JPS6128704A - Operating method of combined plant - Google Patents

Operating method of combined plant

Info

Publication number
JPS6128704A
JPS6128704A JP15158884A JP15158884A JPS6128704A JP S6128704 A JPS6128704 A JP S6128704A JP 15158884 A JP15158884 A JP 15158884A JP 15158884 A JP15158884 A JP 15158884A JP S6128704 A JPS6128704 A JP S6128704A
Authority
JP
Japan
Prior art keywords
plant
pressure
steam
turbine
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15158884A
Other languages
Japanese (ja)
Other versions
JPH0621524B2 (en
Inventor
Kiyoshi Takeuchi
清志 竹内
Taiji Inui
泰二 乾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP15158884A priority Critical patent/JPH0621524B2/en
Publication of JPS6128704A publication Critical patent/JPS6128704A/en
Publication of JPH0621524B2 publication Critical patent/JPH0621524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To improve an emission characteristic of NOX in a plant when it is started, by stopping the plant increasing the drum pressure of a waste heat boiler to a level higher than that of the pressure when the plant is stopped. CONSTITUTION:A combined plant sets a gas turbine 1, waste heat boiler 20, catalytic denitrifying device 11 and an NH3 injection nozzle 12. The plant, when it is stopped, holds the residual pressure of a drum 22 in the waste heat boiler 20, when it is restarted, to a high level by increasing the pressure of generated steam 54 while the temperature of gas in and around the denitrifying device 11 to a high level by an evaporator 23. In this way, the plant, when it is restarted, enables its emission characteristic of NOX to be improved by expending the injection timing of NH3 further enhancing the efficiency of denitrification.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ガスタービンと蒸気タービンのコンバインド
プラントに係シ、特に、プラントの起動時のN0w排出
特性を改善する為のプラント運転方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a combined plant of a gas turbine and a steam turbine, and particularly to a plant operating method for improving N0w emission characteristics at the time of plant start-up.

〔発明の背景〕[Background of the invention]

第1図にコンバインドプラントの全体構成を示す。 Figure 1 shows the overall configuration of the combined plant.

ガスタービン1は、大気51を吸引し、燃料52を燃焼
し、発電機2を駆動する。ガスタービンの排ガス53は
、排熱回収ボイラ20に導入され、熱回収され、給水ポ
ンプ35で送水された給水57は、節炭器21、蒸発器
23、過熱器24を通過するうち蒸気54となる。蝋蒸
気54は、蒸気タービン31へ注入され、発電機36を
駆動する。、また叛蒸気54は、プラント起動停止時等
に於いて、蒸気タービン31で必要とする蒸気54の流
量に対し、排熱回収ボイ220の発生蒸気量の方が多い
場合は、その余剰分を、蒸気54を分岐し、タービンバ
イパス管56及びタービンバイパス弁33を通して復水
器34へ排出される。
The gas turbine 1 sucks in atmospheric air 51, burns fuel 52, and drives the generator 2. The exhaust gas 53 of the gas turbine is introduced into the exhaust heat recovery boiler 20, where its heat is recovered, and the feed water 57 sent by the water feed pump 35 passes through the economizer 21, the evaporator 23, and the superheater 24, where it is converted into steam 54. Become. Wax vapor 54 is injected into steam turbine 31 and drives generator 36 . In addition, if the amount of steam generated by the exhaust heat recovery boiler 220 is greater than the flow rate of the steam 54 required by the steam turbine 31 during plant startup and shutdown, etc., the refractory steam 54 is used to absorb the surplus steam. , the steam 54 is branched and discharged to the condenser 34 through the turbine bypass pipe 56 and the turbine bypass valve 33.

さらに排熱回収ボイラ20内の蒸発器23の一部に触媒
式脱硝装置11が設置されておシ、該脱硝装置触媒の環
元剤として、NHs注入ノズル12によj)NHsS&
が注入され、排ガス中のN Oxは該NHs58及び該
脱硝装置触媒11により、無害なHzOとN3ガスに分
解される。
Further, a catalytic denitration device 11 is installed in a part of the evaporator 23 in the exhaust heat recovery boiler 20, and NHsS&
is injected, and NOx in the exhaust gas is decomposed into harmless HzO and N3 gas by the NHs 58 and the denitrification device catalyst 11.

第2図に1従来技術による該コンバインドプラントの起
動停止方法とその時のN Ox排出特性を示す。
FIG. 2 shows a method of starting and stopping the combined plant according to the prior art and the NOx emission characteristics at that time.

該コンバインドプラントは、火力原子力発電誌vob、
 3447r東新潟火力発電所第3号系列の計画」 (
昭58−7)に記載のように、プラント負荷に応じ、蒸
気54の圧力を変化させる変圧運転を行なっている。
The combined plant is published in Thermal and Nuclear Power Generation Magazine VOB,
3447r Higashi Niigata Thermal Power Plant No. 3 Series Plan” (
As described in 1982-7), a variable pressure operation is performed in which the pressure of the steam 54 is changed according to the plant load.

これは一般に知られているように、部分負荷時ガスター
ビン排ガス温度が低下する為、この特性に合わせ、該蒸
気54の圧力を変えることにょシ、プラント熱効率の改
善を図る為である。
This is because, as is generally known, the gas turbine exhaust gas temperature decreases during partial load, and the pressure of the steam 54 is changed in accordance with this characteristic, thereby improving the plant thermal efficiency.

従ってプラント停止時に於いても、負荷降下忙伴ない、
蒸気54の圧力を下げて停止を行なっている。
Therefore, even when the plant is stopped, there is no load drop,
The steam 54 is stopped by lowering its pressure.

一方、排熱回収ボイラ2oは脱硝装置11のまわシに蒸
発器23が設置されており、該蒸発器23の圧力が、該
脱硝装置11の入口ガス温度に大きく影響を与える。さ
らに脱硝装置11の性能は、入口ガス温度によシ、主と
して支配されておシ、入口ガス温度が低下すれば、脱硝
性能も低下する。
On the other hand, in the exhaust heat recovery boiler 2o, an evaporator 23 is installed in front of the denitrification device 11, and the pressure of the evaporator 23 greatly influences the inlet gas temperature of the denitrification device 11. Further, the performance of the denitrification device 11 is mainly controlled by the inlet gas temperature, and as the inlet gas temperature decreases, the denitrification performance also decreases.

従って第2図に示す、従来のプラント停止時に蒸気圧力
を下げ5る停止方法では、停止・時の蒸気254の圧力
、即ちドラム22の圧力が低く保たれたまま停止するこ
と、さらにプラント停止の間にさらにドラム22の圧力
が低下する為、プラント再起動時のドラム残圧が、かな
シ低下してしまった。
Therefore, in the conventional shutdown method of lowering the steam pressure when shutting down a plant, as shown in FIG. Since the pressure in the drum 22 further decreased during this time, the residual pressure in the drum at the time of restarting the plant decreased significantly.

この為、該プラント再起動時、脱硝装置110入ロガス
温度が下が’)、NHa 58の注入可能な所要ガス温
度迄昇温するのに時間が必要な為N Hs注入時期が遅
れ、脱硝装置111の立ち上がシ特性が遅れるという欠
点があった。
For this reason, when the plant is restarted, the temperature of the log gas entering the denitrification equipment 110 drops, and because it takes time to raise the temperature to the required gas temperature that allows injection of NHa 58, the timing of N Hs injection is delayed, and the denitrification equipment There was a drawback that the start-up characteristics of 111 were delayed.

尚、NHs58は低温時硝安生成の危険性がある為に、
脱硝装置入口ガス温度が一般に180〜200C以上で
、NHs注入ノズル12よシ注入している。それによっ
て、脱硝装置11にて脱硝作用が開始される。
In addition, since NHs58 has the risk of ammonium nitrate formation at low temperatures,
The gas temperature at the inlet of the denitrification device is generally 180 to 200 C or higher, and NHs is injected through the NHs injection nozzle 12. Thereby, the denitrification action is started in the denitrification device 11.

第2図に示す、従来技術の方法では、該プラントの停止
過程で、該蒸気54の圧力が変圧運転の為、低く保たれ
たまま停止されたこと、さらに、第4図の曲線伽)K示
すプラント停止期間中の該蒸  。
In the prior art method shown in FIG. 2, during the plant shutdown process, the pressure of the steam 54 was kept low due to variable pressure operation, and furthermore, the curve K in FIG. The steam during the plant shutdown period shown.

気54の圧力低下に゛より、プラント停止後8〜10時
間後の翌朝の起動時には、該蒸気54の圧力が約10気
圧しかなく、その為に、同起動時には脱硝装置工1に流
入するガス温度が、該蒸気54の圧力10気圧の飽和温
度約180Cよシ高くならず、その為に、NH3注入の
時期が遅くれ、起動時の該脱硝装置11の脱硝効率の立
ち上がシが遅くて、よって、第2図示す如く、脱硝装置
11出口のN Ox値が非常に高いピーク値を生じてし
まった。
Due to the pressure drop in the steam 54, the pressure of the steam 54 is only about 10 atm when the plant is started up the next morning, 8 to 10 hours after the plant was shut down. The temperature is not higher than the saturation temperature of about 180C at a pressure of 10 atmospheres of the steam 54, and therefore the timing of NH3 injection is delayed, and the denitrification efficiency of the denitrification device 11 at startup is delayed. Therefore, as shown in FIG. 2, the NOx value at the outlet of the denitrification device 11 reached a very high peak value.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記如く、従来技術の欠点を解消し、
ガスタービン起動時のNOx排出特性を改善することに
ある。
As mentioned above, the purpose of the present invention is to eliminate the drawbacks of the prior art,
The objective is to improve the NOx emission characteristics during gas turbine startup.

〔発明の概要〕[Summary of the invention]

上記目的の為に、第1図に示す如く排熱回収ボイラ20
は脱硝装置11のまわシに蒸発器23が設置されておシ
、該蒸発器の残圧が脱硝装置入口ガス温度に大きく影響
を与えるという特徴を利用することくよシ、プラント停
止時、発生蒸気圧力を昇圧せしめ、再起動時の排熱回収
ボイラ2o内のドラム22の残圧を高く保ち、蒸発器2
3にょシ脱硝装置11及び該脱硝装置のまわりのガス温
度を高く保温せしめることによシ、プラント再起動時、
NHs注入時期を早め、さらに脱硝効率を高め、該脱硝
装置の脱硝特性の立ち上がシを改善せしめた。
For the above purpose, an exhaust heat recovery boiler 20 is installed as shown in FIG.
The evaporator 23 is installed in the vicinity of the denitrification equipment 11, and the residual pressure of the evaporator greatly affects the gas temperature at the denitrification equipment inlet. The steam pressure is increased, the residual pressure in the drum 22 in the exhaust heat recovery boiler 2o is kept high at the time of restart, and the evaporator 2
3 By keeping the temperature of the denitrification equipment 11 and the gas around the denitrification equipment high, when restarting the plant,
By advancing the timing of NHs injection and further increasing the denitrification efficiency, the start-up of the denitrification characteristics of the denitrification equipment was improved.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図によシ説明する。 An embodiment of the present invention will be described below with reference to FIG.

第3図は、本発明によるコンパイドプラント停止−起動
方式と起動時のN Ox排出特性を示す。
FIG. 3 shows the compound plant stop-start method according to the present invention and the NOx emission characteristics during start-up.

第1図に於いて、例えば停止指令が出る前、プラントは
、ガスタービンl及び蒸気タービン31が、501負荷
にて運転されておシ、該ガスタービン1からの排ガス5
3は、排熱回収ボイラ20に導入され、熱回収され、給
水57は加熱され、約30気圧の蒸気54とな夛蒸気タ
ービン31へ注入されている。
In FIG. 1, for example, before a stop command is issued, the gas turbine 1 and the steam turbine 31 are operating at a load of 501, and the exhaust gas 5 from the gas turbine 1 is
3 is introduced into the exhaust heat recovery boiler 20, where the heat is recovered, and the feed water 57 is heated and injected into the steam turbine 31 as steam 54 at about 30 atmospheres.

ここで停止指令が出ると、まず蒸気タービン31が徐々
に負荷を降下し停止する。次にガスタービンlが徐々に
負荷を降下し停止する。尚ここでは停止方法の単なる一
例として該蒸気タービン31と該ガスタービン1を同時
に負荷降下させた。
When a stop command is issued here, the steam turbine 31 first gradually reduces its load and stops. Next, the gas turbine 1 gradually reduces its load and stops. Here, as just one example of a stopping method, the loads on the steam turbine 31 and the gas turbine 1 are lowered at the same time.

場合を示したが、該負荷降下開始タイミングをずらして
も、勿論かまわない。
Although the case has been shown, it is of course possible to shift the load drop start timing.

上記蒸気タービン31の停止過椙では、蒸気タービン3
1の負荷相当の蒸気54の流量に対し、排熱回収ボイラ
20での発生蒸気量の方が多いため、蒸気54の一部は
、余剰蒸気として、タービンバイパス弁33及びタービ
ンバイパス管56を径て、復水器34へ排出されている
When the steam turbine 31 is about to stop, the steam turbine 3
Since the amount of steam generated in the exhaust heat recovery boiler 20 is larger than the flow rate of the steam 54 corresponding to the load of and is discharged to the condenser 34.

このタービンバイパス蒸気56の有しているエネルギを
利用することによシ、タービンバイパス弁33の上流に
設置された圧力調整器37によシ圧力設定を徐々に高め
、該圧力調整器37の信号によシ、タービンバイパス弁
33の開度を調整し、タービンバイパス弁33の上流側
の蒸気圧力、即ち、蒸気54の圧力を定格圧力約60気
圧まで昇圧させる。
By utilizing the energy possessed by this turbine bypass steam 56, the pressure setting is gradually increased by the pressure regulator 37 installed upstream of the turbine bypass valve 33, and the pressure setting of the pressure regulator 37 is increased. Then, the opening degree of the turbine bypass valve 33 is adjusted to increase the steam pressure on the upstream side of the turbine bypass valve 33, that is, the pressure of the steam 54 to the rated pressure of about 60 atmospheres.

ここで60気圧は、定格圧力であること、さらに第4図
の曲線(荀に示す如く、約8〜10時間のプラント停止
期間でも、プラント再起動時30気圧が確保できる圧力
である。30気圧の飽和温度は約233Cであシ、ドラ
ム22の内圧に対する飽和温度とその回シの雰囲気ガス
温度との差を考慮しても、脱硝装置入口ガス温度約20
0 C(D確保が可能となる。尚、上記プラント停止時
の昇圧到達圧力は、プラント停止期間の長さ、プラント
停止中の蒸気圧力の低下度合等側々のプラントにてこの
昇圧到達圧力は決定されよう。
Here, 60 atm is the rated pressure, and as shown in the curve in Figure 4, it is the pressure that can ensure 30 atm when the plant is restarted even during a plant shutdown period of approximately 8 to 10 hours. The saturation temperature of the drum 22 is approximately 233C, and even considering the difference between the saturation temperature for the internal pressure of the drum 22 and the atmospheric gas temperature of the drum 22, the denitrification equipment inlet gas temperature is approximately 233C.
0 C (D) can be secured.The ultimate pressure boost at the time of plant shutdown is determined by the length of the plant shutdown period, the degree of decrease in steam pressure during plant shutdown, etc. It will be decided.

尚、タービンバイパス蒸気56のエネルギは、蒸気54
の圧力を、30気圧から60気圧に上昇させるのに十分
なエネルギを保有してお9、従来は無駄に復水器に放出
されたエネルギを利用したものである。
Note that the energy of the turbine bypass steam 56 is the same as that of the steam 54
It has enough energy to raise the pressure from 30 atmospheres to 60 atmospheres9, and conventionally the energy was wasted in the condenser.

上記プラント停止方式により、プラント停止直後の蒸気
54の圧力は約60気圧となシ、プラント停止後8〜1
0時間後の翌朝の起動時には、該蒸気54の圧力は、約
30気圧を確保することが可能となる。
With the above plant shutdown method, the pressure of the steam 54 immediately after the plant shutdown is approximately 60 atm, and the pressure of the steam 54 is approximately 60 atm.
At startup the next morning after 0 hours, the pressure of the steam 54 can be maintained at about 30 atmospheres.

従って、該蒸気54の圧力30気圧の飽和温度は約23
3Cと高く、その為に、脱硝装置11のまわシのガス温
度が、約200t:’以上と高く保温される。
Therefore, the saturation temperature of the steam 54 at a pressure of 30 atmospheres is approximately 23
As a result, the temperature of the gas in the denitrification device 11 is maintained at a high temperature of about 200 t:' or more.

これによシ、プラント再起動時、ガスタービン起動付近
と、従来技術よシ早い時期に、NHs注入ノズル12に
よりNHa58の注入が可能となり、脱硝装置11の脱
硝特性の立ち上がシが大幅に改善される。
This makes it possible to inject NHa58 through the NHs injection nozzle 12 at the time of restarting the plant, near the start of the gas turbine, and earlier than in the conventional technology, and the denitrification characteristics of the denitrification device 11 are significantly improved. Improved.

第3図に上記本発明に於ける起動時のN Ox排出特性
を示すが、第3図忙示す如く、プラント起動時の脱硝特
性の改善によシ、脱硝装置11出口のN Ox特性は、
従来方式に比べ、極めて低いレベルにおさえることが可
能となる。
FIG. 3 shows the NOx emission characteristics at the time of start-up in the present invention. As shown in FIG.
Compared to the conventional method, it is possible to suppress the level to an extremely low level.

本発明の他の実施態様は次の通りである。Other embodiments of the invention are as follows.

(1)  ガスタービン1及び蒸気タービン31J11
00優負荷にて運転されている状態で、プラント停止指
令が出された場合には、そのときの蒸気54の定格圧力
約60気圧をそのまま保ち停止することになる。
(1) Gas turbine 1 and steam turbine 31J11
If a plant stop command is issued while the plant is operating under a load of 0.000 or more, the rated pressure of the steam 54 at that time, approximately 60 atmospheres, will be maintained and the plant will be stopped.

伐)上記では、タービンバイパス管56に設置されたタ
ービンバイパス弁33、及びそのパイパ、ス弁上流側に
設置した圧力調整器37によシ、蒸気54の圧力を昇圧
したが、例えば、蒸気タービン31の入口〈設置された
蒸気加減弁32での調整等、他の方式で昇圧させてもか
まわない。
In the above, the pressure of the steam 54 is increased by the turbine bypass valve 33 installed in the turbine bypass pipe 56 and the pressure regulator 37 installed on the upstream side of the valve. The pressure may be increased by other methods such as adjustment using the steam control valve 32 installed at the inlet of 31.

(3)プラント再起動時、ガスタービン起動前に他蒸気
をドラム22に導入し、該ドラム内缶水を昇圧してもか
まわない。
(3) When restarting the plant, other steam may be introduced into the drum 22 before starting the gas turbine to increase the pressure of the canned water in the drum.

(4)またガスタービylと蒸気タービン31とを有す
るブロックを複数備えている該コンバインドプラントに
於ては、運転中ブロックの蒸気を融通することも可能で
ある。
(4) Furthermore, in the combined plant equipped with a plurality of blocks each having a gas turbine yl and a steam turbine 31, it is also possible to use the steam of the blocks during operation.

〔発明の効果〕〔Effect of the invention〕

(1)起動時N Ox排出量が、大幅に低減される。 (1) The amount of NOx emissions during startup is significantly reduced.

−例として、第2図に示す従来方式では、プラント起動
待脱硝装置出口N Ox排出量は、1時間平均総量で約
14Nm” /H,瞬時値最大値約25Nm”/Hに対
し、第3図に示す本発明では、該1時間平均総量で約9
 N m ” / Hs瞬時値最大値約1 ONm” 
/Hとなる。
- For example, in the conventional system shown in Fig. 2, the NOx emission amount at the outlet of the denitrification equipment during plant start-up is approximately 14 Nm"/H as an hourly average total amount, and approximately 25 Nm"/H as the maximum instantaneous value, but In the present invention shown in the figure, the hourly average total amount is about 9
Nm”/Hs instantaneous value maximum value approximately 1 ONm”
/H.

(2)簡単な制御方法の改善によシ実施可能であシ大幅
なコスト上昇なく、上記目的が達成される。
(2) It can be implemented by simply improving the control method, and the above objective can be achieved without a significant increase in cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、コンバインドプラント構成、第2図は、従来
技術の起動停止方法を示す特性図、第3図は、本発明の
起動停止方法を示す特性図、第4図は、プラント停止中
の蒸気圧力特性である。 1・・・ガスタービン、20・・・排熱回収ボイラ、3
1・・・蒸気タービン、11・・・脱硝装置、22・・
・ドラム、23・・・蒸発器、54・・・蒸気、33・
・・タービンバイパス弁。
Fig. 1 is a combined plant configuration, Fig. 2 is a characteristic diagram showing the starting and stopping method of the prior art, Fig. 3 is a characteristic diagram showing the starting and stopping method of the present invention, and Fig. 4 is a characteristic diagram showing the starting and stopping method of the present invention. It is a steam pressure characteristic. 1... Gas turbine, 20... Exhaust heat recovery boiler, 3
1... Steam turbine, 11... Denitration equipment, 22...
・Drum, 23... Evaporator, 54... Steam, 33.
...Turbine bypass valve.

Claims (1)

【特許請求の範囲】[Claims] 1、ガスタービン及びその排熱回収ボイラ及び該排ガス
系に触媒脱硝装置とNH_3注入ノズルが設置されてい
るコンバインドプラントに於いて、該プラントの停止時
、該排熱回収ボイラのドラム圧力を停止時の圧力より高
い圧力まで昇圧せしめ停止することを特徴とするコンバ
インドプラントの運転方法。
1. In a combined plant where a gas turbine, its exhaust heat recovery boiler, and a catalytic denitrification device and an NH_3 injection nozzle are installed in the exhaust gas system, when the plant is stopped, and when the drum pressure of the exhaust heat recovery boiler is stopped. A method of operating a combined plant characterized by raising the pressure to a pressure higher than the pressure of .
JP15158884A 1984-07-20 1984-07-20 Combined plant and its operation method Expired - Lifetime JPH0621524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15158884A JPH0621524B2 (en) 1984-07-20 1984-07-20 Combined plant and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15158884A JPH0621524B2 (en) 1984-07-20 1984-07-20 Combined plant and its operation method

Publications (2)

Publication Number Publication Date
JPS6128704A true JPS6128704A (en) 1986-02-08
JPH0621524B2 JPH0621524B2 (en) 1994-03-23

Family

ID=15521795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15158884A Expired - Lifetime JPH0621524B2 (en) 1984-07-20 1984-07-20 Combined plant and its operation method

Country Status (1)

Country Link
JP (1) JPH0621524B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176802A (en) * 1984-09-20 1986-04-19 バブコツク日立株式会社 Method of stopping waste-heat recovery boiler
JP2011074901A (en) * 2009-10-02 2011-04-14 Ihi Corp Operation stop method of coal burning boiler facility and operation stop device for the same
JP2014084847A (en) * 2012-10-26 2014-05-12 Mitsubishi Heavy Ind Ltd Combined cycle plant, its stopping method, and its control method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6176802A (en) * 1984-09-20 1986-04-19 バブコツク日立株式会社 Method of stopping waste-heat recovery boiler
JP2011074901A (en) * 2009-10-02 2011-04-14 Ihi Corp Operation stop method of coal burning boiler facility and operation stop device for the same
JP2014084847A (en) * 2012-10-26 2014-05-12 Mitsubishi Heavy Ind Ltd Combined cycle plant, its stopping method, and its control method

Also Published As

Publication number Publication date
JPH0621524B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
US4572110A (en) Combined heat recovery and emission control system
JPH0429923B2 (en)
US6233940B1 (en) Dual-pressure stem injection partial-regeneration-cycle gas turbine system
JPS6149485B2 (en)
JPS6017967B2 (en) Exhaust heat recovery boiler equipment
JPH08114104A (en) Composite gas-steam turbine power plant
JPS609201B2 (en) Exhaust heat recovery boiler equipment
US4274256A (en) Turbine power plant with back pressure turbine
JPH01326A (en) NOx reduction type gas turbine plant
JPS6128704A (en) Operating method of combined plant
JPH01155007A (en) Operating method for exhaust heat recovery boiler
JPS60159501A (en) Waste-heat recovery boiler device
JPS5926765B2 (en) Control method and device for a turbine plant having a turbine bypass line
JPS63169401A (en) Method of operating combined plant
JPH01119330A (en) Denitration of exhaust gas from gas turbine
JPS59206611A (en) Combined power generation plant
CN115142960A (en) Starting method of gas turbine
JP2002021579A (en) Method of controlling combined cycle plant provided with gas turbine and must-heat recovery boiler, and controller therefor
JPS60216010A (en) Combined cycle plant
JPH0262762B2 (en)
JPH048088B2 (en)
JPS6236124B2 (en)
JPH1181919A (en) White smoke of exhaust gas preventing method in binary cycle gas turbine device
JPH0570041B2 (en)
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant