JPS58128126A - Method for introducing reducing agent - Google Patents

Method for introducing reducing agent

Info

Publication number
JPS58128126A
JPS58128126A JP57010848A JP1084882A JPS58128126A JP S58128126 A JPS58128126 A JP S58128126A JP 57010848 A JP57010848 A JP 57010848A JP 1084882 A JP1084882 A JP 1084882A JP S58128126 A JPS58128126 A JP S58128126A
Authority
JP
Japan
Prior art keywords
denitrification
reducing agent
catalyst
denitrator
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57010848A
Other languages
Japanese (ja)
Other versions
JPH0367728B2 (en
Inventor
Kunihiko Konishi
邦彦 小西
Yasuyoshi Kato
泰良 加藤
Masao Ota
大田 雅夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP57010848A priority Critical patent/JPS58128126A/en
Publication of JPS58128126A publication Critical patent/JPS58128126A/en
Publication of JPH0367728B2 publication Critical patent/JPH0367728B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To effectively remove nitrogen oxides (NOx) from an effluent gas, by allowing an excess reduing agent to have been adsorbed in advance to a catalyst filled in a denitrator in the course of an effluent gas duct. CONSTITUTION:A combustion waste gas effluent from a boiler 6 is denitrated with a reducing agent introudced from an introduction pipe 7 installed on the upstream of a denitrator 8 located in the course of an effluent gas duct 4. Denitration is accelerated by a catlayst 9 filled in the denitrator 8 to remove NOx contained in the effluent gas. At that time, the start time of introduction of said agent is selected from before stop of the feed of the effluent gas to the denitrator 8 at latest to the same time as start of the denitrator 8, thus allowing an excess of the reducing agent to have been adsorbed to the catalyst 9 in advance, and consequently, NOx to be effectively removed.

Description

【発明の詳細な説明】 本発明は還元剤の注入方法に係り、特に排ガス中の窒素
鐵化物(以下NOxという)を除去する乾式脱硝装置へ
還元剤としてアンモニア(N市)などを注入する還元剤
の注入方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for injecting a reducing agent, and particularly to a method for injecting ammonia (N) as a reducing agent into a dry denitrification device for removing nitrogen ironides (hereinafter referred to as NOx) from exhaust gas. The present invention relates to a method for injecting a drug.

近年、我が国においては重油供給量のひっ迫から、石油
依存度の是正を計るために、従来の重油専焼から石炭専
焼へと燃料を変換しつつあり、特に事業用ボイラにおい
ては石炭専焼の大容量火力発電所が建設されている。
In recent years, in Japan, due to the tight supply of heavy oil, in order to correct the dependence on oil, there has been a shift from traditional heavy oil-burning to coal-fired fuel, and in particular, large-capacity coal-fired thermal power is being used for commercial boilers. A power plant is being built.

ところが、石炭燃料は石油燃料に比べて燃料性が悪いの
で排ガス中に含まれるNO,及び未燃分が発生しやすく
、%KNOxの低減対策のために火炎の分割、排ガスの
再循環、二段燃焼及び炉内脱硝などを採用して緩慢な燃
焼を行なわせてNO,を低減することも行なわれている
However, since coal fuel has poor fuel properties compared to petroleum fuel, NO contained in exhaust gas and unburned substances are likely to be generated, so flame splitting, exhaust gas recirculation, and two-stage measures are required to reduce %KNOx. Combustion and in-furnace denitration are also employed to achieve slow combustion and reduce NO.

そしてこの石炭専焼火力においては、ボイラ負荷が常に
全負荷で運転されるものは少なく、負荷を80%負荷、
50%負荷、25%負荷へと負荷を上げ、下げして運転
したり、運転を停止するなど中間負荷を担う火力発電プ
ラントへ移行しつつある。
In these coal-fired thermal power plants, there are few cases in which the boiler load is always operated at full load, and the load is 80% load,
A transition is being made to thermal power plants that handle intermediate loads, such as increasing and decreasing the load to 50% load, 25% load, or stopping operation.

一方、この中間負荷火力用には起動特性のよいガスター
ビンと排熱回収ボイラを組合せた、いわゆるコンバイン
ドプラントも用いられ電力W要の多い昼間のみ運転し、
夜間は運転を停止するものが建設されようとしている。
On the other hand, so-called combined plants, which combine a gas turbine with good startup characteristics and an exhaust heat recovery boiler, are also used for intermediate-load thermal power generation, and are operated only during the day when there is a high demand for electric power.
There is a plan to build something that will shut down at night.

