JPH01119330A - Denitration of exhaust gas from gas turbine - Google Patents

Denitration of exhaust gas from gas turbine

Info

Publication number
JPH01119330A
JPH01119330A JP62277820A JP27782087A JPH01119330A JP H01119330 A JPH01119330 A JP H01119330A JP 62277820 A JP62277820 A JP 62277820A JP 27782087 A JP27782087 A JP 27782087A JP H01119330 A JPH01119330 A JP H01119330A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
temperature
turbine
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62277820A
Other languages
Japanese (ja)
Inventor
Tooru Kurumizawa
楜沢 融
Tetsuo Suzuki
哲夫 鈴木
Fumihiko Yamaguchi
文彦 山口
Nobumasa Senoo
順正 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP62277820A priority Critical patent/JPH01119330A/en
Publication of JPH01119330A publication Critical patent/JPH01119330A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To improve durability of a denitration apparatus, by adding water and NH3 to an exhaust gas from a gas turbine and leading the mixed gas to a denitration apparatus and an exhaust gas boiler installed separately in the passage of the gas. CONSTITUTION:An exhaust gas from a gas turbine 1 is led to a pipe 3, mixed water water from a pipe 9 and NH3 from a pipe 10, then NOX is reduced in a denitration apparatus 7, and the then resulting gas is introduced into a gas boiler 8 and evaporated to be exhausted to air from the chimney 6. The amount of water supply is controlled according to load-change of a gas turbine 1 and temperature is kept constant. Due to separation of the denitration apparatus 7 from the exhaust gas boiler 8, installation and maintenance of the denitration apparatus become easy and durability of the apparatus is improved as compared to the case of a denitration apparatus being set in a waste gas boiler.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガスタービンを用いたエネルギーシステムに
おけるガスタービン排ガスの脱硝方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for denitrifying gas turbine exhaust gas in an energy system using a gas turbine.

[従来の技術] ガスタービンは、気体を圧縮機により圧縮して温度を上
げ、燃料の燃焼により発生した高温高圧ガスをタービン
中で膨張させることにより、外部へ出力を取り出す気体
原動機である。通常は軸出力として取り出し発電機、機
械などの駆動に用いられる。最近のガスタービンは、高
効率を得るために、最高温度(タービン入口温度)と最
低温度との温度比及び圧縮機圧力比を大きくし、高温化
、高圧力化の傾向がある。また、一般にガスタービンの
排ガスは高温大流量であり、この特性を利用して排ガス
を排ガスボイラに導いて蒸気を発生し蒸気タービンと組
み合わせて高効率な複合サイクル発電システム、あるい
は熱供給も行うトータルエネルギーシステムにガスター
ビンが用いられる。
[Background Art] A gas turbine is a gas engine that extracts output to the outside by compressing gas using a compressor to raise its temperature and expanding high-temperature, high-pressure gas generated by combustion of fuel in a turbine. Normally, it is extracted as shaft output and used to drive generators, machinery, etc. In recent gas turbines, in order to obtain high efficiency, the temperature ratio between the maximum temperature (turbine inlet temperature) and the minimum temperature and the compressor pressure ratio are increased, and there is a tendency to increase the temperature and pressure. Generally, the exhaust gas from a gas turbine has a high temperature and a large flow rate, and by utilizing this characteristic, the exhaust gas is guided to an exhaust gas boiler to generate steam, which can be combined with a steam turbine to create a highly efficient combined cycle power generation system, or a total system that also provides heat. Gas turbines are used in energy systems.

第3図は、この種のシステムの一部を示した従来技術の
概略説明図である。ガスタービン1に空気を導入して圧
縮し且つ燃焼ガスによりタービンを回転させて、これに
接続する発電機2を駆動する。ガスタービン1から出る
排ガスは、なおかなりの高温を有し、また、NOXを含
有する。この排ガスは、排ガス通路3を通り、脱硝装置
4を組みこんだ排ガスボイラ5へ導かれ、脱硝と同時に
温度が下げられて煙突Bから大気へ放出される。
FIG. 3 is a schematic explanatory diagram of the prior art showing part of this type of system. Air is introduced into a gas turbine 1 and compressed, and the combustion gas rotates the turbine to drive a generator 2 connected thereto. The exhaust gas leaving the gas turbine 1 still has a fairly high temperature and also contains NOx. This exhaust gas passes through an exhaust gas passage 3 and is led to an exhaust gas boiler 5 incorporating a denitrification device 4, where the temperature is lowered at the same time as denitrification and is released from a chimney B to the atmosphere.

ところで、ガスタービンは、前述のように高温化、高圧
力比化する傾向とあいまって、一般に起動停止、負荷変
動においてガスタービン出口排ガス温度の変動中が大き
くなる。第4図は、ガスタービン負荷と排ガス温度との
関係図を示し、高負荷になると排ガス温度も高くなる。
By the way, in conjunction with the above-mentioned tendency for gas turbines to have higher temperatures and higher pressure ratios, the fluctuations in exhaust gas temperature at the gas turbine outlet generally increase during startup, shutdown, and load fluctuations. FIG. 4 shows a diagram of the relationship between gas turbine load and exhaust gas temperature; the higher the load, the higher the exhaust gas temperature.

−方、排ガス中のNOxを除去するために設置された前
記脱硝装置4は、通常的300〜400℃の温度の排ガ
スを脱硝するように設計されている。
- On the other hand, the denitrification device 4 installed to remove NOx from the exhaust gas is designed to denitrate the exhaust gas at a temperature of typically 300 to 400°C.

排ガス温度がこの温度範囲をこえるときは、排ガス脱硝
用の触媒の耐久性に支障が生じて損傷を誘発し、また、
前記温度範囲に達しないときには脱硝効果を低下させる
。第4図において、ガスタービン負荷がP1〜P2、排
ガス温度がT1〜T2のA領域が、脱硝装置4の最適運
用条件であり、もしガスタービンの負荷変動によって、
前記温度範囲をこえる場合には排ガス温度は部分的に高
温となるB領域を生ずる。
When the exhaust gas temperature exceeds this temperature range, the durability of the exhaust gas denitrification catalyst will be affected, causing damage, and
When the temperature does not reach the above range, the denitrification effect is reduced. In FIG. 4, region A, where the gas turbine load is P1 to P2 and the exhaust gas temperature is T1 to T2, is the optimum operating condition for the denitrification device 4.
When the temperature exceeds the above temperature range, the exhaust gas temperature partially becomes high in region B.

従って、第3図の従来技術においては、前述のように排
ガスボイラ5の中に脱硝装置4を組み込み、排ガスボイ
ラ5にて排ガスから熱回収することにより、ガスタービ
ン負荷変動による排ガスの温度変化を調整し、脱硝装置
4への排ガス温度が第4図における高温のB領域に達す
ることをなくし、また、TI以下に低下することがない
ようにして排ガスを脱硝している。
Therefore, in the prior art shown in FIG. 3, the denitrification device 4 is built into the exhaust gas boiler 5 as described above, and the exhaust gas temperature change due to the gas turbine load fluctuation is suppressed by recovering heat from the exhaust gas in the exhaust gas boiler 5. The exhaust gas is denitrified so that the exhaust gas temperature to the denitrification device 4 does not reach the high temperature region B in FIG. 4 and does not fall below TI.

[発明が解決しようとする問題点] しかしながら、上述の、排ガスボイラの中に脱硝装置を
組み込む方式は、排ガス温度の調整を可能にするが、装
置自体が複雑になり、据付及び保守が面倒であり、コス
トの点で問題がある。
[Problems to be Solved by the Invention] However, although the above-mentioned method of incorporating the denitrification device into the exhaust gas boiler makes it possible to adjust the exhaust gas temperature, the device itself becomes complicated and installation and maintenance are troublesome. Yes, there is a problem in terms of cost.

本発明は、排ガスボイラの中に脱硝装置を組み込まずに
、それぞれが分離独立した状態で、しかも脱硝装置に入
る排ガスの温度を容易に調整できるようにしたガスター
ビン排ガスの脱硝方法を提供することを目的としている
The present invention provides a method for denitrifying gas turbine exhaust gas in which the temperature of the exhaust gas entering the denitrification device can be easily adjusted without incorporating the denitrification device into the exhaust gas boiler, each being separated and independent. It is an object.

c問題点を解決するための手段] 本発明は上記実情に鑑みなされたものであり、発電機を
回転駆動するガスタービンから排出する排ガスを、排ガ
ス通路中にそれぞれ独立して設けた脱硝装置及び排ガス
ボイラに導くと共に、前記ガスタービンと前記脱硝装置
との間の排ガス通路の中に、水とNH3(アンモニア)
を注入することを特徴とするものである。
c Means for Solving Problems] The present invention has been made in view of the above circumstances, and includes a denitrification device and a denitrification device each independently provided in an exhaust gas passage for exhaust gas discharged from a gas turbine that rotationally drives a generator. Water and NH3 (ammonia) are introduced into the exhaust gas boiler and in the exhaust gas passage between the gas turbine and the denitrification device.
It is characterized by the injection of

[作   用] ガスタービンの起動及び停止、負荷変動によりガスター
ビンから排出する排ガス温度が大巾に変動するときに、
ガスタービンと、独立して設けた脱硝装置との間の排ガ
ス通路の中に、NH3(アンモニア)と共に水を注入す
ることにより、脱硝装置に入る排ガスの高温領域を調整
する。これにより、脱硝装置の触媒の耐久性帯び性能を
高めると共に、複雑な排ガスボイラ中への脱硝装置の組
込方式を採用しないために、据付及び保守も比較的容易
になる。
[Function] When the temperature of the exhaust gas discharged from the gas turbine fluctuates widely due to the start and stop of the gas turbine and load fluctuations,
By injecting water together with NH3 (ammonia) into the exhaust gas passage between the gas turbine and the independently installed denitrification device, the high temperature region of the exhaust gas entering the denitrification device is adjusted. This increases the durability and performance of the catalyst of the denitrification device, and also makes installation and maintenance relatively easy since the denitration device does not need to be incorporated into a complicated exhaust gas boiler.

[実 施 例] 以下本発明の実施例を添付図面を参照しつつ説明する。[Example] Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の一実施例を示し、第3図中で示したも
のと同一のものには同符号を付しである。
FIG. 1 shows an embodiment of the present invention, and the same parts as shown in FIG. 3 are given the same reference numerals.

ガスタービンlに空気を導入して圧縮し燃焼ガスにより
タービンを回転させ、これに接続する発電機2を駆動す
る。ガスタービンlから出る排ガスは、かなりの高温を
有し、また、NOXを含有する。この排ガスは、排ガス
通路3を通り、脱硝装置7、排ガスボイラ8へ導かれる
が、前記排ガス通路3に水注入管9及びNH3(アンモ
ニア)注入管10を連結し、前記排ガス通路3内の排ガ
スに水及びガス状NH3を注入できるようにする。排ガ
スと共にNH3が脱硝装置7の中に入ると、NH3が触
媒上で還元剤として作用し排ガス中のNOXとの化学反
応により、下式のように環境上無害なN2(窒素)とN
20(水蒸気)とに分解する。
Air is introduced into a gas turbine 1 and compressed, and the combustion gas rotates the turbine, thereby driving a generator 2 connected thereto. The exhaust gas leaving the gas turbine I has a fairly high temperature and also contains NOx. This exhaust gas passes through the exhaust gas passage 3 and is led to a denitrification device 7 and an exhaust gas boiler 8. A water injection pipe 9 and an NH3 (ammonia) injection pipe 10 are connected to the exhaust gas passage 3, and the exhaust gas in the exhaust gas passage 3 is water and gaseous NH3 can be injected into the tank. When NH3 enters the denitrification device 7 along with the exhaust gas, NH3 acts as a reducing agent on the catalyst and undergoes a chemical reaction with NOX in the exhaust gas, resulting in environmentally harmless N2 (nitrogen) and N as shown in the equation below.
It decomposes into 20 (water vapor).

4NO+4NH3+02→4 N2 + 6 N206
NOa +8NHa→7 N2 +12 N20脱硝さ
れた排ガスは、高温を保持しながら排ガスボイラ8へ入
り蒸気を発生させて温度を下げ、煙突6から大気へ放出
される。
4NO+4NH3+02→4 N2 + 6 N206
NOa +8NHa→7 N2 +12 N20 The denitrified exhaust gas enters the exhaust gas boiler 8 while maintaining a high temperature, generates steam, lowers the temperature, and is discharged from the chimney 6 to the atmosphere.

ところで、前述のように、ガスタービンlは、一般に起
動及び停止、負荷変動においてガスタービン出口排ガス
温度の変動中が大きく、一方、脱硝装置7内の触媒の最
適の排ガス処理温度は通常的300〜400℃であるこ
とから、排ガス温度がこの温度範囲をこえたときに触媒
の耐久性を損い、脱硝性能を低下させる。
By the way, as mentioned above, in the gas turbine 1, the temperature of the exhaust gas at the gas turbine outlet generally fluctuates greatly during startup, shutdown, and load fluctuations, and on the other hand, the optimal exhaust gas treatment temperature of the catalyst in the denitrification device 7 is usually 300 to 300. Since the temperature is 400° C., when the exhaust gas temperature exceeds this temperature range, the durability of the catalyst is impaired and the denitrification performance is reduced.

そこで、ガスタービン1の高負荷時において、第4図の
B領域ように排ガスが部分的に高温になったときに、水
注入管9から排ガス中に水を注入し、該水が気化して蒸
気になる気化熱によって排ガスを冷却する。水の注入制
御は、排ガス温度を検出するか、あるいは、ガスタービ
ン負荷の変動に応じて行うかのいずれの方法も任意に採
用することができる。
Therefore, when the gas turbine 1 is under high load and the exhaust gas partially reaches a high temperature as shown in area B in FIG. 4, water is injected into the exhaust gas from the water injection pipe 9 and the water is vaporized. The exhaust gas is cooled by the heat of vaporization. Water injection control may be performed by detecting the exhaust gas temperature or in response to changes in the gas turbine load.

又、脱硝装置7及び排ガスボイラ8のそれぞれが分離、
独立して設置されているために、排ガスボイラの中に脱
硝装置を組み込む方式よりも、据付及び保守が比較的容
易である上に、ガスタービンlと脱硝装置7との間の排
ガス通路3中に、水及びNH3を注入するだけで排ガス
温度を確実に調整することが可能となる。
In addition, each of the denitrification device 7 and the exhaust gas boiler 8 is separated,
Since the denitrification device is installed independently, installation and maintenance are relatively easier than in a system in which the denitrification device is built into the exhaust gas boiler. It becomes possible to reliably adjust the exhaust gas temperature simply by injecting water and NH3.

第2図は他の実施例を示す。一般に還元剤としてのNH
3はボイラ排ガス処理などの場合にはガス状で注入され
ているが、ガス状のために排ガスに対するNH3の理想
的な分散が得られないこともある。このため、第2図に
示すように、水注入管9を、ガスタービン1と脱硝装置
7との間の排ガス通路3に連結し、該水注入管9にNH
3注入管10を連結する。これにより、まずNH3(ア
ンモニア)を水に溶解させてアンモニア水とし、該アン
モニア水を排ガス中にスプレィ状にして混入させること
によりNH3を均一に分散させることが可能になる。こ
の第2図の実施例においても、第1図の実施例と同様に
排ガス温度を調整することができる。
FIG. 2 shows another embodiment. Generally NH as a reducing agent
3 is injected in gaseous form in cases such as boiler exhaust gas treatment, but because it is gaseous, it may not be possible to obtain ideal dispersion of NH3 in the exhaust gas. Therefore, as shown in FIG. 2, the water injection pipe 9 is connected to the exhaust gas passage 3 between the gas turbine 1 and the denitrification device 7, and the water injection pipe
3 injection pipes 10 are connected. This makes it possible to uniformly disperse NH3 by first dissolving NH3 (ammonia) in water to obtain ammonia water, and mixing the ammonia water into the exhaust gas in the form of a spray. In the embodiment shown in FIG. 2 as well, the exhaust gas temperature can be adjusted in the same way as in the embodiment shown in FIG.

[発明の効果コ 本発明によれば、排ガスボイラの中に脱硝装置を組み込
む方式によらない独立して設置された脱硝装置に対して
、その上流側に水を供給してガスタービンの負荷変動に
よる排ガスの高温領域を抑制できるようにしたので、脱
硝装置の耐久性の増大と性能向上を図ると共に、脱硝装
置の据付及び保守が容易になるなどの優れた効果を奏し
得る。
[Effects of the Invention] According to the present invention, water is supplied to the upstream side of a denitrification device that is installed independently without incorporating the denitrification device into the exhaust gas boiler, thereby reducing the load fluctuation of the gas turbine. Since the high-temperature region of the exhaust gas can be suppressed, the durability and performance of the denitrification device can be increased, and the installation and maintenance of the denitrification device can be made easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明図、第2図は同前他の
実施例の説明図、第3図は従来技術の説明図、第4図は
ガスタービン負荷と排ガス温度との関係図である。 図中1はガスタービン、2は発電機、3は排ガス通路、
7は脱硝装置、8は排ガスボイラ、9は水注入管、IO
はNH3注入管を示す。
Fig. 1 is an explanatory diagram of one embodiment of the present invention, Fig. 2 is an explanatory diagram of another embodiment of the present invention, Fig. 3 is an explanatory diagram of the prior art, and Fig. 4 is an illustration of the relationship between gas turbine load and exhaust gas temperature. It is a relationship diagram. In the figure, 1 is a gas turbine, 2 is a generator, 3 is an exhaust gas passage,
7 is a denitrification device, 8 is an exhaust gas boiler, 9 is a water injection pipe, IO
indicates the NH3 injection tube.

Claims (1)

【特許請求の範囲】[Claims] 1)発電機を回転駆動するガスタービンから排出する排
ガスを、排ガス通路中にそれぞれ独立して設けた脱硝装
置及び排ガスボイラに導くと共に、前記ガスタービンと
前記脱硝装置との間の排ガス通路の中に、水とNH_3
(アンモニア)を注入することを特徴とするガスタービ
ン排ガスの脱硝方法。
1) Exhaust gas discharged from the gas turbine that rotationally drives the generator is guided to a denitrification device and an exhaust gas boiler that are provided independently in the exhaust gas passage, and the exhaust gas is introduced into the exhaust gas passage between the gas turbine and the denitration device. , water and NH_3
A method for denitrating gas turbine exhaust gas, characterized by injecting (ammonia).
JP62277820A 1987-11-02 1987-11-02 Denitration of exhaust gas from gas turbine Pending JPH01119330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62277820A JPH01119330A (en) 1987-11-02 1987-11-02 Denitration of exhaust gas from gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62277820A JPH01119330A (en) 1987-11-02 1987-11-02 Denitration of exhaust gas from gas turbine

Publications (1)

Publication Number Publication Date
JPH01119330A true JPH01119330A (en) 1989-05-11

Family

ID=17588716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62277820A Pending JPH01119330A (en) 1987-11-02 1987-11-02 Denitration of exhaust gas from gas turbine

Country Status (1)

Country Link
JP (1) JPH01119330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025108A (en) * 2008-07-18 2010-02-04 General Electric Co <Ge> Heat pipe for removing thermal energy from exhaust gas
JP2010031869A (en) * 2008-07-30 2010-02-12 General Electric Co <Ge> Gas turbine combustor exhaust gas spray cooling for nox control by selective catalytic reduction
US8178636B2 (en) 2004-05-04 2012-05-15 Basell Polyolefine Gmbh Process for the preparation of atactic 1-butene polymers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178636B2 (en) 2004-05-04 2012-05-15 Basell Polyolefine Gmbh Process for the preparation of atactic 1-butene polymers
JP2010025108A (en) * 2008-07-18 2010-02-04 General Electric Co <Ge> Heat pipe for removing thermal energy from exhaust gas
JP2010031869A (en) * 2008-07-30 2010-02-12 General Electric Co <Ge> Gas turbine combustor exhaust gas spray cooling for nox control by selective catalytic reduction

Similar Documents

Publication Publication Date Title
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
US8741239B2 (en) Method and apparatus for operation of CO/VOC oxidation catalyst to reduce NO2 formation for gas turbine
US8459001B2 (en) Ammonia injection system
US4693213A (en) Waste heat recovery boiler
JPS644051B2 (en)
US11174770B2 (en) Power generating systems and methods for reducing startup NOx emissions in fossile fueled power generation system
US20120102913A1 (en) Apparatus for reducing emissions and method of assembly
JP2018505990A (en) Exhaust system for power generator
RU2607139C1 (en) Turbine operation method for reduction of ammonia slip
US20150000296A1 (en) Method for operating a gas turbine and gas turbine for performing the method
JP2002506165A (en) Gas / steam combined turbine equipment and its operation method
JPH01119330A (en) Denitration of exhaust gas from gas turbine
KR101433611B1 (en) SCR De-Nox Equipment for removing yellow plume
US11041422B2 (en) Systems and methods for warming a catalyst in a combined cycle system
JPH01155007A (en) Operating method for exhaust heat recovery boiler
EP0468205B1 (en) Apparatus for treating exhaust gas
JPH01119329A (en) Denitration of exhaust gas from diesel engine
JPS6128704A (en) Operating method of combined plant
JPH03260313A (en) Nox removal method of exhaust gas for internal combustion engine
JPH0262762B2 (en)
JPS5943213B2 (en) Exhaust gas denitrification equipment
JPS59206611A (en) Combined power generation plant
JPH0436002A (en) Nitrogen oxide concentration control device
JPH0696093B2 (en) Reducing agent injection control device for exhaust heat recovery heat exchanger
JPH048088B2 (en)