JP2004355329A - Process value controlling method and device - Google Patents

Process value controlling method and device Download PDF

Info

Publication number
JP2004355329A
JP2004355329A JP2003152277A JP2003152277A JP2004355329A JP 2004355329 A JP2004355329 A JP 2004355329A JP 2003152277 A JP2003152277 A JP 2003152277A JP 2003152277 A JP2003152277 A JP 2003152277A JP 2004355329 A JP2004355329 A JP 2004355329A
Authority
JP
Japan
Prior art keywords
change
process value
nitrogen oxide
control
injection flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003152277A
Other languages
Japanese (ja)
Inventor
Takahiro Taketomo
孝裕 竹友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2003152277A priority Critical patent/JP2004355329A/en
Publication of JP2004355329A publication Critical patent/JP2004355329A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device capable of controlling a process value of a control object for preventing it from hunting even when an equilibrium condition of the process value is greatly disturbed because of a rapid load change, a change of a carbon type, disturbance, or the like. <P>SOLUTION: When the process value of the control object is an injection amount of ammonia (NH<SB>3</SB>) into a processed gas to be put into a NOx removal reactor, control sensitivity of a NOx concentration change is lowered in this NOx removal reactor ammonia injection flow rate controlling method if a change ratio of an actually measured NOx concentration in the processed gas is lowered below a predetermined value to fall within a predetermined hunting area while a load change of the NOx removal reactor is finished or a predetermined time passes after the start of operation or after the stop of the operation. If the actually measured NOx concentration change goes out of the hunting area and is stabilized, reduction in the NOx concentration change control sensitivity is released and can be returned to ordinary NOx concentration change control sensitivity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、フィードバック制御を使用したプロセス値の制御方法と装置に関するものである。
【0002】
【従来の技術】
プロセス値の制御例として、被処理ガス(排ガス)中の窒素酸化物(NOx)分をアンモニア(NH)を注入した後に脱硝触媒により除去する排煙脱硝装置における、被処理ガス中へのアンモニア(NH)注入流量を調節するアンモニア注入流量制御装置により、従来技術のプロセス値制御方法について説明する。
【0003】
排煙脱硝装置内において、被処理ガス中のNOxは被処理ガス中に注入するNHと反応し、窒素と水になるので、基本的には注入するNH量は処理すべきNOx量に見合った量を注入することになる。しかし、注入したNHはNOxとの反応に使用されるだけでなく、触媒表面上に吸着し得るだけ吸着することも考慮に入れなければならない。
【0004】
一方、被処理ガス中に注入するNH量が処理すべきNOx量に対して不足すると、NOxが処理しきれなくなり、脱硝反応器の出口NOx濃度が規定値を超過することがある。従来技術の排煙脱硝装置に設置する脱硝反応制御の系統図を図3に示す。
【0005】
被処理ガス中のNOx量に見合ったNH注入量を算出するNH注入量算出器9は、脱硝反応器の入口NOx濃度、出口NOx濃度設定値、出口NOx濃度及び排ガス量等から適切なNH注入量を算出するものである。すなわち、脱硝反応器の入口NOx分析計12で検出された入口NOx濃度信号13と、被処理ガス量28の被処理ガス流量信号29とを乗算器31で乗算し、総NOx量信号30を算出する。
【0006】
一方、入口NOx濃度信号13と脱硝反応器出口NOx濃度設定器15で設定された設定NOx濃度信号16との減算を行う減算器19を有する必要NHモル比演算部18でNHモル数のNOxモル数に対する比である必要モル比(NHモル/NOxモル)信号20を算出し、これに出口NOx分析計22で検出された実測出口NOx濃度信号23と設定NOx濃度信号16との偏差を減算器24により計算して得た脱硝反応器出口NOx制御偏差67を比例積分演算器25で演算した後、加算器26で加えて前記必要モル比信号20の補正を行う。得られた補正後の必要モル比補正信号27を総NOx量信号30と乗算器32で掛け合わせて必要NH流量信号33を算出する。
【0007】
この必要NH流量信号33とNH流量計38で検出された実測NH流量信号39を減算器40で減算してNH流量偏差信号41を算出し、これを比例積分演算器42で弁開度信号43に変換して真空変換器44によりNH流量調節弁制御信号45に変換し、NH配管5の途中に設けられたNH流量調節弁10を開閉する。
【0008】
また、前記脱硝反応器出口NOx制御偏差67からNH流量を増減させる脱硝出口NOx偏差補正バイアス出力信号64(脱硝反応器出口制御偏差67を偏差に応じたバイアスを設定する関数発生器54と変化率制限器55で処理して得られる。)と、脱硝反応器内での残存NH吸着量を考慮してNH流量を増減させる残存NH吸着量補正バイアス信号65(出口NOx濃度信号23と入口NOx濃度信号13との偏差を減算器57で算出し、これに被処理ガス流量28を乗算器58で掛け合わせて脱硝反応器内の残存NOx量を算出し、これに対応して消費されるNH流量を実測NH流量信号39に基づき減算器56で算出し、消費されたNH流量とリークNH流量検出器59の検出値の偏差から残存NH吸着量補正バイアス信号65を得る。)とを加算器61で加算し、さらに得られた加算値に脱硝反応器出口制御偏差67からの補正ゲイン63(制御偏差67を偏差に応じたゲインを設定する関数発生器52と一次遅れ関数発生器53で処理して得られる。)を乗算することで補正必要NH注入補正出力信号66を得て、これを加算器51で前記必要NH流量信号33に加えて補正後の必要NH流量信号68を算出する。
【0009】
また、上記制御回路として下記の公知例がある。
▲1▼特開昭62−231305号公報、「温度制御装置」:当該発明は、被制御体の温度に規定以上のハンチングが現れたときは、積分動作の利得下げるようにしたことを特徴とする温度制御装置である。
【0010】
▲2▼特開平2−31201号公報、「フィードバック制御装置」:当該発明は、持続的な振動変化が発生した場合、ゲインを下げる制御回路を設けたことを特徴とするフィードバック制御装置である。
【0011】
▲3▼特開平3−179501号公報、「油圧サーボ系の制御装置」:当該発明は、予め設定されているハンチング発生時周波数と一致した場合に、ハンチングが発生したと判断することと、ハンチングを抑えるゲイン調整手段をそなえたことを特徴とする制御装置である。
【0012】
【特許文献1】
特開昭62−231305号公報
【0013】
【特許文献2】
特開平2−31201号公報
【0014】
【特許文献3】
特開平3−179501号公報
【0015】
【発明が解決しようとする課題】
上記従来技術の脱硝反応器のNH流量制御装置において、脱硝反応器出口NOx濃度が制御設定値へ漸近するまでの時間を短縮すべく、できるだけ制御量(NH量)の増加・減少の感度を上げる方向で調整を実施するが、ボイラの運転状態が著しく異なる急速負荷変化、炭種変化、予測不能な外乱等が発生した場合(ボイラの平衡状態が大きく崩れた場合)、ハンチング現象が発生する事象があった。
【0016】
更に、ハンチング現象が発生した場合においても、制御量の感度を下げるタイミングが考慮されておらず、ハンチングを助長させる事象があった。
【0017】
このため、ボイラの運転状態が著しく異なる急速負荷変化、炭種変化、外乱等によりボイラの平衡状態が大きく崩れた場合、制御対象プロセス値がハンチングする現象が生じる。
【0018】
本発明の課題はボイラの運転状態が著しく異なるなど、プロセス値が急速負荷変化、炭種変化、外乱等により、プロセス値の平衡状態が大きく崩れた場合でも、前記制御対象のプロセス値がハンチングしないように制御する方法と装置を提供することである。
【0019】
【課題を解決するための手段】
前記課題を解決する為に、本発明は主として次の様な構成を採用する。
(1)被処理物の負荷変化があり、被処理物に基因するプロセス値が変化する制御対象機器のプロセス値制御方法であって、制御対象機器のプロセス値の変化率が所定値より小さくなり、実測プロセス値の変化が所定のハンチング領域内に入り、且つ制御対象機器の負荷変化が終了して、または起動開始後または運転停止後所定の時間が経過したと判定されると、プロセス値の制御量感度を下げて制御対象機器のプロセス値を調節するプロセス値制御方法。
【0020】
(2)アンモニアを被処理ガス中に注入することで被処理ガス中の窒素酸化物を除去する脱硝反応器の入口窒素酸化物濃度、出口窒素酸化物濃度設定値、出口窒素酸化物濃度及び処理ガス量を含むパラメータにより被処理ガス中へのアンモニア注入流量を調節する脱硝反応器アンモニア注入流量制御方法において、実測窒素酸化物濃度の変化率が所定値より小さくなり、実測窒素酸化物濃度の変化が所定のハンチング領域内に入り、かつ脱硝反応器の負荷変化が終了して、または起動開始後または運転停止後所定の時間が経過した場合には窒素酸化物濃度変化の制御感度を下げる脱硝反応器アンモニア注入流量制御方法。
ここで、実測NOx濃度の変化が前記ハンチング領域内から脱して安定した場合には、NOx濃度変化の制御感度の下げを解除して通常のNOx濃度変化の制御感度に戻すことができる。
【0021】
(3)被処理物の負荷変化があり、被処理物に基因するプロセス値が変化する制御対象機器のプロセス値制御装置であって、制御対象機器のプロセス値を調節するプロセス値調節手段と、プロセス値の変化率が所定値より小さくなったかどうかを判定するプロセス値変化方向判定器と、実測プロセス値の変化が所定のハンチング領域内に入ったかどうかを判定するハンチング判定器と、制御対象機器の負荷変化が終了して、または起動開始後または運転停止後所定の時間が経過したかどうかを判定する負荷変化終了時限後判定器と、前記三つの判定器が全て「イエス」の判定であったときにプロセス値の制御量感度を下げる切替器とを設けたプロセス値制御装置。
【0022】
