JP2016036334A - Supply apparatus and supply method of carbon dioxide-containing gas and heat to facility for crop production - Google Patents

Supply apparatus and supply method of carbon dioxide-containing gas and heat to facility for crop production Download PDF

Info

Publication number
JP2016036334A
JP2016036334A JP2015071015A JP2015071015A JP2016036334A JP 2016036334 A JP2016036334 A JP 2016036334A JP 2015071015 A JP2015071015 A JP 2015071015A JP 2015071015 A JP2015071015 A JP 2015071015A JP 2016036334 A JP2016036334 A JP 2016036334A
Authority
JP
Japan
Prior art keywords
gas
heat
exhaust gas
ethylene
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015071015A
Other languages
Japanese (ja)
Other versions
JP6774167B2 (en
Inventor
戸村 啓二
Keiji Tomura
啓二 戸村
平山 敦
Atsushi Hirayama
敦 平山
高須 展夫
Nobuo Takasu
展夫 高須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2015071015A priority Critical patent/JP6774167B2/en
Publication of JP2016036334A publication Critical patent/JP2016036334A/en
Application granted granted Critical
Publication of JP6774167B2 publication Critical patent/JP6774167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Landscapes

  • Cultivation Of Plants (AREA)
  • Greenhouses (AREA)
  • Treating Waste Gases (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chimneys And Flues (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a supply apparatus of dioxide-containing gas and heat to a crop cultivation house, which can remove sulfur oxide, nitrogen oxide, carbon monoxide and ethylene in exhaust combustion gas which are generated by combusting fuel and are harmful to crop, and can supply the resultant clarified gas to a facility for crop production as carbon dioxide-containing gas that promotes plant growth.SOLUTION: The supply apparatus according to the present invention comprise: a combustion furnace 1 which combusts fuel; a heat exchanger 2 which obtains heat by heat exchange with exhaust gas exhausted from the combustion furnace 1 and supplies the obtained heat to a facility 11 for crop production; a sulfur oxide removal device 3 which removes sulfur oxide contained in exhaust gas; a dust collector 4 which captures soot dust contained in the exhaust gas; a nitrogen oxide removal device 5 which removes nitrogen oxide contained in the exhaust gas; a carbon monoxide and ethylene removal device 8 which removes carbon monoxide and ethylene contained in the exhaust gas; and a clarified gas supply device 9 which supplies clarified exhaust gas to the facility 11 for crop production.SELECTED DRAWING: Figure 1

Description

本発明は、植物工場や作物栽培ハウス等の作物生産用施設に燃焼炉からの燃焼排ガスを供給して、燃焼排ガスに含まれる二酸化炭素を作物に施用することにより、作物の収率及び品質の向上を可能とするとともに、燃焼排ガスの燃焼熱を回収し、作物生産用施設に熱供給する作物生産用施設への二酸化炭素含有ガスと熱の供給装置及び供給方法に関する。   The present invention supplies crop flue gas from a combustion furnace to a plant production facility such as a plant factory or a crop cultivation house, and applies carbon dioxide contained in the flue gas to the crop, thereby improving the yield and quality of the crop. The present invention relates to an apparatus and a method for supplying carbon dioxide-containing gas and heat to a crop production facility that enables improvement, collects combustion heat of combustion exhaust gas, and supplies the heat to the crop production facility.

植物工場や作物栽培ハウス等の作物生産用施設では、温度管理のため重油や灯油を燃焼させて得た熱を温水や温風として供給している。また、作物の光合成を促進し、作物の生育促進、収率及び品質の向上のため、作物生産用施設内の二酸化炭素濃度を高める二酸化炭素施用技術があり、重油や灯油を燃焼させた燃焼排ガス中の二酸化炭素を作物生産用施設内に供給し、光合成を促進するようにしている。   In plant production facilities such as plant factories and crop cultivation houses, heat obtained by burning heavy oil or kerosene is supplied as hot water or hot air for temperature control. In addition, there is a carbon dioxide application technology that promotes photosynthesis of crops, promotes crop growth, improves yield and quality, and increases the concentration of carbon dioxide in the plant production facility, and burns exhaust gas that burns heavy oil and kerosene. Carbon dioxide in the plant is supplied to the plant production facility to promote photosynthesis.

例えば特許文献1には、作物生産用施設を温度管理し、また作物生産用施設に肥料としての二酸化炭素を供給するために、重油や灯油の燃焼によって得られた熱を温風として作物生産用施設に供給するとともに、燃焼排ガス中の二酸化炭素をタンクに貯留し、タンクに貯留した二酸化炭素を作物生産用施設に供給する二酸化炭素供給システムが開示されている。ボイラの燃焼排ガスには、作物の成長に悪影響を及ぼす硫黄酸化物及び窒素酸化物が含まれる。このため、特許文献1に記載の二酸化炭素供給システムでは、燃焼排ガスを水溜中にバブリングさせ、硫黄酸化物を除去し、高活性炭素繊維による触媒機能により窒素酸化物を除去している(段落0013〜段落0015参照)。   For example, in Patent Document 1, the temperature of a crop production facility is controlled, and the heat obtained by burning heavy oil or kerosene is used as warm air for crop production in order to supply carbon dioxide as a fertilizer to the crop production facility. A carbon dioxide supply system that supplies carbon dioxide in combustion exhaust gas in a tank and supplies the carbon dioxide stored in the tank to a crop production facility is disclosed. Boiler flue gas contains sulfur oxides and nitrogen oxides that adversely affect crop growth. For this reason, in the carbon dioxide supply system described in Patent Document 1, combustion exhaust gas is bubbled into a water reservoir, sulfur oxides are removed, and nitrogen oxides are removed by a catalytic function of highly active carbon fibers (paragraph 0013). To paragraph 0015).

他方、二酸化炭素の排出抑制による温暖化防止、資源の有効利用、廃棄物の減量化を目的として、バイオマスの利活用が要望されている。バイオマスを燃料として使用することができれば、化石燃料の燃焼により排出される二酸化炭素をなくすことができるので、さらなる温暖化防止対策につながる。   On the other hand, there is a demand for the utilization of biomass for the purpose of preventing global warming by suppressing carbon dioxide emissions, effectively using resources, and reducing waste. If biomass can be used as fuel, carbon dioxide emitted by the combustion of fossil fuels can be eliminated, leading to further measures for preventing global warming.

特許文献2には、木質系バイオマスを炭化ガス化処理し、分解ガスを燃焼することによって得られた熱を利用して発電するとともに、分解ガスを燃焼することによって得られた二酸化炭素含有ガスを作物生産用施設に供給し、作物の成長を促進する二酸化炭素供給システムが開示されている(段落0019〜段落0023参照)。   Patent Document 2 discloses carbon dioxide-containing gas obtained by carbonizing woody biomass and generating power using heat obtained by burning cracked gas, and by burning cracked gas. A carbon dioxide supply system that supplies a crop production facility and promotes the growth of the crop is disclosed (see paragraphs 0019 to 0023).

特許文献3には、バイオマスを立型炉で燃焼し、バイオマスを燃焼することによって得られた熱を作物生産用施設に供給するとともに、バイオマスを燃焼することによって得られた二酸化炭素含有ガスを作物生産用施設に供給する二酸化炭素供給システムが開示されている。バイオマスを燃料として燃焼させた燃焼排ガスには、作物の成長に悪影響を与える硫黄酸化物、窒素酸化物が含まれる。特許文献3に記載の二酸化炭素供給システムでは、燃焼排ガス中の硫黄酸化物、窒素酸化物などの有害成分をスクラバーで予備的に洗い落とし、さらに多孔質吸着剤により吸着除去する燃焼排ガス処理を行い、処理済み燃焼排ガスを作物生産用施設へ供給している(段落0041〜段落0044参照)。   In Patent Document 3, biomass is burned in a vertical furnace, heat obtained by burning the biomass is supplied to a plant production facility, and carbon dioxide-containing gas obtained by burning the biomass is added to the crop. A carbon dioxide supply system for supplying to a production facility is disclosed. Combustion exhaust gas obtained by burning biomass as fuel contains sulfur oxides and nitrogen oxides that adversely affect crop growth. In the carbon dioxide supply system described in Patent Document 3, scrubbers are used to preliminarily wash away harmful components such as sulfur oxides and nitrogen oxides in the combustion exhaust gas, and further, the exhaust gas treatment is performed by adsorption and removal using a porous adsorbent. Treated flue gas is supplied to the plant production facility (see paragraphs 0041-0044).

特開2012−16322号公報JP 2012-16322 A 特開2006−191876号公報JP 2006-191876 A 国際公開第2009/038103号International Publication No. 2009/038103

しかし、バイオマスの燃焼排ガスには、硫黄酸化物、窒素酸化物だけでなく、作物の成長に有害なエチレン、作物生産用施設内の作業者に有害な一酸化炭素が含まれる。エチレンは、蕾の脱落や葉や花の生育不良を招いたり、作物が熟すのを促進するため収穫時の作物が熟しすぎて出荷できないという事態を招く。また、一酸化炭素は、作物生産用施設内で働く作業者の中毒を招く。二次燃焼室を備える大規模な焼却炉では、一酸化炭素を十分に除去できるが、小規模の焼却炉では、二次燃焼室を備えないことが多く、一酸化炭素の除去が課題である。   However, biomass combustion exhaust gas contains not only sulfur oxides and nitrogen oxides, but also ethylene that is harmful to the growth of crops and carbon monoxide that is harmful to workers in facilities for producing crops. Ethylene leads to the loss of strawberries, poor growth of leaves and flowers, and the situation that crops at harvest are too ripe to be shipped because they promote the ripening of the crops. Carbon monoxide also causes addiction to workers working in crop production facilities. A large-scale incinerator with a secondary combustion chamber can sufficiently remove carbon monoxide, but small-scale incinerators often do not have a secondary combustion chamber, and removal of carbon monoxide is a problem. .

本発明は、以上のような事情に鑑みてなされたものであって、燃料を燃焼した燃焼排ガス中の作物に有害な硫黄酸化物、窒素酸化物、一酸化炭素及びエチレンを除去し、浄化した排ガスを作物生産用施設に植物成長を促進する二酸化炭素含有ガスとして供給することができる作物生産用施設への二酸化炭素含有ガスと熱を供給する供給装置及び供給方法を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above, and removes and purifies sulfur oxides, nitrogen oxides, carbon monoxide, and ethylene harmful to crops in combustion exhaust gas from burning fuel. An object of the present invention is to provide a supply device and a supply method for supplying carbon dioxide-containing gas and heat to a crop production facility that can supply exhaust gas to the crop production facility as a carbon dioxide-containing gas that promotes plant growth. Is.

本発明の一態様は、作物生産用施設へ二酸化炭素含有ガスと熱を供給する供給装置であって、燃料を燃焼する燃焼炉と、前記燃焼炉から排出された排ガスとの熱交換により熱を得て作物生産用施設へ熱を供給する熱交換器と、排ガスに含まれる硫黄酸化物を除去する硫黄酸化物除去装置と、排ガスに含まれる煤塵を捕集する集塵装置と、排ガスに含まれる窒素酸化物を除去する窒素酸化物除去装置と、排ガスに含まれる一酸化炭素とエチレンを除去する一酸化炭素及びエチレン除去装置と、浄化された排ガスを作物生産用施設へ供給する浄化ガス供給装置と、を備える二酸化炭素含有ガスと熱の供給装置である。   One aspect of the present invention is a supply device that supplies carbon dioxide-containing gas and heat to a plant production facility, and heat is generated by heat exchange between a combustion furnace that burns fuel and exhaust gas discharged from the combustion furnace. Included in the exhaust gas, a heat exchanger that supplies heat to the plant production facility, a sulfur oxide removal device that removes sulfur oxides contained in the exhaust gas, a dust collector that collects soot and dust contained in the exhaust gas, and Nitrogen oxide removing device for removing nitrogen oxides, carbon monoxide and ethylene removing device for removing carbon monoxide and ethylene contained in exhaust gas, and purified gas supply for supplying the purified exhaust gas to the plant production facility A carbon dioxide-containing gas and a heat supply device.

本発明の他の態様は、作物生産用施設へ二酸化炭素含有ガスと熱を供給する供給方法であって、燃焼炉で燃料を燃焼する工程と、前記燃焼炉から排出された排ガスとの熱交換により熱を得て作物生産用施設へ熱を供給する工程と、排ガスに含まれる硫黄酸化物を除去する硫黄酸化物除去工程と、排ガスに含まれる煤塵を捕集する集塵工程と、排ガスに含まれる窒素酸化物を除去する窒素酸化物除去工程と、排ガスに含まれる一酸化炭素とエチレンを除去する一酸化炭素及びエチレン除去工程と、浄化された排ガスを作物生産用施設へ供給する浄化ガス供給工程と、を備える二酸化炭素含有ガスと熱の供給方法である。   Another aspect of the present invention is a supply method for supplying carbon dioxide-containing gas and heat to a plant production facility, in which fuel is burned in a combustion furnace, and heat exchange between the exhaust gas discharged from the combustion furnace Supplying heat to the plant production facility, removing sulfur oxides contained in the exhaust gas, removing dusts contained in the exhaust gas, collecting dust, Nitrogen oxide removal process for removing nitrogen oxides contained therein, carbon monoxide and ethylene removal process for removing carbon monoxide and ethylene contained in exhaust gas, and purified gas for supplying purified exhaust gas to facilities for crop production A carbon dioxide-containing gas and a heat supply method.

本発明によれば、燃焼排ガス中の硫黄酸化物、窒素酸化物、一酸化炭素、エチレンを効率よく除去できる。作物の成長に悪影響を与えることが無い燃焼排ガスを供給して、作物の成長促進に有効となる二酸化炭素を植物に与えることができる。また、燃焼排ガスから熱回収して、作物生産用施設内の温度管理に用いることができる。   According to the present invention, sulfur oxides, nitrogen oxides, carbon monoxide, and ethylene in combustion exhaust gas can be efficiently removed. By supplying flue gas that does not adversely affect the growth of the crop, carbon dioxide that is effective for promoting the growth of the crop can be given to the plant. In addition, heat can be recovered from the combustion exhaust gas and used for temperature control in the plant production facility.

本発明の第一の実施形態の二酸化炭素含有ガスと熱の供給装置の模式図The schematic diagram of the carbon dioxide containing gas and heat supply apparatus of 1st embodiment of this invention 図1の供給装置に制御系統を付加したものを示す模式図Schematic diagram showing a control system added to the supply device of FIG. 本発明の第二の実施形態の二酸化炭素含有ガスと熱の供給装置の模式図Schematic diagram of carbon dioxide-containing gas and heat supply device of the second embodiment of the present invention

以下、図1に基づいて、本発明の第一の実施形態の二酸化炭素含有ガスと熱の供給装置(以下、単に供給装置という)を詳細に説明する。供給装置は、植物工場や作物栽培ハウス等の作物生産用施設11に二酸化炭素含有ガスと熱を供給するもので、上流側から順番に燃焼炉1、熱交換器2、硫黄酸化物除去装置3、集塵装置4、窒素酸化物除去装置5、一酸化炭素及びエチレン除去装置8、及び浄化ガス供給装置9を備える。以下に、各構成要素を順番に説明する。   The carbon dioxide-containing gas and heat supply device (hereinafter simply referred to as supply device) according to the first embodiment of the present invention will be described below in detail with reference to FIG. The supply device supplies carbon dioxide-containing gas and heat to a plant production facility 11 such as a plant factory or a crop cultivation house. The combustion furnace 1, the heat exchanger 2, and the sulfur oxide removal device 3 are sequentially installed from the upstream side. , A dust collector 4, a nitrogen oxide removing device 5, a carbon monoxide and ethylene removing device 8, and a purified gas supply device 9. Below, each component is demonstrated in order.

(燃焼炉)
燃焼炉1は、バイオマスの供給を受け、バイオマスを燃焼して排ガスを排出する。バイオマスには、木質系バイオマス(例えば木質チップ、木屑、間伐材、製材廃材、建築廃材等)が用いられる。典型的な燃焼炉1は、火格子式燃焼炉であり、火格子を有する燃焼室と、火格子上にバイオマスを供給するための供給口と、燃焼室に燃焼空気を供給する送風機と、を備える。火格子上のバイオマスに燃焼空気を供給して燃焼する火格子式燃焼炉は、燃焼効率が高く好ましいが、炉形式はこれに限定されるものではない。
(Combustion furnace)
The combustion furnace 1 receives supply of biomass, burns the biomass, and discharges exhaust gas. For biomass, woody biomass (for example, wood chips, wood chips, thinned wood, sawmill waste, building waste, etc.) is used. A typical combustion furnace 1 is a grate-type combustion furnace, and includes a combustion chamber having a grate, a supply port for supplying biomass on the grate, and a blower for supplying combustion air to the combustion chamber. Prepare. A grate-type combustion furnace that burns by supplying combustion air to biomass on the grate has high combustion efficiency, but the furnace type is not limited to this.

(熱交換器)
熱交換器2は、燃焼炉1の燃焼排ガス(以下、単に排ガスという)と水との熱交換により水を加熱して温水を得て、暖房、温度管理のための熱を作物生産用施設11に供給する。熱交換器2と作物生産用施設11とは、温水配管12で接続され温水が供給される。熱交換器2で得られた温水を別に設ける蓄熱槽に貯留することにより、作物生産用施設11の熱需要により効果的に対応して熱を供給することができる。例えば、昼間に得られ貯留された温水(蓄熱された温熱)を、熱需要の大きい夜間に使用するようにするなど、柔軟な対応が可能となる。
(Heat exchanger)
The heat exchanger 2 heats water by heat exchange between combustion exhaust gas (hereinafter simply referred to as exhaust gas) of the combustion furnace 1 and water to obtain hot water, and uses heat for heating and temperature management for the plant production facility 11. To supply. The heat exchanger 2 and the crop production facility 11 are connected by a hot water pipe 12 and supplied with hot water. By storing the hot water obtained by the heat exchanger 2 in a separate heat storage tank, heat can be supplied more effectively in response to the heat demand of the crop production facility 11. For example, it is possible to respond flexibly, for example, by using hot water obtained and stored in the daytime (heated stored heat) at night when heat demand is high.

