経過時点での必要脱硝率を乗算して
得られたn時間経過時点での反応NOx流量と、を加算
し、n時間経過時点での触媒への吸着NH3量必要量か
ら、現時点での触媒への吸着NH3量推算値を、減算
し、前記加算した反応NOx流量と、前記減算した吸着
NH3量を時間間隔nの半分の量で除算した量と、の和
である総和値を求め、前記総和値と前記現時点でのNH
3流量とを比較して、前記必要NH3流量を補正する補正
値を算出する脱硝制御装置。
In the denitration control apparatus, the required NH 3 flow rate corrector is configured to multiply the inlet NOx flow rate by the denitrification rate, and to calculate the reaction NOx flow rate at the present time and the inlet NOx flow rate for n hours. The reaction NOx flow rate at the time point of n hours obtained by multiplying the required denitration rate at the time point is added to the amount of NH 3 adsorbed on the catalyst at the time point of n hours, and The estimated value of the amount of adsorbed NH 3 is subtracted, and the sum of the reaction NOx flow rate and the amount obtained by dividing the subtracted amount of adsorbed NH 3 by half of the time interval n is obtained. The sum and the current NH
A denitration control device that compares the three flow rates and calculates a correction value for correcting the required NH 3 flow rate.

【0013】また、前記脱硝制御装置において、前記必
要NH3流量補正器への入力は、入口NOx流量、入口N
Ox濃度、出口NOx濃度、現時点からn時間経過時点の
必要脱硝率、予測すべき時点を決める予測スパンn、及
び計測されるNH3流量、である脱硝制御装置。
In the denitration control device, the inputs to the required NH 3 flow rate corrector are an inlet NOx flow rate and an inlet Nx flow rate.
A denitration control device comprising: an Ox concentration, an outlet NOx concentration, a required denitration rate at a time point n hours after the present time, a predicted span n for determining a time point to be predicted, and a measured NH 3 flow rate.

【0014】また、前記脱硝制御装置において、前記必
要NH3流量補正器は、現時点での吸着NH3量を推算す
る演算装置、現時点の脱硝率を計算する演算装置、n時
間経過後の必要脱硝率からn時間経過後の吸着NH3
の必要量の予測値を計算する関数発生器、を備えている
脱硝制御装置。
In the denitration control device, the required NH 3 flow rate corrector is a calculation device for estimating the current amount of adsorbed NH 3 , a calculation device for calculating the current denitration rate, and a required denitration after n hours. A denitration control device comprising: a function generator for calculating a predicted value of a required amount of adsorbed NH 3 after n hours from the rate.

【0015】[0015]

【発明の実施の形態】本発明の実施形態に係る脱硝制御
装置について、図面を用いて以下説明する。図1には、
本実施形態に係る脱硝制御装置を示す。従来技術との相
違は、必要NH3流量111の演算において、従来技術
に係る必要流量すなわち現時点計測ベースの必要NH3
流量115に、必要NH3流量補正器300からの出力
である必要NH3流量補正値310を加算器205dに
て加算した量を、必要NH3流量111として設定する
ものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A denitration control device according to an embodiment of the present invention will be described below with reference to the drawings. In FIG.
1 shows a denitration control device according to the present embodiment. The difference between the prior art, in the calculation of the required flow rate of NH 3 111, must flow demand i.e. the current measurement-based according to the prior art NH 3
The amount obtained by adding the required NH 3 flow rate correction value 310 output from the required NH 3 flow rate corrector 300 to the flow rate 115 by the adder 205d is set as the required NH 3 flow rate 111.

【0016】ここにおいて、101は入口NOx濃度、
102は空気流量、103は燃焼排ガス流量、104は
入口NOx流量、105は出口NOx濃度設定値、10
6は必要モル比、107は出口NOx濃度、108は出
口NOx濃度偏差、109はモル比修正量、110は修
正モル比、111は必要NH3流量、112はNH3
量、113はNH3流量偏差、114はNH3流量調節
量、115は現時点計測ベースの必要NH3流量、20
1は関数発生器、202は減算器、203は調節器、2
04は乗算器、205は加算器、300は必要NH3
量補正器、301はn時間経過後の必要脱硝率、302
は予測スパンn、310は必要NH3流量補正値、をそ
れぞれ表す。
Here, 101 is the concentration of NOx at the inlet,
102 is an air flow rate, 103 is a combustion exhaust gas flow rate, 104 is an inlet NOx flow rate, 105 is an outlet NOx concentration set value, 10
6 is the required molar ratio, 107 is the outlet NOx concentration, 108 is the outlet NOx concentration deviation, 109 is the molar ratio correction amount, 110 is the corrected molar ratio, 111 is the required NH 3 flow rate, 112 is the NH 3 flow rate, and 113 is the NH 3 flow rate Deviation, 114 is the NH 3 flow rate adjustment amount, 115 is the required NH 3 flow rate based on the current measurement base, 20
1 is a function generator, 202 is a subtractor, 203 is a regulator, 2
04 is a multiplier, 205 is an adder, 300 is a necessary NH 3 flow rate corrector, 301 is a required denitration rate after n hours, 302
Represents a predicted span n, and 310 represents a required NH 3 flow rate correction value.

