JP2004057145A - Composite plant for vegetable cultivation - Google Patents

Composite plant for vegetable cultivation Download PDF

Info

Publication number
JP2004057145A
JP2004057145A JP2002223230A JP2002223230A JP2004057145A JP 2004057145 A JP2004057145 A JP 2004057145A JP 2002223230 A JP2002223230 A JP 2002223230A JP 2002223230 A JP2002223230 A JP 2002223230A JP 2004057145 A JP2004057145 A JP 2004057145A
Authority
JP
Japan
Prior art keywords
generated
plant
oxygen
water
carbon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002223230A
Other languages
Japanese (ja)
Inventor
Masatake Arai
新井 正剛
Masaji Taniguchi
谷口 正次
Takashi Shimoda
下田 孝
Tomoaki Hayama
葉山 倫明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIYOUJIYOU CEMENT KK
Taiheiyo Cement Corp
Original Assignee
MIYOUJIYOU CEMENT KK
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIYOUJIYOU CEMENT KK, Taiheiyo Cement Corp filed Critical MIYOUJIYOU CEMENT KK
Priority to JP2002223230A priority Critical patent/JP2004057145A/en
Publication of JP2004057145A publication Critical patent/JP2004057145A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite plant for the cultivation of vegetables, effectively utilizing the waste gas containing carbon dioxide gas and generated from a combustion furnace and oxygen gas generated by the electrolysis of water using the surplus electric power of a power plant and enabling the cultivation of vegetables in high efficiency. <P>SOLUTION: The composite plant for vegetable cultivation is provided with a combustion furnace, a power plant, an electrolyzer for water and a vegetable cultivation chamber. The waste gas containing carbon dioxide gas and generated from the combustion furnace is introduced into the vegetable cultivation chamber in a light period, water is electrolyzed by the surplus power of the power plant and the generated oxygen is introduced into the vegetable cultivation chamber in a dark period. Vegetables can be cultured in high efficiency by effectively utilizing the waste gas containing carbon dioxide gas and generated from the combustion furnace and the oxygen generated by the electrolysis of water using the surplus power of the power plant. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼炉から発生する炭酸ガスを含む排ガスと、発電設備の余剰電力を用いて水の電気分解により発生させた酸素を有効活用し、植物を効率良く栽培することができる植物栽培複合プラントに関する。
【0002】
【従来の技術】
近年、電力卸供給事業が認められたことにより、燃焼管理等のノウハウを持つプラントでは、発電設備を併設し、電力卸供給事業を行うケースが増加している。
例えば、セメント工場は、燃料である石炭の取扱い、燃焼管理のノウハウを持ち、従来から廃熱発電などでボイラー、タービンの運転には経験がある上、石炭を燃焼して発生する灰を、セメント原料として自家処理可能であるなどの利点があることから、工場内に循環流動層ボイラー等を設置して、上記電力卸供給事業を行っているところが多くなっている。
【0003】
しかし、電力需要は一定ではなく、夜間等には需要が減少するため、電力会社への供給量が減少し、余剰電力が発生する。このとき、発電設備の出力をしぼるという解決方法では、極めて効率の悪い運転になってしまう。
そこで、余剰電力を水の電気分解に用い、発生した水素を、水素燃料としてエネルギー蓄積するにより、有効活用することが提案されている。そして、この電気分解の際に副生する酸素についても、有効活用が望まれている。
【0004】
一方、セメント焼成キルンの排ガス中には、燃料の燃焼による炭酸ガスに加え、石灰石の分解により生じる炭酸ガスが含まれるため、炭酸ガス含量が高く、20〜40%に達する。