熱交換器2は、排ガスと水との熱交換により水蒸気を得て、水蒸気を作物生産用施設11へ供給してもよいし、水蒸気を蒸気タービンに送り、蒸気タービンにより発電し、電気エネルギーを作物生産用施設11へ供給してもよい。また、燃焼炉1と熱交換器2とを一体化した燃焼ボイラを用いてもよいし、燃焼炉1と熱交換器2が別体のものを用いてもよい。   The heat exchanger 2 may obtain water vapor by heat exchange between the exhaust gas and water, and supply the water vapor to the crop production facility 11. Alternatively, the heat exchanger 2 may send water vapor to the steam turbine, generate electricity by the steam turbine, and generate electrical energy. You may supply to the plant 11 for crop production. Moreover, the combustion boiler which integrated the combustion furnace 1 and the heat exchanger 2 may be used, and the combustion furnace 1 and the heat exchanger 2 may be used separately.

燃焼炉1の排ガスには、作物又は作業者に有害な硫黄酸化物、窒素酸化物、一酸化炭素、エチレンが含まれる。硫黄酸化物(SO)、窒素酸化物(NO)は、大気汚染の原因物質であり、植物の生育に悪影響を及ぼし、作物生産用施設11で働く作業者にとって有害である。一酸化炭素(CO)は、作業者に一酸化炭素中毒をもたらす。エチレンは、作物の生育不良や作物の熟しすぎを招く。このため、これらの有害物は、以下の硫黄酸化物除去装置3、窒素酸化物除去装置5、一酸化炭素及びエチレン除去装置8によって除去される。 The exhaust gas of the combustion furnace 1 contains sulfur oxides, nitrogen oxides, carbon monoxide, and ethylene that are harmful to crops or workers. Sulfur oxide (SO x ) and nitrogen oxide (NO x ) are causative substances of air pollution, adversely affect the growth of plants, and are harmful to workers working in the plant production facility 11. Carbon monoxide (CO) provides workers with carbon monoxide poisoning. Ethylene leads to poor crop growth and overripe crops. For this reason, these harmful substances are removed by the following sulfur oxide removing device 3, nitrogen oxide removing device 5, carbon monoxide and ethylene removing device 8.

(硫黄酸化物除去装置)
硫黄酸化物除去装置3は、熱交換器2で熱回収された排ガスに重曹(炭酸水素ナトリウム)粉末を吹き込む重曹吹込み装置を備える。重曹吹込み装置は、重曹を貯留する重曹貯留槽と、重曹貯留槽から重曹粉末を切り出す切出し装置と、切り出された重曹粉末を圧縮空気とともに排ガス中に吹き込むノズルと、を備える。ノズルは、熱交換器2の下流側かつ集塵装置4の上流側のダクト13に配置される。
(Sulfur oxide removal equipment)
The sulfur oxide removing device 3 includes a baking soda blowing device for blowing sodium bicarbonate (sodium hydrogen carbonate) powder into the exhaust gas heat-recovered by the heat exchanger 2. The baking soda blowing device includes a baking soda storage tank for storing baking soda, a cutting device for cutting sodium bicarbonate powder from the baking soda storage tank, and a nozzle for blowing the cut baking soda powder into the exhaust gas together with compressed air. The nozzle is disposed in the duct 13 on the downstream side of the heat exchanger 2 and on the upstream side of the dust collector 4.

排ガスに吹き込まれた重曹粉末は、硫黄酸化物(SO)と反応して、反応生成物として硫酸ナトリウム(Na2SO4)を生成する。硫黄酸化物(SOx)と重曹粉末(NaHCO3)との反応式は、式1のとおりである。
(式1)
2NaHCO3+SO2+1/2O2→Na2SO4+H2O+2CO2
The baking soda powder blown into the exhaust gas reacts with sulfur oxide (SO x ) to produce sodium sulfate (Na 2 SO 4 ) as a reaction product. The reaction formula of sulfur oxide (SOx) and sodium bicarbonate powder (NaHCO 3 ) is as shown in Formula 1.
(Formula 1)
2NaHCO 3 + SO 2 + 1 / 2O 2 → Na 2 SO 4 + H 2 O + 2CO 2

反応生成物粒子(Na2SO4)は、粉塵とともに集塵装置4により捕集され、排ガスから硫黄酸化物が除去される。硫黄酸化物を重曹粉末との反応により除去する際の温度は、反応効率を高くするため、170〜200℃とすることが好ましい。排ガス温度をこの範囲とするように熱交換器2による熱交換を制御する。 The reaction product particles (Na 2 SO 4 ) are collected by the dust collector 4 together with dust, and sulfur oxides are removed from the exhaust gas. The temperature at which the sulfur oxide is removed by reaction with the baking soda powder is preferably 170 to 200 ° C. in order to increase the reaction efficiency. Heat exchange by the heat exchanger 2 is controlled so that the exhaust gas temperature is within this range.

(集塵装置)
集塵装置4は、排ガスに含まれる粉塵を捕集するとともに、重曹粉末と硫黄酸化物(SO)との反応生成物粒子を捕集する。バグフィルタ等の濾過式集塵装置を用いることが、粉塵と硫黄酸化物の反応生成物粒子を捕集する効率が高く好ましい。バグフィルタのフィルタ表面に付着した未反応の重曹粉末が、硫黄酸化物と反応することも行われる。
(Dust collector)
The dust collector 4 collects dust contained in the exhaust gas, and collects reaction product particles of sodium bicarbonate powder and sulfur oxide (SO x ). It is preferable to use a filtration type dust collector such as a bag filter because the efficiency of collecting the reaction product particles of dust and sulfur oxide is high. Unreacted baking soda powder adhering to the filter surface of the bag filter may also react with sulfur oxides.

(窒素酸化物除去装置)
窒素酸化物除去装置5は、集塵装置4で粉塵が除去された排ガスにアンモニアガスを吹き込むアンモニア供給装置6と、脱硝触媒を収容した脱硝触媒装置7と、を備える。脱硝触媒装置7は、窒素酸化物(NO)をアンモニアとの反応によりNとHOとに分解し窒素酸化物を除去する。アンモニア(NH3)と窒素酸化物(NO)との反応式は、式2のとおりである。
(式2)
4NO+4NH3+O2→4N2+6H2
NO+NO2+2NH3→2N2+3H2
(Nitrogen oxide removal equipment)
The nitrogen oxide removing device 5 includes an ammonia supply device 6 that blows ammonia gas into the exhaust gas from which dust has been removed by the dust collector 4, and a denitration catalyst device 7 that contains a denitration catalyst. The denitration catalyst device 7 decomposes nitrogen oxides (NO x ) into N 2 and H 2 O by reaction with ammonia to remove nitrogen oxides. The reaction formula of ammonia (NH 3 ) and nitrogen oxide (NO x ) is as shown in Formula 2.
(Formula 2)
4NO + 4NH 3 + O 2 → 4N 2 + 6H 2 O
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O

脱硝触媒は限定されないが、TiOを担体とし、V、WO等を活性体とするものが好ましく、触媒形状は圧力損失の少ないハニカム状や板状の並行流型を用いることが好ましい。窒素酸化物をアンモニアガスと脱硝触媒により除去する際の温度は特に限定されないが、硫黄酸化物除去を行う温度である170〜200℃の温度範囲で運転することが再加熱を行う必要がないため好ましい。この温度範囲で好適な脱硝触媒を用いるようにする。 The denitration catalyst is not limited, but a catalyst using TiO 2 as a carrier and V 2 O 2 , WO 3 or the like as an active material is preferable, and the catalyst shape should be a honeycomb or plate parallel flow type with little pressure loss. preferable. Although the temperature at the time of removing nitrogen oxides with ammonia gas and a denitration catalyst is not particularly limited, it is not necessary to perform reheating to operate at a temperature range of 170 to 200 ° C., which is a temperature for removing sulfur oxides. preferable. A suitable denitration catalyst is used in this temperature range.