【0017】必要NH3流量補正器300への入力は、
入口NOx流量104、入口NOx濃度101、出口NO
x濃度107、n時間経過後の必要脱硝率301、予測
スパンn302及びNH3流量112であり、必要NH3
流量補正器300からの出力は必要NH3流量補正値3
10である。
The input to the required NH 3 flow compensator 300 is
Inlet NOx flow rate 104, inlet NOx concentration 101, outlet NO
x concentration 107, required denitration rate 301 after n time is expected span n302 and NH 3 flow rate 112, necessary NH 3
The output from the flow compensator 300 is the required NH 3 flow compensation value 3
It is 10.

【0018】ここで、本発明の実施形態に係る脱硝制御
装置の特徴についてその基本的概念を記述する。
Here, the basic concept of the denitration control device according to the embodiment of the present invention will be described.

【0019】先ず反応時間の遅れを補償するため、必要
とする脱硝率が現時点からn分後に得られるように現時
点での注入NH3量を設定する。そのために脱硝率が吸
着NH3量と関係して決まる量であることを利用し、現
時点での吸着NH3量の推定値を基にして、NH3設定量
が、現時点からn分後に吸着NH3量として必要な量が
残存しているように決める。
First, in order to compensate for the delay in the reaction time, the amount of injected NH 3 at the present time is set so that the required denitration rate is obtained n minutes after the present time. Its denitrification rate due to the use that the amount determined in relation to the adsorption amount of NH 3, based on the estimated value of the adsorption amount of NH 3 at the present time, NH 3 set amount, adsorption NH from the current time after n minutes Decide so that the required amount of 3 remains.

【0020】現時点で吸着NH3が、触媒表面上に単位
面積あたりCNH3の量だけあったとする。この状態でN
3を単位時間あたりGNH3 inだけ注入すると、注入され
たNH3はいったん触媒表面上に吸着し、そこにおいて
NOxと反応する。NOxと反応しなかった余分なNH3
は後流にリーク(これをGNH3 leakと記す)していく
か、もしくは触媒表面上に吸着する。
At present, it is assumed that the amount of adsorbed NH 3 is present on the catalyst surface in an amount of CNH 3 per unit area. In this state, N
When H 3 is injected by G NH3 in per unit time, the injected NH 3 once adsorbs on the catalyst surface and reacts with NOx there. Extra NH 3 that did not react with NOx
Leaks to the downstream (this is referred to as G NH3 leak ) or adsorbs on the catalyst surface.

【0021】従って、現時点とn時間経過の間の過程を
考えると、注入されたNH3の総量GNH3 in・nは、NO
xとの反応の総量R、リークNH3の総量GNH3 leak・n
及び吸着NH3の増加分との和に等しい。すなわちn時
間経過後の吸着NH3量をCNH3 nとすると、以下の等式
が成り立つ。
Therefore, considering the process between the present time and the passage of n hours, the total amount of injected NH 3 G NH3 in · n is NO
Total amount R of reaction with x, total amount of leak NH 3 G NH3 leak · n
And the increase of the adsorbed NH 3 . That is, assuming that the amount of adsorbed NH 3 after elapse of n hours is C NH3 n , the following equation holds.

【0022】注入されたNH3の総量GNH3 in・n=NO
xとの反応の総量R+リークNH3の総量GNH3 leak・n
+吸着NH3の増加分(n時間経過後の吸着量CNH3 n
現時点での吸着量CN H3) ここで、右辺第1項の反応の総量Rは脱硝装置に流入し
たNOxが反応した量であるから、入口NOx量と脱硝率
ηの積に外ならない。
The total amount of injected NH 3 G NH3 in · n = NO
Total amount of reaction with x R + Total amount of leak NH 3 G NH3 leak · n
+ Increase in adsorbed NH 3 (adsorbed amount C NH3 n
At this time, the adsorption amount C N H3 ) Here, since the total amount R of the reaction in the first term on the right side is the amount of the NOx that has flowed into the denitration device, it does not deviate from the product of the inlet NOx amount and the denitration rate η.