この大量の炭酸ガスは、現在そのまま大気中に放出されているが、地球環境問題の観点から、炭酸ガスの有効活用が望まれている。
【0005】
【発明が解決しようとする課題】
従って、本発明の目的は、燃焼炉から発生する炭酸ガスを含む排ガスと、発電設備の余剰電力を用いて水の電気分解により発生させた酸素を有効活用し、植物を効率良く栽培することができる植物栽培複合プラントを提供することにある。
【0006】
【課題を解決するための手段】
かかる実情において、本発明者らは、鋭意研究を行った結果、燃焼炉から発生する炭酸ガスを含む排ガスを、明期に植物栽培室に導入して光合成を促進するとともに、発電設備の余剰電力を用いて水の電気分解を行い、発生した酸素を暗期に植物栽培室に導入して酸素富化し、呼吸による代謝を促進させることにより、排ガス及び酸素が有効活用され、植物を効率良く栽培できることを見出し、本発明を完成した。
【0007】
すなわち、本発明は、燃焼炉、発電設備、水の電気分解設備及び植物栽培室を備えた複合プラントであって、燃焼炉から発生する炭酸ガスを含む排ガスを、明期に植物栽培室に導入するとともに、発電設備の余剰電力を用いて水の電気分解を行い、発生した酸素を暗期に植物栽培室に導入するように設置された植物栽培複合プラントを提供するものである。
【0008】
【発明の実施の形態】
本発明で用いる排ガスは、燃焼炉から発生する炭酸ガス濃度が高いもので、セメント製造用ロータリーキルン、生石灰製造用ロータリーキルン、石灰焼成用堅窯から出た排ガスが好ましい。セメント製造用又は生石灰製造用のロータリーキルンでは、集塵機から出たものが好ましく、石灰焼成用堅窯では、集塵機から出たもの、又は炉内の低NOゾーン若しくは高COゾーンからガスを吸引して用いる。
【0009】
また、排ガスは、そのまま用いることもできるが、排ガス中の窒素酸化物濃度を低減して用いるのが好ましい。窒素酸化物の除去は、散水、散霧による吸収法、ハネカム分解触媒を用いるアンモニアガス添加による分解無毒化法等の公知の方法によって行うことができる。このような方法により、窒素酸化物濃度を10ppm以下にするのが好ましい。
【0010】
このような排ガスを、昼間又は照明時等の明期に植物栽培室に導入することにより、炭酸ガス富化し、植物の光合成を促進させ、栽培期間を短縮することができる。それと同時に、炭酸ガスの大気中への放出が削減される。
排ガスを植物栽培室に導入するには、排ガスが集塵機を通過した後、煙突に導入される手前で分取し、脱硝設備を経て植物栽培室に至る管路を設けるのが好ましい。
【0011】
一方、発電設備では、夜間や休日等には電力需要が減少するため、余剰電力が発生する。本発明においては、この余剰電力を用いて水を電気分解する。
水の電気分解は、従来から用いられているアルカリ水電解法や、近年高効率の電気分解法として注目されている固体高分子電解法等、各種の方法を採用することができる。
【0012】
電気分解により発生した水素ガスは、水素燃料として蓄積したり、燃焼設備に燃料として供給することができる。
また、電気分解により発生した酸素ガスは、夜間又は遮光時等の暗期に植物栽培室に導入して、室内空気を酸素富化し、植物の呼吸による代謝を促進し、栽培期間をさらに短縮することができる。また、前記酸素ガスを水耕栽培の水耕液中に溶存させ、溶存酸素濃度の高い水耕液を用いることにより、根部の呼吸作用を促進し、栽培期間短縮に資することもできる。更に、酸素ガスは、セメントキルン等の燃焼用空気に添加して酸素富化燃焼を行わせることにより、排ガス中の炭酸ガス濃度をさらに高め、光合成促進効果をより促進することもできる。
酸素を植物栽培室に導入するには、電気分解設備にて発生した酸素を一旦高圧タンクに貯留し、そこから管路を設けて導入するのが好ましい。
【0013】
植物栽培室の構造等は特に制限されないが、高層の立体的構造として、面積効率を上げるのが好ましい。高層にすることにより、昼間太陽光が不足する部分が生じる場合があるが、例えば蓄積した水素と酸素を用いて燃料電池により電気を供給して、照明を行ったり、余剰電力による照明を行っても良い。
栽培室の植物の栽培方法としては、水耕栽培が好ましい。
【0014】
また、夜間の余剰電力を活用するという観点から、植物栽培室を昼夜逆転させ、夜間に余剰電力により高層栽培室の全面照明を行うことも可能である。余剰電力による照明により、昼夜の比率等は、植物栽培の最も効率の良いところを選定することができる。
【0015】
【実施例】
次に、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらにより何ら制限されるものではない。
【0016】
実施例1
図1に示す植物栽培複合プラントにより、ミツバの水耕栽培を行った。
すなわち、セメント製造用ロータリーキルンの排ガスを電気集塵機を用いて脱塵した。この排ガスは、以下の成分を含有するものであった。
(排ガス成分)
CO   :0%
SO  :0%
NO  :350ppm
ガス :6%
COガス:22%
ガス :残
【0017】
この排ガスの一部を分取し、下記の脱硝用ハネカム触媒を備えた脱硝装置に導いた。そのときのアンモニアガスをNOと当量分挿入して、清浄化した。
(脱硝用ハネカム触媒)
形状 :縦150mm×横150mm×長さ500mm
目開き:3.2mm
目数 :1600個
表面積:910m/m
反応温度:350℃
このような処理を行うことにより、NOを1ppmまで下げることができた。
【0018】
一方、夜間、発電設備の余剰電力を用いて、固体高分子水電解装置により水の電気分解を行い、発生した水素は燃料として蓄積し、発生した酸素は一旦高圧タンクに貯留した。
ロックウールをベッドとし、水耕栽培にてミツバを栽培する植物栽培室において、栽培室を4つに仕切り、前記脱硝後の排ガスを、栽培室2、3、4内の炭酸ガス濃度が2000ppmを保つよう、昼間植物栽培室に導入した。栽培室1では、通常の空気を流通させ、炭酸ガス濃度が400ppmに保たれていた。
夜間には、各栽培室内を通常の空気で置換した後、栽培室1、2には、酸素は導入せず、栽培室3、4には、栽培室内の酸素濃度が30%に保たれるよう、前記高圧タンクから管路にて酸素を導入した。
【0019】
更に、栽培室4においては、昼夜を通して水耕液にも、肥料とともに、前記高圧タンクから管路にて酸素が導入され、溶存酸素濃度15mg/Lの水耕液を供給した。一方、栽培室1〜3に供給された水耕液の溶存酸素濃度は、5mg/Lであった。
以上の条件で、各栽培室のミツバが所定の収穫条件に達するまでの日数を測定した。結果を表1に示す。
【0020】
【表1】