(一酸化炭素及びエチレン除去装置)
一酸化炭素及びエチレン除去装置8は、窒素酸化物除去装置5で窒素酸化物が除去された排ガスを、酸化触媒を収容した酸化触媒装置に導入し、触媒の作用により一酸化炭素とエチレンを酸化し、作物又は作業者に無害なCO、H2O等の物質にする。酸化に使用される酸素は、排ガスに含まれる酸素である。燃焼炉1には燃焼空気が吹き込まれるので、排ガスには十分な酸素が存在する。酸化触媒は限定されないが、担体に白金やロジウムを担持させた触媒を用いることが好ましい。一酸化炭素及びエチレンを酸化触媒により酸化して除去する際の温度は特に限定されないが、硫黄酸化物除去を行う温度である170〜200℃の温度範囲で運転することが再加熱を行う必要がないため好ましい。この温度範囲で好適な酸化触媒を用いるようにする。
(Carbon monoxide and ethylene removal equipment)
The carbon monoxide and ethylene removing device 8 introduces the exhaust gas from which nitrogen oxide has been removed by the nitrogen oxide removing device 5 into an oxidation catalyst device containing an oxidation catalyst, and oxidizes carbon monoxide and ethylene by the action of the catalyst. However, it is made a substance such as CO 2 and H 2 O which is harmless to crops or workers. The oxygen used for oxidation is oxygen contained in the exhaust gas. Since combustion air is blown into the combustion furnace 1, there is sufficient oxygen in the exhaust gas. The oxidation catalyst is not limited, but it is preferable to use a catalyst in which platinum or rhodium is supported on a carrier. The temperature at which carbon monoxide and ethylene are oxidized and removed by an oxidation catalyst is not particularly limited, but it is necessary to reheat to operate at a temperature range of 170 to 200 ° C., which is a temperature at which sulfur oxide is removed. It is preferable because it is not. A suitable oxidation catalyst is used in this temperature range.

窒素酸化物除去装置5と一酸化炭素及びエチレン除去装置8との配置は、図1に示す順でも逆の順でもよい。すなわち、一酸化炭素及びエチレン除去装置8を上流側に配置し、窒素酸化物除去装置5を下流側に配置することもできる。   The arrangement of the nitrogen oxide removing device 5 and the carbon monoxide and ethylene removing device 8 may be in the order shown in FIG. 1 or in the reverse order. That is, the carbon monoxide and ethylene removing device 8 can be arranged on the upstream side, and the nitrogen oxide removing device 5 can be arranged on the downstream side.

集塵装置4の下流側に窒素酸化物除去装置5と一酸化炭素及びエチレン除去装置8とを設置することにより、バイオマスの燃焼排ガスに含まれる脱硝触媒や酸化触媒に対する被毒成分を集塵装置4で予め除去できる。   By installing the nitrogen oxide removing device 5 and the carbon monoxide and ethylene removing device 8 on the downstream side of the dust collecting device 4, the dust collecting device removes poisoning components for the denitration catalyst and the oxidation catalyst contained in the combustion exhaust gas of biomass. 4 can be removed in advance.

(浄化ガス供給装置)
浄化ガス供給装置9は、上記の除去装置3,4,5,8によって浄化された燃焼排ガスを作物生産用施設11へ供給する。浄化ガス供給装置9は、熱交換器10を備える。一酸化炭素及びエチレン除去装置8で一酸化炭素及びエチレンが除去された排ガスは、熱交換器10で例えば100〜130℃まで冷却され、さらに空気で希釈され、例えば30〜50℃まで冷却され、作物生産用施設11へ二酸化炭素含有ガスとして供給される。二酸化炭素含有ガスを常温に近い温度にすることで、作物生産用施設11内の作物に悪影響を与えないようにする。熱交換器10は、浄化ガスと水との熱交換により水を加熱して温水を得て、暖房、温度管理のための熱を作物生産用施設11に供給するようにしてもよい。
(Purified gas supply device)
The purified gas supply device 9 supplies the combustion exhaust gas purified by the removal devices 3, 4, 5, and 8 to the crop production facility 11. The purified gas supply device 9 includes a heat exchanger 10. The exhaust gas from which carbon monoxide and ethylene have been removed by the carbon monoxide and ethylene removing device 8 is cooled to, for example, 100 to 130 ° C. by the heat exchanger 10, further diluted with air, and cooled to, for example, 30 to 50 ° C. The carbon dioxide-containing gas is supplied to the crop production facility 11. By making the carbon dioxide-containing gas a temperature close to room temperature, the crops in the crop production facility 11 are not adversely affected. The heat exchanger 10 may heat the water by heat exchange between the purified gas and water to obtain warm water, and supply heat for heating and temperature management to the crop production facility 11.

上記の各構成要素の装置を備える供給装置により、燃焼排ガス中の作物又は作業者に有害な硫黄酸化物、窒素酸化物、一酸化炭素、エチレンを効率よく除去でき、作物の成長に悪影響を与えることが無い燃焼排ガスを作物生産用施設11に供給して、作物の成長促進に有効となる二酸化炭素を植物に与えることができ、さらに、燃焼排ガスから熱回収して、作物生産用施設内11に熱を供給することができる。   The supply device including the above-mentioned components can efficiently remove sulfur oxides, nitrogen oxides, carbon monoxide, and ethylene harmful to crops or workers in flue gas, and adversely affect crop growth. The flue gas can be supplied to the plant production facility 11 to provide the plant with carbon dioxide that is effective for promoting the growth of the crop. Can be supplied with heat.

また、作物生産用施設11と供給装置の運転を制御する制御システムを設けて、作物生産用施設11の二酸化炭素需要や熱需要に応じて、供給装置の起動及び停止や、運転時の燃料燃焼量を制御するようにしてもよい。例えば、制御システムは、作物生産用施設11内の二酸化炭素や熱がより多く必要であると判断された場合に、供給装置を起動し、あるいは燃料燃焼量を増大し、需要に対応するように制御する。   In addition, a control system for controlling the operation of the crop production facility 11 and the supply device is provided so that the supply device can be started and stopped and the fuel is burned during operation according to the carbon dioxide demand and heat demand of the crop production facility 11. The amount may be controlled. For example, when it is determined that more carbon dioxide or heat in the crop production facility 11 is necessary, the control system activates the supply device or increases the fuel combustion amount so as to meet the demand. Control.

図2は、排ガスに含まれる有害物の濃度を抑制するための制御系統を付加した供給装置の構成図を示す。燃焼炉1、熱交換器2、硫黄酸化物除去装置3、集塵装置4、窒素酸化物除去装置5、一酸化炭素及びエチレン除去装置8、及び浄化ガス供給装置9の構成は、図1に示すものと同一であるので、同一の符号を附してその説明を省略する。   FIG. 2 shows a configuration diagram of a supply apparatus to which a control system for suppressing the concentration of harmful substances contained in the exhaust gas is added. The configuration of the combustion furnace 1, the heat exchanger 2, the sulfur oxide removing device 3, the dust collecting device 4, the nitrogen oxide removing device 5, the carbon monoxide and ethylene removing device 8, and the purified gas supply device 9 is shown in FIG. Since they are the same as those shown, the same reference numerals are given and the description thereof is omitted.

一酸化炭素及びエチレン除去装置8の下流側には、浄化ガスの成分濃度を測定するガス成分濃度計21が配置される。制御装置22は、ガス成分濃度計21の硫黄酸化物の測定値に基づいて、硫黄酸化物除去装置3の重曹供給量を制御する。例えば、制御装置22は、ガス成分濃度計21の硫黄酸化物の測定値が所定の許容範囲値よりも高い場合には、重曹供給量を増大させ、低い場合には、重曹供給量を減少させる。   A gas component concentration meter 21 for measuring the component concentration of the purified gas is disposed downstream of the carbon monoxide and ethylene removal device 8. The control device 22 controls the baking soda supply amount of the sulfur oxide removing device 3 based on the measured value of the sulfur oxide of the gas component concentration meter 21. For example, the control device 22 increases the sodium bicarbonate supply amount when the measured value of the sulfur oxide of the gas component concentration meter 21 is higher than a predetermined allowable range value, and decreases the sodium bicarbonate supply amount when the measurement value is low. .

制御装置22は、ガス成分濃度計21の窒素酸化物の測定値に基づいて、窒素酸化物除去装置5のアンモニアガス供給量を制御する。例えば、制御装置22は、ガス成分濃度計21の窒素酸化物の測定値が所定の許容範囲値よりも高い場合には、アンモニアガス供給量を増大させ、低い場合には、アンモニアガス供給量を減少させる。   The control device 22 controls the ammonia gas supply amount of the nitrogen oxide removing device 5 based on the measured value of the nitrogen oxide of the gas component concentration meter 21. For example, the control device 22 increases the ammonia gas supply amount when the measured value of the nitrogen oxide of the gas component concentration meter 21 is higher than a predetermined allowable range value, and increases the ammonia gas supply amount when the measured value is low. Decrease.

