JPS61254229A - Apparatus for controlling injection amount of ammonia - Google Patents

Apparatus for controlling injection amount of ammonia

Info

Publication number
JPS61254229A
JPS61254229A JP60093579A JP9357985A JPS61254229A JP S61254229 A JPS61254229 A JP S61254229A JP 60093579 A JP60093579 A JP 60093579A JP 9357985 A JP9357985 A JP 9357985A JP S61254229 A JPS61254229 A JP S61254229A
Authority
JP
Japan
Prior art keywords
signal
flow amount
flow rate
nox
necessary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60093579A
Other languages
Japanese (ja)
Other versions
JPH0582246B2 (en
Inventor
Minoru Izutsu
井筒 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60093579A priority Critical patent/JPS61254229A/en
Publication of JPS61254229A publication Critical patent/JPS61254229A/en
Publication of JPH0582246B2 publication Critical patent/JPH0582246B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the response delay at the time of rising in load, by providing comparators for comparing a necessary NH3 flow amount signal with an actually measured NH3 flow amount signal and injecting a constant amount of NH3 when the former is smaller than the latter or the deviation of both signals is small. CONSTITUTION:The signals from an inlet NOX concn. detector 12 and an air flow amount detector 14 are sent to an operator 18 through a function converter 16 to calculate a total NOX amount signal 19 while a necessary mol ratio setting signal 23 is calculated and this signal 23, the correction signal 27 obtained from an outlet NOX concn. detector 24 through an adder 26 and the total NOX amount signal 19 are operated by an operator 28 to calculate a necessary NH3 flow amount signal 29 which is, in turn, compared with an actually measured NH3 flow amount signal 31 by a comparator 32 and a deviation signal 33 is sent to a proportional integrator 34. A low signal selector 40 is provided to the downstream side of said integrator 34 and when a valve opening degree signal 35 comes to zero or the actually measured NH3 flow amount signal 31 is smaller than the necessary NH3 flow amount signal 29, an NH3 flow amount control valve 39 is opened to inject a constant flow amount of NH3.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はアンモニアの注入量制御装置に係り、特に、排
ガス中の窒素酸化物(NOX)  を除去するアンモニ
アの注入量制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ammonia injection amount control device, and particularly to an ammonia injection amount control device for removing nitrogen oxides (NOX) from exhaust gas.

〔発明の背景〕[Background of the invention]

近年、我が国においては重油供給量のひっ迫から、石油
依存度の是正を計るために、従来の重油専焼から石炭専
焼、LNG(液化天然ガス)専焼へと燃料を変換しつつ
あり、特に事業用ボイラにおいては石炭専焼、LNG専
焼の大容量火力発電所が建設されている。
In recent years, in Japan, due to the tight supply of heavy oil, in order to correct the dependence on oil, fuels have been changed from conventional heavy oil-only combustion to coal-only combustion and LNG (liquefied natural gas)-only combustion, especially for commercial boilers. Large-capacity coal-fired and LNG-fired thermal power plants are being constructed in the area.

ところが、石炭燃料は石油燃料、ガス燃料に比べて燃料
性が悪いので排ガス中に含まれるNOX及び未燃分が発
生しやす(、特にNOXの低減対策のために火炎の分割
、排ガスの再循環、二段燃焼及び炉内脱硝などを採用し
て緩慢な燃焼を行なわせてNOXを恢滅することも行な
われている。
However, coal fuel has poor fuel properties compared to petroleum fuel and gas fuel, so NOx and unburned substances contained in exhaust gas are likely to be generated. Also, methods such as two-stage combustion and in-furnace denitrification have been adopted to perform slow combustion to eliminate NOx.

そしてこの石炭専焼火力、LNG専焼火力においては、
ボイラ9荷が常に全負荷で運転されるものは少tr (
、負荷を75%弁荷、50%負荷、25%負荷へと負荷
を上げ、下げして運転したり、運Daily 5tar
t 5top 以下単KDSSという)運転を行なって
中間弁室を和う火力発電プラントへ移行しつつあるウ 一方、この中間負荷火力用にはこの火力発電ボイラの他
に、起動特性のよいガスタービンと排熱回収ボイラを組
合せた、いわゆるコンバインドプラントも用いられ、D
SS運(を行なって電力需要の多い昼間の本運転し、夜
間は運転を停止するものが建設されようとしている。
And in this coal-fired thermal power and LNG-fired thermal power,
A boiler with 9 loads that is always operated at full load has a low tr (
, increase or decrease the load to 75% valve load, 50% load, 25% load, and operate the machine.
t 5top (hereinafter referred to as single KDSS) operation to moderate the intermediate valve chamber.On the other hand, in addition to this thermal power boiler, gas turbines with good starting characteristics and gas turbines with good starting characteristics are being used for intermediate load thermal power generation. A so-called combined plant that combines an exhaust heat recovery boiler is also used, and D
A system is about to be built that will operate the SS train during the day, when electricity demand is high, and shut down at night.

ところが、この石炭専焼、L N G専焼の中間負荷用
ボイラ、ガスタービンにおいてもNOX排出濃変の規制
強化に伴ない、従来の燃焼改善に加えて、MHIを還元
剤として触媒の存在下で脱硝を行なう乾式接触還元脱硝
装置を設置するプラントが増加している。
However, with the tightening of regulations regarding NOx emission concentration in these coal-fired and LNG-fired intermediate-load boilers and gas turbines, in addition to conventional combustion improvements, denitrification in the presence of a catalyst using MHI as a reducing agent has been introduced. An increasing number of plants are installing dry catalytic reduction denitrification equipment.

それは石炭専焼ボイラにおいては燃料の燃焼性が悪いの
でN0Xiが増加し、LNG専焼ボイラ、ガスタービン
プラントにおいては酸素量が多く高温燃焼を行なうため
に、石炭専焼ボイラと同様に、排ガス中には多量のNO
Xを含有しているので、第3図に示す様な脱硝装置が設
置される。
This is because in coal-fired boilers, the combustibility of the fuel is poor, so NOXi increases, and in LNG-fired boilers and gas turbine plants, there is a large amount of NOXi in the exhaust gas because of the high oxygen content and high temperature combustion in LNG-fired boilers and gas turbine plants. NO
Since it contains X, a denitrification device as shown in FIG. 3 is installed.

第3図は脱硝装置が設置されたボイラの代表的な煙風道
系ぜを示す。
Figure 3 shows a typical flue duct system of a boiler equipped with a denitrification device.

空気ダクト1内の燃焼用空気は押込通風機2にて昇圧さ
れ、空気予熱器3にて排ガスダクト4の排ガスによって
加熱さねた後ウィンドボックス5よりボイラ6へ供給さ
れる。
The combustion air in the air duct 1 is pressurized by the forced draft fan 2, heated by the exhaust gas from the exhaust gas duct 4 in the air preheater 3, and then supplied to the boiler 6 from the wind box 5.

一方ボイラ6内で燃焼した排ガスは、排ガスダクト4で
NH)注入管7かものNH3によって脱硝されると共に
、下流に配置した脱硝装置8内の触媒9において脱硝を
促進し、排ガス中のNOXは除去されて空気予熱器3、
集塵機10.誘引通風機11で昇圧され大気へ放出され
る。
On the other hand, the exhaust gas combusted in the boiler 6 is denitrated by the NH3 in the exhaust gas duct 4 and the NH) injection pipe 7, and the denitration is promoted in the catalyst 9 in the denitrification device 8 disposed downstream, and NOx in the exhaust gas is removed. removed air preheater 3,
Dust collector10. The pressure is increased by the induced draft fan 11 and released into the atmosphere.

ところが、かかる脱硝装置8は触媒9の秤類によっても
多少反応温度範囲は異るが、最も脱硝効率の高い温度範
囲は300〜400℃の比較的高温で、温度範囲はいた
って狭いので、中間負荷火力用のボイラやコンバインド
サイクルの様に常にDSS運転されるものにおいては、
負荷変動によって排ガス温度が常に変動し、触媒9の使
用可能領域をはずれてしまう欠点がある。
However, although the reaction temperature range of the denitrification device 8 differs depending on the scale of the catalyst 9, the temperature range with the highest denitrification efficiency is a relatively high temperature of 300 to 400°C, and the temperature range is quite narrow, so it is not suitable for intermediate loads. For those that are constantly operated by DSS, such as thermal power boilers and combined cycle,
There is a drawback that the exhaust gas temperature constantly fluctuates due to load fluctuations, which causes the catalyst 9 to be out of the usable range.

この場合、触媒9の使用ガス温度が高過ぎると、触媒9
の粗紡が変化して触媒9としての機能がそこなわれ、ま
た使用ガス温度が低すぎると排ガス中に存在する無水硫
酸(Sol )と反応してやはり触媒90機能が劣化す
る。
In this case, if the temperature of the gas used in the catalyst 9 is too high, the catalyst 9
If the temperature of the gas used is too low, it will react with sulfuric anhydride (Sol) present in the exhaust gas, and the function of the catalyst 90 will also deteriorate.

一方、常にDSS運転される火力発電用ボイラ、コンバ
インドサイクルにおいては、排ガス量およびNOx濃度
が変動し、これによって脱硝性能の追従性が悪くなる欠
点がある。
On the other hand, in thermal power generation boilers and combined cycle systems that are constantly operated under DSS, the amount of exhaust gas and the concentration of NOx fluctuate, which has the disadvantage that the followability of denitrification performance deteriorates.

それは、触媒9上でのNOXとNHtの反応機構に起因
する排ガス1およびNOX 8度が起動時、自衛変化時
のように変動する場合には、負荷変動に合わせてNH1
注入注入室化させても脱硝性能が負荷変動に追従できな
いからである。
That is, when the exhaust gas 1 and NOX 8 degrees caused by the reaction mechanism of NOX and NHt on the catalyst 9 fluctuate, such as during startup or self-defense changes, NH1
This is because denitrification performance cannot follow load fluctuations even if an injection chamber is used.

これらの問題を回避するために、従来のNHJの注入量
制御装置の代表的な例を第4図に示す。
In order to avoid these problems, a typical example of a conventional NHJ injection amount control device is shown in FIG.

第4図において、入口NOx濃度検出器12で検出され
た入口NOx信号13と、空気流量検出器14で検出さ
れた空気流量信号15を関数変換器16で変換し、この
変換した信号17を演算器18でyl算し総NOx i
ff信号19を算出する。一方人口N)x信号13と出
口NOx設定器20で設定された設定NOx信号21よ
り必要モル比設定器22で必要モル比(NOX張とNH
31ftの比率)信号23を算出し、これに出口NOX
濃度検出器24で検出された寮測出口NO!信号25と
の補正を加算器26で行い、この補正信号27と先に述
べた総NOX量信号19とを演算器28で演算I、必要
NH3流景信号29を算出する。
In FIG. 4, an inlet NOx signal 13 detected by an inlet NOx concentration detector 12 and an air flow rate signal 15 detected by an air flow rate detector 14 are converted by a function converter 16, and this converted signal 17 is calculated. The total NOx i is calculated by the unit 18.
ff signal 19 is calculated. On the other hand, the required molar ratio (NOx tension and NH
31ft ratio) Calculate signal 23 and add exit NOX to this.
Dormitory measurement port number detected by concentration detector 24! An adder 26 performs correction with the signal 25, and a calculation unit 28 uses the correction signal 27 and the above-mentioned total NOX amount signal 19 to calculate a necessary NH3 landscape signal 29.

この必要NHs流量信号29と実測NHy流p流出検出
器で検出された実測NH3流量信号31を比較器32で
比較してその偏差信号33を算出し、これを比例積分器
34で弁開度信号35に変換して雪空変換器36により
制御信号37に変換し、NH3配管38のNH3流量調
節弁39を開、閉する。
A comparator 32 compares this required NHs flow rate signal 29 with an actual NH3 flow rate signal 31 detected by an actual NHy flow p outflow detector to calculate a deviation signal 33, which is then converted into a valve opening degree signal by a proportional integrator 34. 35 and converted into a control signal 37 by a snow/sky converter 36, which opens and closes the NH3 flow rate control valve 39 of the NH3 pipe 38.

この様に従来のNH>注入量制御装置においては、DS
S運転、燃料変換等によって脱硝装置の入口NOX景が
計画出口NOX景以下になった場合、つまり必要NHs
流量信号29が実測NH,流量信号31よりも小さくな
った場合にはNH>流量調節弁39は全閉となり、NH
)を脱硝装置へ注入しない。
In this way, in the conventional NH > injection amount control device, the DS
If the NOx view at the inlet of the denitrification equipment becomes lower than the planned exit NOx view due to S operation, fuel conversion, etc., that is, the required NHs
When the flow rate signal 29 becomes smaller than the actual measured NH and flow rate signal 31, NH>Flow rate control valve 39 is fully closed, and NH
) into the denitrification equipment.

従って、低NOx化が計られたプラントの脱硝装置に第
4図に示す従来のNH3注大量制御装置を採用すると、
DSS運転を行なうものにおいては、負荷上昇時に脱硝
の応答遅れが生じる欠点がある。
Therefore, if the conventional NH3 injection mass control device shown in Fig. 4 is adopted in the denitrification equipment of a plant designed to reduce NOx,
In those that perform DSS operation, there is a drawback that there is a delay in the response of denitration when the load increases.

W5図は縦軸にボイラ負荷、N0Xfを示し、横軸に時
間を示した特性曲線図である。
Figure W5 is a characteristic curve diagram in which the vertical axis shows the boiler load and N0Xf, and the horizontal axis shows time.

第5図において、曲線Aはボイラ負荷、曲線Bは脱硝装
置の入口NOx Jl 、破線Cは脱硝装置の計画出口
NOx量、曲線りはNH3注入量、一点鎖線EはNH3
注入注入点零点′flJFは脱硝装置の実測出口NOx
量を示す。
In Fig. 5, curve A is the boiler load, curve B is the inlet NOx Jl of the denitrification equipment, dashed line C is the planned exit NOx amount of the denitrification equipment, the curved line is the NH3 injection amount, and the dashed line E is the NH3
The injection injection point zero point 'flJF is the actual measured outlet NOx of the denitrification equipment.
Indicate quantity.

第5図に示す様に、ボイラ負荷が曲線Aの点G。As shown in Figure 5, the boiler load is at point G on curve A.

H,Iの様に下ると、脱硝装置の入口NOx量は曲#B
で示t[KAG、H,Iへ下り、NHs注入注入油線り
で示す如く点G、H,Iに下り、点H。
If you go down like H and I, the amount of NOx at the inlet of the denitration equipment will be track #B.
As shown by the t [KAG, H, I, it descends to points G, H, I as shown by the NHs injection oil line, and then to point H.

1間ではNH3の注入量は曲線りで示す轡に零になる。1, the amount of NH3 injected becomes zero as shown by the curved line.

そして、ボイラ負荷が曲線Aの点Iから点Jへ上昇した
場合には、脱硝装置の入口NOX iは曲線BのAlか
ら点Jへ、NH3注入量も曲線りの点Iから点Jへ上昇
する。
Then, when the boiler load increases from point I on curve A to point J, the NOX i at the inlet of the denitration equipment increases from Al on curve B to point J, and the NH3 injection amount also increases from point I on curve B to point J. do.

しかしながら、第5図の曲線りで示す様に点HからAl
まではNH)の注入量は零であり、ボイラ負荷の上昇に
伴ってNHs注入注入点Iから点Jへ上昇させても、注
入初期のNH,は触媒に殆んど吸着されて脱硝反応に寄
与しないので、脱硝装置の実測出口N0xfは第5図の
曲線Fにおける点K。
However, as shown by the curved line in Figure 5, the Al
Until then, the amount of NH) injected is zero, and even if the NHs injection is increased from point I to point J as the boiler load increases, most of the NH in the initial stage of injection is adsorbed by the catalyst and does not participate in the denitrification reaction. Therefore, the actual measured outlet N0xf of the denitration equipment is point K on curve F in FIG.

L、 Mの様に応答遅れが現われ好ましくない。As with L and M, a response delay appears, which is not desirable.

〔発明の目的〕[Purpose of the invention]

本発明はかかる従来の欠点を解消しようとするもので、
その目的とするところは、負荷上昇時の応答遅れをなく
し、再起動時、低負荷時のNOx景を少なくするもので
ある。
The present invention aims to eliminate such conventional drawbacks,
The purpose of this is to eliminate response delays when the load increases and to reduce NOx emissions during restart and when the load is low.

〔発明の概要〕[Summary of the invention]

本発明は前述の目的を達成するために、比較器とアンモ
ニア流量調節弁の間釦低信号遼択器を設け、両信号を比
較の結果、必デ1アンモニア流儀信号よりも実測アンモ
ニア流量信号が小さい場合と両信号の偏差が小さい場合
の少なくとも一方の場合には、一定tのアンモニアを注
入するようにしたものである。
In order to achieve the above-mentioned object, the present invention provides a button low signal selector between the comparator and the ammonia flow rate control valve, and as a result of comparing both signals, the measured ammonia flow rate signal is higher than the ammonia flow rate signal. In at least one of the cases where the deviation between the signals is small and the deviation between both signals is small, ammonia of a constant amount t is injected.

〔実施例〕〔Example〕

以下本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の実施例に係るNI(、の注入量制御装
置の系1t−図、酸2図は第1図の卸!御系粁における
特性曲線図である。
FIG. 1 is a system 1t diagram of the injection amount control device for NI according to an embodiment of the present invention, and the acid diagram 2 is a characteristic curve diagram for the wholesale system shown in FIG. 1.

印1図において、符号14から符号39は第4図のもの
と同一のものを示す。
In FIG. 1, numerals 14 to 39 indicate the same elements as in FIG. 4.

40は比較器32とNHj流t7節弁39の間に介在し
た低信号選択器で、この仙信号選択器40はNH,注入
量の制限器でもある。
40 is a low signal selector interposed between the comparator 32 and the NHj flow t7 control valve 39, and this low signal selector 40 is also a limiter for the NH injection amount.

また、竿2図の符号AからJは第5図のものを示す。点
0.PはNルの注入量を示す。
Further, the symbols A to J in Figure 2 refer to those in Figure 5. Point 0. P indicates the injection amount of Nl.

この様な構造において、デ4図に示すNH3注大量制御
装置と第1図に示す本発明のNHs注入注入側制御装置
なる点は、比例積分器34の後流側に低信号選択器40
を設け、弁開度信号35が零になるか、あるいは必要N
H,@J信号29よりも実測NH1流量信号31が小さ
い場合には、NHt流量ツ節弁39を開いて一定流量の
NH3を注入するようにしたものである。
In such a structure, the NH3 injection amount control device shown in FIG. 4 and the NHs injection injection side control device of the present invention shown in FIG.
is set, and the valve opening signal 35 becomes zero or the required N
When the measured NH1 flow rate signal 31 is smaller than the H, @J signal 29, the NHt flow rate control valve 39 is opened to inject NH3 at a constant flow rate.

つまり、本発明によるNHs注入量制御は、第2図の曲
線Bで示す入口N0Xtが破線Cで示す出口NOx j
との差が少ないか又は入口NOX tが出口NOx量を
点HからAlの様に下廻り比例積分器34からの弁開度
信号35がNH工流量訓節弁39を機関、全閉の弁開度
信号35の場合には、低信号選択器40によりNH3流
量調節弁39の開度を第2図の曲線りにおける点0から
点Pで示す杵に一定に保つよ5KL、、一定流量(第2
図の斜紳部分)のNH3を連続して注入するようにした
ものである。
In other words, in the NHs injection amount control according to the present invention, the inlet NOXt shown by the curve B in FIG.
The difference between the two is small, or the inlet NOx t lowers the outlet NOx amount from point H to Al, and the valve opening signal 35 from the proportional integrator 34 causes the NH engineering flow control valve 39 to open when the engine is fully closed. In the case of a constant flow rate signal 35, the low signal selector 40 keeps the opening degree of the NH3 flow rate control valve 39 constant from point 0 to point P on the curve in FIG. 2
NH3 (the diagonal part in the figure) is continuously injected.

この様に低負荷時であっても第2図の曲線りにおける点
0から点2間では余剰NH! fiが脱硝装置に供給さ
れて触媒に吸着されるので、ボイラ負荷が第2図の曲!
!li!AにおけるAIから点Jへ倉激に上昇しても低
負荷時に注入したこの余剰NH3が脱硝反応に役立ち、
第2図の曲線Fで示す様に脱硝装置の応答遅れは解消さ
れる。
In this way, even when the load is low, there is surplus NH between points 0 and 2 on the curve in Figure 2! Since fi is supplied to the denitrification equipment and adsorbed by the catalyst, the boiler load is as shown in Figure 2!
! li! Even if the temperature rises sharply from AI at A to point J, this surplus NH3 injected at low load will help the denitrification reaction,
As shown by curve F in FIG. 2, the response delay of the denitrification device is eliminated.

また、従来のNH)注入量制御装置においては、必要N
H3注入量信号29と実測NH3注入を信号31の備差
が小さい場合には、 NH3流景訓節弁39のPaが不
安定になるが、本発明のNH3注入量制御装置において
は両信号29,30の偏差が小さい場合でも常に一定流
t(F2図の斜線部分)が流れているのでNH)流量訓
節弁39のv!41!?は安定する。
In addition, in the conventional NH) injection amount control device, the required N
If the difference between the H3 injection amount signal 29 and the measured NH3 injection signal 31 is small, the Pa of the NH3 flow control valve 39 becomes unstable, but in the NH3 injection amount control device of the present invention, both signals 29 , 30 is small, a constant flow t (hatched area in figure F2) always flows, so NH) v! of the flow control valve 39. 41! ? becomes stable.

〔発明の効果〕〔Effect of the invention〕

本発明は比較器とアンモニア流舞調節弁の間に低信号選
択器を設け、両信号を比較の結果、必要アンモニア流量
信号よりも実測アンモニア流量信号が小さい場合と両信
号の偏差が小さい場合の少なくとも一方の場合には、一
定f°のアンモニアを注入するようにしたので、脱硝装
置の応答性は優れ、負荷上昇時、再起動時等であっても
NOx量を少なくすることができる。
The present invention provides a low signal selector between the comparator and the ammonia flow control valve, and compares both signals. In at least one case, since ammonia is injected at a constant f°, the responsiveness of the denitrification device is excellent, and the amount of NOx can be reduced even when the load increases, when restarting, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係るNH3の注入量制御装置
の制御系統図、第2図は第1図の特性曲線図、第3図は
脱硝装置が設置されたボイラの代表的な煙風道系統図、
菓4図は従来のNHlの注入量制御装置の制御系統図、
第5図は第4図の特性曲線図である。 29・・・・・・必要N)14流量信号、31・・・・
・・実測N)It流量信号、32・・・・・・比較器、
39・・・・・・N I(3流量調節弁、4o・・・・
・・低信号選択器。 ・;r、)仄r 第1図 第2図 第3図
Fig. 1 is a control system diagram of an NH3 injection amount control device according to an embodiment of the present invention, Fig. 2 is a characteristic curve diagram of Fig. 1, and Fig. 3 is a typical smoke of a boiler equipped with a denitrification device. Wind duct system diagram,
Figure 4 is a control system diagram of a conventional NH1 injection amount control device.
FIG. 5 is a characteristic curve diagram of FIG. 4. 29... Necessary N) 14 flow rate signal, 31...
... Actual measurement N) It flow rate signal, 32 ... Comparator,
39...N I (3 flow rate control valve, 4o...
...Low signal selector.・;r、)仄r Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 必要アンモニア流量信号と実測アンモニア流量信号を比
較する比較器を設け、この比較器による偏差信号によつ
てアンモニア流量調節弁を開、閉してアンモニア流量を
制御するものにおいて、前記比較器とアンモニア流量調
節弁の間に低信号選択器を設け、両信号を比較の結果、
必要アンモニア流量信号よりも実測アンモニア流量信号
が小さい場合と両信号の偏差が小さい場合の少なくとも
一方の場合には、一定量のアンモニアを注入するように
したことを特徴とするアンモニアの注入量制御装置。
A comparator is provided to compare the required ammonia flow rate signal and the measured ammonia flow rate signal, and the ammonia flow rate control valve is opened and closed based on the deviation signal from the comparator to control the ammonia flow rate, wherein the ammonia flow rate is controlled by the comparator and the ammonia flow rate signal. A low signal selector is installed between the control valves, and as a result of comparing both signals,
An ammonia injection amount control device characterized in that a fixed amount of ammonia is injected in at least one of the cases where the measured ammonia flow rate signal is smaller than the required ammonia flow rate signal and the deviation between both signals is small. .
JP60093579A 1985-05-02 1985-05-02 Apparatus for controlling injection amount of ammonia Granted JPS61254229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60093579A JPS61254229A (en) 1985-05-02 1985-05-02 Apparatus for controlling injection amount of ammonia

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60093579A JPS61254229A (en) 1985-05-02 1985-05-02 Apparatus for controlling injection amount of ammonia

Publications (2)

Publication Number Publication Date
JPS61254229A true JPS61254229A (en) 1986-11-12
JPH0582246B2 JPH0582246B2 (en) 1993-11-18

Family

ID=14086179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60093579A Granted JPS61254229A (en) 1985-05-02 1985-05-02 Apparatus for controlling injection amount of ammonia

Country Status (1)

Country Link
JP (1) JPS61254229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755726A1 (en) * 1996-11-12 1998-05-15 Daimler Benz Ag METHOD AND APPARATUS FOR ADDITIONAL ADDITION OF NITROGEN OXIDE REDUCER TO EXHAUST GAS OF A COMBUSTION SYSTEM

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551858A (en) * 1978-06-21 1980-01-09 Mitsubishi Chem Ind Ltd Reduction and denitrification by ammonia

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551858A (en) * 1978-06-21 1980-01-09 Mitsubishi Chem Ind Ltd Reduction and denitrification by ammonia

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2755726A1 (en) * 1996-11-12 1998-05-15 Daimler Benz Ag METHOD AND APPARATUS FOR ADDITIONAL ADDITION OF NITROGEN OXIDE REDUCER TO EXHAUST GAS OF A COMBUSTION SYSTEM

Also Published As

Publication number Publication date
JPH0582246B2 (en) 1993-11-18

Similar Documents

Publication Publication Date Title
US5423272A (en) Method for optimizing the operating efficiency of a fossil fuel-fired power generation system
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
US20120222591A1 (en) Method of and Apparatus for Selective Catalytic NOx Reduction in a Power Boiler
GB2082084A (en) Apparatus for recovering heat energy and removing nox in combined cycle plants
JPS5844858B2 (en) Gasoline engine
CN105570883A (en) Flue gas recirculation-based wide load-wide coal deep denitrification system for CFB (circulating fluidized bed) boiler
JPH0926105A (en) Boiler
KR20220138407A (en) Systems and methods for management of a plurality of exhaust gas recirculation coolers
JP3831804B2 (en) Exhaust gas denitration equipment
JPS61254229A (en) Apparatus for controlling injection amount of ammonia
CN217503636U (en) Biomass gasification low-nitrogen combustion system
CN203002216U (en) SCR (selective catalytic reduction) flue gas denitration system with preposed two-fluid jet system
CN211176766U (en) System for reducing content of nitrogen oxides in tail gas of natural gas boiler
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
JPH0811171B2 (en) Ammonia injection amount control device
JPS5926779B2 (en) Method for controlling nitrogen oxide emissions in gas turbine plants
CN106838888B (en) Combustion system and method of operating the same
CN206593090U (en) Combustion system
KR20210131562A (en) A method of increasing the heating rate by controlling the oxidant concentration and thermal energy in the circulating fluidized bed reactor and circulating fluidized bed combustion system using the same
JPH0367728B2 (en)
Hunt et al. Integrating low‐NOx burners, overfire air, and selective non‐catalytic reduction on a utility coal‐fired boiler
Herdin et al. Experience with gas engines optimized for H2-rich fuels
JPS62227426A (en) Ammonia pouring control device
JPS60257823A (en) Apparatus for controlling injection amount of ammonia
JP6357701B1 (en) Combustion state judgment system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees