JPH01189335A - Denitration device for exhaust gas of gas turbine - Google Patents

Denitration device for exhaust gas of gas turbine

Info

Publication number
JPH01189335A
JPH01189335A JP63012633A JP1263388A JPH01189335A JP H01189335 A JPH01189335 A JP H01189335A JP 63012633 A JP63012633 A JP 63012633A JP 1263388 A JP1263388 A JP 1263388A JP H01189335 A JPH01189335 A JP H01189335A
Authority
JP
Japan
Prior art keywords
gas
ammonia
exhaust gas
gas turbine
denitration device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63012633A
Other languages
Japanese (ja)
Inventor
Toshio Suzuki
俊雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP63012633A priority Critical patent/JPH01189335A/en
Publication of JPH01189335A publication Critical patent/JPH01189335A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To effectively utilize the ammonia which is originally contained as a part of the formation gas produced in a coal gasification plant as the reduction agent for the nitrogen oxide of a denitration device by connecting a formation gas introducing pipe to the upstream part of the denitration device. CONSTITUTION:Ammonia is injected in the exhaust gas of a gas turbine plant utilizing the formation gas of a coal gasification plant, etc., as a fuel, to reduce and decompose nitrogen oxide under the existence of catalyst by dry method. The formation gas introducing pie 13 is connected to a flue 7 of upstream side of the denitration device 6 for gas turbine exhaust gas. As a result, the ammonia contained in the formation gas is effectively utilized as the reduction agent for gas turbine exhaust gas, and the running cost is reduced by the injection at the inlet of denitration device, and the nitrogen oxide in the exhaust gas is decreased with low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野j 本発明は石炭ガス化プラント等の生成ガスを燃料とする
ガスタービンプラントの排ガスの脱硝装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a denitrification device for exhaust gas from a gas turbine plant that uses produced gas from a coal gasification plant as fuel.

〔従来の技術〕[Conventional technology]

第3図は従来のガスタービン排ガスの脱硝装置の説明図
である。第3区において、ガスタービン1はエアフィル
タ2からの望見を圧縮し、一方燃焼器3に生成ガスを燃
料として供給して燃焼させてガスタービンを回転させそ
れに連結された発電機4を回転させる。
FIG. 3 is an explanatory diagram of a conventional gas turbine exhaust gas denitrification device. In the third section, the gas turbine 1 compresses the output from the air filter 2, while supplying the generated gas to the combustor 3 as fuel and combusting it to rotate the gas turbine and the generator 4 connected to it. let

一方ガスタービン1からの排ガスは冷却熱交換器5に導
入され、大気排出に逸する温度にまで冷却される。その
後脱硝装ft6の上流の煙管7に、外部の級化アンモニ
ア貯蔵設備8に連結されたアンモニア導入管9に接続さ
れたアンモニア注入管10からアンモニアが注入され、
排ガス中の室索敵化物は触媒上でアンモニアによって鼠
素と水蒸気に分解された後煙突を介して排出される。
On the other hand, the exhaust gas from the gas turbine 1 is introduced into the cooling heat exchanger 5 and cooled to a temperature at which it is not discharged to the atmosphere. After that, ammonia is injected into the smoke pipe 7 upstream of the denitrification equipment ft6 from an ammonia injection pipe 10 connected to an ammonia introduction pipe 9 connected to an external graded ammonia storage facility 8.
The carbon dioxide in the exhaust gas is decomposed by ammonia on the catalyst into methane and water vapor, and then discharged through the chimney.

なお図中11はNH3布釈用の空気管、12は助燃用油
管である。
In the figure, 11 is an air pipe for distributing NH3, and 12 is an oil pipe for auxiliary combustion.