一酸化炭素及びエチレン除去装置8から排出された浄化ガスを熱交換器10に送るダクトには、分岐して浄化ガスの一部を一酸化炭素及びエチレン除去装置8の上流側に戻す循環流路23が設けられ、戻す循環ガス量を調整する調整弁24が配置される。浄化ガスの一部を一酸化炭素及びエチレン除去装置8の上流側に戻すことにより、浄化ガスに残存する一酸化炭素及びエチレンを再度酸化触媒と接触させ、一酸化炭素とエチレンをより低濃度にまで除去する。制御装置22は、ガス成分濃度計21の一酸化炭素及びエチレンの測定値に基づいて、調整弁24の開度を調整し循環ガス量を制御する。例えば、制御装置22は、ガス成分濃度計21の一酸化炭素及びエチレン除去装置8の測定値が一定時間以上にわたって所定の閾値以上の場合には、循環ガス量を増大させる。また、制御装置22は、ガス成分濃度計21の一酸化炭素及びエチレンの測定値に基づいて、一酸化炭素及びエチレン除去装置8の酸化触媒の交換時期を判定する。例えば、制御装置22は、ガス成分濃度計21の一酸化炭素及びエチレン除去装置8の測定値が一定時間以上にわたって所定の閾値以上の場合には、酸化触媒の交換を促す警報を表示する。   In the duct for sending the purified gas discharged from the carbon monoxide and ethylene removing device 8 to the heat exchanger 10, a circulation flow path is branched to return a part of the purified gas to the upstream side of the carbon monoxide and ethylene removing device 8. 23 and an adjustment valve 24 for adjusting the amount of circulating gas to be returned is arranged. By returning a part of the purified gas to the upstream side of the carbon monoxide and ethylene removing device 8, the carbon monoxide and ethylene remaining in the purified gas are brought into contact with the oxidation catalyst again, so that the concentration of carbon monoxide and ethylene is lowered. Remove until. The controller 22 controls the amount of circulating gas by adjusting the opening of the regulating valve 24 based on the measured values of carbon monoxide and ethylene of the gas component concentration meter 21. For example, the control device 22 increases the amount of circulating gas when the measured values of the carbon monoxide and ethylene removal device 8 of the gas component concentration meter 21 are equal to or greater than a predetermined threshold for a certain time or longer. Further, the control device 22 determines the replacement timing of the oxidation catalyst of the carbon monoxide and ethylene removal device 8 based on the measured values of carbon monoxide and ethylene of the gas component concentration meter 21. For example, when the measured values of the carbon monoxide and ethylene removal device 8 of the gas component concentration meter 21 are equal to or greater than a predetermined threshold for a certain time or longer, the control device 22 displays an alarm for prompting replacement of the oxidation catalyst.

図2に示す制御系統を付加した供給装置では、一酸化炭素及びエチレン除去装置8の下流側に、浄化ガスの成分濃度を測定するガス成分濃度計21が配置され、制御装置22により制御することとしているが、作物生産用施設11内の各種ガス成分濃度を測定するガス成分濃度計21を配置して計測し制御するようにしてもよい。すなわち、作物生産用施設11内の各種ガス成分濃度の測定値に基づき、硫黄酸化物除去装置3の重曹供給量、窒素酸化物除去装置5のアンモニアガス供給量、浄化ガスの一部を一酸化炭素及びエチレン除去装置8の上流側に戻す循環ガス量を制御して、作物生産用施設11の操業状況に応じて、供給装置のガス浄化機器を制御することも可能である。   In the supply device to which the control system shown in FIG. 2 is added, a gas component concentration meter 21 for measuring the component concentration of the purified gas is disposed downstream of the carbon monoxide and ethylene removal device 8 and is controlled by the control device 22. However, a gas component concentration meter 21 for measuring various gas component concentrations in the crop production facility 11 may be arranged and measured and controlled. That is, based on the measured values of various gas component concentrations in the plant production facility 11, the amount of sodium bicarbonate supplied from the sulfur oxide removing device 3, the amount of ammonia gas supplied from the nitrogen oxide removing device 5, and a part of the purified gas are oxidized. It is also possible to control the amount of circulating gas returned to the upstream side of the carbon and ethylene removing device 8 and to control the gas purification device of the supply device according to the operation status of the crop production facility 11.

図3は、本発明の第二の実施形態の二酸化炭素含有ガスと熱の供給装置(以下、単に供給装置という)の模式図である。燃焼炉1、熱交換器2、硫黄酸化物除去装置3、集塵装置4、窒素酸化物除去装置5、一酸化炭素及びエチレン除去装置8、浄化ガス供給装置9の構成は、図1に示すものと同一であるので、同一の符号を附してその説明を省略する。   FIG. 3 is a schematic view of a carbon dioxide-containing gas and heat supply device (hereinafter simply referred to as a supply device) according to the second embodiment of the present invention. The configuration of the combustion furnace 1, the heat exchanger 2, the sulfur oxide removing device 3, the dust collecting device 4, the nitrogen oxide removing device 5, the carbon monoxide and ethylene removing device 8, and the purified gas supply device 9 is shown in FIG. Since they are the same as those in FIG.

第二の実施形態の供給装置では、脱硝触媒装置7の脱硝触媒、並びに一酸化炭素及びエチレン除去装置8の酸化触媒に付着したタールミストを除去して、触媒活性を回復させる触媒活性回復手段を付加している点が、第一の実施形態の供給装置と異なる。この触媒活性回復手段は、循環流路31と、ガス加熱装置32と、を備える。   In the supply device of the second embodiment, there is provided catalyst activity recovery means for recovering catalyst activity by removing tar mist adhering to the denitration catalyst of the denitration catalyst device 7 and the oxidation catalyst of the carbon monoxide and ethylene removal device 8. The added point is different from the supply device of the first embodiment. This catalytic activity recovery means includes a circulation flow path 31 and a gas heating device 32.

触媒活性回復手段を付加する理由は以下のとおりである。燃焼炉1でのバイオマス燃焼によって発生するタールのほとんどは集塵装置4により除去されるものの、排ガスが集塵装置4から脱硝触媒装置7、一酸化炭素及びエチレン除去装置8に流通するにつれて、排ガス温度がガス状タールの露点以下に低下し、ガス状タールが液化して微量のタールミストが発生する。このタールミストが脱硝触媒装置7の脱硝触媒、並びに一酸化炭素及びエチレン除去装置8の酸化触媒に付着すると、これらの触媒活性が低下する。   The reason for adding the catalyst activity recovery means is as follows. Although most of the tar generated by biomass combustion in the combustion furnace 1 is removed by the dust collector 4, as the exhaust gas flows from the dust collector 4 to the denitration catalyst device 7, the carbon monoxide and ethylene removal device 8, the exhaust gas The temperature falls below the dew point of the gaseous tar, and the gaseous tar is liquefied to generate a small amount of tar mist. When this tar mist adheres to the denitration catalyst of the denitration catalyst device 7 and the oxidation catalyst of the carbon monoxide and ethylene removal device 8, their catalytic activity decreases.

触媒に付着したタールミストを除去する方法として、触媒を触媒装置から取り外し、触媒を加熱炉で空焼きすることによってタールを除去することが知られている。しかし、触媒装置から触媒を出し入れするのは煩雑であり、さらに触媒装置を一定期間停止する必要があることから望ましい除去方法とはいえない。   As a method for removing tar mist adhering to the catalyst, it is known to remove the catalyst by removing the catalyst from the catalyst device and emptying the catalyst in a heating furnace. However, it is cumbersome to put the catalyst in and out of the catalyst device, and further, it is necessary to stop the catalyst device for a certain period, so that it is not a desirable removal method.

一方、発明者は、上記のように発生する微量のタールミストの形態を詳しく調べた結果、触媒に付着しても比較的除去しやすい形態であることを見出した。そこで、発明者は、触媒を触媒装置から取り外す必要がない触媒活性回復手段を創案した。すなわち、本実施形態においては、一酸化炭素及びエチレン除去装置8から排出された浄化ガスの一部をガス加熱装置32によって加熱し、脱硝触媒装置7の上流側、並びに一酸化炭素及びエチレン除去装置8の上流側に戻し、脱硝触媒装置7の脱硝触媒、並びに一酸化炭素及びエチレン除去装置8の酸化触媒を加熱する。これにより、脱硝触媒及び酸化触媒に付着したタールミストを揮発・除去し、これらの触媒活性を回復させる。   On the other hand, as a result of detailed examination of the form of the trace amount of tar mist generated as described above, the inventor has found that the form is relatively easy to remove even if it adheres to the catalyst. Therefore, the inventor has devised a catalyst activity recovery means that does not require removal of the catalyst from the catalyst device. That is, in the present embodiment, a part of the purified gas discharged from the carbon monoxide and ethylene removal device 8 is heated by the gas heating device 32, and the upstream side of the denitration catalyst device 7, as well as the carbon monoxide and ethylene removal device. 8, the denitration catalyst of the denitration catalyst device 7 and the oxidation catalyst of the carbon monoxide and ethylene removal device 8 are heated. Thereby, the tar mist adhering to the denitration catalyst and the oxidation catalyst is volatilized and removed, and the catalytic activity is recovered.