(4)アンモニアを被処理ガス中に注入することで被処理ガス中の窒素酸化物を除去する脱硝反応器の入口窒素酸化物濃度、出口窒素酸化物濃度設定値、出口窒素酸化物濃度及び処理ガス量を含むパラメータにより被処理ガス中へのアンモニア注入流量を調節する脱硝反応器アンモニア注入流量制御装置において、脱硝反応器の入口窒素酸化物濃度、出口窒素酸化物濃度設定値、出口窒素酸化物濃度及び処理ガス量を含むパラメータにより被処理ガス中へのアンモニア注入流量を算出する必要アンモニア注入流量算出器と、該必要アンモニア注入流量算出器で算出された必要アンモニア注入流量と実測したアンモニア注入流量の偏差に基づきアンモニア注入流量を調節しながら脱硝反応器へ注入するアンモニア注入流量調節器とを備えた脱硝装置のアンモニア流量制御装置において、実測窒素酸化物濃度の変化率が所定値より小さくなったかどうかを判定する実測窒素酸化物濃度変化方向判定器と、実測窒素酸化物濃度の変化が所定のハンチング領域内に入ったかどうかを判定するハンチング判定器と、脱硝反応器の負荷変化が終了して、または起動開始後または運転停止後所定の時間が経過したかどうか判定する負荷変化終了時限後判定器と、前記三つの判定器が全て「イエス」の判定であったときに窒素酸化物濃度変化の制御感度を下げる切替器とを設けた脱硝反応器アンモニア注入流量制御装置。
前記切替器は、前記三つの判定器が全て「ノー」の判定があったときにNOx濃度変化の制御感度を元に設定値に戻す機能を備えた構成とすることができる。
【0023】
【作用】
図1により本発明を説明すると、制御対象となるプロセス値の変化方向をプロセス変化方向判定信号87により、常時判定させておき、負荷変化・起動・停止などのイベントが終了し一定時間が経過したことを判定する負荷変化終了時限後判定信号86と制御対象となるプロセス値のハンチング発生有無をハンチング判定信号88が成立した場合には、制御対象となるプロセス値のハンチング現象を収束させる方向へ、制御量の感度を変化率制限付切替器82により切替を行い、ハンチングを速やかに改善することができる。
【0024】
【発明の実施の形態】
本発明の実施形態に係る脱硝制御装置において、図面を用いて以下説明する。
図2は脱硝反応器の概略図である。脱硝反応器1は、被処理ガスG、例えば被処理ガスGの発生源であるボイラの排ガスを入口ダクト2から導入し、NHの注入によって脱硝処理してから出口ダクト3に排出し、更に図示していない煙突により屋外に排出する。この際、入口ダクト2に設けられたNH注入管4によって、被処理ガスG中のNOx量に見合ったNHがアンモニア流量計38及びアンモニア流量調節弁10を介して注入され、被処理ガスG中のNOxは脱硝反応器1の内部に充填された図示していない脱硝触媒の働きによって無害な水蒸気と窒素ガスに分解され、除去される。通常、脱硝反応器1の運用は被処理ガスGの発生源、例えばボイラ等の負荷変化時においても脱硝反応器1の出口NOx濃度が既定値以下になるように制御される。ここで、被処理ガスG中の入口NOx濃度は、入口NOx分析計12で、出口NOx濃度は出口NOx分析計22で計測される。
【0025】
以下、本発明の実施例である制御装置の全体構造を図1を用いて説明する。
図1は上記脱硝反応器1に備えられた脱硝反応器のアンモニア制御装置の実施の形態を示す図である。
【0026】
図1のアンモニア制御装置は、図3に示す従来技術のアンモニア制御装置に負荷要求指令値の変動により被処理ガスG中へのアンモニア注入流量の平衡状態が大きく崩れた場合でも、アンモニア注入流量がハンチングしないように制御する回路を追加したものである。すなわち、被処理ガス中にNH注入量を算出する注入量算出器9及び先行的に必要NH流量算出器50の他に、制御量感度切替信号85を設置したものである。
【0027】
具体的な動作方法は以下となる。
制御対象となる被処理ガス中へのNH注入流量の変化方向をプロセス変化方向判定信号87により、常時判定させておき、負荷変化・起動・停止などのイベントが終了し一定時間が経過したことを判定する負荷変化終了時限後判定信号86により判定させる。
【0028】
プロセス変化(NH注入流量変化)方向判定信号87は脱硝反応器出口NOx濃度信号23を微分回路78で微分して、その変化率が下限値に達した場合(変化率が小さくなってプロセス値が安定してきた状態)に出力がある。
【0029】
また、脱硝反応器出口NOx濃度信号23の下側判定器76と上側判定器77の両方の信号がAND回路79に入力され、それがAND回路79から出力されるとNH注入流量が大きく変化するためハンチングが生じていることになり、AND回路79の出力信号はハンチングの判定信号88となる。すなわち、下側判定器76と上側判定器77の両方の条件を満たしたか否かで判定信号88が出力される。プロセス変化方向判定信号87とハンチング判定信号88の両方からAND回路81に入力があると、該AND回路81の出力はAND回路75に入力される。
【0030】
AND回路75にはボイラ等の負荷変化が終了して、または起動開始後または運転停止後所定の時間が経過したかどうか判定する負荷変化終了時限後判定信号86が入力可能になっている。
【0031】
負荷変化終了時限後判定信号86は、負荷要求指令値(ボイラ等の負荷変化、起動または停止で生じる指令値)の微分回路69で微分され、その微分値が上側判定器70と下側判定器71のいずれかの条件を満たすと、OR回路72から出力があり、該出力が否定回路73とオンディレイ回路74を経由することで得られる。
【0032】
AND回路75には負荷変化終了時限後判定信号86と先のプロセス変化方向判定信号87とハンチング判定信号88の両方からの入力で作動するAND回路81からの出力がAND回路75に入力されると三つの条件が揃うので、変化率制限付切替器82が作動する。該変化率制限付切替器82の作動は二つの定数発生器83、84の定数値が切り替わることで行われる。また、変化率制限付切替器82の出力は脱硝反応器出口NOx濃度制御偏差67の一次遅れ関数発生器53に入力されて、必要NH注入流量算出器50の補正必要NH注入流量補正出力信号66に算入される。
【0033】
こうして、ハンチング判定信号88が成立している範囲だけNH注入流量の制御量の感度を下げ、制御対象となるNH注入流量のハンチング現象を収束される方向へ制御量の感度を下げるように変化率制限付切替器82の切替を行い、ハンチングを速やかに改善することが出来るので、その結果、適宜、脱硝反応器出口NOx濃度の制御量の感度調整が実施でき、常時適切な制御量の感度を確保することが可能となる。
【0034】
また、負荷要求指令値の微分値のOR回路72から出力が無くなり、ハンチング現象が収束するとオンディレイ回路74を経由することで所定時間後にはAND回路75が作動しなくなるので変化率制限付切替器82の作動も無くなり、制御量の感度を初期設定値へ戻すことができる。
【0035】
こうして前記制御操作後にハンチング現象が収束したことを制御対象となるNH注入流量の挙動より判断し、適切なタイミングで制御量の感度を初期設定値へ戻すことができる。
【0036】
前記従来技術の項で述べた公報記載の3つの従来技術は、全てハンチング現象が発生した場合に制御ゲインを下げることを特徴としているが、ハンチング現象が発生した場合においても、ゲインを下げるタイミングおよび範囲を考慮することが肝要であり、もしこれを怠った場合には発散現象或いはハンチング現象を助長させることがしばしばある。
【0037】
これに対して本発明の上記実施の形態はハンチング現象が発生した場合には操作量の感度を下げ、常に制御対象となるプロセス値の安定化を図り、ハンチング現象が収束した場合には、再度、ハンチング発生前の制御量感度へ戻すことに特徴があり、ゲインを下げるタイミングおよび範囲を考慮すること無く容易にハッチングを収束させ、安定な制御が自動的にできる特徴がある。
【0038】
【発明の効果】
本発明では、制御量の感度と制御対象となるプロセス値の感度に差異が生じ、ハンチング現象が発生した場合においても、人為的な行為を必要とせず操作量の感度を下げ、常に制御対象となるプロセス値の安定化を図り、ハンチング現象が収束した場合には、再度、ハンチング発生前の制御量感度へ戻すことにより、常に制御設定値へ漸近するまでの時間短縮が計れる効果が期待出来る制御方式である。
【図面の簡単な説明】
【図1】本発明に係る脱硝制御装置の一実施の形態を示す制御回路図である。
【図2】脱硝反応器の窒素酸化物計測位置及びアンモニア注入位置を示す概略図である。
【図3】従来技術に係る脱硝制御装置の制御回路図である。
【符号の説明】
1 脱硝反応器 2 入口ダクト
3 出口ダクト 4 NH注入管
5 NH配管
8 従来脱硝制御装置
9 NH注入量算出器
10 NH流量調節弁
12 入口NOx分析計 13 入口NOx濃度信号
15 出口NOx濃度設定器 16 設定NOx濃度信号
18 必要NHモル比演算部
19、24、40、56、57、60 減算器
20 必要モル比信号 22 出口NOx分析計
23 出口NOx濃度信号 25、42 比例積分演算器
26、51、61 加算器 27 必要モル比補正信号
28 被処理ガス量 29 被処理ガス流量信号
30 総NOx量信号 31、32、58、62 乗算器
33 必要NH流量信号
38 NH流量計
39 実測NH流量信号
41 NH流量偏差信号
43 弁開度信号 44 真空変換器
45 NH流量調節弁制御信号
50 必要NH流量算出器
52、54 関数発生器 53 一次遅れ関数発生器
55 変化率制御器 59 リークNH流量検出器
63 出口NOx偏差補正ゲイン出力信号
64 脱硝出口出口NOx偏差補正バイアス出力信号
65 残存NH吸着量補正バイアス信号
66 補正必要NH注入補正出力信号
67 脱硝出口NOx制御偏差 68 補正後必要NH流量信号
69、78 微分回路 70、77 上側判定器
71、76、80 下側判定器 72 OR回路
73 否定回路 74 オンディレイ回路
75、79、81 AND回路 82 変化率制限付切替器
83、84 定数発生器 85 制御量感度切替信号
86 負荷変化終了時限後判定信号 87 プロセス変化方向判定信号
88 ハンチング判定信号 G 被処理ガス
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for controlling a process value using feedback control.
[0002]
[Prior art]
As an example of controlling the process value, ammonia in the gas to be treated in a flue gas denitration apparatus in which a nitrogen oxide (NOx) component in the gas to be treated (exhaust gas) is injected with ammonia (NH 3 ) and then removed by a denitration catalyst. A description will be given of a conventional process value control method using an ammonia injection flow rate control device for adjusting an (NH 3 ) injection flow rate.
[0003]
In the flue gas denitration apparatus, NOx in the gas to be treated reacts with NH 3 injected into the gas to be treated, and becomes nitrogen and water. Therefore, the amount of NH 3 to be injected basically becomes the amount of NOx to be treated. You will inject the right amount. However, it must be taken into account that the injected NH 3 is not only used for the reaction with NOx but also adsorbs as much as possible on the catalyst surface.
[0004]
On the other hand, if the amount of NH 3 injected into the gas to be treated is insufficient with respect to the amount of NOx to be treated, NOx cannot be completely treated, and the NOx concentration at the outlet of the denitration reactor may exceed a specified value. FIG. 3 is a system diagram of a denitration reaction control installed in a conventional flue gas denitration apparatus.
[0005]
NH 3 injection rate calculator 9 for calculating a NH 3 injection rate commensurate with the amount of NOx to be treated in the gas inlet NOx concentration of the denitration reactor, the outlet NOx concentration setting, suitable from the outlet NOx concentration and the amount of exhaust gas, etc. This is for calculating the NH 3 injection amount. That is, the total NOx amount signal 30 is calculated by multiplying the inlet NOx concentration signal 13 detected by the inlet NOx analyzer 12 of the denitration reactor and the gas flow signal 29 of the gas amount 28 to be processed by the multiplier 31. I do.
[0006]
On the other hand, at the inlet NOx concentration signal 13 and the denitration reactor outlet NOx concentration setter 15 must NH 3 molar ratio calculation unit 18 having a subtractor 19 which performs subtraction between the set NOx concentration signal 16 which is set by the NH 3 moles of A required molar ratio (NH 3 mole / NOx mole) signal 20 which is a ratio to the NOx mole number is calculated, and a deviation between the actually measured outlet NOx concentration signal 23 detected by the outlet NOx analyzer 22 and the set NOx concentration signal 16 is calculated. Is calculated by the subtractor 24, the NOx control deviation 67 at the outlet of the denitration reactor is calculated by the proportional-integral calculator 25, and then added by the adder 26 to correct the required molar ratio signal 20. The necessary corrected molar ratio correction signal 27 obtained is multiplied by the total NOx amount signal 30 and the multiplier 32 to calculate the required NH 3 flow rate signal 33.
[0007]
The required NH 3 flow rate signal 33 and the actually measured NH 3 flow rate signal 39 detected by the NH 3 flow meter 38 are subtracted by a subtractor 40 to calculate an NH 3 flow rate deviation signal 41, which is calculated by a proportional-integral calculator 42. The signal is converted into an opening signal 43 and converted into an NH 3 flow control valve control signal 45 by a vacuum converter 44, and the NH 3 flow control valve 10 provided in the middle of the NH 3 pipe 5 is opened and closed.
[0008]
A denitration outlet NOx deviation correction bias output signal 64 for increasing / decreasing the NH 3 flow rate from the denitration reactor exit NOx control deviation 67 (the denitration reactor exit control deviation 67 differs from the function generator 54 for setting a bias in accordance with the deviation). And a residual NH 3 adsorption amount correction bias signal 65 (outlet NOx concentration signal 23) for increasing or decreasing the NH 3 flow rate in consideration of the residual NH 3 adsorption amount in the denitration reactor. The difference between the NOx concentration signal 13 and the inlet NOx concentration signal 13 is calculated by a subtractor 57, and the difference is multiplied by a multiplier 58 by a multiplier 58 to calculate the amount of residual NOx in the denitration reactor. NH 3 flow rate is calculated by the subtractor 56 on the basis of the measured NH 3 flow rate signal 39, the residual adsorbed NH 3 amount from the deviation of the detected value of the flow rate of NH 3 consumed and the leakage NH 3 flow rate detector 59 which is A positive bias signal 65 is obtained by the adder 61, and a correction gain 63 from the denitration reactor outlet control deviation 67 (a function for setting the control deviation 67 to a gain corresponding to the deviation) is added to the obtained addition value. obtained by treating with generator 52 and the first-order lag function generator 53.) to obtain a corrected required NH 3 injection correction output signal 66 by multiplying, which the necessary NH 3 flow rate signal 33 in the adder 51 In addition, the required NH 3 flow rate signal 68 after the correction is calculated.
[0009]
In addition, there are known examples of the control circuit described below.
{Circle around (1)} JP-A-62-231305, "Temperature control device": The invention is characterized in that the gain of the integral operation is reduced when hunting exceeding a specified temperature occurs in the temperature of the controlled object. Temperature control device.
[0010]
{Circle around (2)} JP-A-2-31201, "Feedback control device": The present invention is a feedback control device including a control circuit for lowering a gain when a continuous vibration change occurs.
[0011]
(3) Japanese Patent Application Laid-Open No. 3-179501, "Control Device for Hydraulic Servo System": The invention relates to determining that hunting has occurred when the frequency coincides with a preset hunting occurrence frequency. A control device comprising a gain adjusting means for suppressing the noise.
[0012]
[Patent Document 1]
JP-A-62-231305
[Patent Document 2]
JP-A-2-31201
[Patent Document 3]
JP-A-3-179501
[Problems to be solved by the invention]
In the above-described conventional NH 3 flow rate control device for the denitration reactor, the sensitivity of increasing or decreasing the control amount (NH 3 amount) as much as possible in order to shorten the time until the NOx concentration at the outlet of the denitration reactor approaches the control set value. If the boiler's operating conditions are significantly different, such as rapid load changes, coal type changes, unpredictable disturbances, etc. (when the boiler's equilibrium state is greatly disrupted), a hunting phenomenon will occur. There was an event to do.
[0016]
Furthermore, even when the hunting phenomenon occurs, the timing for lowering the sensitivity of the control amount is not considered, and there is an event that promotes the hunting.
[0017]
For this reason, when the boiler's equilibrium state is significantly disrupted due to a rapid load change, a change in coal type, a disturbance, or the like in which the operation state of the boiler is significantly different, a phenomenon occurs in which the control target process value hunts.
[0018]
The problem of the present invention is that the process value of the controlled object does not hunt even when the process value is rapidly disturbed due to a rapid change in load, a change in coal type, disturbance, etc. To provide a control method and apparatus.
[0019]
[Means for Solving the Problems]
In order to solve the above problems, the present invention mainly employs the following configuration.
(1) A process value control method for a controlled device in which a process value caused by a load change of a process target and a process value caused by the process target changes, wherein a change rate of the process value of the control target device becomes smaller than a predetermined value. When it is determined that the change in the measured process value falls within the predetermined hunting region and that the load change of the control target device has ended, or that a predetermined time has elapsed after the start of operation or the stop of operation, A process value control method for adjusting a process value of a device to be controlled by lowering a control amount sensitivity.
[0020]
(2) Inlet nitrogen oxide concentration, outlet nitrogen oxide concentration set value, outlet nitrogen oxide concentration and treatment of a denitration reactor for removing nitrogen oxides in the gas to be treated by injecting ammonia into the gas to be treated In a method for controlling the ammonia injection flow rate in a denitration reactor in which the flow rate of ammonia injected into the gas to be treated is adjusted by a parameter including the gas amount, the rate of change of the measured nitrogen oxide concentration becomes smaller than a predetermined value, and the change of the measured nitrogen oxide concentration changes. Is within a predetermined hunting region, and when the load change of the denitration reactor is completed, or when a predetermined time has elapsed after the start of operation or the stop of operation, the control sensitivity of the nitrogen oxide concentration change is reduced. Ammonia injection flow control method.
Here, when the change in the measured NOx concentration comes out of the hunting region and stabilizes, the reduction in the control sensitivity of the NOx concentration change can be canceled to return to the normal control sensitivity for the NOx concentration change.
[0021]
(3) A process value control device of a controlled device in which a process value caused by a load change of a processing target and a process value caused by the processing target changes, and a process value adjusting unit for adjusting a process value of the control target device; A process value change direction determiner for determining whether the rate of change of the process value is smaller than a predetermined value; a hunting determiner for determining whether a change in the measured process value is within a predetermined hunting region; A load change end time limit judging device for judging whether or not a predetermined time has elapsed after the start of the load change or after the start of the operation or the stop of the operation, and the three judgment devices are all judged as “yes”. A process value control device provided with a switch for lowering the control amount sensitivity of the process value when the process value is low.
[0022]
(4) Inlet nitrogen oxide concentration, outlet nitrogen oxide concentration set value, outlet nitrogen oxide concentration and treatment of a denitration reactor for removing nitrogen oxides in the gas to be treated by injecting ammonia into the gas to be treated In a denitration reactor ammonia injection flow rate control device that adjusts an ammonia injection flow rate into a gas to be treated by a parameter including a gas amount, an inlet nitrogen oxide concentration, an outlet nitrogen oxide concentration set value, an outlet nitrogen oxide concentration of a denitration reactor A required ammonia injection flow rate calculator for calculating the ammonia injection flow rate into the gas to be processed based on parameters including the concentration and the processing gas amount, a required ammonia injection flow rate calculated by the required ammonia injection flow rate calculator and an actually measured ammonia injection flow rate With an ammonia injection flow rate controller for injecting into the denitration reactor while adjusting the ammonia injection flow rate based on the deviation of In the ammonia flow control device, an actual measured nitrogen oxide concentration change direction determiner that determines whether the rate of change of the actual measured nitrogen oxide concentration is smaller than a predetermined value, and a change in the actually measured nitrogen oxide concentration in a predetermined hunting region. A hunting determiner that determines whether or not a load change of the denitration reactor has been completed, or a load change end time limit determiner that determines whether a predetermined time has elapsed after start-up or operation stop. A denitration reactor ammonia injection flow control device, comprising: a switch for lowering the control sensitivity of the nitrogen oxide concentration change when all of the three determination devices make a “yes” determination.
The switching device may be configured to have a function of returning to a set value based on the control sensitivity of the NOx concentration change when all three determination devices make a “No” determination.
[0023]
[Action]
The present invention will be described with reference to FIG. 1. A change direction of a process value to be controlled is always determined by a process change direction determination signal 87, and a certain time has elapsed after an event such as a load change, start, or stop has ended. If the hunting determination signal 88 is satisfied, the hunting determination signal 86 and the hunting occurrence of the process value to be controlled are established when the hunting determination signal 88 is satisfied. The sensitivity of the control amount is switched by the change rate limiting switch 82, so that hunting can be promptly improved.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
The denitration control device according to the embodiment of the present invention will be described below with reference to the drawings.
FIG. 2 is a schematic diagram of a denitration reactor. The denitration reactor 1 introduces a gas G to be treated, for example, exhaust gas from a boiler, which is a source of the gas G to be treated, from an inlet duct 2, performs a denitrification process by injecting NH 3 , and discharges the gas to an outlet duct 3. It is discharged outside by a chimney not shown. At this time, the NH 3 injection tube 4 provided in the inlet duct 2, NH 3 commensurate with the amount of NOx in the gas to be treated G is injected through the ammonia flow meter 38 and the ammonia flow control valve 10, the gas to be treated NOx in G is decomposed into harmless water vapor and nitrogen gas by the action of a denitration catalyst (not shown) filled in the denitration reactor 1 and removed. Normally, the operation of the denitration reactor 1 is controlled so that the outlet NOx concentration of the denitration reactor 1 becomes equal to or lower than a predetermined value even when the load of the source of the gas G to be treated, for example, a boiler or the like, changes. Here, the inlet NOx concentration in the gas to be treated G is measured by the inlet NOx analyzer 12, and the outlet NOx concentration is measured by the outlet NOx analyzer 22.
[0025]
Hereinafter, an overall structure of a control device according to an embodiment of the present invention will be described with reference to FIG.
FIG. 1 is a diagram showing an embodiment of an ammonia control device for a denitration reactor provided in the denitration reactor 1.
[0026]
The ammonia control device shown in FIG. 1 is different from the conventional ammonia control device shown in FIG. 3 in that even if the load injection command value fluctuates the equilibrium state of the ammonia injection flow into the gas G to be treated, the ammonia injection flow is reduced. This is a circuit in which control is performed to prevent hunting. That is, in addition to the injection amount calculator 9 for calculating the NH 3 injection amount in the gas to be processed and the necessary NH 3 flow rate calculator 50 in advance, a control amount sensitivity switching signal 85 is provided.
[0027]
The specific operation method is as follows.
The change direction of the NH 3 injection flow rate into the target gas to be controlled is always determined by the process change direction determination signal 87, and a certain period of time has elapsed after an event such as a load change / start / stop has ended. Is determined by the determination signal 86 after the end of the load change.
[0028]
The process change (NH 3 injection flow rate change) direction determination signal 87 is obtained by differentiating the NOx concentration signal 23 at the outlet of the denitration reactor by the differentiating circuit 78, and when the rate of change reaches the lower limit value (the rate of change becomes smaller and the process value becomes smaller). Is stable).
[0029]
Further, both signals of the lower determination unit 76 and the upper determination unit 77 of the NOx concentration signal 23 at the outlet of the denitration reactor are input to the AND circuit 79, and when the signals are output from the AND circuit 79, the NH 3 injection flow rate changes greatly. As a result, hunting occurs, and the output signal of the AND circuit 79 becomes a hunting determination signal 88. That is, the determination signal 88 is output based on whether or not the conditions of both the lower determination unit 76 and the upper determination unit 77 are satisfied. When there is an input from both the process change direction determination signal 87 and the hunting determination signal 88 to the AND circuit 81, the output of the AND circuit 81 is input to the AND circuit 75.
[0030]
The AND circuit 75 can receive a post-load-change end time determination signal 86 for determining whether a predetermined time has elapsed after the load change of the boiler or the like has ended, or after the start of operation or the stop of operation.
[0031]
The post-load change end time determination signal 86 is differentiated by a differentiating circuit 69 of a load request command value (a command value generated by a load change, start or stop of a boiler or the like), and the differentiated value is obtained by an upper judgment unit 70 and a lower judgment unit. When any one of the conditions 71 is satisfied, there is an output from the OR circuit 72, and the output is obtained by passing through the NOT circuit 73 and the on-delay circuit 74.
[0032]