このように従来から生成ガスを燃料とするガスタービン
排ガスの脱硝装置においては一般的に他の発電プラント
と同様に乾式アンモニア接触還元装置が利用されており
、還元剤であるアンモニアは、別途液化アンモニア貯蔵
設備(タンクまたはボンベ)を設けて気化して利用する
という専ら系外から供給されるアンモニアに依存する方
法が採用されている。
Conventionally, dry ammonia catalytic reduction equipment has been used in denitrification equipment for gas turbine exhaust gas that uses generated gas as fuel, as in other power plants, and the ammonia as a reducing agent is separately liquefied ammonia. A method that relies exclusively on ammonia supplied from outside the system has been adopted, in which a storage facility (tank or cylinder) is provided and the ammonia is vaporized and used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

通常石炭ガス化プラントからの生成ガス中にはアンモニ
アも含まルており(−数的に500〜1000 ppm
、多い場合20001)I)m程度含まれている。)、
このガス中アンモニアはガスタービン燃焼室で窒素酸化
物に酸化され、排ガス中放出されている。一方、乾式排
煙脱硝装置では、窒素酸化物全アンモニアにより還元分
解して無害化している。このように、アンモニアには、
燃焼によ少璽索酸化物を生成するという性質と触媒表面
上の還元作用によ#)窒素酸化物を分解するという双方
の性質を有している。
Normally, the gas produced from a coal gasification plant also contains ammonia (numerically 500 to 1000 ppm).
, in most cases it contains about 20001)I)m. ),
This ammonia in the gas is oxidized to nitrogen oxides in the gas turbine combustion chamber and released into the exhaust gas. On the other hand, in dry flue gas denitrification equipment, nitrogen oxides are reductively decomposed using total ammonia to render them harmless. In this way, ammonia has
It has both the property of producing small amounts of nitrogen oxides upon combustion and the property of decomposing nitrogen oxides through the reduction action on the surface of the catalyst.

従来の装置では、上述のように、元来、石炭ガス化プラ
ントの生成ガス中に含まれているアンモニアが、石炭ガ
ス化プラントの後流のガスタービンの排ガスの脱硝装置
では窒素酸化物の還元剤として有効に利用されずに専ら
系外から供給されるアンモニアによりガスタービンの排
ガスの脱硝が行なわれておシ、生成ガス中に含まれてい
るアンモニアが有効に利用されず、したがって運転もか
さむという問題点がめった。
In conventional equipment, as mentioned above, ammonia, which is originally contained in the produced gas of a coal gasification plant, is reduced to nitrogen oxides in a denitrification equipment for the exhaust gas of the gas turbine downstream of the coal gasification plant. Denitration of gas turbine exhaust gas is carried out using ammonia that is supplied from outside the system without being effectively used as a chemical agent, and the ammonia contained in the generated gas is not effectively used, which increases operation time. This problem occurred very often.

本発明は、か\る現状に鑑みなされたもので、石炭ガス
化プラント生成ガス中に生成ガスとして元来含まれてい
るアンモニアを、ガスタービン排ガスの脱硝装置の窒素
酸化物の還元剤として有効に利用することができるガス
タービン排ガスの脱硝装置を提案することを目的とした
ものである。
The present invention was made in view of the current situation, and uses ammonia, which is originally contained in the gas produced in a coal gasification plant, as an effective reducing agent for nitrogen oxides in a denitrification device for gas turbine exhaust gas. The purpose of this project is to propose a denitrification device for gas turbine exhaust gas that can be used for.

〔課題を解決するための手段J 本発明は石炭ガス化プラント等の生成ガスを燃料とする
ガスタービンプラントの排ガス中にアンモニアを注入し
て触媒の存在下、窒素酸化物を乾式で還元分解するガス
タービン排ガスの脱硝装置において、前記脱硝装置の前
渡に連結されている前記生成ガスの導入管金偏えている
ことを特徴とするガスタービン排ガスの脱硝装置を提案
するものである。
[Means for Solving the Problems J] The present invention involves injecting ammonia into the exhaust gas of a gas turbine plant that uses gas generated from a coal gasification plant as fuel to reductively decompose nitrogen oxides in a dry manner in the presence of a catalyst. The present invention proposes a denitrification device for gas turbine exhaust gas, characterized in that the introduction pipe for the generated gas connected to the front end of the denitrification device is biased.

〔作用〕[Effect]

本発明の脱硝装置によればガスタービンの後R,側に設
置される乾式排煙脱硝装置において排ガス中の窒素酸化
物の還元剤として生成ガスを分岐して、脱硝装置入口に
注入することによシ、脱硝装置内に設置されている触媒
表面での生成ガスに含まれているアンモニアによる還元
作用により窒素酸化物をi索と水蒸気に分解する。
According to the denitrification device of the present invention, in the dry flue gas denitrification device installed on the rear R side of the gas turbine, the generated gas is branched as a reducing agent for nitrogen oxides in the exhaust gas and is injected into the denitrification device inlet. In addition, nitrogen oxides are decomposed into i-carbons and water vapor by the reduction action of ammonia contained in the generated gas on the surface of a catalyst installed in the denitrification device.

〔実施例〕〔Example〕

第1図によシ本発明の一実施例のガスタービン排ガスの
脱硝装置について説明する。第1図において、第3図と
同一の符号の部分は第3図に示された部分と同一の機能
を有する部分を示すので説明は省略する。第1図におい
て、13は生成ガス管14から分岐され脱硝装置16の
前渡の煙管7に連結されている生成ガス導入管、15は
生成ガス導入管13に供給する生成ガスの流量を調整す
る弁、16は生成ガス導入管13に接続され友稀釈搬送
用N2ガス管である。
Referring to FIG. 1, a gas turbine exhaust gas denitrification device according to an embodiment of the present invention will be described. In FIG. 1, parts having the same reference numerals as those in FIG. 3 indicate parts having the same functions as the parts shown in FIG. 3, and therefore their explanation will be omitted. In FIG. 1, 13 is a product gas introduction pipe branched from the product gas pipe 14 and connected to the smoke pipe 7 at the front of the denitrification device 16, and 15 is a product gas introduction pipe that adjusts the flow rate of the product gas supplied to the product gas introduction pipe 13. A valve 16 is an N2 gas pipe connected to the produced gas introduction pipe 13 for dilution and conveyance.

このような装置において、 ガスタービン1はエアフィ
ルター2からの空気を圧縮し、一方燃焼器3に生成ガス
を制御弁により流量調節して注入し、燃焼させてタービ
ンを回転させ、接続された発電機4を回転させる。
In such a device, a gas turbine 1 compresses air from an air filter 2, while injecting generated gas into a combustor 3 with its flow rate adjusted by a control valve, combusting it to rotate a turbine, and generating electricity from a connected power generator. Rotate machine 4.

燃焼?53へは助燃用油管12が接続されておジ燃料油
が!lJ御弁で流量調節されて供給される。
combustion? The auxiliary combustion oil pipe 12 is connected to 53, and the fuel oil is supplied! The flow rate is adjusted and supplied using the lJ control valve.

ガスタービン1の排ガスは系外排出に逸した温度にまで
低下させるためガス冷却熱交換器5によp冷却し、窒素
酸化物全除去するために脱硝装置6に導入する脱硝装置
6の前流の煙道7に生成ガス導入管13を接続し、生成
ガスを導入する。なお、ガスタービン1の負荷に応じた
排ガスの温度調節用としてガス冷却熱交挨器5への排ガ
ス管路にバイパス管路を備えており、それぞれの糸路の
遮断および開閉を図示の弁で行なう。ガスタービン1の
生成ガス管14に連結されておシ流値制御は弁15によ
シ調節され、生成ガスは脱硝装置6人口の煙道7に導入
される。この生成ガス中のアンモニアを注入する生成ガ
ス導入管13には生成ガスの冷輝を兼ねて稀釈搬送用N
2ガス16全接続し生成ガスの温度調節および一匿稀釈
調節を行なう。なおバンクアップ用としてアンモニア注
入管10および空気管11を生成ガス導入管に接続して
いる。アンモニアの注入流量制御としては、ガスタービ
ン排ガス中の窒素酸化物を、窒素酸化物分析計17で計
測し、発電出力と大気温度から演算により求めた排ガス
量と、前述の窒素酸化物分析計17の分析値とアンモニ
ア/窒素酸化物注入比と全果することにより必要なアン
モニア注入量が算出されるのでそれに基づき、必要な量
のアンモニアを含む生成ガスが流れるように弁15の開
度を調節する。
The exhaust gas of the gas turbine 1 is cooled by a gas cooling heat exchanger 5 in order to reduce the temperature to a temperature that is not allowed to be discharged outside the system, and is introduced into the denitrification device 6 in order to completely remove nitrogen oxides. The produced gas introduction pipe 13 is connected to the flue 7 of the pipe 7, and the produced gas is introduced. In addition, a bypass pipe is provided in the exhaust gas pipe to the gas cooling heat exchanger 5 to adjust the temperature of the exhaust gas according to the load of the gas turbine 1, and the valves shown in the figure are used to shut off and open/close each line. Let's do it. It is connected to the produced gas pipe 14 of the gas turbine 1, the flow value control is regulated by a valve 15, and the produced gas is introduced into the flue 7 of the denitrification device 6. A generated gas inlet pipe 13 for injecting ammonia in the generated gas is provided with N for diluting and conveying the generated gas.
The two gases 16 are all connected to perform temperature control and one-time dilution control of the generated gas. Note that an ammonia injection pipe 10 and an air pipe 11 are connected to the generated gas introduction pipe for bank up. To control the injection flow rate of ammonia, nitrogen oxides in the gas turbine exhaust gas are measured by the nitrogen oxide analyzer 17, and the amount of exhaust gas calculated from the power generation output and atmospheric temperature is calculated using the nitrogen oxide analyzer 17 described above. The required amount of ammonia injection is calculated by combining the analysis value and the ammonia/nitrogen oxide injection ratio, and based on this, the opening degree of the valve 15 is adjusted so that the generated gas containing the required amount of ammonia flows. do.

生成ガス導入管13による生成ガスの注入量は弁15の
開度を加減して行なわれるが、その弁の開閉の度合は生
成ガス中のアンモニア濃度をアンモニア分析計18によ
シ計測し、その結果に基づいて行なう方法と、生成ガス
中のアンモニア濃度を、生成ガスの原料である石炭の組
成や、生成ガスの生成条件等から計算してアンモニア濃
度の値を想定し、その値を弁15の入力信号として入力
して弁の開度を加減する方法とがある。なお、アンモニ
ア生成ガス系が流nている間は温度の低い系統にアンモ
ニア分析計19全設けて測定することも可能でおる。脱
硝装置出口N索酸化物分析計20からの出口窒索歌化物
a反信号により、アンモニア注入量の制御系の弁15の
バックアップ制御信号とすることができる。
The amount of product gas injected through the product gas inlet pipe 13 is controlled by adjusting the opening degree of the valve 15, and the degree of opening and closing of the valve is determined by measuring the ammonia concentration in the product gas with an ammonia analyzer 18. The method is based on the results, and the ammonia concentration in the produced gas is calculated from the composition of coal, which is the raw material of the produced gas, the production conditions of the produced gas, etc. There is a method of adjusting the opening degree of the valve by inputting it as an input signal. Incidentally, while the ammonia generating gas system is flowing, it is also possible to carry out measurement by installing all the ammonia analyzers 19 in a system with a low temperature. The outlet nitrogen oxide oxide a counter signal from the denitrification device outlet N oxide analyzer 20 can be used as a backup control signal for the valve 15 of the ammonia injection amount control system.

生成ガス中のアンモニア量が脱硝装置で必要な量に満た
ない場合は、従来のプラントと同じ液体窒素全気化して
供給しバンクアップ用アンモニアとして必要量だけ流す
ことによシ所定の必要量を得ることができる。
If the amount of ammonia in the produced gas is less than the amount required by the denitrification equipment, the required amount can be achieved by completely vaporizing liquid nitrogen and supplying it as in conventional plants and flowing only the required amount as ammonia for bank-up. Obtainable.

第2図は本発明の他の実施例の説明図であり、第1図と
同一符号の部分は第1図に示された部分と同一の機能を
有する部分を示すので説明は省略する。第2図において
21は生成ガス導入管13に弁装された吸着筒であり吸
着筒21内にはNH3の選択的吸着剤22が光填されて
おりアンモニアを含んだ生成ガスを吸着筒21内に導入
することによ5N)i、が吸着剤22に吸着され貯蔵さ
れる一方吸漸されない生成ガスは圧縮機23によシ燃焼
器3に圧送され燃焼される。
FIG. 2 is an explanatory diagram of another embodiment of the present invention, and portions having the same reference numerals as those in FIG. 1 indicate portions having the same functions as the portions shown in FIG. 1, so a description thereof will be omitted. In FIG. 2, reference numeral 21 denotes an adsorption cylinder valved in the product gas introduction pipe 13. The adsorption cylinder 21 is optically filled with an NH3 selective adsorbent 22, and the product gas containing ammonia is transferred into the adsorption cylinder 21. 5N)i is adsorbed and stored by the adsorbent 22, while the generated gas that is not absorbed is forced into the combustor 3 by the compressor 23 and combusted.

吸着筒は定期的に切換えられ、吸着剤22に吸着されて
いたNH3は脱涜されて生成ガス導入管13により脱硝
装置16に送られ排ガス中のN素数化物を窒素と水蒸気
に分解する。
The adsorption column is periodically switched, and the NH3 adsorbed on the adsorbent 22 is decontaminated and sent to the denitrification device 16 through the generated gas introduction pipe 13, where the N prime compound in the exhaust gas is decomposed into nitrogen and water vapor.

このように、上記実施例の装置によれば、生成ガス中に
含まれているアンモニアを脱硝のために有効に利用でき
経済的である。
Thus, according to the apparatus of the above embodiment, ammonia contained in the generated gas can be effectively used for denitrification, which is economical.

〔発明の効果J 本発明の装置によればガスタービン排ガスの脱硝用還元
剤として、生成ガス中に含まれているアンモニアを有効
に活用して脱硝装置入口に注入することにより運転費用
を削減して低コストで排ガス中の窒素酸化物を低減する
ことができる。
[Effect of the invention J] According to the device of the present invention, operating costs can be reduced by effectively utilizing ammonia contained in the generated gas and injecting it into the denitrification device inlet as a reducing agent for denitration of gas turbine exhaust gas. It is possible to reduce nitrogen oxides in exhaust gas at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のガスタービン排ガスの脱硝
装置の説明図、第2図は本発明の他の実施例のガスター
ビン排ガスの脱硝装置の説明図、第3図は従来のガスタ
ービン排ガスの脱硝装置の説明図である。 1・・・ガスタービン、   2・・・エアフィルタ、
3・・・燃焼器、  4・・・発電機、5・・・冷却慈
父換器、   6・・・脱硝装置、7・・・煙管、 8・・・液化アンモニア貯蔵設備、 10・・・アンモニア注入管、 13・・・生成ガス導入管、 14・・・生成ガス管。 代理人 弁理士  坂 間   暁  外2名−F17
図 美2閲 累3已
FIG. 1 is an explanatory diagram of a gas turbine exhaust gas denitrification device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of a gas turbine exhaust gas denitrification device according to another embodiment of the present invention, and FIG. 3 is an explanatory diagram of a gas turbine exhaust gas denitrification device according to another embodiment of the present invention. FIG. 2 is an explanatory diagram of a turbine exhaust gas denitrification device. 1... Gas turbine, 2... Air filter,
3... Combustor, 4... Generator, 5... Cooling converter, 6... Denitration device, 7... Smoke pipe, 8... Liquefied ammonia storage equipment, 10... Ammonia injection pipe, 13...Produced gas introduction pipe, 14... Produced gas pipe. Agent: Patent attorney Akira Sakama and 2 others - F17
Figure 2 views and 3 views

Claims (1)

【特許請求の範囲】[Claims] 石炭ガス化プラント等の生成ガスを燃料とするガスター
ビンプラントの排ガス中にアンモニアを注入して触媒の
存在下窒素酸化物を乾式で還元分解するガスタービン排
ガスの脱硝装置において前記脱硝装置の前流に連結され
ている前記生成ガスの導入管を備えていることを特徴と
するガスタービン排ガスの脱硝装置。
Upstream of the denitrification device in a gas turbine exhaust gas denitrification device that dryly reduces and decomposes nitrogen oxides in the presence of a catalyst by injecting ammonia into the exhaust gas of a gas turbine plant that uses generated gas from a coal gasification plant as fuel. A denitrification device for gas turbine exhaust gas, comprising: an inlet pipe for the generated gas connected to the gas turbine exhaust gas.
JP63012633A 1988-01-25 1988-01-25 Denitration device for exhaust gas of gas turbine Pending JPH01189335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63012633A JPH01189335A (en) 1988-01-25 1988-01-25 Denitration device for exhaust gas of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63012633A JPH01189335A (en) 1988-01-25 1988-01-25 Denitration device for exhaust gas of gas turbine

Publications (1)

Publication Number Publication Date
JPH01189335A true JPH01189335A (en) 1989-07-28

Family

ID=11810784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63012633A Pending JPH01189335A (en) 1988-01-25 1988-01-25 Denitration device for exhaust gas of gas turbine

Country Status (1)

Country Link
JP (1) JPH01189335A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275838A (en) * 2006-04-11 2007-10-25 Babcock Hitachi Kk Exhaust gas denitration apparatus and its operation method
WO2018180773A1 (en) * 2017-03-27 2018-10-04 株式会社Ihi Combustion device and gas turbine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007275838A (en) * 2006-04-11 2007-10-25 Babcock Hitachi Kk Exhaust gas denitration apparatus and its operation method
JP4716325B2 (en) * 2006-04-11 2011-07-06 バブコック日立株式会社 Flue gas denitration device and operation method thereof
WO2018180773A1 (en) * 2017-03-27 2018-10-04 株式会社Ihi Combustion device and gas turbine
JP2018162936A (en) * 2017-03-27 2018-10-18 株式会社Ihi Combustion device and gas turbine
US11300047B2 (en) 2017-03-27 2022-04-12 Ihi Corporation Combustion device and gas turbine

Similar Documents

Publication Publication Date Title
CA1318255C (en) Catalytic denitrification control process and system for combustion flue gases
US8397482B2 (en) Dry 3-way catalytic reduction of gas turbine NOx
US4353207A (en) Apparatus for removing NOx and for providing better plant efficiency in simple cycle combustion turbine plants
US4131432A (en) Apparatus for the treatment of gas turbine exhaust gas
US7976800B1 (en) Integrated exhaust gas cooling system and method
KR0148028B1 (en) Nitrogen oxide removal control apparatus
US20080299016A1 (en) System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases
KR100597961B1 (en) Cleaning Method of NO2 Visible Gas from Stationary Sources
KR20150035449A (en) Method of exhaust gas treatment for a gas turbine system and exhaust gas treatment assembly
US4297319A (en) Apparatus for removing nitrogen oxides from flue gas
JPH01189335A (en) Denitration device for exhaust gas of gas turbine
US9816417B2 (en) Method for treating an exhaust gas
JPH0365214B2 (en)
US6123910A (en) Method of predicting and controlling harmful oxide and apparatus therefor
JPH11235516A (en) Denitrification device for exhaust gas
KR20180076684A (en) Reductant supply system and method for supplying reductant
US9849422B1 (en) Method for treating air contaminants in exhaust gas
JP2007071188A (en) Fuel control device for gas turbine
JPH04200619A (en) Method and device for catalytic denitrification control of flue gas
JPH0631136A (en) Method for controlling injection of ammonia to denitrator in circulating system in combination of gas turbine and waste heat recovery boiler
CN220271250U (en) System for be used for catalyst to cooperate denitration of decarbonization and antitoxic performance evaluation
CN115475514A (en) Control system for pre-controlling denitration efficiency of gas boiler by using heat value and flow
JPH11197455A (en) Method and apparatus for treating organo-halogenous gas
Streichsbier Non-catalytic nitrogen oxide removal from gas turbine exhaust with cyanuric acid in a recirculating reactor
Newburry et al. Selective Catalytic Reduction (SCR) System Installation and Commissioning at the Chow II Power Plant in Chowchilla, California