JPS60202716A - Method for controlling injecting rate of nh3 in noncatalytic denitrating method - Google Patents

Method for controlling injecting rate of nh3 in noncatalytic denitrating method

Info

Publication number
JPS60202716A
JPS60202716A JP59057285A JP5728584A JPS60202716A JP S60202716 A JPS60202716 A JP S60202716A JP 59057285 A JP59057285 A JP 59057285A JP 5728584 A JP5728584 A JP 5728584A JP S60202716 A JPS60202716 A JP S60202716A
Authority
JP
Japan
Prior art keywords
nox
amt
amount
value
reaction space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59057285A
Other languages
Japanese (ja)
Inventor
Miki Yamagishi
山岸 三樹
Takashi Yokoyama
隆 横山
Takao Minami
孝男 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP59057285A priority Critical patent/JPS60202716A/en
Publication of JPS60202716A publication Critical patent/JPS60202716A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To perform adequate injection of NH3 in a noncatalytic denitration method by measuring the temp. of a reaction space as well as the concn. of NOx after denitration and the amt. of waste gas by predicting the amt. of the NOx to be generated and the concn. of leak NH3 and controlling the injecting rate of NH3 according thereto. CONSTITUTION:The past injecting rate of NOx and NH3 is initially set and the temp. of the waste gas in a reaction space and the amt. of the waste gas are measured. The NOx after denitration is measured and the predicted amt. of NOx is calculated. On the other hand, whether the amt. of the NOx at certain time is within the permissible difference of the target value or not is checked from the DELTAt obtd. by dividing specified time by L and the integrated value of the NOx. Whether the incremental amt. of the NOx in the time DELTAt is within the permissible value of the target value or not is checked. Leak NH3 is calculated from the present time T and NH3/NOx ratio and whether said NH3 is smaller than E or not is checked. Whether the injecting rate of the NH3 is smaller than a set value M or not is also checked. When the leak NH3 is larger than E, the NOx target value is set and changed to a slightly higher value.

Description

【発明の詳細な説明】 この発明は無触媒脱硝法におよるNH3注大量の制御方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the amount of NH3 injection using a non-catalytic denitrification method.

無触媒脱硝法は、反応空間にNHaを添加し、排ガス中
のNOxを水と窒素に転化させ無害化する方法であシ、
特公昭50−23664号等によシ本願出願人によ提案
されている。この方法においては反応空間へのNH3の
注入量の制御が重要であシ、注入量が多すぎるとNH3
がリークし2次公害の発生をもたらす危険があシ、また
少なすぎると十分な脱硝が行なえない問題がある。
The non-catalytic denitrification method is a method in which NHa is added to the reaction space to convert NOx in the exhaust gas into water and nitrogen, making it harmless.
This method has been proposed by the applicant in Japanese Patent Publication No. 50-23664 and the like. In this method, it is important to control the amount of NH3 injected into the reaction space.
There is a risk of leaking and causing secondary pollution, and if it is too low, there is a problem that sufficient denitrification cannot be performed.

そのため、従来よj) NH,注入量を制御する種々の
方法が提案、実施されている。
Therefore, various methods for controlling the amount of NH injection have been proposed and implemented.

その中の一つとして、まずNOx発生量を焼却炉のプロ
セスデータ(焼却量、燃焼空気流量、温度、排ガス流量
、温度等)から予想して適当なNH3/’NOx比でN
Ha注大量大量御する方法が知られている。
One of the methods is to first predict the amount of NOx generated from the incinerator's process data (incineration amount, combustion air flow rate, temperature, exhaust gas flow rate, temperature, etc.) and then set the NOx amount at an appropriate NH3/'NOx ratio.
A method for controlling a large amount of Ha injection is known.

この方法の構成を第1図(A)に示す。図中(1)は炉
、(2)は反応空間、(3)はNH3源、(4)は制御
弁、(6)は演算装置、(7ンはプロセスデータである
The configuration of this method is shown in FIG. 1(A). In the figure, (1) is a furnace, (2) is a reaction space, (3) is an NH3 source, (4) is a control valve, (6) is a calculation device, and (7) is process data.

しかし、この方法の場合NOx発生量の変動中は100
〜200 ppmと大きくプロセスデータから予想した
結果と太きくずれることがあ夛、その時には過剰NH3
状態となシ、その過剰NH。
However, with this method, during fluctuations in the amount of NOx generated,
~200 ppm, which may deviate greatly from the results predicted from the process data, in which case there may be excess NH3.
state, its excess NH.

によシ反応器以後の各機器に塩化アンモニウム、硫酸ア
ンモニウムが付着し腐食や閉塞を起す欠点がある。付着
しなかった塩化アンモニウム、硫酸アンモニウムはヒユ
ーム状でサブミクロン(粒径1μm以下)ばいじんであ
るため電気集塵器で捕集されに<<、煙突から排出さn
ると白煙となる。またNH3注入量が少なければNOx
排出規制値をクリヤーできないことになる。
The disadvantage is that ammonium chloride and ammonium sulfate adhere to equipment after the reactor, causing corrosion and blockage. Ammonium chloride and ammonium sulfate that did not adhere are fume-like and submicron dust (particle size of 1 μm or less), so they are not collected by electrostatic precipitators and are not discharged from chimneys.
Then it becomes white smoke. Also, if the amount of NH3 injection is small, NOx
This means that it will not be possible to meet the emission regulation values.

次に第1図CB) K示すようにNHs注入位置以前で
NOx測定装置(5)にょj) NoX濃度を計測して
その変動に応じNH,注入量を比例制御する方法が知ら
れている。
Next, as shown in FIG. 1 (CB), a NOx measuring device (5) is used before the NHs injection position. A method is known in which the NoX concentration is measured and the amount of NH and injection is proportionally controlled in accordance with the fluctuation thereof.

この方法の場合ごみ焼却炉の様にNOx濃度の変動が大
きいと応答遅れがちシ、上記と同様の問題がある。又サ
ンプリング個所の排ガスが高温で含しん濃度が高いため
サンプリング管の詰シ分析計の故障等分析上のトラブル
が発生し適正なNH3注大量が制御できない等の欠点が
ある。
In this method, when there are large fluctuations in NOx concentration, such as in a garbage incinerator, the response tends to be delayed, and there is a problem similar to that described above. Furthermore, since the exhaust gas at the sampling point is high in temperature and has a high concentration of sulfur, analytical troubles such as failure of the analyzer due to packing of the sampling tube occur, and there are drawbacks such as the inability to control the appropriate amount of NH3 injection.

更に第1図(C) K示すよりに、脱硝装置後のNOx
濃度を計測して、NOx排出規制値をクリヤーできる様
にNHs注入量を制御する方法がある。
Furthermore, as shown in Figure 1 (C) K, NOx after the denitration equipment
There is a method of measuring the concentration and controlling the amount of NHs injection so that the NOx emission regulation value can be cleared.

この方法の場合上記2者と同様な問題があるほかにNI
(3注大量が、NOx発生ピーク時の濃度に影響を受け
て過剰なN)I3が注入され°る欠点がある。また反応
空間温度が無触媒最適温度800〜900℃から大きく
ずれると脱硝率が低下する。このためとのN)I3注大
量制御方法では反応空間温度が最適温度からずれて脱硝
率が低下した時は制御不能となフ過剰な鵬を注入するこ
とになる欠点がある。
In this case, in addition to the same problems as the above two methods, NI
(Note 3) There is a drawback that an excessive amount of N)I3 is injected due to the influence of the concentration at the peak of NOx generation. Further, if the reaction space temperature deviates significantly from the non-catalyst optimum temperature of 800 to 900°C, the denitrification rate decreases. For this reason, the method of controlling large amounts of N)I3 injection has the disadvantage that when the reaction space temperature deviates from the optimum temperature and the denitrification rate decreases, it becomes uncontrollable and an excessive amount of nitrate is injected.

本発明はこれら従来法の欠点を改善するためになされた
もので、反応空間温度と脱硝後のNOx濃度を計測し、
更に脱硝後の排ガス量を算出又は測定し、これらの値か
らNOx発生量とリークNH3濃度金子想し、該予想値
に基づいて反応空間へのNH,注入量を制御することを
基本的な特徴とするものである。
The present invention was made to improve the drawbacks of these conventional methods, and measures the reaction space temperature and NOx concentration after denitrification,
Furthermore, the basic feature is that the amount of exhaust gas after denitrification is calculated or measured, the amount of NOx generated and the leaked NH3 concentration are estimated from these values, and the amount of NH and injection into the reaction space is controlled based on the predicted values. That is.

以下本発明法を第2図の概念図と第3図のフローチャー
トによシ名ステップ毎に説明する。なお、第3図のフロ
ーチャート中の番号は下記各ステップに対応している。
The method of the present invention will be explained step by step with reference to the conceptual diagram of FIG. 2 and the flowchart of FIG. 3. Note that the numbers in the flowchart of FIG. 3 correspond to the following steps.

■過去のNOX 1NH3注大量を初期設定する。■Initialize past NOX 1NH3 injection amount.

最初の運転時には1.予想NOx発生量とNH3注入f
lkv+−初期設定する。
1. When driving for the first time. Expected NOx generation amount and NH3 injection f
lkv+- initialize.

■反応空間の排ガス温度、排ガス量tl−測定する。排
ガス量の測定はNOx測定装置(5)の設置s所にて行
う。なお排ガスIは焼却炉、ボイラ(又はガスクーラ)
を一つの系とする熱収支計算によシ算出しても良い。
(2) Measure the exhaust gas temperature and exhaust gas amount tl in the reaction space. The amount of exhaust gas is measured at the location where the NOx measuring device (5) is installed. Note that exhaust gas I is from an incinerator, boiler (or gas cooler)
It may also be calculated by a heat balance calculation using as one system.

■脱硝後のNOxを計測する。■Measure NOx after denitrification.

■予想NOx発生量を計算する。このNOx発生量計算
法を第4図、第5図に示す。
■Calculate the expected NOx generation amount. This NOx generation amount calculation method is shown in FIGS. 4 and 5.

■第6図に示すように一定時間をL等分したΔtとΔN
Oxの積分値で、ある時刻でのNOx量が目標値の許容
差内にあるかチェックする。
■As shown in Figure 6, Δt and ΔN are obtained by dividing a certain period of time into L equal parts.
The integrated value of Ox is used to check whether the amount of NOx at a certain time is within the tolerance of the target value.

図中A:目標値からの許容上限値任意設定B: 〃 下
限値 〃 をニ一定時間 任意設定 である。
In the figure, A: Arbitrary setting of the allowable upper limit value from the target value B: Arbitrary setting of the lower limit value for a certain period of time.

■現在のΣNOX/ΣΔtが上限値よシ大きけnばNH
,注入量を1倍して 脱硝効率を上げ上限値内におさま
る様にする。
■If the current ΣNOX/ΣΔt is larger than the upper limit value, then NH
, increase the injection volume by 1 to increase the denitrification efficiency and keep it within the upper limit.

n : NH,注入量の増加比率、任意設定■現在のΣ
NOX/ΣΔtが下限値より小さければNH3注入量t
m倍して、脱硝効率を下げ、NH3消費量を減らして下
限値内におさまる様にする。
n: NH, injection amount increase ratio, arbitrary setting ■Current Σ
If NOX/ΣΔt is smaller than the lower limit, NH3 injection amount t
Multiply by m to lower the denitrification efficiency and reduce NH3 consumption so that it falls within the lower limit.

m : NHs注大量大量少比率、任意設定■第7図に
示すΔを時間でNOXの増加量が目標値の許容差内にお
るかチェックする。
m: NHs injection amount/large/small ratio, arbitrary setting ■ Check whether the amount of increase in NOX is within the tolerance of the target value based on Δ shown in Fig. 7 over time.

図中C:目標上限値A/L X c 任意設定目標下限
値B/LXd s である。
C in the figure: target upper limit value A/LXc, optionally set target lower limit value B/LXds.

■Δを時間のNOx増加量ΔNOxが上限値よシ大きけ
ればNHa注大量大量■の結果の1倍する・[株]Δを
時間のNOx増力I量ΔNOxが下限値よシ小さければ
NHs注大量大量■の結果のm倍する。
■ If Δ is the NOx increase amount over time ΔNOx is larger than the upper limit value, then the large amount of NHa injection is multiplied by the result of ■ [Stock] Δ is the NOx increase I amount over time ΔNOx is smaller than the lower limit value, then the large amount of NHs injection Multiply the result of large quantity ■ by m.

■現在の温度Tと■■Oの結果のNHa/NOx比から
リークNH,= f (T−NH3/NOX比)(第8
区参照)で計算してEJt)少ないかチェックする。
■Leak NH, = f (T-NH3/NOX ratio) (8th
Check if it is less than EJt).

E:二次公害発生限界値、初期設定値 @ NH3注大量が設計−よシ小さいかチェックする。E: Secondary pollution occurrence limit value, initial setting value @ Check whether the large amount of NH3 injection is smaller than the design.

M : NH3注入量設計値 (31NH3注大量が多い、リークNH3が多い時は反
応空間温度が適正温度域でないためである。
M: Design value for NH3 injection amount (31) The amount of NH3 injection is large. This is because the reaction space temperature is not in the appropriate temperature range when there is a large amount of leaked NH3.

F:反応空間温度上限値 任意設定〔℃〕G: 〃 下
限値 〃〔℃〕 0反応空間温度が適温であるにもかかわらずリークN)
(3がEよシ多いのは無触媒脱硝法の限界を示すもので
あJ) 、NH3/NOX比が大きすぎるものである。
F: Upper limit value of reaction space temperature Arbitrary setting [℃] G: Lower limit value [℃] 0 Leak despite the reaction space temperature being at an appropriate temperature (N)
(The fact that 3 is more common than E indicates the limit of the non-catalytic denitrification method), and the NH3/NOX ratio is too large.

よってNOx目標値を高めに設定変更する。Therefore, the NOx target value is set higher.

以上説明したように本発明法によれば、適確なNH3注
大量制御が可能となj) 、Nusのリークや脱硝不充
分といった従来法の欠点を解消できる。1+分析計の故
障等が生じない等の効果がある。
As explained above, according to the method of the present invention, it is possible to accurately control the amount of NH3 injection, and the drawbacks of the conventional method such as leakage of Nus and insufficient denitration can be overcome. 1+ This has the effect of preventing failure of the analyzer, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法の説明図、第2図は本発明法の概念図、
第3図と第4図はフローチャート、第5図は反応空間温
度と脱硝率との関係を示すグラフ、第6図と第7図はN
Ox濃度と時間の関係を示すグラフ、第8図は反応空間
温度とリークNH3濃度との関係を示すグラフである。 (1)・・・炉、(2)−・・反応空間、(3)・・・
NH3源、(4)・・・制御弁、(5)・・・NOx測
定装置、(6)・・・演算装置、(7)・・・プロセス
テータ。 特許出願人 日本鋼管株式会社 発 明 者 山 岸 三 樹 間 横 山 隆 同 南 孝 男 第5図 → T、μ狸間l戊 第6図 一一一后間 第7図 時間−m− 第8図 工μ立間温度
Figure 1 is an explanatory diagram of the conventional method, Figure 2 is a conceptual diagram of the method of the present invention,
Figures 3 and 4 are flowcharts, Figure 5 is a graph showing the relationship between reaction space temperature and denitrification rate, and Figures 6 and 7 are N
A graph showing the relationship between Ox concentration and time, and FIG. 8 is a graph showing the relationship between reaction space temperature and leak NH3 concentration. (1)...furnace, (2)--reaction space, (3)...
NH3 source, (4)...control valve, (5)...NOx measuring device, (6)...computing device, (7)...process data. Patent Applicant Nippon Kokan Co., Ltd. Inventor Mitsuki Yamagishi Ryudo Yokoyama Takao Minami Figure 5 → T, μ Tanuki Figure 6 Figure 111 Back Figure 7 Time - m - 8 Zuko μ standing temperature

Claims (1)

【特許請求の範囲】[Claims] 高温排ガス中にNHsを注入してNOxを除去する無触
媒脱硝法において、反応空間温度と脱硝後のNOx濃度
を計測し、更に脱硝後の排ガス量を算出又は測定し、こ
れらの値からNOx発生量とリークNH3濃度を予想し
、こ扛に基づいて反応空間へのN′H3注入(J−0“
[17,L″′″1111媒1法におけるNH,注入量
の制御方法。
In the non-catalytic denitrification method, which removes NOx by injecting NHs into high-temperature exhaust gas, the reaction space temperature and the NOx concentration after denitrification are measured, and the amount of exhaust gas after denitrification is calculated or measured, and NOx generation is determined from these values. N'H3 injection into the reaction space (J-0"
[17, L'''' 1111 Method for controlling injection amount of NH in medium 1 method.
JP59057285A 1984-03-27 1984-03-27 Method for controlling injecting rate of nh3 in noncatalytic denitrating method Pending JPS60202716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59057285A JPS60202716A (en) 1984-03-27 1984-03-27 Method for controlling injecting rate of nh3 in noncatalytic denitrating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59057285A JPS60202716A (en) 1984-03-27 1984-03-27 Method for controlling injecting rate of nh3 in noncatalytic denitrating method

Publications (1)

Publication Number Publication Date
JPS60202716A true JPS60202716A (en) 1985-10-14

Family

ID=13051266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59057285A Pending JPS60202716A (en) 1984-03-27 1984-03-27 Method for controlling injecting rate of nh3 in noncatalytic denitrating method

Country Status (1)

Country Link
JP (1) JPS60202716A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005531A1 (en) * 1986-03-14 1987-09-24 Mitsubishi Jukogyo Kabushiki Kaisha Device for controlling nh3 injection into denitrification system
US5425928A (en) * 1991-12-03 1995-06-20 Martin GmbH fur Umwelt- und Energietechnik & Techform Engineering AG Procedure for regulating the quantity of a processing medium that is used to reduce the nitrogen monoxide content in the exhaust gases generated by combustion processes
JP2015205272A (en) * 2015-06-22 2015-11-19 日立造船株式会社 Reducer supply method in incineration equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005531A1 (en) * 1986-03-14 1987-09-24 Mitsubishi Jukogyo Kabushiki Kaisha Device for controlling nh3 injection into denitrification system
US5425928A (en) * 1991-12-03 1995-06-20 Martin GmbH fur Umwelt- und Energietechnik & Techform Engineering AG Procedure for regulating the quantity of a processing medium that is used to reduce the nitrogen monoxide content in the exhaust gases generated by combustion processes
JP2015205272A (en) * 2015-06-22 2015-11-19 日立造船株式会社 Reducer supply method in incineration equipment

Similar Documents

Publication Publication Date Title
CN104826493B (en) A kind of control method of selective catalytic reduction flue gas denitrification system
CA2673562C (en) Dynamic control of selective non-catalytic reduction system for semi-batch-fed stoker-based municipal solid waste combustion
AU567647B2 (en) Non-catalytic method for reducing the concentration of no in combustion effluents by injecting ammonia at temperatures greater than about 1300 degree k.
US20070225864A1 (en) Controlling a waste combustion process
JP7261100B2 (en) ADDITIVE SUPPLY QUANTITY DETERMINATION DEVICE, COMBUSTION EQUIPMENT INCLUDING THE SAME, AND COMBUSTION EQUIPMENT OPERATION METHOD
Nguyen et al. Application of urea-based SNCR to a municipal incinerator: On-site test and CFD simulation
JPS60202716A (en) Method for controlling injecting rate of nh3 in noncatalytic denitrating method
WO2019235377A1 (en) Method for estimating state quantity of combustion facility, combustion control method, and combustion control device
EP0753701B1 (en) Boiler with denitrification apparatus
Pickens Add-on control techniques for nitrogen oxide emissions during municipal waste combustion
Chan et al. Nitrogen oxides (NOx) formation and control in an electric arc furnace (EAF): Analysis with measurements and computational fluid dynamics (CFD) modeling
CN214233498U (en) SNCR control system of double-PID (proportion integration differentiation) circulating fluidized bed boiler
Matsumura et al. Improvement of de-NOx device control performance using a software sensor
KR102489144B1 (en) Circulating fluidized bed boiler and its operation method
Šulc et al. Control for ecological improvement of small biomass boilers
Gao et al. Enhancement of SCR denitrification control strategy considering fluegas temperature fluctuation: Fundamental principle and performance evaluation
JPH0194924A (en) Method for controlling nh3 injection amount into dry denitration apparatus
JP2003164725A (en) Ammonia blow-in control method for denitration catalyst device of waste treatment equipment
JPH0411248B2 (en)
Nimbalkar et al. Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling
Cremer et al. CFD modeling of NOx reduction technologies in utility boilers
JPH11527A (en) Denitrification control method
JP2965142B2 (en) Adaptive and predictive control method and apparatus for combustion furnace
Asadzadeh et al. Nonlinear control of a selective catalytic reduction unit for a bio-fueled cogeneration plant
KR20230162875A (en) Digital data-based thermal energy facility operation optimization system