When the output from the AND circuit 81 that operates based on the input from both the post-load change end time determination signal 86, the previous process change direction determination signal 87, and the hunting determination signal 88 is input to the AND circuit 75. Since the three conditions are satisfied, the change rate-limited switch 82 operates. The operation of the change rate limiting switch 82 is performed by switching between the constant values of the two constant generators 83 and 84. The output of the change rate limiting switch 82 is input to the first-order lag function generator 53 of the NOx concentration control deviation 67 at the outlet of the denitration reactor, and the required NH 3 injection flow rate correction output of the required NH 3 injection flow rate calculator 50 is output. It is included in the signal 66.
[0033]
In this manner, the sensitivity of the control amount of the NH 3 injection flow rate is reduced only in the range where the hunting determination signal 88 is established, and the sensitivity of the control amount is reduced in a direction in which the hunting phenomenon of the NH 3 injection flow rate to be controlled is converged. Since the hunting can be quickly improved by switching the switch 82 with the change rate limit, as a result, the sensitivity adjustment of the control amount of the NOx concentration at the outlet of the denitration reactor can be appropriately performed, and the appropriate control amount can be constantly adjusted. Sensitivity can be ensured.
[0034]
Further, when the output of the OR circuit 72 of the differential value of the load request command value disappears and the hunting phenomenon converges, the AND circuit 75 does not operate after a predetermined time by passing through the on-delay circuit 74. The operation of 82 is also eliminated, and the sensitivity of the control amount can be returned to the initial set value.
[0035]
In this manner, the convergence of the hunting phenomenon after the control operation is determined from the behavior of the NH 3 injection flow rate to be controlled, and the sensitivity of the control amount can be returned to the initial set value at an appropriate timing.
[0036]
The three prior arts described in the above-mentioned prior art are all characterized by lowering the control gain when a hunting phenomenon occurs. It is important to consider the range, and if neglected it often promotes divergence or hunting.
[0037]
On the other hand, in the above-described embodiment of the present invention, when the hunting phenomenon occurs, the sensitivity of the manipulated variable is reduced, and the process value to be controlled is always stabilized. The feature is that the sensitivity is returned to the control amount sensitivity before the occurrence of hunting, and the hatching can be easily converged without considering the timing and range of decreasing the gain, and stable control can be automatically performed.
[0038]
【The invention's effect】
In the present invention, a difference occurs between the sensitivity of the control amount and the sensitivity of the process value to be controlled, and even when a hunting phenomenon occurs, the sensitivity of the operation amount is reduced without requiring an artificial action, and the control object is always controlled. If the hunting phenomenon converges by stabilizing the process value, control is returned to the control amount sensitivity before hunting occurs again, so that the control can be expected to have the effect of shortening the time until it gradually approaches the control set value. It is a method.
[Brief description of the drawings]
FIG. 1 is a control circuit diagram showing an embodiment of a denitration control device according to the present invention.
FIG. 2 is a schematic diagram showing a nitrogen oxide measurement position and an ammonia injection position of a denitration reactor.
FIG. 3 is a control circuit diagram of a denitration control device according to the related art.
[Explanation of symbols]
1 denitration reactor 2 inlet duct 3 the outlet duct 4 NH 3 injection tube 5 NH 3 pipe 8 prior denitrating controller 9 NH 3 injection rate calculator 10 NH 3 flow rate control valve 12 inlet NOx analyzer 13 inlet NOx concentration signal 15 outlet NOx Concentration setting unit 16 Set NOx concentration signal 18 Required NH 3 molar ratio calculation unit 19, 24, 40, 56, 57, 60 Subtractor 20 Required molar ratio signal 22 Outlet NOx analyzer 23 Outlet NOx concentration signal 25, 42 Proportional integral calculation Units 26, 51, 61 Adder 27 Required molar ratio correction signal 28 Gas to be processed 29 Gas flow signal to be processed 30 Total NOx amount signal 31, 32, 58, 62 Multiplier 33 Required NH 3 flow signal 38 NH 3 flow meter 39 measured NH 3 flow signal 41 NH 3 flow deviation signal 43 valve opening signal 44 vacuum converter 45 NH 3 flow control valve control signal 50 required NH 3 flow rate calculators 52 and 54 Function generator 53 First order lag function generator 55 Change rate controller 59 Leak NH 3 flow rate detector 63 Out NOx deviation correction gain output signal 64 DeNOx outlet NOx deviation correction bias output signal 65 Remaining NH 3 Adsorption amount correction bias signal 66 Correction required NH 3 injection correction output signal 67 Denitration outlet NOx control deviation 68 Corrected required NH 3 flow rate signal 69, 78 Differentiation circuit 70, 77 Upper decision unit 71, 76, 80 Lower decision unit 72 OR circuit 73 Negation circuit 74 On-delay circuits 75, 79, 81 AND circuit 82 Switches 83, 84 with rate-of-change limiting constant generator 85 Control amount sensitivity switching signal 86 Load change end time limit judgment signal 87 Process change direction judgment signal 88 Hunting judgment signal G Gas to be processed

Claims (6)

被処理物の負荷変化があり、被処理物に基因するプロセス値が変化する制御対象機器のプロセス値制御方法であって、
制御対象機器のプロセス値の変化率が所定値より小さくなり、実測プロセス値の変化が所定のハンチング領域内に入り、且つ制御対象機器の負荷変化が終了して、または起動開始後または運転停止後所定の時間が経過したと判定されると、プロセス値の制御量感度を下げて制御対象機器のプロセス値を調節することを特徴とするプロセス値制御方法。
There is a change in the load of the object, a process value control method of the controlled device in which the process value due to the object changes,
The rate of change of the process value of the control target device becomes smaller than a predetermined value, the change of the measured process value falls within a predetermined hunting area, and the load change of the control target device is completed, or after starting up or stopping operation. A process value control method characterized in that when it is determined that a predetermined time has elapsed, the process value of the controlled device is adjusted by lowering the control amount sensitivity of the process value.
アンモニアを被処理ガス中に注入することで被処理ガス中の窒素酸化物を除去する脱硝反応器の入口窒素酸化物濃度、出口窒素酸化物濃度設定値、出口窒素酸化物濃度及び処理ガス量を含むパラメータにより被処理ガス中へのアンモニア注入流量を調節する脱硝反応器アンモニア注入流量制御方法において、
実測窒素酸化物濃度の変化率が所定値より小さくなり、実測窒素酸化物濃度の変化が所定のハンチング領域内に入り、かつ脱硝反応器の負荷変化が終了して、または起動開始後または運転停止後所定の時間が経過した場合には窒素酸化物濃度変化の制御感度を下げることを特徴とする脱硝反応器アンモニア注入流量制御方法。
Nitrogen oxide in the gas to be treated is removed by injecting ammonia into the gas to be treated. In the denitration reactor ammonia injection flow rate control method of adjusting the ammonia injection flow rate into the gas to be treated by including parameters,
The rate of change of the measured nitrogen oxide concentration becomes smaller than a predetermined value, the change of the measured nitrogen oxide concentration falls within a predetermined hunting region, and the load change of the denitration reactor is completed, or after starting up or after shutting down. A method for controlling the ammonia injection flow rate in a denitration reactor, wherein the control sensitivity of the nitrogen oxide concentration change is reduced after a predetermined time has elapsed.
実測窒素酸化物濃度の変化が前記ハンチング領域内から脱して安定した場合には、窒素酸化物濃度変化の制御感度の下げを解除して通常の窒素酸化物濃度変化の制御感度に戻すことを特徴とする請求項2記載の脱硝反応器アンモニア注入流量制御方法。When the change in the measured nitrogen oxide concentration stabilizes after coming out of the hunting region, the reduction in the control sensitivity of the nitrogen oxide concentration change is released to return to the normal control sensitivity for the nitrogen oxide concentration change. The method for controlling the ammonia injection flow rate in a denitration reactor according to claim 2. 被処理物の負荷変化があり、被処理物に基因するプロセス値が変化する制御対象機器のプロセス値制御装置であって、
制御対象機器のプロセス値を調節するプロセス値調節手段と、
プロセス値の変化率が所定値より小さくなったかどうかを判定するプロセス値変化方向判定器と、
実測プロセス値の変化が所定のハンチング領域内に入ったかどうかを判定するハンチング判定器と、
制御対象機器の負荷変化が終了して、または起動開始後または運転停止後所定の時間が経過したかどうかを判定する負荷変化終了時限後判定器と、
前記三つの判定器が全て「イエス」の判定であったときにプロセス値の制御量感度を下げる切替器と
を設けたことを特徴とするプロセス値制御装置。
There is a change in the load of the object to be processed, a process value control device of a controlled device in which a process value due to the object to be processed changes,
A process value adjusting means for adjusting a process value of the device to be controlled;
A process value change direction determiner for determining whether the change rate of the process value has become smaller than a predetermined value,
A hunting determiner for determining whether a change in the measured process value is within a predetermined hunting region,
The load change of the control target device ends, or after the load change end time limiter to determine whether a predetermined time has elapsed after start-up or operation stop,
A process value control device, further comprising: a switch for lowering the control amount sensitivity of the process value when all of the three determiners make a “Yes” determination.
アンモニアを被処理ガス中に注入することで被処理ガス中の窒素酸化物を除去する脱硝反応器の入口窒素酸化物濃度、出口窒素酸化物濃度設定値、出口窒素酸化物濃度及び処理ガス量を含むパラメータにより被処理ガス中へのアンモニア注入流量を調節する脱硝反応器アンモニア注入流量制御装置において、
脱硝反応器の入口窒素酸化物濃度、出口窒素酸化物濃度設定値、出口窒素酸化物濃度及び処理ガス量を含むパラメータにより被処理ガス中へのアンモニア注入流量を算出する必要アンモニア注入流量算出器と、
該必要アンモニア注入流量算出器で算出された必要アンモニア注入流量と実測したアンモニア注入流量の偏差に基づきアンモニア注入流量を調節しながら脱硝反応器へ注入するアンモニア注入流量調節器と、
を備えた脱硝装置のアンモニア流量制御装置において、
実測窒素酸化物濃度の変化率が所定値より小さくなったかどうかを判定する実測窒素酸化物濃度変化方向判定器と、
実測窒素酸化物濃度の変化が所定のハンチング領域内に入ったかどうかを判定するハンチング判定器と、
脱硝反応器の負荷変化が終了して、または起動開始後または運転停止後所定の時間が経過したかどうか判定する負荷変化終了時限後判定器と、
前記三つの判定器が全て「イエス」の判定であったときに窒素酸化物濃度変化の制御感度を下げる切替器と
を設けたことを特徴とする脱硝反応器アンモニア注入流量制御装置。
Nitrogen oxide in the gas to be treated is removed by injecting ammonia into the gas to be treated. In the denitration reactor ammonia injection flow rate control device that adjusts the ammonia injection flow rate into the gas to be treated by including the parameters,
A required ammonia injection flow rate calculator for calculating the ammonia injection flow rate into the gas to be processed by parameters including the nitrogen oxide concentration at the inlet of the denitration reactor, the nitrogen oxide concentration set value at the outlet, the nitrogen oxide concentration at the outlet, and the processing gas amount. ,
An ammonia injection flow controller for injecting into the denitration reactor while adjusting the ammonia injection flow based on the difference between the required ammonia injection flow calculated by the required ammonia injection flow calculator and the actually measured ammonia injection flow,
In the ammonia flow control device of the denitration device equipped with
A measured nitrogen oxide concentration change direction determiner for determining whether a change rate of the measured nitrogen oxide concentration has become smaller than a predetermined value,
A hunting determiner for determining whether a change in the measured nitrogen oxide concentration has entered a predetermined hunting region,
After the load change of the denitration reactor is completed, or after the load change end time limiter to determine whether a predetermined time has elapsed after the start of the start or the operation stop,
A switching device for lowering the control sensitivity of the change in the nitrogen oxide concentration when all of the three determination devices make a determination of "yes".
前記切替器は、前記ハンチング判定器が「ノー」の判定であったときに窒素酸化物濃度変化の制御感度を元の設定値に戻す機能を備えたことを特徴とする請求項5記載の脱硝反応器アンモニア注入流量制御装置。6. The denitration apparatus according to claim 5, wherein the switching unit has a function of returning the control sensitivity of the nitrogen oxide concentration change to the original set value when the hunting determination unit makes a "No" determination. Reactor ammonia injection flow control device.
JP2003152277A 2003-05-29 2003-05-29 Process value controlling method and device Pending JP2004355329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152277A JP2004355329A (en) 2003-05-29 2003-05-29 Process value controlling method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003152277A JP2004355329A (en) 2003-05-29 2003-05-29 Process value controlling method and device

Publications (1)

Publication Number Publication Date
JP2004355329A true JP2004355329A (en) 2004-12-16

Family

ID=34047531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152277A Pending JP2004355329A (en) 2003-05-29 2003-05-29 Process value controlling method and device

Country Status (1)

Country Link
JP (1) JP2004355329A (en)

Similar Documents

Publication Publication Date Title
JP5089638B2 (en) Ammonia injection amount correction control apparatus and ammonia injection amount correction control method
JP5677787B2 (en) Denitration control device and denitration control method
US9631776B2 (en) Model-based controls for selective catalyst reduction systems
JP4668852B2 (en) Denitration equipment for combustion equipment
JP2004355329A (en) Process value controlling method and device
JPH0633743A (en) Denitration control device
JP2005169331A (en) Denitrification control method and program for the same
JP5838034B2 (en) Denitration control method and exhaust gas treatment facility
CZ296118B6 (en) Regulation method of inlet amount of treated medium for reducing content of nitrogen oxide in combustion products of combustion processes and control apparatus for making the same
JP2635643B2 (en) Denitration control device for gas turbine plant
JP3565607B2 (en) Method and apparatus for controlling amount of ammonia injection into denitration device
JP4732964B2 (en) Denitration equipment for combustion equipment
JP3902737B2 (en) Ammonia injection control method for denitration catalyst device of waste treatment facility
JPH08168639A (en) Method and device for controlling injection amount of ammonia into denitrification device with denitration catalyst
JP3775694B2 (en) Denitration treatment method and denitration apparatus for exhaust gas
JPH0771619B2 (en) Exhaust gas denitration control device
JP2001104755A (en) Method and apparatus for controlling ammonia injection amount to denitration apparatus
JP2009119306A (en) Controller of denitrification device and control method of the same
JP3568614B2 (en) Method and apparatus for controlling the amount of ammonia injected into a denitration apparatus for treating coal combustion exhaust gas
JPH07328389A (en) Ammonia injection amount control method and apparatus of denitration apparatus
JP3537100B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JP2004154693A (en) Method and apparatus for treating exhaust gas
JPH09187625A (en) Device and method for controlling injection of ammonia into stack gas denitrating equipment
JP2695654B2 (en) Control device for ammonia gas injection volume
JPS6071027A (en) Controlling method of ammonia injection amount in dry waste gas denitration apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060509

A977 Report on retrieval

Effective date: 20080617

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

A131 Notification of reasons for refusal

Effective date: 20081015

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

A02 Decision of refusal

Effective date: 20090128

Free format text: JAPANESE INTERMEDIATE CODE: A02