具体的には、一酸化炭素及びエチレン除去装置8から排出された浄化ガスを熱交換器10に送るダクトを分岐して、浄化ガスの一部を脱硝触媒装置7の上流側、並びに一酸化炭素及びエチレン除去装置8の上流側に戻す循環流路31を設ける。そして、循環流路31に浄化ガスの一部(以下、循環ガスという)を加熱するガス加熱装置32を配設する。ガス加熱装置32により加熱された循環ガスにより、脱硝触媒装置7の脱硝触媒、並びに一酸化炭素及びエチレン除去装置8の酸化触媒を加熱し、これにより、脱硝触媒及び酸化触媒に付着したタールミストを揮発・除去する。   Specifically, a duct for sending the purified gas discharged from the carbon monoxide and ethylene removing device 8 to the heat exchanger 10 is branched, and a part of the purified gas is separated from the upstream side of the denitration catalyst device 7 and the carbon monoxide. And the circulation flow path 31 which returns to the upstream of the ethylene removal apparatus 8 is provided. A gas heating device 32 for heating a part of the purified gas (hereinafter referred to as “circulation gas”) is disposed in the circulation flow path 31. The denitration catalyst of the denitration catalyst device 7 and the oxidation catalyst of the carbon monoxide and ethylene removal device 8 are heated by the circulating gas heated by the gas heating device 32, whereby the tar mist adhering to the denitration catalyst and the oxidation catalyst is removed. Volatilize and remove.

ガス加熱装置32としては、電気ヒーター式ガス加熱装置が好ましい。ガス加熱装置として電気ヒーター式ガス加熱装置を用いる場合には、触媒から揮発して循環ガスに含まれるタールを燃焼するために反応用空気を必要に応じて供給し、タールを燃焼する。   As the gas heating device 32, an electric heater type gas heating device is preferable. When an electric heater type gas heating device is used as the gas heating device, reaction air is supplied as necessary to burn the tar contained in the circulating gas by volatilizing from the catalyst, and the tar is burned.

脱硝触媒及び酸化触媒を昇温する温度は、160〜500℃の温度範囲とすることが好ましく、180〜300℃の温度範囲とすることがさらに好ましい。付着したタールミストを揮発・除去するために、脱硝触媒及び酸化触媒の温度を、集塵装置4の運転温度以上であって、タールミストの露点より高い温度にする必要があるからである。   The temperature for raising the temperature of the denitration catalyst and the oxidation catalyst is preferably in the temperature range of 160 to 500 ° C, more preferably in the temperature range of 180 to 300 ° C. This is because in order to volatilize and remove the attached tar mist, the temperature of the denitration catalyst and the oxidation catalyst must be higher than the operating temperature of the dust collector 4 and higher than the dew point of the tar mist.

脱硝触媒及び/又は酸化触媒の触媒活性の低下が認められた場合に、加熱した循環ガスを戻す運転を行い、触媒活性を回復させる操作を行う。本実施形態によれば、脱硝触媒装置7並びに一酸化炭素及びエチレン除去装置8の運転中でも、各装置を停止させることなく触媒活性回復操作を行うことができる。もちろん各装置の停止中でも触媒活性回復操作を行うことができる。   When the catalytic activity of the denitration catalyst and / or the oxidation catalyst is reduced, an operation of returning the heated circulating gas is performed to recover the catalytic activity. According to this embodiment, even during the operation of the denitration catalyst device 7 and the carbon monoxide and ethylene removal device 8, the catalyst activity recovery operation can be performed without stopping each device. Of course, the catalyst activity recovery operation can be performed even when each apparatus is stopped.

(実施例)
以下に本発明の実施例を比較例と比較しつつ説明する。燃焼炉から排出される排ガスを作物生産用施設に供給する際に、作物の生育に悪影響を及ぼさないような排ガス中の成分の許容上限濃度を以下の表1に示すように定めた。

Figure 2016036334
(Example)
Examples of the present invention will be described below in comparison with comparative examples. When the exhaust gas discharged from the combustion furnace is supplied to the plant production facility, the allowable upper limit concentration of the component in the exhaust gas that does not adversely affect the growth of the crop is determined as shown in Table 1 below.
Figure 2016036334

比較例Comparative example

木質チップを燃焼炉で燃焼させる実験を実施した。木質チップは水分30%、3〜10cmの寸法であり、燃焼炉に供給量120kg/hrで供給し燃焼した。   An experiment was conducted in which wood chips were burned in a combustion furnace. The wood chip has a moisture content of 30% and a size of 3 to 10 cm, and was supplied to the combustion furnace at a supply rate of 120 kg / hr and burned.

排ガスは、燃焼炉と一体となった熱交換器に送られ、約180℃まで冷却されるとともに、水との熱交換により約85℃の温水を得た。 排ガス発生量はおよそ1200Nm3/hrであり、温水として得られる熱量はおよそ280KWであった。 The exhaust gas was sent to a heat exchanger integrated with the combustion furnace, cooled to about 180 ° C., and hot water of about 85 ° C. was obtained by heat exchange with water. The amount of exhaust gas generated was approximately 1200 Nm 3 / hr, and the amount of heat obtained as hot water was approximately 280 kW.

冷却された排ガスを、サイクロン式集塵機で除塵した。   The cooled exhaust gas was removed with a cyclone dust collector.

除塵された排ガス中の成分測定結果を以下の表2に示す。

Figure 2016036334
Table 2 below shows the component measurement results in the exhausted dust.
Figure 2016036334

表2のとおり、排ガスに含まれる硫黄酸化物、窒素酸化物、およびエチレンの濃度は、いずれも作物生産用施設に供給できる許容上限濃度以上であり、このまま供給すると作物の成長に悪影響を与える。   As shown in Table 2, the concentrations of sulfur oxides, nitrogen oxides, and ethylene contained in the exhaust gas are all at or above the allowable upper limit concentration that can be supplied to the plant production facility.

比較例と同様にして木質チップを燃焼させ、サイクロン式集塵機で除塵された排ガスについてさらに下記の処理を実施した。   In the same manner as in the comparative example, the wood chip was burned, and the following treatment was further performed on the exhaust gas removed by the cyclone dust collector.

サイクロン式集塵機で除塵された約180℃の排ガスに重曹粉末を供給量40g/hrで供給混合し、反応生成物と煤塵をバグフィルタで除塵した。 次いで、排ガスにアンモニアガスを供給量1L/minで供給混合し、脱硝触媒装置に空間速度(SV値)を4100/hrで供給した。 脱硝触媒としてバナジウム、タングステンを含む触媒を用いた。さらに排ガスを酸化触媒装置に空間速度(SV値)を22000/hrで供給した。 酸化触媒として白金を含む触媒を用いた。   Sodium bicarbonate powder was fed and mixed at a feed rate of 40 g / hr to the exhaust gas at about 180 ° C. that had been dust-removed by a cyclone dust collector, and the reaction product and dust were removed by a bag filter. Next, ammonia gas was supplied to the exhaust gas at a supply rate of 1 L / min, and the space velocity (SV value) was supplied to the denitration catalyst device at 4100 / hr. A catalyst containing vanadium and tungsten was used as a denitration catalyst. Further, the exhaust gas was supplied to the oxidation catalyst device at a space velocity (SV value) of 22000 / hr. A catalyst containing platinum was used as the oxidation catalyst.

上記処理後の排ガス中の成分測定結果を表3に示す。

Figure 2016036334
Table 3 shows the measurement results of the components in the exhaust gas after the above treatment.
Figure 2016036334

表3のように、硫黄酸化物、窒素酸化物、およびエチレンのいずれも作物生産用施設に供給できる許容上限濃度以下に低減しており、作物の成長に悪影響を与えることなく、作物の成長促進に有効となる二酸化炭素を作物に与えることができる。一酸化炭素の濃度も作業者に悪影響を与えることのない25ppm以下に低減した。浄化処理後の排ガスを希釈して作物生産用施設に供給すれば、作物にも作業者にも悪影響を与えることのない二酸化炭素含有ガスを供給できる。   As shown in Table 3, all of sulfur oxides, nitrogen oxides, and ethylene are reduced below the allowable upper limit concentration that can be supplied to the plant production facility, and the growth of the crop is promoted without adversely affecting the growth of the crop. It is possible to provide the crop with carbon dioxide that is effective for the plant. The concentration of carbon monoxide was also reduced to 25 ppm or less without adversely affecting the worker. If the exhaust gas after the purification treatment is diluted and supplied to the plant production facility, a carbon dioxide-containing gas that does not adversely affect the crop and the worker can be supplied.

1…燃焼炉
2…熱交換器
3…硫黄酸化物除去装置
4…集塵装置
5…窒素酸化物除去装置
6…アンモニア供給装置
7…脱硝触媒装置
8…一酸化炭素及びエチレン除去装置
9…浄化ガス供給装置
10…熱交換器
12…温水配管
13…ダクト
21…ガス成分濃度計
22…制御装置
23…循環流路
24…調整弁
31…循環流路
32…ガス加熱装置
DESCRIPTION OF SYMBOLS 1 ... Combustion furnace 2 ... Heat exchanger 3 ... Sulfur oxide removal apparatus 4 ... Dust collector 5 ... Nitrogen oxide removal apparatus 6 ... Ammonia supply apparatus 7 ... Denitration catalyst apparatus 8 ... Carbon monoxide and ethylene removal apparatus 9 ... Purification Gas supply device 10 ... Heat exchanger 12 ... Hot water pipe 13 ... Duct 21 ... Gas component concentration meter 22 ... Control device 23 ... Circulation channel 24 ... Adjustment valve 31 ... Circulation channel 32 ... Gas heating device

Claims (8)

作物生産用施設へ二酸化炭素含有ガスと熱を供給する供給装置であって、
燃料を燃焼する燃焼炉と、
前記燃焼炉から排出された燃焼排ガスとの熱交換により熱を得て作物生産用施設へ熱を供給する熱交換器と、
燃焼排ガスに含まれる硫黄酸化物を除去する硫黄酸化物除去装置と、
燃焼排ガスに含まれる煤塵を捕集する集塵装置と、
燃焼排ガスに含まれる窒素酸化物を除去する窒素酸化物除去装置と、
燃焼排ガスに含まれる一酸化炭素とエチレンを除去する一酸化炭素及びエチレン除去装置と、
浄化された燃焼排ガスを作物生産用施設へ供給する浄化ガス供給装置と、を備える二酸化炭素含有ガスと熱の供給装置。
A supply device for supplying carbon dioxide-containing gas and heat to a plant production facility,
A combustion furnace for burning fuel;
A heat exchanger that obtains heat by heat exchange with the flue gas discharged from the combustion furnace and supplies heat to the plant production facility;
A sulfur oxide removing device for removing sulfur oxides contained in combustion exhaust gas;
A dust collector for collecting the dust contained in the combustion exhaust gas;
A nitrogen oxide removing device for removing nitrogen oxides contained in combustion exhaust gas;
A carbon monoxide and ethylene removal device for removing carbon monoxide and ethylene contained in combustion exhaust gas;
A carbon dioxide-containing gas and heat supply device, comprising a purified gas supply device for supplying purified combustion exhaust gas to a plant production facility.
前記一酸化炭素及びエチレン除去装置が、一酸化炭素とエチレンを酸化触媒により酸化する除去装置であることを特徴とする請求項1に記載の二酸化炭素含有ガスと熱の供給装置。   2. The carbon dioxide-containing gas and heat supply device according to claim 1, wherein the carbon monoxide and ethylene removal device is a removal device that oxidizes carbon monoxide and ethylene with an oxidation catalyst. 前記燃料がバイオマスであり、
前記硫黄酸化物除去装置が、燃焼排ガスに重曹粉末を吹込み、硫黄酸化物との反応生成物を生成し、反応生成物を前記集塵装置により煤塵とともに捕集可能とする除去装置であり、
前記窒素酸化物除去装置が、燃焼排ガスにアンモニアガスを吹込み、脱硝触媒により窒素酸化物を分解する除去装置であり、
前記浄化ガス供給装置が、浄化ガスを冷却する熱交換器を備えることを特徴とする請求項1又は2に記載の二酸化炭素含有ガスと熱の供給装置。
The fuel is biomass;
The sulfur oxide removing device is a removing device that blows sodium bicarbonate powder into combustion exhaust gas, generates a reaction product with sulfur oxide, and allows the reaction product to be collected together with soot dust by the dust collector,
The nitrogen oxide removing device is a removing device that blows ammonia gas into combustion exhaust gas and decomposes nitrogen oxides with a denitration catalyst,
The carbon dioxide-containing gas and heat supply device according to claim 1, wherein the purified gas supply device includes a heat exchanger that cools the purified gas.
前記燃料がバイオマスであり、
前記窒素酸化物除去装置が、燃焼排ガスにアンモニアガスを吹込み、脱硝触媒により窒素酸化物を分解する除去装置であり、
前記一酸化炭素及びエチレン除去装置が、一酸化炭素とエチレンを酸化触媒により酸化する除去装置であり、
前記二酸化炭素含有ガスと熱の供給装置はさらに、
前記窒素酸化物除去装置の脱硝触媒、並びに前記一酸化炭素及びエチレン除去装置の酸化触媒の触媒活性を回復する触媒活性回復手段を備え、
前記触媒活性回復手段が、前記窒素酸化物除去装置、又は前記一酸化炭素及びエチレン除去装置から排出された浄化ガスの一部を、前記窒素酸化物除去装置の上流側、並びに前記一酸化炭素及びエチレン除去装置の上流側に戻す循環流路と、戻す浄化ガスを加熱するガス加熱装置と、を備えることを特徴とする請求項1ないし3のいずれか1項に記載の二酸化炭素含有ガスと熱の供給装置。
The fuel is biomass;
The nitrogen oxide removing device is a removing device that blows ammonia gas into combustion exhaust gas and decomposes nitrogen oxides with a denitration catalyst,
The carbon monoxide and ethylene removal device is a removal device that oxidizes carbon monoxide and ethylene with an oxidation catalyst,
The carbon dioxide-containing gas and heat supply device further includes:
A catalyst activity recovery means for recovering the catalyst activity of the denitration catalyst of the nitrogen oxide removing device and the oxidation catalyst of the carbon monoxide and ethylene removing device;
The catalytic activity recovery means is configured to remove a part of the purified gas discharged from the nitrogen oxide removing device or the carbon monoxide and ethylene removing device, upstream of the nitrogen oxide removing device, and the carbon monoxide and The carbon dioxide-containing gas and heat according to any one of claims 1 to 3, further comprising: a circulation passage returning to the upstream side of the ethylene removing device; and a gas heating device for heating the purified gas to be returned. Feeding device.
作物生産用施設へ二酸化炭素含有ガスと熱を供給する供給方法であって、
燃焼炉で燃料を燃焼する工程と、
前記燃焼炉から排出された燃焼排ガスとの熱交換により熱を得て作物生産用施設へ熱を供給する工程と、
燃焼排ガスに含まれる硫黄酸化物を除去する硫黄酸化物除去工程と、
燃焼排ガスに含まれる煤塵を捕集する集塵工程と、
燃焼排ガスに含まれる窒素酸化物を除去する窒素酸化物除去工程と、
燃焼排ガスに含まれる一酸化炭素とエチレンを除去する一酸化炭素及びエチレン除去工程と、
浄化された排ガスを作物生産用施設へ供給する浄化ガス供給工程と、を備える二酸化炭素含有ガスと熱の供給方法。
A supply method for supplying carbon dioxide-containing gas and heat to a plant production facility,
Burning fuel in a combustion furnace;
Supplying heat to the plant production facility by obtaining heat by heat exchange with the flue gas discharged from the combustion furnace;
A sulfur oxide removal step for removing sulfur oxides contained in the combustion exhaust gas;
A dust collection process for collecting the dust contained in the combustion exhaust gas;
A nitrogen oxide removal step for removing nitrogen oxides contained in the combustion exhaust gas;
A carbon monoxide and ethylene removing step for removing carbon monoxide and ethylene contained in the combustion exhaust gas;
A method for supplying carbon dioxide-containing gas and heat, comprising a purified gas supply step of supplying purified exhaust gas to a plant production facility.
前記一酸化炭素及びエチレン除去工程が、一酸化炭素とエチレンを酸化触媒により酸化することを特徴とする請求項5に記載の二酸化炭素含有ガスと熱の供給方法。   6. The carbon dioxide-containing gas and heat supply method according to claim 5, wherein the carbon monoxide and ethylene removing step oxidizes carbon monoxide and ethylene by an oxidation catalyst. 前記燃料がバイオマスであり、
前記硫黄酸化物除去工程が、燃焼排ガスに重曹粉末を吹込み、硫黄酸化物との反応生成物を生成し、反応生成物を前記集塵工程において煤塵とともに捕集可能とする除去工程であり、
前記窒素酸化物除去工程が、燃焼排ガスにアンモニアガスを吹込み、脱硝触媒により窒素酸化物を分解する除去工程であり、
前記浄化ガス供給工程が、浄化ガスを冷却する熱交換工程を有することを特徴とする請求項5又は6に記載の二酸化炭素含有ガスと熱の供給方法。
The fuel is biomass;
The sulfur oxide removal step is a removal step in which baking soda powder is blown into the combustion exhaust gas, a reaction product with sulfur oxide is generated, and the reaction product can be collected together with soot dust in the dust collection step,
The nitrogen oxide removal step is a removal step of injecting ammonia gas into combustion exhaust gas and decomposing nitrogen oxides with a denitration catalyst,
The method for supplying carbon dioxide-containing gas and heat according to claim 5 or 6, wherein the purified gas supply step includes a heat exchange step of cooling the purified gas.
前記燃料がバイオマスであり、
前記窒素酸化物除去工程が、燃焼排ガスにアンモニアガスを吹込み、脱硝触媒により窒素酸化物を分解する除去工程であり、
前記一酸化炭素及びエチレン除去工程が、一酸化炭素とエチレンを酸化触媒により酸化する工程であり、
前記二酸化炭素含有ガスと熱の供給方法はさらに、
前記脱硝触媒及び前記酸化触媒の触媒活性を回復する触媒活性回復工程を備え、
前記触媒活性回復工程が、前記窒素酸化物除去工程、又は前記一酸化炭素及びエチレン除去工程から排出される浄化ガスの一部を、前記脱硝触媒の上流側、並びに前記酸化触媒の上流側に戻す循環工程と、戻す浄化ガスを加熱するガス加熱工程と、を備えることを特徴とする請求項5ないし7のいずれか1項に記載の二酸化炭素含有ガスと熱の供給方法。

The fuel is biomass;
The nitrogen oxide removal step is a removal step of injecting ammonia gas into combustion exhaust gas and decomposing nitrogen oxides with a denitration catalyst,
The carbon monoxide and ethylene removing step is a step of oxidizing carbon monoxide and ethylene with an oxidation catalyst,
The method for supplying the carbon dioxide-containing gas and heat further includes:
Comprising a catalytic activity recovery step of recovering the catalytic activity of the denitration catalyst and the oxidation catalyst,
The catalytic activity recovery step returns a part of the purified gas discharged from the nitrogen oxide removal step or the carbon monoxide and ethylene removal step to the upstream side of the denitration catalyst and the upstream side of the oxidation catalyst. The method for supplying carbon dioxide-containing gas and heat according to any one of claims 5 to 7, further comprising a circulation step and a gas heating step of heating the purified gas to be returned.

JP2015071015A 2014-08-07 2015-03-31 Carbon dioxide-containing gas and heat supply equipment and supply method to crop production facilities Active JP6774167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015071015A JP6774167B2 (en) 2014-08-07 2015-03-31 Carbon dioxide-containing gas and heat supply equipment and supply method to crop production facilities

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014161077 2014-08-07
JP2014161077 2014-08-07
JP2015071015A JP6774167B2 (en) 2014-08-07 2015-03-31 Carbon dioxide-containing gas and heat supply equipment and supply method to crop production facilities

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019025132A Division JP6766908B2 (en) 2014-08-07 2019-02-15 Supply device and method of carbon dioxide-containing gas and heat to crop production facilities

Publications (2)

Publication Number Publication Date
JP2016036334A true JP2016036334A (en) 2016-03-22
JP6774167B2 JP6774167B2 (en) 2020-10-21

Family

ID=55528012

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015071015A Active JP6774167B2 (en) 2014-08-07 2015-03-31 Carbon dioxide-containing gas and heat supply equipment and supply method to crop production facilities
JP2019025132A Active JP6766908B2 (en) 2014-08-07 2019-02-15 Supply device and method of carbon dioxide-containing gas and heat to crop production facilities

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019025132A Active JP6766908B2 (en) 2014-08-07 2019-02-15 Supply device and method of carbon dioxide-containing gas and heat to crop production facilities

Country Status (1)

Country Link
JP (2) JP6774167B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109059027A (en) * 2018-08-27 2018-12-21 山东电力工程咨询院有限公司 A kind of high-temperature biomass gas is cooling and the system and method for UTILIZATION OF VESIDUAL HEAT IN
CN109601201A (en) * 2018-11-23 2019-04-12 兖矿集团有限公司 A kind of system and its processing method applying carbon dioxide to greenhouse using normal-pressure hot-water boiler
JP2020003077A (en) * 2018-06-25 2020-01-09 株式会社タクマ Exhaust gas treatment system
JP2020015040A (en) * 2019-08-16 2020-01-30 株式会社タクマ Exhaust gas treatment system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266121A (en) * 1986-05-12 1987-11-18 Asahi Glass Co Ltd Apparatus for treating waste gas of painting drying gas
JPS6312326A (en) * 1986-07-01 1988-01-19 Asahi Glass Co Ltd Exhaust gas treating apparatus for painting dryer furnace
JPH0742604U (en) * 1993-12-31 1995-08-11 智 川合 CO2 supply and heating system in the house
JP3025591U (en) * 1995-08-17 1996-06-21 智 川合 CO2 supply and heating system in the house
JP2004057145A (en) * 2002-07-31 2004-02-26 Miyoujiyou Cement Kk Composite plant for vegetable cultivation
JP2005218327A (en) * 2004-02-04 2005-08-18 Mec Engineering Service Co Ltd Plant-growing system comprising supplying exhaust gas
JP2008201649A (en) * 2007-02-22 2008-09-04 Osaka Gas Co Ltd Co2 feeder for plant cultivation utilizing exhaust gas
JP2008253877A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Exhaust gas-treating device and method
JP2010058067A (en) * 2008-09-04 2010-03-18 Takuma Co Ltd Method for regenerating denitration catalyst, unit for regenerating denitration catalyst and apparatus for treating exhaust gas by using the unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266121A (en) * 1986-05-12 1987-11-18 Asahi Glass Co Ltd Apparatus for treating waste gas of painting drying gas
JPS6312326A (en) * 1986-07-01 1988-01-19 Asahi Glass Co Ltd Exhaust gas treating apparatus for painting dryer furnace
JPH0742604U (en) * 1993-12-31 1995-08-11 智 川合 CO2 supply and heating system in the house
JP3025591U (en) * 1995-08-17 1996-06-21 智 川合 CO2 supply and heating system in the house
JP2004057145A (en) * 2002-07-31 2004-02-26 Miyoujiyou Cement Kk Composite plant for vegetable cultivation
JP2005218327A (en) * 2004-02-04 2005-08-18 Mec Engineering Service Co Ltd Plant-growing system comprising supplying exhaust gas
JP2008201649A (en) * 2007-02-22 2008-09-04 Osaka Gas Co Ltd Co2 feeder for plant cultivation utilizing exhaust gas
JP2008253877A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Exhaust gas-treating device and method
JP2010058067A (en) * 2008-09-04 2010-03-18 Takuma Co Ltd Method for regenerating denitration catalyst, unit for regenerating denitration catalyst and apparatus for treating exhaust gas by using the unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020003077A (en) * 2018-06-25 2020-01-09 株式会社タクマ Exhaust gas treatment system
CN109059027A (en) * 2018-08-27 2018-12-21 山东电力工程咨询院有限公司 A kind of high-temperature biomass gas is cooling and the system and method for UTILIZATION OF VESIDUAL HEAT IN
CN109601201A (en) * 2018-11-23 2019-04-12 兖矿集团有限公司 A kind of system and its processing method applying carbon dioxide to greenhouse using normal-pressure hot-water boiler
JP2020015040A (en) * 2019-08-16 2020-01-30 株式会社タクマ Exhaust gas treatment system

Also Published As

Publication number Publication date
JP2019107007A (en) 2019-07-04
JP6774167B2 (en) 2020-10-21
JP6766908B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
JP6766908B2 (en) Supply device and method of carbon dioxide-containing gas and heat to crop production facilities
CN105169942B (en) Flue gas of glass melting furnace dust-removal and desulfurizing denitration coprocessing system and processing method and application
CN105593600B (en) Steam generator system and the generating equipment for possessing the steam generator system
CN104174265B (en) The method of carbon system reducing agent SCR denitration technology abatement high-temperature calcination NOx
CN102294171B (en) Flue gas purifying system
JP2014024052A (en) Fly ash circulation type exhaust gas treatment method
CN108465371A (en) One kind being based on minimum discharge fume treatment running gear and processing method
CN104474859B (en) A kind of method of flue gas desulfurization and denitrification, device and application thereof
CN102327735A (en) Hydrogen peroxide-based flue-gas desulfurizing and denitrifying system and method
CN109482049A (en) A kind of coke oven flue gas dry desulfurization denitration purification integral process
CN103691267A (en) Low-temperature synchronous denitration and desulfurization equipment and process for flue gas
CN202136916U (en) Flue gas purification system
CN211837168U (en) Active material generating device containing plasma generating equipment and flue gas denitration device
CN212262854U (en) Single-tower double-circulation desulfurization and denitrification system with cooperation of oxidant and ozone oxidation
CN108499344A (en) A kind of biomass flue gas dust-removal and desulfurizing denitrating system
CN205361068U (en) SNCR of rubbish power plant - low temperature SCR allies oneself with flue gas processing system of usefulness
JP7316146B2 (en) Dilute sulfuric acid production apparatus and dilute sulfuric acid production method
KR101361152B1 (en) Carbon dioxide generator for cultivation of plants
CN108458351A (en) Solid waste incineration flue gas processing method and its system
JP6520557B2 (en) Exhaust gas purification apparatus and method, and apparatus for supplying carbon dioxide-containing gas and heat to a plant for crop production
CN208465583U (en) A kind of biomass flue gas dust-removal and desulfurizing denitrating system
CN208526306U (en) One kind being based on minimum discharge fume treatment running gear
CN203737086U (en) Low-temperature synchronous denitration and desulfurization equipment for flue gas
CN204352760U (en) Furnace for domestic refuse SCR flue gas denitrification system
JP6552762B1 (en) Combined plant and excess heat recovery method for combined plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191031

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20191031

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20191108

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20191112

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20200131

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20200204

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200421

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200609

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200714

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20200825

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20200929

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20200929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201002

R150 Certificate of patent or registration of utility model

Ref document number: 6774167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350