【0023】一方、注入NH3は入口NOxに対してモル
比SMの割合で設定されるから、入口NOxに対応する
モル比SMと脱硝率ηの差分が第2項のリークNH3
外ならない。すなわち、 注入されたNH3の総量GNH3 in・n=入口NOxと脱硝
率ηの積+入口NOxと(モル比SM−脱硝率η)の積
+吸着NH3の増加分(n時間経過後の吸着量CNH3 n
現時点での吸着量CN H3) であるから、結局、 注入されたNH3の総量GNH3 in・n=入口NOxとモル
比SMの積+吸着NH3の増加分(n時間経過後の吸着
量CNH3 n−現時点での吸着量CN H3) である。
On the other hand, since the injected NH 3 is set at the ratio of the molar ratio SM to the inlet NOx, the difference between the molar ratio SM corresponding to the inlet NOx and the denitration ratio η does not fall into the leak NH 3 of the second term. . That is, the total amount of injected NH 3 G NH3 in · n = product of inlet NOx and denitration rate η + product of inlet NOx and (molar ratio SM−denitration rate η) + increase of adsorbed NH 3 (after n hours) Adsorption amount of C NH3 n
Because it is adsorbed amount C N H3) at the present time, eventually, injected increase in total G NH3 in · n = the product of inlet NOx molar ratio SM + adsorption of NH 3 NH 3 (n time after adsorption the amount C NH3 n - is adsorbed amount C n H3) at the present time.

【0024】ここで、左辺に関して、n時間経過後のN
3流量をGNH3 in,n、右辺に関して、n分後の入口NO
xの予想値をNOxn、モル比SMをSMn、とする。この
とき左辺と右辺第1項は現時点値とn時間経過後の値と
の平均値で置き換えて以下を得る。
Here, with respect to the left side, N
The H 3 flow rate is G NH3 in, n , and the inlet NO after n minutes with respect to the right side
Let the expected value of x be NOx n and the molar ratio SM be SM n . At this time, the first term on the left side and the right side is replaced with the average value of the current value and the value after the elapse of n hours to obtain the following.

【0025】(GNH3 in+GNH3 in,n)・n/2=n/2
・(NOx・SM+NOxn・SMn)+吸着NH3の増加
分(n時間経過後の吸着量CNH3 n−現時点で吸着量C
NH3) これから分かることは、SMnをn時間経過後の必要脱
硝率ηnを得るに必要なモル比に設定しておけば、上式
で決まるn時間経過後の注入NH3量GNH3 in,nによって
必要な脱硝率ηnを得られる、ということである。
(G NH3 in + G NH3 in, n ) · n / 2 = n / 2
· (NOx · SM + NOx n · SM n) + adsorption amount after increase (n times of the adsorption NH 3 C NH3 n - currently adsorption C
NH3) to now known, by setting the SM n molar ratio required to obtain the required NOx removal efficiency eta n of after n time, injected NH 3 amount after n time determined by the above equation G NH3 in , n , the required denitration rate η n can be obtained.

【0026】実際に計算するには、n時間経過後の吸着
量CNH3 nと現時点で吸着量CNH3が必要である。このた
めには、以下のような実験的に知られた触媒の特性を適
用する。すなわち、 モル比SM=func1(吸着量CNH3,入口NOx,運
転条件) 及び 脱硝率η=func2(モル比SM,運転条件) との関数関係を利用する。ここで、func1とfun
c2は表示された引数の関数を表現する記号である。こ
れにより、現時点の脱硝率ηから現時点のモル比SM従
って吸着量CNH3を知ることができ、また、n時間経過
後については必要な脱硝率ηnを設定しておけば対応し
て、必要モル比SMn、必要吸着量CNH3 nが推算出来
る。
[0026] In order to actually calculate, it is necessary adsorption amount C NH3 adsorption amount C NH3 n and the current after n hours. For this purpose, the following experimentally known characteristics of the catalyst are applied. That is, a functional relationship between the molar ratio SM = func1 (adsorption amount C NH3 , inlet NOx, operating conditions) and the denitration ratio η = func2 (molar ratio SM, operating conditions) is used. Here, func1 and func
c2 is a symbol representing the function of the displayed argument. As a result, the current molar ratio SM and therefore the adsorption amount C NH3 can be known from the current denitration rate η, and if the required denitration rate η n is set after n hours, the necessary The molar ratio SM n and the required adsorption amount C NH3 n are estimated.

【0027】以上の関係から、n時間経過後において必
要な脱硝率ηnを得るためのNH3流量が計算でき、それ
は上式をn/2で除算することから、 GNH3 in,n=−GNH3 in+{(NOx・SM+NOxn・S
n)+吸着NH3の増加分(n時間経過後の吸着量C
NH3 n−現時点で吸着量CNH3)/(n/2)} である。
From the above relationship, the NH 3 flow rate for obtaining the required denitration rate η n after n hours has elapsed can be calculated. Since the above equation is divided by n / 2, G NH3 in, n = − G NH3 in + {(NOx ・ SM + NOx n・ S
M n ) + increase of adsorbed NH 3 (adsorbed amount C after elapse of n hours)
NH3 n - adsorption C NH3 at present) is / (n / 2)}.

【0028】図2には、この必要NH3流量補正器30
0の内容を詳細に示す。
FIG. 2 shows the required NH 3 flow rate compensator 30.
0 is shown in detail.

【0029】(1)脱硝率計算値345の入力による関
数発生器の出力としてモル比SM410を計算する。入
口NOx流量104とこのモル比SM410との積35
1を乗算器にて算出する。ここで脱硝率計算値345は
入口NOx濃度101と出口NOx濃度107を脱硝率計
算器に入力し、その出力として算出される。
(1) The mole ratio SM410 is calculated as the output of the function generator based on the input of the denitration ratio calculation value 345. Product 35 of inlet NOx flow rate 104 and this molar ratio SM410
1 is calculated by the multiplier. Here, the denitration rate calculation value 345 is calculated by inputting the inlet NOx concentration 101 and the outlet NOx concentration 107 to a denitration rate calculator and outputting the same.

【0030】(2)一方、n時間経過後の必要脱硝率3
01の入力による関数発生器の出力としてn時間経過後
の必要モル比SMn420を計算する。入口NOx流量1
04とこのモル比SMn420との積353を乗算器に
て算出する。
(2) On the other hand, the required denitration rate after elapse of n hours is 3
The required mole ratio SM n 420 after n hours has elapsed is calculated as the output of the function generator with an input of 01. Inlet NOx flow 1
The product 353 of the value 04 and the molar ratio SM n 420 is calculated by a multiplier.

【0031】(3)上記2つの量を加算器にて加算し量
355を算出する。すなわち加算量355とは、 加算量355=積351+積353=モル比SM410
と入口NOx104との積+必要モル比SMn420と入
口NOx104との積=(NOx・SM+NOxn・S
n) である。
(3) The above two amounts are added by an adder to calculate an amount 355. That is, the addition amount 355 is the addition amount 355 = product 351 + product 353 = molar ratio SM410.
The product of the required molar ratio SM n 420 and the inlet NOx 104 = (NOx · SM + NOx n · S
M n ).

【0032】(4)一方で入口NOx濃度101と出口
NOx濃度107を吸着NH3量推算器370に入力して
得られた現時点の吸着NH3量推算値321をn時間経
過後の吸着NH3必要量推算値330から差し引き、こ
の330から321を差し引いた量361を予め適切な
値に設定されている予測スパンn302の半分の量(n
/2)で除算器により除算した量が363である。すな
わち、 量363=量361/(n/2)=(量330−量32
1)/(n/2)=(n時間経過後の吸着NH3量必要
量330−現時点の吸着NH3量推算値321)/(n
/2) ここで、n時間経過後の吸着NH3必要量予測値330
はn時間経過後の必要脱硝率301を関数発生器に入力
してその出力として計算される。
[0032] (4) While the inlet NOx concentration 101 and an outlet NOx concentration 107 adsorbed NH 3 amount estimating unit 370 adsorbed NH 3 amount estimated value 321 of the present time obtained by inputting a after a lapse of n times adsorbed NH 3 The amount 361 obtained by subtracting 321 from the required amount estimation value 330 and subtracting 321 from this value is half the amount (n) of the predicted span n302 set to an appropriate value in advance.
The amount divided by the divider in (/ 2)) is 363. That is, quantity 363 = quantity 361 / (n / 2) = (quantity 330−quantity 32
1) / (n / 2) = (required amount of adsorbed NH 3 after elapse of n hours 330−estimated value of adsorbed NH 3 at present 321) / (n
/ 2) Here, the predicted value of the required amount of adsorbed NH 3 after the elapse of n hours 330
Is calculated by inputting the required denitration rate 301 after the elapse of n hours to the function generator and outputting the function generator.

【0033】また、吸着NH3推算器370の計算内容
は次の通りである。まず、モル比SMが吸着NH3、入
口NOxから次の実験的に知られた関数で決まる。
The calculation contents of the adsorption NH 3 estimator 370 are as follows. First, the molar ratio SM is determined by the following experimentally known function based on the adsorbed NH 3 and the inlet NOx.