Figure 2004057145
【0021】
表1の結果より、排ガス及び酸素を導入して栽培を行うと、これらを導入しない場合に比べ、植物の栽培促進効果が認められ、植物を効率良く栽培することができた。また、水耕液中の溶存酸素濃度を高めることにより、栽培期間をより短縮することができた。
【0022】
【発明の効果】
本発明によれば、燃焼炉から発生する炭酸ガスを含む排ガスと、発電設備の余剰電力を用いて水の電気分解により発生させた酸素を有効活用させ、植物を効率良く栽培することができる。
【図面の簡単な説明】
【図1】実施例1で用いた植物栽培複合プラントを示す図である。
【符号の説明】
1   セメント焼成用ロータリーキルン
2   プレヒーター
3   電気集塵機
4   煙突
5   発電設備
6   電気分解装置
7   水素
8   酸素
9   排ガス
10   植物栽培室
11   排気管[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a plant cultivation complex capable of efficiently cultivating plants by effectively utilizing exhaust gas containing carbon dioxide generated from a combustion furnace and oxygen generated by electrolysis of water using surplus power of a power generation facility. Regarding the plant.
[0002]
[Prior art]
In recent years, with the recognition of the wholesale power supply business, plants with know-how such as combustion management are increasingly equipped with power generation equipment to perform the wholesale power supply business.
For example, a cement plant has the know-how of handling and combustion management of coal, which is a fuel, has experience in operating boilers and turbines for waste heat power generation, etc. In many cases, the above-mentioned power wholesale supply business is carried out by installing a circulating fluidized bed boiler or the like in a factory because of its advantages such as being capable of being processed in-house as a raw material.
[0003]
However, the power demand is not constant, and the demand decreases at night or the like, so that the supply amount to the power company decreases and surplus power is generated. At this time, the solution of squeezing the output of the power generation facility results in extremely inefficient operation.
Therefore, it has been proposed to use surplus electric power for electrolysis of water and to effectively utilize the generated hydrogen by storing energy as hydrogen fuel. Also, effective utilization of oxygen by-produced during the electrolysis is desired.
[0004]
On the other hand, the exhaust gas of the cement firing kiln contains carbon dioxide gas generated by the decomposition of limestone, in addition to carbon dioxide gas generated by burning fuel, so that the carbon dioxide gas content is high and reaches 20 to 40%.
Although this large amount of carbon dioxide is currently released into the atmosphere as it is, from the viewpoint of global environmental problems, effective utilization of carbon dioxide is desired.
[0005]
[Problems to be solved by the invention]
Therefore, an object of the present invention is to effectively utilize plants generated by combustion of waste gas containing carbon dioxide gas and oxygen generated by electrolysis of water using surplus power of a power generation facility to efficiently grow plants. It is an object of the present invention to provide a plant cultivation complex plant that can be used.
[0006]
[Means for Solving the Problems]
Under such circumstances, the present inventors have conducted intensive studies and found that exhaust gas containing carbon dioxide gas generated from a combustion furnace was introduced into a plant cultivation room in the light period to promote photosynthesis, and excess power of a power generation facility was obtained. Water is electrolyzed using, and the generated oxygen is introduced into the plant cultivation room in the dark to enrich oxygen and promote metabolism by respiration, so that exhaust gas and oxygen are effectively used, and plants are cultivated efficiently We have found that we can do this and completed the present invention.
[0007]
That is, the present invention is a combined plant including a combustion furnace, a power generation facility, a water electrolysis facility, and a plant cultivation room, and introduces exhaust gas containing carbon dioxide gas generated from the combustion furnace into the plant cultivation room in the light period. Another object of the present invention is to provide a plant cultivation complex plant that is installed to perform electrolysis of water using surplus power of a power generation facility and to introduce generated oxygen into a plant cultivation room in a dark period.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The exhaust gas used in the present invention has a high concentration of carbon dioxide gas generated from a combustion furnace, and is preferably an exhaust gas discharged from a rotary kiln for producing cement, a rotary kiln for producing quick lime, or a hard kiln for burning lime. The rotary kiln for or for lime production cement production, preferably those exiting the dust collector, the lime firing firmness kiln, which comes from the dust collector, or a gas sucked from the low NO x zone or high CO 2 zones in the furnace Used.
[0009]
Although the exhaust gas can be used as it is, it is preferable to use it after reducing the concentration of nitrogen oxides in the exhaust gas. The removal of nitrogen oxides can be performed by a known method such as an absorption method by water spraying and atomization, and a detoxification method by addition of ammonia gas using a honeycomb decomposition catalyst. By such a method, it is preferable to reduce the nitrogen oxide concentration to 10 ppm or less.
[0010]
By introducing such exhaust gas into the plant cultivation room during the daytime or during the light period such as during lighting, carbon dioxide gas can be enriched, photosynthesis of the plant can be promoted, and the cultivation period can be shortened. At the same time, the emission of carbon dioxide into the atmosphere is reduced.
In order to introduce the exhaust gas into the plant cultivation room, it is preferable to provide a pipe leading to the plant cultivation room via the denitration equipment after the exhaust gas passes through the dust collector, is collected just before being introduced into the chimney.
[0011]
On the other hand, in a power generation facility, surplus power is generated at night and on holidays because power demand decreases. In the present invention, water is electrolyzed using the surplus power.
For the electrolysis of water, various methods such as a conventionally used alkaline water electrolysis method and a solid polymer electrolysis method which has recently attracted attention as a highly efficient electrolysis method can be employed.
[0012]
Hydrogen gas generated by electrolysis can be stored as hydrogen fuel or supplied to combustion equipment as fuel.
In addition, oxygen gas generated by electrolysis is introduced into a plant cultivation room during a dark period such as at night or when light is shielded, thereby enriching indoor air, promoting metabolism by respiration of plants, and further shortening the cultivation period. be able to. In addition, by dissolving the oxygen gas in a hydroponic solution for hydroponics and using a hydroponic solution having a high dissolved oxygen concentration, the respiratory action of the root can be promoted, which can contribute to shortening the cultivation period. Furthermore, by adding oxygen gas to combustion air such as a cement kiln and performing oxygen-enriched combustion, the concentration of carbon dioxide in exhaust gas can be further increased, and the photosynthesis promoting effect can be further promoted.
In order to introduce oxygen into the plant cultivation room, it is preferable to temporarily store the oxygen generated in the electrolysis facility in a high-pressure tank, and provide a pipe from there to introduce the oxygen.
[0013]
Although the structure of the plant cultivation room is not particularly limited, it is preferable to increase the area efficiency as a high-rise three-dimensional structure. Due to the high rise, there may be a part where daytime sunlight is insufficient, but for example, electricity is supplied by a fuel cell using accumulated hydrogen and oxygen, lighting is performed, or lighting with surplus power is performed. Is also good.
As a cultivation method of the plant in the cultivation room, hydroponic cultivation is preferable.
[0014]
Further, from the viewpoint of utilizing surplus power at night, the plant cultivation room can be reversed day and night, and the high-rise cultivation room can be entirely illuminated with surplus power at night. By lighting with surplus electric power, the most efficient plant cultivation can be selected for the ratio between day and night.
[0015]
【Example】
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
[0016]
Example 1
The hydroponic cultivation of honeybee was performed by the combined plant cultivation plant shown in FIG.
That is, the exhaust gas from the rotary kiln for cement production was dedusted using an electric dust collector. This exhaust gas contained the following components.
(Exhaust gas components)
CO: 0%
SO x: 0%
NO x : 350 ppm
O 2 gas: 6%
CO 2 gas: 22%
N 2 gas: remaining
A part of the exhaust gas was fractionated and led to a denitration apparatus equipped with the following denitration honeycomb catalyst. Ammonia gas at that time by inserting NO x and an equivalent amount, and cleaned.
(Honeycomb catalyst for denitration)
Shape: 150mm long x 150mm wide x 500mm long
Aperture: 3.2mm
Number of stitches: 1600 Surface area: 910 m 2 / m 3
Reaction temperature: 350 ° C
By performing such processing, it was possible to reduce the NO x to 1 ppm.
[0018]
On the other hand, at night, water was electrolyzed by the solid polymer water electrolysis device using the surplus power of the power generation equipment, and the generated hydrogen was stored as fuel, and the generated oxygen was temporarily stored in a high-pressure tank.
In a plant cultivation room where rock wool is used as a bed and cultivation of honey bees is performed by hydroponic cultivation, the cultivation room is partitioned into four, and the exhaust gas after the denitrification is reduced to a concentration of 2,000 ppm of carbon dioxide in the cultivation rooms 2, 3, and 4. It was introduced into the plant growing room during the day to keep it. In the cultivation room 1, normal air was circulated, and the carbon dioxide concentration was maintained at 400 ppm.
After replacing each cultivation room with normal air at night, oxygen is not introduced into the cultivation rooms 1 and 2 and the cultivation rooms 3 and 4 maintain the oxygen concentration in the cultivation room at 30%. As described above, oxygen was introduced from the high-pressure tank through a pipeline.
[0019]
Further, in the cultivation room 4, oxygen was introduced into the hydroponic solution together with the fertilizer from the high-pressure tank through a pipe line throughout the day and night, and a hydroponic solution having a dissolved oxygen concentration of 15 mg / L was supplied. On the other hand, the dissolved oxygen concentration of the hydroponic solution supplied to the cultivation rooms 1 to 3 was 5 mg / L.
Under the above conditions, the number of days until the honeybee in each cultivation room reached a predetermined harvest condition was measured. Table 1 shows the results.
[0020]
[Table 1]
Figure 2004057145
[0021]
From the results shown in Table 1, when cultivation was performed by introducing exhaust gas and oxygen, the effect of promoting plant cultivation was recognized as compared with the case where these were not introduced, and plants could be cultivated efficiently. Also, the cultivation period could be shortened by increasing the dissolved oxygen concentration in the hydroponic solution.
[0022]
【The invention's effect】
Advantageous Effects of Invention According to the present invention, plants can be efficiently cultivated by effectively utilizing exhaust gas containing carbon dioxide gas generated from a combustion furnace and oxygen generated by electrolysis of water using surplus power of a power generation facility.
[Brief description of the drawings]
FIG. 1 is a diagram showing a plant cultivation complex plant used in Example 1.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotary kiln for cement baking 2 Preheater 3 Electric dust collector 4 Chimney 5 Power generation equipment 6 Electrolysis device 7 Hydrogen 8 Oxygen 9 Exhaust gas 10 Plant cultivation room 11 Exhaust pipe

Claims (1)

燃焼炉、発電設備、水の電気分解設備及び植物栽培室を備えた複合プラントであって、燃焼炉から発生する炭酸ガスを含む排ガスを、明期に植物栽培室に導入するとともに、発電設備の余剰電力を用いて水の電気分解を行い、発生した酸素を暗期に植物栽培室に導入するように設置された植物栽培複合プラント。A combined plant comprising a combustion furnace, a power generation facility, a water electrolysis facility and a plant cultivation room, wherein exhaust gas containing carbon dioxide gas generated from the combustion furnace is introduced into the plant cultivation room in the light period, and A plant cultivation complex plant installed to perform electrolysis of water using surplus electricity and introduce the generated oxygen into the plant cultivation room in the dark.
JP2002223230A 2002-07-31 2002-07-31 Composite plant for vegetable cultivation Pending JP2004057145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002223230A JP2004057145A (en) 2002-07-31 2002-07-31 Composite plant for vegetable cultivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002223230A JP2004057145A (en) 2002-07-31 2002-07-31 Composite plant for vegetable cultivation

Publications (1)

Publication Number Publication Date
JP2004057145A true JP2004057145A (en) 2004-02-26

Family

ID=31943041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002223230A Pending JP2004057145A (en) 2002-07-31 2002-07-31 Composite plant for vegetable cultivation

Country Status (1)

Country Link
JP (1) JP2004057145A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061127A (en) * 2004-08-30 2006-03-09 Kansai Electric Power Co Inc:The Method for providing carbonic acid gas in greenhouse culture
JP2011135817A (en) * 2009-12-28 2011-07-14 Atsuko Furukawa Method for decreasing carbon dioxide, and simulating system
KR101162315B1 (en) 2010-03-22 2012-07-04 한국기계연구원 A CO2 Generating Apparatus and A CO2 Generating Method therefor
JP2014117275A (en) * 2012-12-19 2014-06-30 Nippon Ekitan Corp Insecticidal facilities and method by carbon dioxide gas for plant
KR101443236B1 (en) * 2014-01-17 2014-09-22 주식회사 지앤아이솔루션 Method and apparatus for supplying gas for combustion apparatus
JP2015529078A (en) * 2012-09-06 2015-10-05 グプタ、サット パルカシュGUPTA, Sat Parkash Environmentally controlled greenhouses for cost-effective food production and related improvements
JP2016036334A (en) * 2014-08-07 2016-03-22 Jfeエンジニアリング株式会社 Supply apparatus and supply method of carbon dioxide-containing gas and heat to facility for crop production
CN107976513A (en) * 2017-11-16 2018-05-01 刘振 Test environmentally friendly experimental provision of the industrial waste gas to ozone deplation situation
JP2020018233A (en) * 2018-08-01 2020-02-06 矢橋工業株式会社 Plant cultivation system
JP2021187720A (en) * 2020-06-04 2021-12-13 三菱マテリアル株式会社 Co2 utilization method in cement manufacture waste gas and co2 utilization system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006061127A (en) * 2004-08-30 2006-03-09 Kansai Electric Power Co Inc:The Method for providing carbonic acid gas in greenhouse culture
JP4489536B2 (en) * 2004-08-30 2010-06-23 関西電力株式会社 Carbon dioxide gas application method for greenhouse cultivation
JP2011135817A (en) * 2009-12-28 2011-07-14 Atsuko Furukawa Method for decreasing carbon dioxide, and simulating system
KR101162315B1 (en) 2010-03-22 2012-07-04 한국기계연구원 A CO2 Generating Apparatus and A CO2 Generating Method therefor
JP2015529078A (en) * 2012-09-06 2015-10-05 グプタ、サット パルカシュGUPTA, Sat Parkash Environmentally controlled greenhouses for cost-effective food production and related improvements
JP2014117275A (en) * 2012-12-19 2014-06-30 Nippon Ekitan Corp Insecticidal facilities and method by carbon dioxide gas for plant
KR101443236B1 (en) * 2014-01-17 2014-09-22 주식회사 지앤아이솔루션 Method and apparatus for supplying gas for combustion apparatus
JP2016036334A (en) * 2014-08-07 2016-03-22 Jfeエンジニアリング株式会社 Supply apparatus and supply method of carbon dioxide-containing gas and heat to facility for crop production
JP2019107007A (en) * 2014-08-07 2019-07-04 Jfeエンジニアリング株式会社 Supply device and method of carbon dioxide containing gas and heat to crop production facility
CN107976513A (en) * 2017-11-16 2018-05-01 刘振 Test environmentally friendly experimental provision of the industrial waste gas to ozone deplation situation
CN107976513B (en) * 2017-11-16 2020-09-01 台州友驿科技有限公司 Environmental protection experimental apparatus for testing influence condition of industrial waste gas on plants
JP2020018233A (en) * 2018-08-01 2020-02-06 矢橋工業株式会社 Plant cultivation system
JP7112074B2 (en) 2018-08-01 2022-08-03 矢橋工業株式会社 plant cultivation system
JP2021187720A (en) * 2020-06-04 2021-12-13 三菱マテリアル株式会社 Co2 utilization method in cement manufacture waste gas and co2 utilization system
JP7215462B2 (en) 2020-06-04 2023-01-31 三菱マテリアル株式会社 CO2 Utilization Method and CO2 Utilization System in Exhaust Gas from Cement Manufacturing

Similar Documents

Publication Publication Date Title
US6446385B1 (en) Greenhouse system with co-generation power supply, heating and exhaust gas fertilization
US7438744B2 (en) Method and system for sequestering carbon emissions from a combustor/boiler
CN105505469B (en) A kind of downdraft fixed bed gasification steam-electric power combined production device and technique
US6205704B1 (en) Method and apparatus for enhancing plant growth in greenhouses utilizing landfill gas
JP2006191876A (en) System for utilizing biomass
JP2004057145A (en) Composite plant for vegetable cultivation
IL129101A (en) Closed cycle power plant
KR101063372B1 (en) Combined heat and power system for greenhouse carbon dioxide enrichment
TWI555840B (en) Biogas electric generator and electricity generation method using microalgae carbon capture
KR101454416B1 (en) Method and apparatus for supplying exaust gas from combustion apparatus to plants growing facility
US11091731B2 (en) Method for facilitating aerobic fermentation reaction using combustion waste gas
CN209702593U (en) A kind of limekiln hot air circulating system
WO2012156588A1 (en) A method and an apparatus for producing energy by recycling materials during a fuel combustion process
US20080250791A1 (en) Electric power station with CO2 sink and production of industrial chemicals
CN202188770U (en) Smoke and waste heat comprehensive utilization device of annular kiln
CN1817415A (en) Denitration of non-selective catalytic reducing smoke
JP2016036334A (en) Supply apparatus and supply method of carbon dioxide-containing gas and heat to facility for crop production
CN103650992B (en) A kind of carbon dioxide fertilizer applicator based on chain-type biomass fuel heating furnace
JP2007312662A (en) Method and system for circulating oxygen, carbon dioxide and the like
CN115554833A (en) Carbon sequestration emission reduction method and system thereof
KR102294758B1 (en) Manufacturing method for soil conditioner
CN114532233A (en) Planting and breeding integrated family farm capable of reducing greenhouse gas emission
WO2007143653A2 (en) Power or fuel production using photosynthesis
KR101443236B1 (en) Method and apparatus for supplying gas for combustion apparatus
CN217308660U (en) Planting and breeding integrated family farm capable of reducing greenhouse gas emission