ところが、この石炭専焼の中間負荷用ボイラ、ガスター
ビンにおいてもNO,$出濃度の規制強化に伴ない、従
来の燃焼改善に加えて、NH,を還元剤として触媒の存
在下で脱硝を行なう乾式接触還元脱硝装置を設置するプ
ラントが増加している。
However, with the tightening of regulations on the concentration of NO and NOx in these coal-fired intermediate-load boilers and gas turbines, in addition to conventional combustion improvements, dry-type denitration using NH as a reducing agent and denitration in the presence of a catalyst has been introduced. An increasing number of plants are installing catalytic reduction denitrification equipment.

それは石炭専焼ボイラにおいては燃料の燃焼性が惑いの
でNOx量が増加し、ガスタービンプラントにおいては
酸素量が多く高温燃焼を行なうために、石炭専焼ボイラ
と同様に、排ガス中には多量のNOXを含有しているの
で、第1図に示す様な脱硝装置8が設置される。
This is because in coal-fired boilers, the combustibility of the fuel is unstable, which increases the amount of NOx, and in gas turbine plants, the amount of oxygen is high and high-temperature combustion is performed, so as with coal-fired boilers, a large amount of NOx is produced in the exhaust gas. Therefore, a denitrification device 8 as shown in FIG. 1 is installed.

41図は脱硝装置8が設置されたボイラの代豪的な煙風
道系統を示す。
Figure 41 shows a conventional smoke and air duct system for a boiler in which a denitrification device 8 is installed.

空気ダクト1内の燃焼用空気は押込通風機2に【昇圧さ
れ、空気予熱器3にて排ガスダクト4の排ガスによって
加熱された後ウィンドボックス5よりボイラ6へ供給さ
れる。
The combustion air in the air duct 1 is pressurized by the forced draft fan 2, heated by the exhaust gas from the exhaust gas duct 4 in the air preheater 3, and then supplied from the wind box 5 to the boiler 6.

結方ボイラ6内で燃焼した排ガスは、排ガスダクト4で
NH,注入管7からのNH,によって脱硝されると共に
、下流に配置した脱硝装置8内の触媒9において脱硝を
促進し、排ガス中のNOxは除去されて空気予熱器3.
集塵機10.il引通風横11で昇圧され大気へ放出さ
れる。
The exhaust gas combusted in the boiler 6 is denitrated by NH in the exhaust gas duct 4 and NH from the injection pipe 7, and the denitrification is promoted in the catalyst 9 in the denitrification device 8 disposed downstream. NOx is removed and the air preheater3.
Dust collector10. It is pressurized by the il ventilation side 11 and released into the atmosphere.

ところが、かかる脱硝装置18は触媒9の種類によって
も多少反応温度範囲は異るが、最も効率の高い温度1@
囲は300〜400°Cの比較的高温で、温度範囲はい
たって狭いので、中間負荷火力用のボイラやガスタービ
ンの様に常に部分負荷で運転されるものにおいては、負
荷変動によって排ガス温度が変動し、触媒90使用可能
領域をはずれてしまう欠点がある。
However, although the reaction temperature range of such a denitrification device 18 differs depending on the type of catalyst 9, the temperature 1@ which is the most efficient is
The ambient temperature is relatively high at 300 to 400°C, and the temperature range is quite narrow. Therefore, in boilers for intermediate-load thermal power plants and gas turbines that are constantly operated at partial load, the exhaust gas temperature fluctuates due to load fluctuations. However, there is a drawback that the catalyst 90 is outside the usable range.

この場合、触媒90使用ガス@度が高過ぎると、触媒9
の組織が変化して触媒としての機能がそこなわれ、また
使用ガス温度が低すぎると排ガス中に存在する無水硫!
(SOs)と反応してやはり触媒機能が劣化する。
In this case, if the temperature of the gas used in the catalyst 90 is too high, the catalyst 90
The structure of the catalyst changes and its function as a catalyst is impaired, and if the gas temperature used is too low, the anhydrous sulfur present in the exhaust gas!
(SOs) and the catalyst function deteriorates.

従って、これら部分負荷時における排ガスは、ガスバイ
パス方式やアフターバーニングなどによって温度制御が
行りわれたり、或いは触媒性能の改良によって部分負荷
時の脱硝は解決されつつある。
Therefore, the temperature of the exhaust gas during these partial loads is controlled by a gas bypass system, afterburning, etc., or denitration during partial loads is being solved by improving catalyst performance.

ところが、中間負荷火力用のボイラ、ガスタービンにお
ける脱硝装置の欠点は、これらのボイラやガスタービ/
がSt+*に起動、停止を繰り返すととKよって、起動
直後には大量のNO,が発生し、NH3を注入してから
脱硝活性が定常になるまでには数時間を要する欠点があ
り、この起動直後に排出されるNOx量が新たな問題と
なっている。
However, the disadvantages of denitrification equipment for intermediate-load thermal power boilers and gas turbines are that these boilers and gas turbines/
If it repeatedly starts and stops at St+*, a large amount of NO will be generated immediately after starting, and it will take several hours for the denitrification activity to reach a steady state after NH3 is injected. The amount of NOx emitted immediately after startup has become a new problem.

本発明はかかる従来め欠点を解決しようとするもので、
その目的とするところは、起動、停止を111311H
c繰り返すプラントであっても、起動直後から効率よく
脱硝することができる還元剤の注入方法を得ようとする
ものである。
The present invention attempts to solve such conventional drawbacks,
Its purpose is to start and stop 111311H
The objective is to obtain a method for injecting a reducing agent that can efficiently denitrate immediately after startup, even in a repeating plant.

要するに本発明は還元剤の注入開始時点を脱硝装置への
排ガス通気停止前から遅くとも脱硝装置の起動と同時に
過剰な還元剤を触媒層へ注入して触媒層へ還元剤を吸着
させ、起動時から脱硝効率が定常値になるようにしたも
のである。
In short, the present invention allows the injection of the reducing agent to be started before the exhaust gas ventilation to the denitrification device is stopped and at the latest at the same time as the denitrification device is started, so that the reducing agent is adsorbed into the catalyst layer, and the reducing agent is adsorbed into the catalyst layer. The denitrification efficiency is kept at a steady value.

以下本発明の実施例について説明するが、それ以前に発
明者等が行なった実験例から説明する。
Examples of the present invention will be described below, starting with experimental examples conducted by the inventors prior to that.

本発明肴等は、第2図、第3図に示す如(NH。The dishes of the present invention are as shown in FIGS. 2 and 3 (NH).

接触還元脱硝法において、NH1注入−始後脱硝効率が
定常値にまで増加するのに数時間ik要する原因を反応
機構の面から攬々検討した結果、次のような結論に至っ
た。
In the catalytic reduction denitrification method, the reason why it takes several hours for the denitrification efficiency to increase to a steady value after the start of NH1 injection was investigated from the viewpoint of the reaction mechanism, and as a result, the following conclusion was reached.

なお、冥−条件はガス温度200’C%面横速1[6m
/h、ガスは灯油燃焼ガスで、No値は200p障、N
H3注入量kt 200ppm ”11’ ア4゜即ち
、第2図、143図に示すようにNH,注入開始直後か
らの脱硝率と触媒上に吸着しているNH。
Note that the conditions are gas temperature 200'C% plane transverse velocity 1 [6 m
/h, gas is kerosene combustion gas, No value is 200p, N
H3 injection amount kt 200 ppm "11" A4° That is, as shown in FIG. 2 and FIG.

吸着量の経時変化はよく一欽しており、これをもとに、
脱#1皐X(−)とNH,吸着量Qとの関係を調べると
次式のような関係が成立する。
The amount of adsorption changes over time, and based on this,
When the relationship between #1 deoxidation X(-) and NH adsorption amount Q is investigated, the following relationship is established.

tn  ’  =const、eQ 丁へ この式によれば脱硝率がNHIを注入しはじめて直ちに
高くならないのは、NHlの供給量が少ないためで、触
媒上のNH,吸着量が定常値になるまでに時間がかかる
ためであることが44Jnした。
tn' = const, eQ According to this equation, the reason why the denitrification rate does not increase immediately after NHI is injected is because the supply amount of NHI is small, and it takes until the amount of NH adsorbed on the catalyst reaches a steady value. It took 44Jn that this was because it took time.

一方、脱硝率Xを大きくするためには、触媒上の吸着N
Hstを増大させればよいことになる。
On the other hand, in order to increase the denitrification rate X, it is necessary to
All that is required is to increase Hst.

この吸着NH1の性質について−ベた結果、吸着したN
H,t’l極めて安定であり、一旦触媒上に吸着された
NH,は脱硝装置の停止期間中も変化はなく、触媒上に
保持されたままであることも判明した。
Regarding the properties of this adsorbed NH1, we found that the adsorbed N
It was also found that H,t'l is extremely stable, and that NH, once adsorbed on the catalyst, does not change even during the period when the denitration equipment is stopped and remains retained on the catalyst.

本発明者等はこの吸着NH,の鳶くべき安定性を脱硝装
置へ巧みに応用したものである。
The present inventors have skillfully applied this extraordinary stability of adsorbed NH to a denitrification device.

従って、NH,の注入開始時点を脱硝装置の起動時より
前にするか、或いは脱硝装置の起動と同時に短時間の間
に多量のNH,(脱硝反応に必要なNOx普く比べて過
剰なNH,)を触媒上に供給して、触媒上のNH,吸着
量を多くしてやれば、ガスタービンや中間負荷ボイラの
様に起動、停止を頻繁に繰り返すものにおいては、起動
直後から効率よく脱硝を行なうことができるとの結−に
達した。
Therefore, it is necessary to start the injection of NH before the start of the denitrification equipment, or at the same time as the start of the denitrification equipment, a large amount of NH, (an excess of NH compared to the NOx required for the denitrification reaction) is introduced in a short period of time. , ) onto the catalyst to increase the amount of NH adsorbed on the catalyst, denitrification can be performed efficiently immediately after startup in equipment that frequently starts and stops, such as gas turbines and intermediate load boilers. We have reached the conclusion that it is possible.

本発明はこの様な一点から、ガスタービンや中間負荷用
ボイラにおいては、起動時に大量のNOxを発生するこ
とから、NH,の注入開始時点を脱硝装置の起一時より
も前K、もしくは起動と同時に、一時的に大過剰のN1
−11を触媒層へ注入するようにしたものである、 以下本発明を実施例により詳細に説明する。
Based on this point, the present invention aims to start the injection of NH before the start-up time of the denitrification equipment, or at the start-up time, since gas turbines and intermediate-load boilers generate a large amount of NOx at the time of start-up. At the same time, a temporary large excess of N1
-11 is injected into the catalyst layer.The present invention will be described in detail below with reference to Examples.

なお、試験に用いた触媒及び条件は次の通りである2 実施列1 第1表に示す組成のガスを350’CK加熱後、同温度
で10〜20 メツシュに成形・整粒したTi系触媒と
空間速度50.000h ’で接触させ30分関繍侍し
た。その後、NH,濃度な300ppm に増大させて
30分間、同条件に保持した後に排ガス通気な中止し、
直ちに大気中に取り出し、そのまま12寺関放+tした
。この触媒を再び反応iFK充礪した訛、第1fiの組
成のガスを通気しながら第4図に示したように常温から
350 ’Cまで昇温し、その一時の脱硝率の経時変化
は、45図の二点鎖−の曲線Aで示すように起動時から
脱硝率が高くなり、脱硝装置−\の排ガス1&気停止前
に過剰のNOx量を注入することが、再起動時の脱硝率
を尚くすることに最も有効であることが結−づけられた
The catalysts and conditions used in the test are as follows.2 Practical row 1 A Ti-based catalyst that was heated for 350'CK with a gas having the composition shown in Table 1, and then formed and sized into 10 to 20 meshes at the same temperature. The contact was carried out at a space velocity of 50,000h' and the contact was carried out for 30 minutes. After that, the NH concentration was increased to 300 ppm, and after maintaining the same condition for 30 minutes, exhaust gas ventilation was stopped.
It was immediately taken out into the atmosphere and left for 12 days. This catalyst was heated again from room temperature to 350'C as shown in Figure 4 while passing through a gas having the composition 1fi filled with reactive iFK. As shown by the double-dot chain curve A in the figure, the denitrification rate increases from the time of startup, and injecting an excessive amount of NOx before the exhaust gas 1 & air of the denitrification equipment stops increases the denitrification rate upon restart. It was concluded that it is most effective to do so.

第  1  表 実施IF12. 3 実J1−1におけるNH,g度300ppm に替えて
400及び600ppm とし、他の条件は実施例1と
同一にして同様の試験を行なった。
Table 1 Implementation IF12. 3 A similar test was carried out under the same conditions as in Example 1 except that the NH concentration was changed from 300 ppm in Example J1-1 to 400 and 600 ppm, and the other conditions were the same as in Example 1.

この時の脱硝率の経時変化は実施例2が第5図の一点鎖
線の曲−B、実施例3が実線の曲融Cで示す様に起動時
から脱硝率が^くなった。
At this time, the denitrification rate decreased over time from the time of startup, as shown by the dot-dash line curve B in Example 2 and the solid line curve C in Example 3.

比較例1 実開1に示した高NH3a& (300ppm)  処
理を行なわないで、同様の試験を行なった。
Comparative Example 1 A similar test was conducted without performing the high NH3a& (300 ppm) treatment shown in Utility Model Application No. 1.

この時の脱硝率の経時変化は第5図の点線の曲?mDで
示すように、起動時の脱硝率が曲線A、 B、Cと比べ
て悪く、起動時に排ガス通気後直ちに高い脱硝率を得る
ことはできなかった。
What is the change in the denitrification rate over time at this time, indicated by the dotted line in Figure 5? As shown by mD, the denitrification rate at startup was poor compared to curves A, B, and C, and it was not possible to obtain a high denitrification rate immediately after venting the exhaust gas at startup.

以りは過剰のNH,fiを脱硝装置への排ガス通気停止
以前に注入した場合の実施例であれが、以下、この過剰
NH,@を脱硝装置の起動前、もしくは起動と同時に注
入する場合について説明する。
This is an example in which excess NH, fi is injected before the exhaust gas ventilation to the denitrification equipment is stopped, but below, we will discuss the case where this excess NH, @ is injected before or at the same time as the denitrification equipment is started. explain.

なお、この時の試験装置及び条件は次の通りである。The test equipment and conditions at this time were as follows.

即ち、厚さ1■、・嘔40■、長さ1001のTi系触
媒を、40+am角ガラス襄反応管の中に間隔−で8枚
充填し、ここへ予熱さtした第2表に示す横gl!排ガ
スを5Nt/min  で通した。なお、模擬排ガスは
第6図に示す様にガスタービンの起動を模擬するため予
熱器で1時間恢に500℃になるよう昇温し、入実施例
4 予熱した模優排ガスを触媒層に導入する前に、第8図の
実線Eで示す如く希釈した11000ppのNH。
That is, eight Ti-based catalysts having a thickness of 1 cm, a length of 40 cm, and a length of 1,001 mm were packed in a 40+ am square glass sleeve reaction tube at intervals of -, and the tube was preheated to the width shown in Table 2. gl! Exhaust gas was passed through at 5 Nt/min. As shown in Figure 6, the simulated exhaust gas was heated to 500°C every hour in a preheater to simulate the startup of the gas turbine.Example 4 Preheated simulated exhaust gas was introduced into the catalyst layer. 11,000 pp of NH was diluted as shown by the solid line E in FIG.

を6Nj/minで触媒層に20分間通した。その後に
模擬排ガスを触媒層に導入すると同時にN山を300p
pm 注入した。この時の脱硝率の経時変化は第9図の
実線Eで示す様に8動時から脱硝率が高くなり、起動前
に第8図の実線Eで示す如く、NH。
was passed through the catalyst layer for 20 minutes at 6 Nj/min. After that, simulated exhaust gas is introduced into the catalyst layer and at the same time the N mountain is increased to 300p.
pm injected. At this time, the denitrification rate changes over time as shown by the solid line E in FIG. 9, and the denitrification rate increases from the 8th operation, and before startup, as shown by the solid line E in FIG.

な注入することが蟻も有効であることが結論づけら、れ
た。
It was concluded that injecting ants is also effective.

実施例5.6 触媒層に模IIIIIPガスを流入すると同時に、まず
11000pp及び2000ppmのNH,を第8図の
一点鎖線F、二点鎖線Gの様に20分間注入し、その後
はNHsl1度を300ppm  (N Oと等モル)
KLJ、、:。その結果脱硝率はIs9図の一点鎖−F
及び二点鎖線Gで示すように、比較0例20点4Hより
起動時の脱硝率がよくなることが判明した。
Example 5.6 At the same time as model III IP gas was introduced into the catalyst layer, 11,000 ppm and 2,000 ppm of NH were first injected for 20 minutes as shown by the one-dot chain line F and double-dot chain line G in Figure 8, and then 300 ppm of NHsl was injected once. (Equimole with NO)
KLJ, :. As a result, the denitrification rate is the single-dot chain-F in Is9 diagram.
As shown by the two-dot chain line G, it was found that the denitrification rate at startup was better than that of the comparative example 20 points 4H.

比較例2 触媒層に模a排ガスを通すと同時にNH,を300pp
m(NOと等モル)で注入した。この結果を第9図に破
@Hで示す。
Comparative Example 2 300pp of NH is passed through the catalyst layer and at the same time
m (equimolar to NO). This result is shown in FIG. 9 by a broken @H.

以上述べた様に、本発明による実施例1〜6で得られた
脱硝率A−C,E−Fは、比較例り、 Hに比べ起動直
後より高い脱硝率を得ることができ、これは起動前、或
いは起動時に注入した過剰のNHIが触媒ノーへ吸着し
、この表着したNt(1が脱硝を促進したからである。
As mentioned above, the denitrification rates A-C and E-F obtained in Examples 1 to 6 according to the present invention can obtain a higher denitrification rate immediately after starting compared to Comparative Example H, and this is because This is because the excess NHI injected before or at the time of startup was adsorbed onto the catalyst no, and this adhering Nt(1) promoted denitrification.

以上本発明の実施例においては、ガスタービンの脱硝に
ついてのみ説明したが、本発明はガスタービンのみに一
定されるものではなく、広く他の燃料を用いる脱硝装置
においても有効である。
In the embodiments of the present invention, only the denitrification of gas turbines has been described, but the present invention is not limited to gas turbines only, but is also effective in denitrification devices that use a wide range of other fuels.

本発明によれば脱硝装置の起動直後から高い脱硝率を得
ることができ、峙に中間負荷ボイラやガスタービンの排
熱ボイラ等のように起動、停止を繰り返すものにおいて
は籍KfA!Il!1時に大量のNOxを発生するので
その脱硝効率はより効果的である。
According to the present invention, a high denitrification rate can be obtained immediately after the denitrification equipment is started, and on the other hand, it is possible to obtain a high denitrification rate immediately after starting the denitrification equipment. Il! Since a large amount of NOx is generated at one time, the denitrification efficiency is more effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は脱硝装置の概要図、s2図、第3図はNH,吸
層蓋と脱硝率の相関関係な示す特性11図、第4図、[
6図及び第7図は実施例に用いた排ガス温度、入口NO
,の変化量を示した図、第8図は還元剤の注入開始時期
と注入量を示した図、第5図及び第9図は脱硝率と時間
の関係を示した特性11図である。 。   第2図 第3図 第4図 第5図 −B!l lV’l  (’I)
Figure 1 is a schematic diagram of the denitration equipment, Figure 3 is NH, Figure 11 shows the correlation between the absorption cap and the denitrification rate, Figure 4 is [
Figures 6 and 7 show the exhaust gas temperature and inlet NO used in the example.
, FIG. 8 is a diagram showing the start timing and injection amount of reducing agent injection, and FIGS. 5 and 9 are characteristic charts 11 showing the relationship between the denitrification rate and time. . Figure 2 Figure 3 Figure 4 Figure 5-B! l lV'l ('I)

Claims (1)

【特許請求の範囲】[Claims] 1、#ガスダクト内に触媒を内蔵した脱硝装置を設け、
この脱硝装置の上流に還元剤を注入する注入管を配置し
、排ガスダクト内に還元剤を注入するものにおいて、前
記還元剤の注入開始時点を脱硝装置への排ガス通気停止
前から遅くとも脱硝装置の起動と同時にして過剰の還元
剤を注入し、この過剰の還元剤を予め触媒に吸着させる
ようにしたことを特徴とする還元剤の注入方法。
1. Install a denitrification device with a built-in catalyst in the gas duct,
In a device in which an injection pipe for injecting a reducing agent is arranged upstream of the denitrification device and the reducing agent is injected into the exhaust gas duct, the time point at which the injection of the reducing agent is started is from before the exhaust gas ventilation to the denitrification device is stopped at the latest. A method for injecting a reducing agent, characterized in that an excess reducing agent is injected at the same time as startup, and the excess reducing agent is adsorbed onto a catalyst in advance.
JP57010848A 1982-01-28 1982-01-28 Method for introducing reducing agent Granted JPS58128126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57010848A JPS58128126A (en) 1982-01-28 1982-01-28 Method for introducing reducing agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57010848A JPS58128126A (en) 1982-01-28 1982-01-28 Method for introducing reducing agent

Publications (2)

Publication Number Publication Date
JPS58128126A true JPS58128126A (en) 1983-07-30
JPH0367728B2 JPH0367728B2 (en) 1991-10-24

Family

ID=11761767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57010848A Granted JPS58128126A (en) 1982-01-28 1982-01-28 Method for introducing reducing agent

Country Status (1)

Country Link
JP (1) JPS58128126A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211224A (en) * 1989-02-10 1990-08-22 Hitachi Zosen Corp Removal of nitrogen oxide in waste gas
JP2002177741A (en) * 2000-12-18 2002-06-25 Miura Co Ltd Method of controlling denitration apparatus in boiler
JP2006257936A (en) * 2005-03-16 2006-09-28 Ngk Insulators Ltd Exhaust gas-dust collecting denitration method of diesel engine
JP2015068598A (en) * 2013-09-30 2015-04-13 三浦工業株式会社 Exhaust gas boiler with denitrification device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551858A (en) * 1978-06-21 1980-01-09 Mitsubishi Chem Ind Ltd Reduction and denitrification by ammonia

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551858A (en) * 1978-06-21 1980-01-09 Mitsubishi Chem Ind Ltd Reduction and denitrification by ammonia

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02211224A (en) * 1989-02-10 1990-08-22 Hitachi Zosen Corp Removal of nitrogen oxide in waste gas
JP2002177741A (en) * 2000-12-18 2002-06-25 Miura Co Ltd Method of controlling denitration apparatus in boiler
JP2006257936A (en) * 2005-03-16 2006-09-28 Ngk Insulators Ltd Exhaust gas-dust collecting denitration method of diesel engine
JP2015068598A (en) * 2013-09-30 2015-04-13 三浦工業株式会社 Exhaust gas boiler with denitrification device

Also Published As

Publication number Publication date
JPH0367728B2 (en) 1991-10-24

Similar Documents

Publication Publication Date Title
JP7221262B2 (en) Exhaust system for power plant
JPS6157927B2 (en)
CA2138983A1 (en) Low nox cogeneration process and system
US5120516A (en) Process for removing nox emissions from combustion effluents
US5022226A (en) Low NOx cogeneration process and system
JP7420941B2 (en) Arrangement and method for operating a steam boiler system
JPS58128126A (en) Method for introducing reducing agent
JPH0926105A (en) Boiler
CN1817415A (en) Denitration of non-selective catalytic reducing smoke
CN207951086U (en) A kind of coke oven flue gas denitration desulfurization and residual neat recovering system
JPH01155007A (en) Operating method for exhaust heat recovery boiler
JP2010249407A (en) Coal burning boiler and plant equipped with the same
CN110848726A (en) Energy-saving denitration device for hazardous waste incineration system
JPH0461917A (en) Exhaust gas treatment apparatus
JP3544716B2 (en) Method and apparatus for controlling ammonia injection amount in denitration apparatus
KR200199659Y1 (en) Improvement of boiler exhaust gas purifier
JPH0120984Y2 (en)
JP2582139B2 (en) NOx reduction treatment method for coal gasified fuel
JPH0352626A (en) Waste combustion gas treating device and regerating method thereof
JPS5913642B2 (en) Exhaust gas recirculation method and device for a steam generator having a denitrification catalytic reaction device
JP2634279B2 (en) Method for burning NOx-containing gas
JPS5450471A (en) Treating method for nitrogen oxides contained in exhaust gas
CN113952836A (en) Flue gas denitration system and method based on catalytic decomposition of NOx
JPS6174631A (en) Denitration apparatus
JPS61223411A (en) Catalyst burning method for pulverized coal