【0034】 モル比SM=fucn1(吸着NH3,入口NOx) すなわち、吸着NH3は入口NOxとモル比SMを与えれ
ば逆にこの関数から計算できる。
Molar ratio SM = fucn1 (adsorbed NH 3 , inlet NOx) That is, the adsorbed NH 3 can be calculated from this function conversely if the inlet NOx and the molar ratio SM are given.

【0035】 吸着NH3=func1-1(モル比SM,入口NOx) 一方、脱硝率ηがこのモル比SMから決まり、 脱硝率η=fucn2(モル比SM) であるから、これも逆に、 モル比SM=fucn2-1(脱硝率η) と計算することができる。Adsorption NH 3 = func1 −1 (molar ratio SM, inlet NOx) On the other hand, the denitration rate η is determined from this molar ratio SM, and the denitration rate η = fucn2 (molar ratio SM). The molar ratio can be calculated as SM = fucn2 −1 (denitration rate η).

【0036】従って、吸着NH3は結局、 吸着NH3=func1-1(モル比SM,入口NOx)=
func1-1(fucn2-1(脱硝率η),入口NO
x)=func3(脱硝率η,入口NOx) のように脱硝率ηと入口NOxが分かれば計算される。
Therefore, the adsorbed NH 3 eventually becomes adsorbed NH 3 = func1 -1 (molar ratio SM, inlet NOx) =
func1 -1 (fucn2 -1 (denitration rate η), inlet NO
x) = func3 (denitration rate η, inlet NOx) This is calculated if the denitration rate η and the inlet NOx are known.

【0037】図2中の吸着NH3推算器370には入口
NOx濃度101と出口NOx濃度107が入力されてい
るが、この二つの量から脱硝率ηが算定され、これと入
口NOx濃度101とから上記func3の関数によっ
て吸着NH3が推算されている訳である。
The inlet NOx concentration 101 and the outlet NOx concentration 107 are input to the adsorption NH 3 estimator 370 in FIG. 2, and the denitration rate η is calculated from these two amounts. That is, the adsorption NH 3 is estimated by the function of the above func3.

【0038】(5)以上の(3)の量355と(5)の
量363との和が量470である。すなわち、和470
とは、入口NOx流量104と脱硝率計算値345或い
はn時間経過後の必要脱硝率301とのそれぞれの積3
51及び353と、吸着NH3量に関する量、すなわ
ち、n時間経過後の必要吸着NH3量予量値330と現
時点の吸着NH3量の推算値321との差分361を予
測スパンnの半分340で除した量と、を総和した量で
ある。すなわち、 量470= {(NOx・SM+NOxn・SMn)+吸着
NH3の増加分(n時間経過後の吸着量CNH3 n−現時点
での吸着量CNH3)/(n/2)} (6)このようにして計算した総和470を現時点での
NH3流量112と比較し減算器にて差を計算し、この
差分が、必要NH3流量補正値302として、必要NH3
流量補正器300からの出力となる。すなわち、 必要NH3流量補正値302=GNH3 in,n=−GNH3 in
{(NOx・SM+NOxn・SMn)+吸着NH3の増加
分(n時間経過後の吸着量CNH3 n−現時点での吸着量C
NH3)/(n/2) と算出される。
(5) The sum of the amount 355 of (3) and the amount 363 of (5) is the amount 470. That is, sum 470
Is the product 3 of the inlet NOx flow rate 104 and the calculated denitration rate 345 or the required denitration rate 301 after n hours.
The difference 361 between 51 and 353 and the amount relating to the amount of adsorbed NH 3 , that is, the difference 361 between the required amount of adsorbed NH 3 after elapse of n hours 330 and the estimated value 321 of the amount of adsorbed NH 3 at the present time is calculated by half 340 of the predicted span n. Is the sum of the amount divided by. That is, the amount 470 = {(NOx · SM + NOx n · SM n) + increase in adsorption NH 3 (adsorption amount after elapse n times C NH3 n - adsorption C NH3 at the present time) / (n / 2)} ( 6) The sum 470 thus calculated is compared with the current NH 3 flow rate 112, and a difference is calculated by a subtractor. This difference is used as the required NH 3 flow rate correction value 302 as the required NH 3 flow rate correction value 302.
This is an output from the flow rate corrector 300. That is, the required NH 3 flow rate correction value 302 = G NH3 in, n = -G NH3 in +
{(NOx · SM + NOx n · SM n ) + increased amount of adsorbed NH 3 (adsorbed amount C after elapse of n hours NH 3 n −adsorbed amount C at present time
NH3 ) / (n / 2).

【0039】本発明の制御装置による脱硝制御の結果を
図3に示す。従来方式による制御結果に比べ、n時間経
過後にて必要な吸着NH3量をベースに制御しているの
で、過脱硝が防げ、出口NOx濃度の下限からの逸脱は
回避され(a点)、対応してNH3注入量も最適化され
ておりリークNH3量の上限からの逸脱の回避(b
点)、またNH3注入量の最大流量も抑制されて(c
点)いる。
FIG. 3 shows the result of the denitration control by the control device of the present invention. Compared with the control result by the conventional method, control is performed based on the amount of adsorbed NH 3 required after elapse of n hours, so that denitration can be prevented, and deviation of the outlet NOx concentration from the lower limit is avoided (point a). The NH 3 injection amount is also optimized to avoid deviation from the upper limit of the leak NH 3 amount (b
Point) and the maximum flow rate of the NH 3 injection amount is also suppressed (c)
Point).

【0040】[0040]

【発明の効果】本発明では、n時間経過後の必要NH3
吸着量をベースに制御するので過脱硝が防げて、(1)
出口NOx濃度の下限からの逸脱は回避され、対応して
NH3注入量も最適化されており(2)リークNH3量の
上限からの逸脱は回避され、(3)NH3注入量の最大
流量も抑制されている、という効果がある。
According to the present invention, the required NH 3 after elapse of n hours
Controlling based on the amount of adsorption prevents over-denitration, (1)
The deviation of the outlet NOx concentration from the lower limit is avoided and the NH 3 injection amount is correspondingly optimized. (2) The deviation of the leak NH 3 amount from the upper limit is avoided, and (3) the maximum NH 3 injection amount There is an effect that the flow rate is suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る脱硝制御装置の全体構
成を示す図である。
FIG. 1 is a diagram showing an overall configuration of a denitration control device according to an embodiment of the present invention.

【図2】図1の必要NH3流量補正器の内容を詳細に示
す図である。
FIG. 2 is a diagram showing details of a necessary NH 3 flow rate corrector of FIG. 1;

【図3】本発明の実施形態に係る制御装置による脱硝制
御の結果のトレンドを示す図である。
FIG. 3 is a diagram showing a trend of a result of denitration control by the control device according to the embodiment of the present invention.

【図4】従来技術に係る制御装置による脱硝制御結果の
トレンドを示す図である。
FIG. 4 is a diagram showing a trend of a denitration control result by a control device according to a conventional technique.

【図5】従来技術に係る脱硝制御装置の内容を示す図で
ある。
FIG. 5 is a diagram showing the contents of a denitration control device according to the related art.

【符号の説明】[Explanation of symbols]

101 入口NOx濃度 102 空気流量 103 燃焼排ガス流量 104 入口NOx流量 105 出口NOx濃度設定値 106 必要モル比 107 出口NOx濃度 108 出口NOx濃度偏差 109 モル比修正量 110 修正モル比 111 必要NH3流量 112 NH3流量 113 NH3流量偏差 114 NH3流量調節量 115 現時点計測ベースの必要NH3流量 201 関数発生器 202 減算器 203 調節器 204 乗算器 205 加算器 300 必要NH3流量補正器 301 n時間経過後の必要脱硝率 302 予測スパンn 310 必要NH3流量補正値101 Inlet NOx Concentration 102 Air Flow 103 Combustion Flue Gas Flow 104 Inlet NOx Flow 105 Outlet NOx Concentration 106 Required Molar Ratio 107 Outlet NOx Concentration 108 Outlet NOx Concentration Deviation 109 Molar Ratio Correction 110 Corrected Molar Ratio 111 Required NH 3 Flow 112 NH 3 flow rate 113 NH 3 flow rate deviation 114 NH 3 flow rate adjustment amount 115 Required NH 3 flow rate at present measurement base 201 Function generator 202 Subtractor 203 Controller 204 Multiplier 205 Adder 300 Required NH 3 flow rate corrector 301 After n hours Required denitration rate 302 Predicted span n 310 Required NH 3 flow rate correction value

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 排ガス中のNOxに対して触媒上でNH3
を注入して反応させ、触媒の出口NOx濃度が所定範囲
内に入るようにNH3流量を制御する脱硝制御装置にお
いて、 触媒の入口NOx流量と、出口NOx濃度設定値とその計
測値との偏差と、に基づいて現時点の必要NH3流量を
求め、 必要とする脱硝率が現時点からn時間経過時点に得られ
るように、前記必要NH3流量を補正する必要NH3流量
補正器を設けることを特徴とする脱硝制御装置。
1. A method for reducing NOx in exhaust gas using NH 3 on a catalyst.
The denitration control device controls the flow rate of NH 3 so that the NOx concentration at the outlet of the catalyst falls within a predetermined range. The deviation between the NOx flow at the inlet of the catalyst, the outlet NOx concentration set value, and the measured value When obtains the necessary NH 3 flow rate at the present time based on, as denitrification rate required by the obtained n time point from the present time, providing a required NH 3 flow corrector that corrects the required flow rate of NH 3 Characteristic denitration control device.
【請求項2】 請求項1に記載の脱硝制御装置におい
て、 前記必要NH3流量補正器は、 前記入口NOx流量に脱硝率を乗算して得られた現時点
での反応NOx流量と、前記入口NOx流量にn時間経過
時点での必要脱硝率を乗算して得られたn時間経過時点
での反応NOx流量と、を加算し、 n時間経過時点での触媒への吸着NH3量必要量から、
現時点での触媒への吸着NH3量推算値を、減算し、 前記加算した反応NOx流量と、前記減算した吸着NH3
量を時間間隔nの半分の量で除算した量と、の和である
総和値を求め、 前記総和値と前記現時点でのNH3流量とを比較して、
前記必要NH3流量を補正する補正値を算出することを
特徴とする脱硝制御装置。
2. The denitration control device according to claim 1, wherein the required NH 3 flow rate corrector includes a current reaction NOx flow rate obtained by multiplying the inlet NOx flow rate by a denitration rate, and the inlet NOx flow rate. The reaction NOx flow rate at the time of n hours obtained by multiplying the flow rate by the required denitration rate at the time of n hours is added. From the required amount of NH 3 adsorbed on the catalyst at the time of n time,
The estimated value of the amount of adsorbed NH 3 on the catalyst at the present time is subtracted, and the added reaction NOx flow rate is subtracted from the adsorbed NH 3 amount.
An amount obtained by dividing the amount by a half of the time interval n is obtained, and a total value is obtained, and the total value is compared with the NH 3 flow rate at the present time.
A denitration control device for calculating a correction value for correcting the required NH 3 flow rate.
【請求項3】 請求項2に記載の脱硝制御装置におい
て、 前記必要NH3流量補正器への入力は、入口NOx流量、
入口NOx濃度、出口NOx濃度、現時点からn時間経過
時点の必要脱硝率、予測すべき時点を決める予測スパン
n、及び計測されるNH3流量、であることを特徴とす
る脱硝制御装置。
3. The denitration control device according to claim 2, wherein the input to the required NH 3 flow rate corrector is an inlet NOx flow rate,
A denitration control device comprising: an inlet NOx concentration, an outlet NOx concentration, a required denitration rate after n hours from the present time, a predicted span n for determining a point to be predicted, and a measured NH 3 flow rate.
【請求項4】 請求項2に記載の脱硝制御装置におい
て、 前記必要NH3流量補正器は、現時点での吸着NH3量を
推算する演算装置、現時点の脱硝率を計算する演算装
置、n時間経過後の必要脱硝率からn時間経過後の吸着
NH3量の必要量の予測値を計算する関数発生器、を備
えていることを特徴とする脱硝制御装置。
4. The denitration control device according to claim 2, wherein the required NH 3 flow rate corrector estimates a current amount of adsorbed NH 3 , a calculation device calculates a current denitration rate, and n hours. A denitration control device, comprising: a function generator for calculating a predicted value of a required amount of adsorbed NH 3 after elapse of n hours from a required denitration rate after elapse.
【請求項5】 請求項4に記載の脱硝制御装置におい
て、 前記現時点での吸着NH3量を推算する演算装置の入力
が、入口NOx濃度、出口NOx濃度であって、その出力
が現時点での吸着NH3量の推算値であることを特徴と
する脱硝制御装置。
5. The denitration control device according to claim 4, wherein inputs of the arithmetic unit for estimating the amount of adsorbed NH 3 at the present time are an inlet NOx concentration and an outlet NOx concentration, and the outputs thereof are the current values. A denitration control device, which is an estimated value of the amount of adsorbed NH 3 .
【請求項6】 請求項4に記載の脱硝制御装置におい
て、 前記現時点の脱硝率を計算する演算装置の入力が、入口
NOx濃度、出口NOx濃度であって、その出力が現時点
での脱硝率であることを特徴とする脱硝制御装置。
6. The denitration control device according to claim 4, wherein the inputs of the arithmetic unit for calculating the current denitration rate are an inlet NOx concentration and an outlet NOx concentration, and the output thereof is a current denitration rate. A denitration control device, characterized in that:
【請求項7】 請求項4に記載の脱硝制御装置におい
て、 前記n時間経過後の必要脱硝率からn時間経過後の吸着
NH3量の必要量の予測値を計算する関数発生器の入力
が、n時間経過後において必要とされる脱硝率であり、
その出力がn時間経過後に当該脱硝率に対応して必要と
される吸着NH3量であることを特徴とする脱硝制御装
置。
7. The denitration control device according to claim 4, wherein the input of a function generator for calculating a predicted value of a required amount of adsorbed NH 3 after elapse of n hours from the required denitration rate after elapse of n hours is provided. , The denitration rate required after n hours have passed,
A denitration control device characterized in that the output is the amount of adsorbed NH 3 required corresponding to the denitration rate after elapse of n hours.
JP07036799A 1999-03-16 1999-03-16 Denitration control device Expired - Fee Related JP3857460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07036799A JP3857460B2 (en) 1999-03-16 1999-03-16 Denitration control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07036799A JP3857460B2 (en) 1999-03-16 1999-03-16 Denitration control device

Publications (2)

Publication Number Publication Date
JP2000262862A true JP2000262862A (en) 2000-09-26
JP3857460B2 JP3857460B2 (en) 2006-12-13

Family

ID=13429411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07036799A Expired - Fee Related JP3857460B2 (en) 1999-03-16 1999-03-16 Denitration control device

Country Status (1)

Country Link
JP (1) JP3857460B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219337A (en) * 2001-01-30 2002-08-06 Babcock Hitachi Kk Control method and device of denitration device
US7550126B2 (en) 2007-01-25 2009-06-23 Southwest Research Institute NOx augmentation in exhaust gas simulation system
JP2012050912A (en) * 2010-08-31 2012-03-15 Nippon Steel Engineering Co Ltd Denitration controller and denitration control method
CN107138031A (en) * 2017-04-28 2017-09-08 国网天津市电力公司 A kind of denitration efficiency computational methods applied to on-site actual situations

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219337A (en) * 2001-01-30 2002-08-06 Babcock Hitachi Kk Control method and device of denitration device
US7550126B2 (en) 2007-01-25 2009-06-23 Southwest Research Institute NOx augmentation in exhaust gas simulation system
JP2012050912A (en) * 2010-08-31 2012-03-15 Nippon Steel Engineering Co Ltd Denitration controller and denitration control method
CN107138031A (en) * 2017-04-28 2017-09-08 国网天津市电力公司 A kind of denitration efficiency computational methods applied to on-site actual situations

Also Published As

Publication number Publication date
JP3857460B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
US8555623B2 (en) Exhaust purification apparatus for internal combustion engine
US7784272B2 (en) Control system for an engine aftertreatment system
WO2006009196A1 (en) METHOD OF MEASURING NOx REDUCTION RATE OF EXHAUST EMISSION CONTROL DEVICE
US9631776B2 (en) Model-based controls for selective catalyst reduction systems
JP6173840B2 (en) Denitration control device
JP2000262862A (en) Denitration control apparatus
JP2006200875A (en) Determination method of boiler fuel input amount
US6868294B2 (en) Feedback control method in V-shaped characteristic system, and NH3 injection rate control method for NOx removal apparatus using the same
JPH11267451A (en) Method for controlling injection of ammonia to denitrator
JP2010203268A (en) Nox removal device
JP5302618B2 (en) Nitrogen oxide treatment equipment
JP4032205B2 (en) Ammonia injection amount control method for denitration equipment
JP4690606B2 (en) Denitration control method and denitration control apparatus
JPH08155267A (en) Denitration control device
JP2005169331A (en) Denitrification control method and program for the same
JP5190396B2 (en) Denitration equipment
JP3694802B2 (en) Nonlinear optimum state feedback control method and apparatus
JP3915142B2 (en) Method and apparatus for controlling ammonia injection amount of denitration apparatus
JP4352452B2 (en) Cogeneration system
JP2003010645A (en) Method and apparatus for controlling ammonia injection amount to nitrogen oxide removal apparatus and ammonia injection amount correcting apparatus to be employed therefor
JP2635643B2 (en) Denitration control device for gas turbine plant
JPH0857251A (en) Method for controlling injection amount of ammonia in denitrification apparatus and apparatus therefor
JP2001129354A (en) Denitration apparatus, combustion apparatus and method of operating the same
JP3915144B2 (en) Method and apparatus for controlling ammonia injection amount of denitration apparatus
JPH08168639A (en) Method and device for controlling injection amount of ammonia into denitrification device with denitration catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060914

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees