JPH01155007A - Operating method for exhaust heat recovery boiler - Google Patents

Operating method for exhaust heat recovery boiler

Info

Publication number
JPH01155007A
JPH01155007A JP62311991A JP31199187A JPH01155007A JP H01155007 A JPH01155007 A JP H01155007A JP 62311991 A JP62311991 A JP 62311991A JP 31199187 A JP31199187 A JP 31199187A JP H01155007 A JPH01155007 A JP H01155007A
Authority
JP
Japan
Prior art keywords
gas
heat recovery
gas turbine
recovery boiler
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62311991A
Other languages
Japanese (ja)
Inventor
Noriyoshi Teranishi
寺西 詔奉
Shinichi Hoizumi
保泉 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62311991A priority Critical patent/JPH01155007A/en
Publication of JPH01155007A publication Critical patent/JPH01155007A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/008Adaptations for flue gas purification in steam generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To make a denitration device to operate quickly by providing an auxiliary fuel burner between a gas turbine and an exhaust heat recovery boiler and burning the fuel during a warming up period so as to raise the temperature of exhaust gas. CONSTITUTION:In an inlet duct 1 for leading exhaust gas of a gas turbine to an exhaust heat recovery boiler, an auxiliary fuel burner 23 is mounted upstream from a heater 17. And fuel is burnt by the auxiliary fuel burner 23 before the rotational speed of the gas turbine rises to a rated rotational speed so as to raise the exhaust gas temperature. Thereby, the gas temperature at the inlet of a denitration device 21 rises at an early stage, so that the starting time of injecting ammonia to the exhaust gas can be expedited. And also, the NOx amount at the outlet of the denitration device 21 can be reduced to the extent same as that during normal operation, even after the gas turbine rotational speed rises to the rated rotational speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアンモニア注入選択接触還元法による排煙脱硝
装置を具備した蒸気・ガスコンバインドサイクル発電プ
ラント(以下C/Cプラントと略記する。)の起動時の
排煙脱硝を効果的に行なうための廃熱回収ボイラの運転
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a steam/gas combined cycle power plant (hereinafter abbreviated as a C/C plant) equipped with a flue gas denitrification device using an ammonia injection selective catalytic reduction method. The present invention relates to a method of operating a waste heat recovery boiler for effectively denitrating exhaust gas during startup.

〔従来の技術〕[Conventional technology]

従来の装置は、特開昭53−92066号公報に記載の
ように、ガスタービン排ガスを助燃バーナにより900
〜1200℃程度に昇温することを特徴とし、また、触
媒を使用しない脱硝方式を採用している。
As described in Japanese Patent Application Laid-Open No. 53-92066, a conventional device burns gas turbine exhaust gas using an auxiliary combustion burner to
It is characterized by raising the temperature to about 1,200°C, and uses a denitrification method that does not use a catalyst.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

アンモニア注入選択接触還元法による排煙脱硝法は、排
ガス中にアンモニアガスを注入して適当な温度条件(3
00〜400℃)で金属系触媒を用いて選択的に反応さ
せ、NOxを窒素ガス(N2)と水蒸気(N20)に還
元分解するものである。反応式は下記の通りである。
The flue gas denitrification method using the ammonia injection selective catalytic reduction method involves injecting ammonia gas into the flue gas and adjusting the temperature under appropriate conditions (3.
00 to 400°C) using a metal catalyst to reductively decompose NOx into nitrogen gas (N2) and water vapor (N20). The reaction formula is as follows.

4NO+4NHa十02→4N2+6H206NO2+
8NH3→7N2+12H20触媒の活性がガス温度に
より影響されるため、脱硝率はガス温度300〜400
 ’Cで最高となる。
4NO+4NHa102→4N2+6H206NO2+
8NH3 → 7N2 + 12H20 Since the activity of the catalyst is affected by the gas temperature, the denitrification rate is lower when the gas temperature is 300 to 400.
'C is the highest.

排ガス中へのアンモニアの注入は、ガス温度180〜2
00℃以上で行なわれる。これより低温時に注入すると
次のような問題がある。
Ammonia is injected into the exhaust gas at a gas temperature of 180 to 2
It is carried out at a temperature of 00°C or higher. If the temperature is lower than this, the following problems will occur.

(1)脱硝率が低く、アンモニア注入効果が低い。(1) The denitrification rate is low and the ammonia injection effect is low.

(2)アンモニアとNOxが反応し硝安が形成され爆発
の危険性がある。
(2) Ammonia and NOx react to form ammonium nitrate, which poses a risk of explosion.

従って、C/Cプラントの起動時、脱硝装置入口ガス温
度が180℃以上に上昇する迄の間は、排ガス中へのア
ンモニア注入を行なえないため脱硝装置は機能しない。
Therefore, when the C/C plant is started up, the denitrification device does not function because ammonia cannot be injected into the exhaust gas until the gas temperature at the denitrification device inlet rises to 180° C. or higher.

また、ガス温度が180℃に到達した時点でアンモニア
注入を開始するが、触媒にアンモニアが吸着するまでの
間、脱硝反応の遅れがあり、定常状態になるには時間遅
れがある。この理由により従来のC/Cプラントは、起
動時、短時間ではあるが通常運転中と比較しNOx排出
量(Nm/h)が増大する問題があった。本発明の目的
は、C/Cプラント起動時のNOx排出量を効果的に減
少させる手段を提供することにある。
In addition, ammonia injection is started when the gas temperature reaches 180° C., but there is a delay in the denitrification reaction until ammonia is adsorbed on the catalyst, and there is a time delay before the steady state is reached. For this reason, conventional C/C plants have had a problem in that when started up, NOx emissions (Nm/h) increase compared to during normal operation, albeit for a short time. An object of the present invention is to provide a means for effectively reducing NOx emissions during startup of a C/C plant.

〔問題点を解決するための手段〕[Means for solving problems]

C/Cプラン1−の起動に際し、特に、コールド状態、
および、ウオーム状態からの起動の場合、ガスタービン
の起動2点火後、回転数を定格回転数の40%前後で運
転して、廃熱回収ボイラをウオーミングするとともに、
その発生蒸気が蒸気タービンの起動に適した条件(圧力
、温度)になるまでの間、その運転を保持している。ガ
スタービンを40%前後の回転数で運転する場合には、
ガス流量が少なく、燃料量も少ないため、ガスタービン
の排ガス温度は低く、N Ox排出量(N rr? /
h)も通常運転中と比較して非常に少ない。一方、廃熱
回収ボイラの発生蒸気条件が整ったらガスタービンの回
転数を定格回転数まで昇速し、ガスタービン/蒸気ター
ビンを併列投入する。この間に排ガス量、燃料量が増加
するためN Ox発生量(排出量)は、通常運転中の脱
硝装置出口NOx量より多くなる。ガスタービンの負荷
の上昇に伴いガスタービン排ガス中のNOx量(Nm3
/h)は、さらに増加する。
When starting C/C Plan 1-, especially in a cold state,
In the case of startup from a warm state, after the gas turbine starts and 2 ignites, the rotation speed is operated at around 40% of the rated rotation speed to warm the waste heat recovery boiler,
The operation is maintained until the generated steam reaches conditions (pressure, temperature) suitable for starting the steam turbine. When operating a gas turbine at around 40% rotation speed,
Because the gas flow rate is low and the fuel amount is low, the exhaust gas temperature of the gas turbine is low, and the NOx emissions (N rr? /
h) is also very small compared to during normal operation. On the other hand, when the conditions for the steam generated by the waste heat recovery boiler are in place, the rotational speed of the gas turbine is increased to the rated rotational speed, and the gas turbine/steam turbine is connected in parallel. During this period, the amount of exhaust gas and the amount of fuel increase, so the amount of NOx generated (emission amount) becomes greater than the amount of NOx at the outlet of the denitrification device during normal operation. As the load on the gas turbine increases, the amount of NOx in the gas turbine exhaust gas (Nm3
/h) further increases.

本発明はこの点に着目したもので、次のようにして問題
点を解決している。
The present invention focuses on this point and solves the problem as follows.

ガスタービンと廃熱回収ボイラの間(または、廃熱ボイ
ラの中間、但し脱硝装置より上流側でもよい。)に助燃
バーナを設けて、ガスタービンを定格回転数の約40%
で保持する間、助燃バーナにより燃料を燃焼させ排ガス
温度を高めてやる。
An auxiliary combustion burner is installed between the gas turbine and the waste heat recovery boiler (or in the middle of the waste heat boiler, but it may also be upstream of the denitrification equipment), and the gas turbine is rotated at approximately 40% of the rated speed.
During this period, the fuel is combusted using an auxiliary combustion burner to raise the exhaust gas temperature.

これにより、脱硝装置入口ガス温度を早期に1.80℃
以上に上昇させ、排ガスへのアンモニア注入開始を早め
ることができる。さらに、ガスタービン回転数を定格回
転数に昇速した後にも脱硝装置出口NOx量(Nrn’
/h)を通常運転中と同程度に減少させることができる
As a result, the gas temperature at the inlet of the denitrification equipment can be quickly reduced to 1.80°C.
It is possible to accelerate the start of ammonia injection into the exhaust gas. Furthermore, even after increasing the gas turbine rotation speed to the rated rotation speed, the amount of NOx at the outlet of the denitrification equipment (Nrn'
/h) can be reduced to the same extent as during normal operation.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図、第2図、第3図、第
4図により説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1, 2, 3, and 4.

第1図は、C/Cプラント用廃熱回収ボイラの系統図で
ある。廃熱回収ボイラはガスタービンの排ガスを廃熱回
収ボイラへ導くダクト1.廃熱回収ボイラを出た排ガス
を煙突に導くダクト2.給水管11.エコノマイザ12
.ドラム13.蒸発器14,15.配管J6.過熱器1
72発生蒸気を蒸気タービンへ導くための配管工8.脱
硝装置21、アンモニア注入装置22.助燃バーナ23
等により構成されている。脱硝装置21は、ガス温度が
脱硝反応に適当な温度になるように蒸発器14.15の
間に配置されている。又、助燃バーナ23は過熱器17
の上流に配置されている。
FIG. 1 is a system diagram of a waste heat recovery boiler for a C/C plant. The waste heat recovery boiler is a duct that guides the exhaust gas from the gas turbine to the waste heat recovery boiler.1. Duct that guides the exhaust gas from the waste heat recovery boiler to the chimney2. Water supply pipe 11. Economizer 12
.. Drum 13. Evaporators 14, 15. Piping J6. Superheater 1
72 Plumber to guide the generated steam to the steam turbine 8. Denitrification device 21, ammonia injection device 22. Auxiliary burner 23
It is composed of etc. The denitrification device 21 is arranged between the evaporators 14 and 15 so that the gas temperature is appropriate for the denitrification reaction. Further, the auxiliary combustion burner 23 is connected to the superheater 17.
is located upstream of the

第2図ないし第4図は本発明の一実施例による運転方法
ならびに、従来の運転方法による廃熱回収ボイラの起動
特性の比較を時間(横軸)との関係で示した起動曲線で
ある。図において、従来の運転方法による特性を実線で
示し、本発明による運転方法による特性を破線で示す。
FIGS. 2 to 4 are starting curves showing a comparison of starting characteristics of waste heat recovery boilers according to an operating method according to an embodiment of the present invention and a conventional operating method in relation to time (horizontal axis). In the figure, the characteristics according to the conventional operating method are shown by solid lines, and the characteristics according to the operating method according to the present invention are shown by broken lines.

但し、両者共同じ特性の場合は実線のみで示しである。However, if both have the same characteristics, only the solid line is shown.

第2図はガスタービンの回転数及び負荷の上げ方を各々
曲線32曲線4で示す。時間t1(0)でガスタービン
起動2時間t2で点火2時間t8で40%回転数保持開
始、時間t4で40%回転数保持終了、時間t5でガス
タービン発電機の併入、時間t6でガスタービン負荷1
00%に到達していることを示している。第3図に廃熱
回収ボイラ入口ガス温度(従来)6.(本発明)7およ
び、脱硝装置入口温度(従来)9.(本発明)10を示
す。本発明により廃熱回収ボイラ入口温度は助燃バーナ
により従来方式の温度より高めている。この結果、脱硝
装置入口ガス温度の」1昇が早くなり、アンモニア注入
開始ガス温度Tl(1s 0℃)への到達時間は(従来
方式) tlo、zより、(本発明方式)t 10.2
へ早めることができる。
FIG. 2 shows how to increase the rotational speed and load of the gas turbine by curves 32 and 4, respectively. At time t1 (0), the gas turbine is started for 2 hours. At t2, it is ignited. At 2 hours t8, the rotation speed is maintained at 40%. At time t4, the rotation speed is maintained at 40%. At time t5, the gas turbine generator is added. At time t6, the gas turbine is Turbine load 1
This shows that it has reached 00%. Figure 3 shows waste heat recovery boiler inlet gas temperature (conventional) 6. (Present invention) 7. Denitrification equipment inlet temperature (conventional) 9. (This invention) 10 is shown. According to the present invention, the temperature at the inlet of the waste heat recovery boiler is made higher than that of the conventional system by means of an auxiliary combustion burner. As a result, the temperature of the gas at the inlet of the denitrification equipment increases by 1 1 more quickly, and the time it takes to reach the ammonia injection start gas temperature Tl (1 s 0°C) is (conventional method) tlo, z, (invention method) t 10.2
can be accelerated.

第4図にガス流量曲線5、脱硝装置入口NOx量曲線(
従来)19.(本発明)20.脱硝装置出口NOx量曲
線(従来)24.(本発明)25、通常運転中のNOx
排出量制限曲線8を示す。従来の運転方式の場合は、脱
硝装置入口NOx量曲線19はガスタービン回転数を定
格回転数へ昇速する以前には制限曲線8より十分に下廻
っており、且つ、本発明により、助燃バーナにより耐燃
を行なうことによりNOx量が若干増加するが制限曲線
8より十分に下廻っている。また、従来の運転方式の脱
硝装置出口NOx量曲線24は定格回転数への昇速後の
一時期(約三十分間)において制限曲線8を超えている
。一方、本発明による運転方法をとれば、脱硝装置出口
NOx量をプラント起動的にも、通常運転中のN Ox
量と同程度に制限することができる。
Figure 4 shows the gas flow rate curve 5 and the NOx amount curve at the denitrification equipment inlet (
Conventional) 19. (This invention) 20. Denitrification equipment outlet NOx amount curve (conventional) 24. (This invention) 25. NOx during normal operation
An emission limit curve 8 is shown. In the case of the conventional operation method, the NOx amount curve 19 at the inlet of the denitrification equipment is well below the limit curve 8 before the gas turbine rotation speed is increased to the rated rotation speed, and according to the present invention, the NOx amount curve 19 at the inlet of the denitrification equipment is well below the limit curve 8. Although the amount of NOx increases slightly due to flame resistance, it remains well below limit curve 8. In addition, the NOx amount curve 24 at the exit of the denitrification device in the conventional operation mode exceeds the limit curve 8 for a period of time (approximately 30 minutes) after the speed increases to the rated rotation speed. On the other hand, if the operating method according to the present invention is adopted, the amount of NOx at the outlet of the denitrification equipment can be reduced even during plant startup and NOx during normal operation.
It can be limited to the same extent as the amount.

本実施例によれば、プラントの起動時間を短縮すること
ができる。即ち、廃熱ボイラ入口温度が高くなり、蒸気
タービンへ蒸気の供給のための蒸気条件を早く整えるこ
とができるから起動時間を短縮することができる。
According to this embodiment, the startup time of the plant can be shortened. That is, the temperature at the inlet of the waste heat boiler becomes high, and the steam conditions for supplying steam to the steam turbine can be quickly established, so that the startup time can be shortened.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、脱硝装置をプラン1−起動過程の早期
から機能させることができるので、起動時のNOx排出
量を通常運転中のNOx排出量と同程度に制限すること
ができる。
According to the present invention, since the denitrification device can be made to function from an early stage of the Plan 1 startup process, the amount of NOx emissions at startup can be limited to the same level as the amount of NOx emissions during normal operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の系統図、第2図ないし第4
図は本発明による運転方法の考え方、および、特性を従
来方式と比較して示した起動曲線図である。 ■ 排気ガス人ロダク1−12・・・排気ガス出ロダク
1−1]1・・・給水管、12・・エコノマイザ、14
゜15 蒸発器、17・・・過熱器、18 ・主蒸気管
、21・・・脱硝装置、22・・・アンモニア注入装置
。 23・・・助燃バーナ。
FIG. 1 is a system diagram of an embodiment of the present invention, and FIGS.
The figure is a starting curve diagram showing the concept and characteristics of the operating method according to the present invention in comparison with a conventional method. ■ Exhaust gas output Rodak 1-12... Exhaust gas output Rodak 1-1] 1... Water supply pipe, 12... Economizer, 14
゜15 Evaporator, 17... Superheater, 18 - Main steam pipe, 21... Denitrification device, 22... Ammonia injection device. 23...Auxiliary burner.

Claims (1)

【特許請求の範囲】[Claims] 1、ガスタービン、廃熱回収ボイラ、蒸気タービン、ア
ンモニア注入選択接触還元式排煙脱硝装置を含みガスタ
ービン排気口から廃熱回収ボイラ迄の途中に助燃装置が
設けられているガス・蒸気コンバインドサイクルプラン
トにおいて、プラントの起動時に前記ガスタービンの回
転数を定格回転数まで上昇させる以前に前記助燃装置に
より助燃することを特徴とする廃熱回収ボイラの運転方
法。
1. A gas/steam combined cycle that includes a gas turbine, waste heat recovery boiler, steam turbine, ammonia injection selective catalytic reduction exhaust gas denitrification device, and has an auxiliary combustion device installed between the gas turbine exhaust port and the waste heat recovery boiler. A method for operating a waste heat recovery boiler in a plant, characterized in that the auxiliary combustion device performs auxiliary combustion before increasing the rotational speed of the gas turbine to the rated rotational speed at the time of startup of the plant.
JP62311991A 1987-12-11 1987-12-11 Operating method for exhaust heat recovery boiler Pending JPH01155007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62311991A JPH01155007A (en) 1987-12-11 1987-12-11 Operating method for exhaust heat recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62311991A JPH01155007A (en) 1987-12-11 1987-12-11 Operating method for exhaust heat recovery boiler

Publications (1)

Publication Number Publication Date
JPH01155007A true JPH01155007A (en) 1989-06-16

Family

ID=18023886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62311991A Pending JPH01155007A (en) 1987-12-11 1987-12-11 Operating method for exhaust heat recovery boiler

Country Status (1)

Country Link
JP (1) JPH01155007A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122419A (en) * 1997-07-02 1999-01-26 Mitsubishi Heavy Ind Ltd Combined cycle power plant
JP2006266258A (en) * 2005-02-22 2006-10-05 Toshiba Corp Power generation/desalination-combined plant and its operation method
FR2966906A1 (en) * 2010-10-29 2012-05-04 Gen Electric HEAT RECOVERY VAPOR GENERATOR
FR2966907A1 (en) * 2010-10-29 2012-05-04 Gen Electric HEAT RECOVERY VAPOR GENERATOR AND CATALYTIC REGENERATION
FR2966905A1 (en) * 2010-10-29 2012-05-04 Gen Electric HEAT RECOVERY VAPOR GENERATOR WITH NOX REDUCTION
US20150136045A1 (en) * 2013-11-21 2015-05-21 Alstom Technology Ltd Evaporator apparatus and method of operating the same
US9306670B2 (en) 2011-09-27 2016-04-05 Nippon Telegraph And Telephone Corporation Optical coupling/splitting device, two-way optical propagation device, and optical-transmit-receive system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1122419A (en) * 1997-07-02 1999-01-26 Mitsubishi Heavy Ind Ltd Combined cycle power plant
JP2006266258A (en) * 2005-02-22 2006-10-05 Toshiba Corp Power generation/desalination-combined plant and its operation method
US9062569B2 (en) 2010-10-29 2015-06-23 General Electric Company Systems, methods, and apparatus for regenerating a catalytic material
FR2966906A1 (en) * 2010-10-29 2012-05-04 Gen Electric HEAT RECOVERY VAPOR GENERATOR
FR2966907A1 (en) * 2010-10-29 2012-05-04 Gen Electric HEAT RECOVERY VAPOR GENERATOR AND CATALYTIC REGENERATION
FR2966905A1 (en) * 2010-10-29 2012-05-04 Gen Electric HEAT RECOVERY VAPOR GENERATOR WITH NOX REDUCTION
US9359918B2 (en) 2010-10-29 2016-06-07 General Electric Company Apparatus for reducing emissions and method of assembly
US9306670B2 (en) 2011-09-27 2016-04-05 Nippon Telegraph And Telephone Corporation Optical coupling/splitting device, two-way optical propagation device, and optical-transmit-receive system
CN104654259A (en) * 2013-11-21 2015-05-27 阿尔斯通技术有限公司 Evaporator apparatus and method of operating the same
EP2940382A1 (en) * 2013-11-21 2015-11-04 Alstom Technology Ltd Evaporator apparatus and method of operating the same
JP2015102324A (en) * 2013-11-21 2015-06-04 アルストム テクノロジー リミテッドALSTOM Technology Ltd Evaporator apparatus and method of operating the same
US20150136045A1 (en) * 2013-11-21 2015-05-21 Alstom Technology Ltd Evaporator apparatus and method of operating the same
US9739476B2 (en) 2013-11-21 2017-08-22 General Electric Technology Gmbh Evaporator apparatus and method of operating the same
RU2680022C2 (en) * 2013-11-21 2019-02-14 Дженерал Электрик Текнолоджи Гмбх Evaporator apparatus and method of operating the same
CN104654259B (en) * 2013-11-21 2019-08-20 通用电器技术有限公司 Evaporator device and its operating method

Similar Documents

Publication Publication Date Title
JP7417013B2 (en) Exhaust gas treatment method for thermal power plants
JPS6157927B2 (en)
KR101057342B1 (en) The de-nox efficiency improvement at low temperature and yellow plume reduction system by fast scr
JPS644051B2 (en)
JPH0429923B2 (en)
JPH0773661B2 (en) Injection type non-catalytic nitrogen oxide removal process control system
JPS6017967B2 (en) Exhaust heat recovery boiler equipment
JP2010196708A (en) Method and apparatus for operation of co/voc oxidation catalyst to reduce no2 formation for gas turbine
KR20120017018A (en) Diesel aftertreatment system
JP7221262B2 (en) Exhaust system for power plant
US10669908B1 (en) Power generating systems and methods for reducing startup NOx emissions in fossile fueled power generation system
JPH01155007A (en) Operating method for exhaust heat recovery boiler
KR101433611B1 (en) SCR De-Nox Equipment for removing yellow plume
JPH01119330A (en) Denitration of exhaust gas from gas turbine
JPH0472984B2 (en)
JPH07136465A (en) Usage of denitration apparatus for exhaust gas containing nitrogen dioxide and nitrogen monoxide
KR102458302B1 (en) Combined cycle power plant for reducing air pollutants and Method of reducing air pollutants in combined cycle power plant
JPH03260313A (en) Nox removal method of exhaust gas for internal combustion engine
JP3014738B2 (en) Denitration equipment
JPS6128704A (en) Operating method of combined plant
JPH01119329A (en) Denitration of exhaust gas from diesel engine
JP2002021579A (en) Method of controlling combined cycle plant provided with gas turbine and must-heat recovery boiler, and controller therefor
JPH0367728B2 (en)
JPH0617651B2 (en) Environmentally friendly gas turbine
JPS6214922A (en) Denitration apparatus of composite plant