JPS6312326A - Exhaust gas treating apparatus for painting dryer furnace - Google Patents

Exhaust gas treating apparatus for painting dryer furnace

Info

Publication number
JPS6312326A
JPS6312326A JP61154886A JP15488686A JPS6312326A JP S6312326 A JPS6312326 A JP S6312326A JP 61154886 A JP61154886 A JP 61154886A JP 15488686 A JP15488686 A JP 15488686A JP S6312326 A JPS6312326 A JP S6312326A
Authority
JP
Japan
Prior art keywords
exhaust gas
flow path
catalyst
gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61154886A
Other languages
Japanese (ja)
Other versions
JPH0425051B2 (en
Inventor
Taizo Kato
加藤 泰三
Nobuyuki Kido
信幸 城戸
Yasushi Ono
泰史 小野
Mitsuhiro Yamamoto
山本 光博
Hisayoshi Shimizu
久義 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd, Sumitomo Metal Industries Ltd filed Critical Asahi Glass Co Ltd
Priority to JP61154886A priority Critical patent/JPS6312326A/en
Publication of JPS6312326A publication Critical patent/JPS6312326A/en
Publication of JPH0425051B2 publication Critical patent/JPH0425051B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To carry out stable operation for a long period by passing the exhaust gas through a dust removing filter, a heat exchanger, and then a rotary catalyst device mounting a primary catalyst, circulating a part of gas through the painting dryer furnace, and discharging the other part to the outside of the system after the oxidation treatment by a secondary catalyst. CONSTITUTION:The exhaust gas which flows out from the painting dryer furnace 21 is passed through a 1st low passage 22 into the dust removing filter 25 where the dust is removed, heated through a heat exchanger 26, and entered a rotary catalyst device 28 where the gas is passed through a flow passage A, inflammable elements in the gas are oxidized by the primary catalyst 30 and streamed again into the primary catalyst 30 through a reversing space 33 to be heated, and then the gas is cooled in the heat exchanger 26. Next, the exhaust gas is streamed into a 2nd flow passage 37, and a part of the gas is entered the painting dryer furnace 21 to be circulated, and the other part is passed through a 3rd flow passage 39 branched from the flow passage 37, passed through the secondary catalyst 41 where a small amount of inflammable elements are oxidized, and discharged to the outside of the system.

Description

【発明の詳細な説明】 「技術分野」 本発明は、塗装乾燥炉内で発主する揮発した溶剤成分を
含む排ガスを、酸化処理して無臭化し、系外に排出する
ようにした塗装乾燥炉の排ガス処理装置に面する。
Detailed Description of the Invention [Technical Field] The present invention relates to a paint drying furnace in which exhaust gas containing volatilized solvent components emitted within the paint drying furnace is oxidized to be odorless and discharged outside the system. facing the exhaust gas treatment equipment.

「従来技術およびその問題点」 例えば鉄鋼業などで用いられる塗装乾燥炉において、塗
装されたストリップなどは、焼付は乾燥工程を経ること
で、塗料中の溶剤を揮発させ、塗膜成分を反応させて必
要な塗装被膜性能になるように加熱されている。しかし
、鋼材の生産量が多くなると、塗装乾燥炉内の溶剤ガス
濃度が高くなり、これを含む排ガスをそのまま系外に排
出すると環境汚染の原因となったりするので、排ガス中
の溶剤ガス濃度を低くする必要がある。
"Prior art and its problems" For example, in paint drying ovens used in the steel industry, painted strips are baked through a drying process that evaporates the solvent in the paint and causes the components of the paint film to react. The coating is heated to achieve the required paint film performance. However, as the production volume of steel increases, the concentration of solvent gas in the paint drying oven increases, and if the exhaust gas containing this is discharged directly outside the system, it may cause environmental pollution, so it is necessary to reduce the concentration of solvent gas in the exhaust gas. need to be lower.

このため、塗装乾燥炉より溶剤を含んだ排ガスを取出し
、触媒層を通過させてケトン類、セロソルブ類、トルエ
ン、キシレンなどの溶剤に由来する可燃性成分8燃焼し
てそのJ度を減少させ、クリーンな状態にしてその大部
分を炉内に戻すようにした循環システムを用いることに
よって、系外への排出ガス中の溶剤ガス濃度を所定値以
下にしている。
For this purpose, the exhaust gas containing solvent is taken out from the paint drying oven, passed through a catalyst layer, and flammable components derived from solvents such as ketones, cellosolves, toluene, and xylene are burned to reduce their J degree. By using a circulation system that returns most of the clean gas to the furnace, the concentration of solvent gas in the exhaust gas outside the system is kept below a predetermined value.

第2図には、従来の塗装乾燥炉の排ガス処理製画の一例
が示されている。すなわち、塗装乾燥炉1には、図中白
抜き矢印で示す如く鋼材が導入され、例えば180℃程
度の雰囲気下にで、塗料中の溶剤が揮発除去される。溶
剤1よ、例えば主としてエチルセロソルブからなり、排
ガス中の濃度は、例えばエチルセロソルブ2500pp
mとされている。
FIG. 2 shows an example of a conventional paint drying furnace for exhaust gas treatment. That is, a steel material is introduced into the paint drying oven 1 as shown by the white arrow in the figure, and the solvent in the paint is volatilized and removed under an atmosphere of, for example, about 180°C. Solvent 1, for example, mainly consists of ethyl cellosolve, and the concentration in the exhaust gas is, for example, 2500 pp of ethyl cellosolve.
It is said to be m.

そして、塗装乾燥炉1中の上記排ガスをファン2での引
し、第1の流路3に取出す、このとき、ダンパ4により
排ガスの取出し量が調整される。
Then, the exhaust gas in the paint drying oven 1 is drawn by the fan 2 and taken out to the first flow path 3. At this time, the amount of the exhaust gas taken out is adjusted by the damper 4.

第1の流路3に取出した排ガスは、直交流型の熱交換器
5に導かれ、そこで昇温される。さらに、必要に応して
補助燃焼製雪6から例えばブタン空気混合ガスなどの燃
料を投入して燃焼させ、排ガス温度を350℃程度の触
媒活性温度まで上昇させる。この状態で排ガスを触媒7
に通し、排ガス中の可燃性成分を酸化処理する。
The exhaust gas taken out into the first flow path 3 is guided to a cross-flow type heat exchanger 5 and heated there. Further, if necessary, fuel such as butane-air mixed gas is inputted from the auxiliary combustion snowmaking 6 and combusted to raise the exhaust gas temperature to a catalyst activation temperature of about 350°C. In this state, the exhaust gas is transferred to the catalyst 7.
to oxidize the combustible components in the exhaust gas.

燃焼排ガス中の溶剤成分は、この触媒7によって酸化燃
焼され、排ガス中のタールミストや可燃性のダストも、
一度触媒面に吸着された復、反応してtP、煩除去され
る。なお、不燃性のダストは、触媒7に付着しあるいは
濾別されて排ガス中から除去される。符号8は、触媒7
の一端i=zいでいる盲蓋である。
The solvent components in the combustion exhaust gas are oxidized and burned by this catalyst 7, and tar mist and flammable dust in the exhaust gas are also oxidized and burned.
Once adsorbed on the catalyst surface, it reacts and is removed by tP. Incidentally, the non-flammable dust is removed from the exhaust gas by adhering to the catalyst 7 or being filtered out. The code 8 is the catalyst 7
It is a blind lid with one end i = z.

触媒7を通過し、可燃性成分の燃焼により昇温し、かつ
、不燃性のダストを除去された燃焼排ガスは、熱交換器
5を通過して酸化処理前の排ガスと熱交換して降温し、
その一部(例えば415の流il)が第20流路9を通
って塗装乾燥炉1へ返送されると共に、残部(例えば1
15の流量)が第2の流路から分岐した第30流路10
を通って系外に排出される。
The combustion exhaust gas that has passed through the catalyst 7 and has been heated by combustion of combustible components and from which non-flammable dust has been removed passes through the heat exchanger 5 and is cooled by exchanging heat with the exhaust gas before oxidation treatment. ,
A part of it (for example, 415 fluids) is returned to the coating drying furnace 1 through the 20th flow path 9, and the remaining part (for example, 1
15 flow rate) branched from the second flow path 10.
is discharged from the system through the

第2の流路9を通って返送された排ガスは、リサイクル
ファン11によって塗装乾燥炉1へ導かれる。また、リ
サイクルファン11の隣りにはバーナ12が設けられで
おり、炉内循環ガスを昇温しでいる。なお、符号13.
14は塗装乾燥炉1へ返送する排ガスと系外へ排出する
排ガスとの流量をそれぞれ調整するダンパである。
The exhaust gas returned through the second flow path 9 is guided to the paint drying oven 1 by a recycling fan 11. Further, a burner 12 is provided next to the recycle fan 11 to raise the temperature of the gas circulating in the furnace. In addition, the code 13.
Reference numeral 14 denotes a damper that adjusts the flow rates of the exhaust gas returned to the coating drying oven 1 and the exhaust gas discharged to the outside of the system.

しかしながら、この塗装乾燥炉の排ガス処理製画にあい
では、排ガス中に5Ox(硫黄酸化物)などの触媒被毒
成分が含まれていると、触媒表面層のみならず、触媒全
体に被毒が進行して触媒が劣化し、浄化効率が低下する
。このため、排ガス中の可燃性成分を充分に除去するこ
とができず、前述した環境汚染の原因となったり、また
、塗装乾燥炉より発生する可燃性成分が悪臭成分である
とき、触媒通過後の悪臭成分濃度が充分低下しないため
、大気放出排ガスおよび塗装乾燥炉内で悪臭が発生する
However, when designing the exhaust gas treatment for this paint drying oven, if the exhaust gas contains catalyst poisoning components such as 5Ox (sulfur oxides), not only the catalyst surface layer but the entire catalyst will be poisoned. As the process progresses, the catalyst deteriorates and the purification efficiency decreases. For this reason, flammable components in the exhaust gas cannot be sufficiently removed, causing the environmental pollution mentioned above.Also, when the flammable components generated from the paint drying oven are malodorous components, the Because the concentration of malodorous components in the paint is not sufficiently reduced, malodors are generated in the exhaust gas released into the atmosphere and in the paint drying oven.

ざらに、可tP、性のダストやタールミストなどは、触
媒表面に吸着されても浄化されにくいため、触媒を目詰
りさせて圧力損失を増加させるため、システムの圧力の
マツチングが悪くなったり、循環ガス!を減らす必要が
あったり、操業が不安定となる。
In general, pollutable dust, tar mist, etc. are difficult to purify even if they are adsorbed on the catalyst surface, so they clog the catalyst and increase pressure loss, resulting in poor system pressure matching. Circulating gas! may need to be reduced, or operations may become unstable.

したがって、安定操業を行なうためには、触媒の劣化状
況を常に監視し、触媒が劣化した場合には交換する必要
がある。しかし、触媒を交換する場合には、操業を止め
る必要が生じ、触媒エレメント自体が責金厘などを担持
したものであるため交換費用も非常に高くなる。
Therefore, in order to perform stable operation, it is necessary to constantly monitor the deterioration status of the catalyst and replace it if the catalyst has deteriorated. However, when replacing the catalyst, it is necessary to stop the operation, and the replacement cost becomes very high because the catalytic element itself carries a metal and the like.

また、この塗装乾燥炉の排ガス処理装置においては、熱
交換器の伝熱エレメントにダストやタールが付着しやす
く、これらの付着によって熱交換器の伝熱性能低下と圧
力損失の増大が起こる。このため、触媒への流入ガス温
度が低下し、触媒の浄化効率が悪くなる。ざらには、触
媒の出口温度が低下し、熱交換器の交換熱量が益々低下
する。
In addition, in this exhaust gas treatment device for a paint drying oven, dust and tar tend to adhere to the heat transfer element of the heat exchanger, and this adhesion causes a decrease in the heat transfer performance of the heat exchanger and an increase in pressure loss. Therefore, the temperature of the gas flowing into the catalyst decreases, and the purification efficiency of the catalyst deteriorates. In general, the outlet temperature of the catalyst decreases, and the amount of heat exchanged by the heat exchanger further decreases.

したがって、補助tjA焼装置により追い焚きしで、触
媒への流入ガス温度低下分を補ってやる必要が生じ、燃
料コストか高くなる。
Therefore, it becomes necessary to compensate for the decrease in the temperature of the gas flowing into the catalyst by reheating using the auxiliary tjA sintering device, which increases fuel costs.

一方、前記の排ガス処理装置を用い、排ガス中に例えば
2500ppmもの高濃度で存在する可燃性成分を、例
えばその百分の−またはそれ以下の濃度になるまで触媒
で酸化して除去しようとするとき、排ガスの全量を触媒
7に通じて処理することとなり、しかも触媒処理により
可燃性成分濃度を大きく低下せしめられた排ガスの大部
分(例えば115 )は、再び第20流路9を通って可
燃性成分発生源である塗装乾燥炉1に返送されることと
なる。したがって、高価な触媒70体積を大きくする必
要かあり、しかもそれにより充分に浄化された排ガスの
大部分を再び汚染する無駄がある。
On the other hand, when attempting to remove combustible components present in the exhaust gas at a high concentration of, for example, 2,500 ppm, by oxidizing it with a catalyst to a concentration of, for example, 100% or less, using the above-mentioned exhaust gas treatment device. , the entire amount of exhaust gas is passed through the catalyst 7 to be treated, and most of the exhaust gas (for example, 115) whose combustible component concentration has been significantly reduced by the catalyst treatment passes through the 20th flow path 9 again and becomes combustible. It will be returned to the paint drying oven 1, which is the source of the components. Therefore, it is necessary to increase the volume of the expensive catalyst 70, and there is also a waste of recontaminating most of the exhaust gas that has been sufficiently purified.

「発明の目的」 本発明の目的は、排ガス中のSOXなどによる触媒への
被毒を防止することにより、触媒の性能を長時間安定さ
せ、熱交換器の伝熱エレメントへのダストやタールの付
着による圧力損失や熱交換性能低下を防止し、排ガス中
に含まれる可燃性成分(悪臭成分)を長期M安定的に除
去できるようにした塗装乾燥炉の排ガス処理装置を提供
することにある。
“Objective of the Invention” The object of the present invention is to stabilize the performance of the catalyst for a long time by preventing poisoning of the catalyst by SOX etc. in the exhaust gas, and to prevent dust and tar from entering the heat transfer element of the heat exchanger. To provide an exhaust gas treatment device for a paint drying oven that prevents pressure loss and heat exchange performance deterioration due to adhesion and can stably remove flammable components (malodorous components) contained in exhaust gas over a long period of time.

「発明の構成」 本発明による塗装乾燥炉の排ガス処理装置は、塗装乾燥
炉の排ガスを所定量ずつ取出す第1の流路と、この第1
の流路に設けられた除塵フィルタと、前記第1の流路か
ら導入された排ガスを昇温させる受熱流体側の流路およ
び可燃性成分が酸化処理された後の排ガスを降温させる
放熱流体側の流路を備えた熱交換器と、この熱交換器の
受熱流体側の流路から導入された排ガスの可燃性成分を
酸化処理する一次触媒を備えた回転触媒装置と、この回
転触媒装置で酸化処理され前記熱交換器の放熱流体側の
流路を経由した排ガスの一部を前記塗装乾燥炉に循環さ
せる第2の流路と、この第2の流路から分岐して前記排
ガスの残部を系外に排出する第3の流路と、この第30
流路の途中に前記排ガスの残部に含まれる可燃性成分を
さらに酸化処理する二次触媒を備えていることを特徴と
する。
"Structure of the Invention" The exhaust gas treatment device for a paint drying furnace according to the present invention includes a first flow path for taking out a predetermined amount of exhaust gas from the paint drying furnace;
a dust removal filter provided in the flow path, a flow path on the heat receiving fluid side that raises the temperature of the exhaust gas introduced from the first flow path, and a heat radiation fluid side that lowers the temperature of the exhaust gas after the combustible components have been oxidized. a heat exchanger equipped with a flow path, a rotary catalyst device equipped with a primary catalyst that oxidizes combustible components of exhaust gas introduced from a flow path on the heat receiving fluid side of the heat exchanger, and a rotary catalyst device equipped with a second flow path for circulating a part of the exhaust gas that has been oxidized and passed through the flow path on the heat radiation fluid side of the heat exchanger to the paint drying furnace; and a second flow path that branches from the second flow path and the remainder of the exhaust gas. a third flow path for discharging the water out of the system;
The present invention is characterized in that a secondary catalyst is provided in the middle of the flow path to further oxidize combustible components contained in the remainder of the exhaust gas.

このように、本発明では、第1の流路で取出された排ガ
スは、その流路途中に配置した除塵フィルタでダストを
事前に除去された徒、熱交換器およびその債の回転触媒
装置に導入される。このため、熱交換器の伝熱エレメン
トや回転触媒装置の一次触媒にダストが付着することを
防止できる。
In this way, in the present invention, the exhaust gas taken out in the first flow path is passed through a heat exchanger and a rotary catalytic device connected thereto, from which dust has been removed in advance by a dust removal filter placed in the middle of the flow path. be introduced. Therefore, it is possible to prevent dust from adhering to the heat transfer element of the heat exchanger or the primary catalyst of the rotary catalyst device.

また、可燃性成分の酸化処理に、加熱ガスと被加熱ガス
が周期的に交互に流れる回転触媒装置を用い、これを熱
交換器の受熱流体側の流路と放熱流体側の流路に接続し
ているので、回転触媒装置の一次触媒が被毒しでも高温
の加熱ガスに接触して自己再生し、ざらに、タールミス
トなどが一次触媒に付着しても、ついでその部分が加熱
ガス側となったときに高温の加熱ガスに接触して浄化さ
れるため、−次触媒にタールなどが堆積しにくくなって
いる。したがって、触媒溝ffを長期間安定に保ち、ガ
スの圧力損失などをできるだけ抑え、伝熱性能を良好に
維持して、長期間安定した操業を行なうことができる。
In addition, for the oxidation treatment of combustible components, a rotary catalyst device is used in which heating gas and heated gas flow alternately periodically, and this is connected to the flow path on the heat receiving fluid side and the flow path on the heat dissipating fluid side of the heat exchanger. Therefore, even if the primary catalyst of the rotary catalytic converter is poisoned, it will self-regenerate when it comes into contact with the high-temperature heating gas, and even if tar mist or the like adheres to the primary catalyst, that part will then be removed from the heating gas side. When this happens, it comes into contact with high-temperature heated gas and is purified, making it difficult for tar etc. to accumulate on the secondary catalyst. Therefore, it is possible to maintain the catalyst groove ff stably for a long period of time, to suppress gas pressure loss as much as possible, to maintain good heat transfer performance, and to perform stable operation for a long period of time.

また、第3の流路の途中に二次触媒が設けられたことに
より、排ガスの残部に含まれる低J度の可燃性成分をさ
らに酸化処理することができる。
Further, by providing the secondary catalyst in the middle of the third flow path, it is possible to further oxidize the low J degree combustible components contained in the remainder of the exhaust gas.

このように、系外に排出する排ガスを二次触媒で再度処
理することにより、回転触媒装置におけるリークなどに
より残存した可燃性成分をさらに完全に除去することが
できる。この場合、菓3の流路に流れる排ガスは、塗装
乾燥炉に返送される排ガスの残部であるからその流量は
少なく、このため、必要とされる触媒体積も少なくてす
む。
In this way, by treating the exhaust gas discharged outside the system again with the secondary catalyst, combustible components remaining due to leaks in the rotary catalytic converter can be more completely removed. In this case, the exhaust gas flowing into the flow path of the cake 3 is the remainder of the exhaust gas returned to the coating drying oven, so its flow rate is small, and therefore the required volume of the catalyst is also small.

本発明の好ましい態様によれば、前記熱交換器の受熱流
体側の流路と前記回転触媒袋百〇間または前記回転触媒
装置内部に、燃料ガスまたは高温ガスを導入する昇温補
助装置が設けられている。
According to a preferred aspect of the present invention, a temperature-raising auxiliary device for introducing fuel gas or high-temperature gas is provided between the flow path on the heat-receiving fluid side of the heat exchanger and the rotary catalyst bag or inside the rotary catalyst device. It is being

これによれば、立ち上げ運転時などにおいて、熱交換器
の伝熱エレメントなどの蓄熱のため、排ガスの温度が低
下するが、燃料ガスあるいは高温ガスによって排ガスの
温度が高められるので、−次触媒の出口温度が高温とな
り、立ち上げ運転時間を短縮することができる。また、
−次触媒の被毒が著しい時、排ガスの温度を上げること
で、波毒した一次触媒を活性化することができる。
According to this, during start-up operation, etc., the temperature of the exhaust gas decreases due to heat storage in the heat transfer element of the heat exchanger, but the temperature of the exhaust gas is raised by the fuel gas or high temperature gas, so the next catalyst The outlet temperature becomes high and the start-up operation time can be shortened. Also,
- When the primary catalyst is severely poisoned, the poisoned primary catalyst can be activated by increasing the temperature of the exhaust gas.

「発明の実施例」 第1図には、本発明による塗装乾燥炉の排ガス処理製雪
の一実施例が示されている。
"Embodiment of the Invention" FIG. 1 shows an embodiment of the present invention for treating snowmaking in an exhaust gas treatment oven for a paint drying furnace.

塗装乾燥炉21には排ガスを取出す第1の流路22が接
続されでいる。この第1の流路22は、その流路途中に
、排ガスの流tv調整するダンパ23およびこのダンパ
23の下流に位置して排ガスを吸引すファン24を有し
でいる。したがって、塗装乾燥炉21の排ガスは、ダン
パ23でその流jlヲ所定量に調整され、ファン24に
より第1の流路22に取出されることとなる。
A first flow path 22 for extracting exhaust gas is connected to the paint drying oven 21. This first flow path 22 has a damper 23 that adjusts the flow tv of exhaust gas and a fan 24 that is located downstream of this damper 23 and sucks the exhaust gas in the middle of the flow path. Therefore, the flow of the exhaust gas from the paint drying oven 21 is adjusted to a predetermined amount by the damper 23, and is taken out to the first flow path 22 by the fan 24.

上記第1の流路22の途中でファン24の下流側には、
除塵フィルタ25が配置されている。この除塵フィルタ
25は、第1の流路22から取出された排ガス中のダス
トを除去するもので、その濾過体としては、セラミック
ス多孔体、あるいはセラミックス繊維、ガラス繊維など
で構成される布などを使用することが、SOxによる腐
食防止上好ましい。
On the downstream side of the fan 24 in the middle of the first flow path 22,
A dust removal filter 25 is arranged. This dust removal filter 25 removes dust from the exhaust gas taken out from the first flow path 22, and its filter body is made of a ceramic porous body, a cloth made of ceramic fiber, glass fiber, etc. It is preferable to use this in order to prevent corrosion caused by SOx.

除塵フィルタ25には、図示しない逆洗機構が取り付(
ブられでおり、一定時間ごとにその濾過体の逆洗を行な
うことによって、圧力損失の増加を押えている。
The dust filter 25 is equipped with a backwashing mechanism (not shown).
The increase in pressure loss is suppressed by backwashing the filter body at regular intervals.

除塵フィルタ25のさらに下流の第1の流路22には、
熱交換器26が配)されている、熱交換器26には図示
しない伝熱エレメントが内蔵されており、この伝熱エレ
メントには、受熱流体側の流路と放熱流体側の流路が設
けられている。受熱流体側の流路は、第1の流路22か
らの排ガスを昇温させる機能を有し、注流路27を経由
して回転触媒装置28の被加熱ガス流路^に接続されて
いる。また、放熱流体側の流路は、回転触媒袋?l12
8からの排ガスを降温させる機能を有し、復流路29を
介して回転触媒袋N28の加熱ガス流路Bに接続されて
いる。
In the first flow path 22 further downstream of the dust removal filter 25,
The heat exchanger 26 (with which the heat exchanger 26 is disposed) has a built-in heat transfer element (not shown), and this heat transfer element is provided with a flow path on the heat receiving fluid side and a flow path on the heat radiation fluid side. It is being The flow path on the heat receiving fluid side has a function of raising the temperature of the exhaust gas from the first flow path 22, and is connected to the heated gas flow path of the rotary catalyst device 28 via the injection flow path 27. . Also, is the flow path on the heat dissipation fluid side a rotary catalyst bag? l12
It has a function of lowering the temperature of the exhaust gas from the rotary catalyst bag N28, and is connected to the heated gas flow path B of the rotary catalyst bag N28 via a return flow path 29.

回転触媒装置28は、排ガス中の可燃性成分を酸化処理
する一次触媒30を備えており、細心部が駆動軸31に
固定されてモーフ32によって回転する。
The rotary catalytic device 28 includes a primary catalyst 30 that oxidizes combustible components in exhaust gas, and a narrow portion thereof is fixed to a drive shaft 31 and rotated by a morph 32 .

そして、−次触媒30の回転経路において、半分は被加
熱ガス流路Aとされ、他の半分は加熱ガス流路Bとされ
ている。したがって、熱交換器26の受熱流体側の流路
から注流路27ヲ経由して導入された排ガスは、流路A
を通過する際、−次触媒30により可燃性成分を酸化処
理されて高温となる。そして、排ガスは、反転空間33
で反転して流路8&通り、再び一次触媒30ヲ通過して
ざらに高温となる。このような−次触媒30によって可
燃性成分を酸化処理された排ガスは、復流路29を経由
して、再び熱交換器26の放熱流体側の流路に戻される
ようになっている。
In the rotation path of the secondary catalyst 30, half is used as a heated gas flow path A, and the other half is used as a heated gas flow path B. Therefore, the exhaust gas introduced from the flow path on the heat receiving fluid side of the heat exchanger 26 via the injection flow path 27 is transferred to the flow path A.
When passing through, the combustible components are oxidized by the secondary catalyst 30 and the temperature becomes high. Then, the exhaust gas is transferred to the inversion space 33
Then, it turns around and passes through the flow path 8&, where it passes through the primary catalyst 30 again and becomes very hot. The exhaust gas whose combustible components have been oxidized by the secondary catalyst 30 is returned to the flow path on the heat radiation fluid side of the heat exchanger 26 via the return flow path 29.

上記−次触媒30としては、セラミックスのハニカム状
の担体に、白金、パラジウムあるいは両者の混合物を担
持したものが好ましい、この−次触媒30は低温ガスが
流通して被毒した部分が高温ガスと接触することにより
自己再生可能な性質を有しでいる。
The secondary catalyst 30 is preferably one in which platinum, palladium, or a mixture of both is supported on a ceramic honeycomb-shaped carrier.In this secondary catalyst 30, the poisoned portion of the secondary catalyst 30 through which low-temperature gas flows is exposed to high-temperature gas. It has the property of being able to self-regenerate upon contact.

なお、回転触媒装置2日は、−次触媒30を固定とし、
それに対して流路A、Bが相対的に回転するように構成
されていてもよい。
In addition, for the second day of the rotary catalytic converter, the -th catalyst 30 is fixed,
In contrast, the channels A and B may be configured to rotate relative to each other.

熱交換器26と回転触媒装置f2日を結ぶ注流路27に
は、昇温補助装置34が接続されている。この昇温補助
装置!34は、立上げ運転時における排ガス温度の触媒
活性温度への昇温、あるいは著しく被毒した一次触媒3
0の触媒活性化などに用いられるもので、燃料ガスや高
温ガスを注流路27に送り出すためのファン35と、上
記ガスの導入を制御するバルブ36を備えている。この
ような昇温補助装置34は、注流路27に接続するのに
代えて、あるいはこれに加えて、図中二点鎖線で示す如
く回転触媒装置28に接続し、この回転触媒装置12B
の反転空間33内に燃料ガスや高温ガスを導入してもよ
い。
A temperature raising auxiliary device 34 is connected to the pouring path 27 that connects the heat exchanger 26 and the rotary catalyst device f2. This heating aid device! 34 indicates that the exhaust gas temperature has risen to the catalyst activation temperature during start-up operation, or that the primary catalyst 3 has been significantly poisoned.
The fan 35 is used for activating the 0 catalyst, etc., and includes a fan 35 for sending fuel gas and high-temperature gas to the injection channel 27, and a valve 36 for controlling the introduction of the gas. Instead of or in addition to being connected to the pouring path 27, such a temperature raising auxiliary device 34 is connected to the rotary catalyst device 28 as shown by the two-dot chain line in the figure, and is connected to the rotary catalyst device 12B.
Fuel gas or high temperature gas may be introduced into the inversion space 33.

ざらに、熱交換器26の放熱流体側の流路には、第2の
流路37が接続されている。この第2の流路37は、酸
化処理された排ガスの大部分を塗装乾燥炉21に循環さ
せるもので、その途中には上記排ガスの流量を調整する
ダンパ38が設けられている。
Roughly speaking, a second flow path 37 is connected to the flow path on the heat radiation fluid side of the heat exchanger 26 . This second flow path 37 circulates most of the oxidized exhaust gas to the coating drying furnace 21, and a damper 38 is provided in the middle thereof to adjust the flow rate of the exhaust gas.

第2の流路37には、第30流路39が分岐して設けら
れている。この第3の流路39は、上記排ガスの残部を
系外に排出するもので、その途中に排ガスの流量を調整
するダンパ40が設けられている。
A 30th flow path 39 is branched from the second flow path 37 . This third flow path 39 is for discharging the remaining part of the exhaust gas to the outside of the system, and a damper 40 is provided in the middle thereof to adjust the flow rate of the exhaust gas.

第3の流路39の途中でダンパ40の下流には、二次触
媒41が設けられている。この二次触媒41は、系外に
排出されるべき排ガス中にまだ少量残っている可燃性成
分を、ざらに完全に酸化処理するためのものである。二
次触媒41としては、セラミックスのハニカム状の担体
に、白金、パラジウムあるいは両者の混合物を担持した
ものが好ましい。
A secondary catalyst 41 is provided in the middle of the third flow path 39 and downstream of the damper 40 . This secondary catalyst 41 is for roughly and completely oxidizing a small amount of combustible components still remaining in the exhaust gas to be discharged outside the system. The secondary catalyst 41 is preferably one in which platinum, palladium, or a mixture of both is supported on a ceramic honeycomb carrier.

このような第3の流路39の下流には、空気予熱器42
が接続されでいる。この突気予熱器42は、上記の二次
触媒41によって完全に可燃性成分の除去された排ガス
を、バーナ予熱空気と熱交換し、煙突43を通じで外気
に放出するためのものである。
An air preheater 42 is provided downstream of such a third flow path 39.
is connected. This flue preheater 42 is for exchanging heat with the burner preheated air for the exhaust gas from which combustible components have been completely removed by the secondary catalyst 41, and discharging the exhaust gas to the outside air through the chimney 43.

また、空気予熱器42には流路44が接続され、バーナ
予熱空気は、この流路44を通って各バーナ45に導か
れる。そして、塗装乾燥炉21内のガスは、ファン46
によって循環され、その際、バーナ45によって加熱さ
れるようになっている。
Further, a flow path 44 is connected to the air preheater 42, and burner preheated air is guided to each burner 45 through this flow path 44. Then, the gas inside the paint drying oven 21 is passed through the fan 46.
During the circulation, it is heated by a burner 45.

次に、本発明による塗装乾燥炉の排ガス処理装雷の作動
について説明する。
Next, the operation of the exhaust gas treatment ordnance for the paint drying oven according to the present invention will be explained.

塗装乾燥炉21内からは、例えば二酸化炭素4.2%、
水11.0%、窒素74.0%、酸素10.4%、エチ
ルセロソルブ2500ppm 、 SOx 300pp
m、ダストAr1a。
From inside the paint drying oven 21, for example, 4.2% carbon dioxide,
Water 11.0%, Nitrogen 74.0%, Oxygen 10.4%, Ethyl Cellosolve 2500ppm, SOx 300ppm
m, dust Ar1a.

I m+/Nrn’、タール濃度2.5 mq/Nm、
温度230℃の排ガスが流ji 2000ONmi’ 
/hで第1の流路22に取出されることにする。
I m+/Nrn', tar concentration 2.5 mq/Nm,
Exhaust gas with a temperature of 230℃ flows ji 2000ONmi'
/h to be taken out to the first flow path 22.

排ガスは、ダンパ23て流量を調整されながらファン2
4により第1の流路22に流され、除塵フィルタ25に
よりダストが除去される。このため、熱交換器26に内
蔵された伝熱エレメントや回転触媒装置28の一次触媒
30にダストか付@するのを防止できる。そして、排ガ
スは、熱交換器26の受熱流体側の流路に流入し、伝熱
エレメントによって一次触媒30が所要の活性を有する
300°Cまで昇温される。
The exhaust gas is sent to the fan 2 while the flow rate is adjusted by the damper 23.
4 into the first flow path 22, and the dust is removed by the dust removal filter 25. Therefore, it is possible to prevent dust from adhering to the heat transfer element built into the heat exchanger 26 and the primary catalyst 30 of the rotary catalyst device 28. The exhaust gas then flows into the flow path on the heat-receiving fluid side of the heat exchanger 26, and is heated by the heat transfer element to 300° C. at which the primary catalyst 30 has the required activity.

回転触媒装置28では、−次触媒30がモータ32によ
り所定周期で回転しており、熱交換器26で加熱れた排
ガスは、往流路27を経由して同表第2Bの流路Aに流
入する。この流路Aで、排ガスは、−次触1!!30を
通過して有臭可燃性成分(エチルセロソルブ)が酸化脱
臭処理される。−次触媒30の触媒体積は、浄化効率が
90%以上となるようにされでいる。−次触媒3018
通過した排ガスは、酸化熱により443℃まで昇温され
る。ついで同表第28の反転空間33でその流れを反転
された排ガスは、流路Bに入り、−次触媒30を再び通
過した後、排ガス中の残りの有臭可燃性成分がざらに酸
化脱臭処理″され、488℃まで昇温される。このとき
、エチルセロソルブ濃度は250ppmとなる。
In the rotary catalyst device 28, the secondary catalyst 30 is rotated at a predetermined period by a motor 32, and the exhaust gas heated by the heat exchanger 26 is sent to the flow path A in No. 2B of the same table via the outflow path 27. Inflow. In this flow path A, the exhaust gas flows through -1! ! 30, the odoriferous combustible component (ethyl cellosolve) is oxidized and deodorized. - The catalyst volume of the second catalyst 30 is such that the purification efficiency is 90% or more. -Next catalyst 3018
The temperature of the passing exhaust gas is raised to 443° C. due to the heat of oxidation. The exhaust gas whose flow is then reversed in the reversal space 33 shown in No. 28 of the same table enters the flow path B, and after passing through the second catalyst 30 again, the remaining odorous combustible components in the exhaust gas are roughly oxidized and deodorized. The sample was then treated with a temperature of 488° C. At this time, the ethyl cellosolve concentration was 250 ppm.

この高温排ガスは、復流路29を経由して再び熱交換器
26に送られ、この熱交換器26の放熱流体側の流路を
通過して418℃に降温される。これにより熱交換器2
6中の伝熱エレメントは高温となり、第1の流路22か
ら導入される排ガスを昇温させる熱を得る。
This high-temperature exhaust gas is sent to the heat exchanger 26 again via the return flow path 29, passes through the flow path on the heat radiation fluid side of the heat exchanger 26, and is lowered in temperature to 418°C. As a result, heat exchanger 2
The heat transfer element in 6 becomes high temperature and obtains heat to raise the temperature of the exhaust gas introduced from the first flow path 22.

ところで、回転触媒装置28の流路Aにおいて、−次触
媒30に接触する排ガスの温度は300℃の低温である
ため、−次触媒30はSOxによる一時的な被毒を受け
るが、この被!Iを受けた部分は、モータ32による回
転で流路8側に移動し、418℃の高温の排ガスと接触
するので自己再生し、その浄化性能を回復する。また、
低温の流路Aにおいて一次触媒30に付着したタールミ
ストなども、回転しで流路Bとなるときに高温の排ガス
と接触して気化あるいは燃焼により浄化される。
By the way, in the flow path A of the rotary catalyst device 28, the temperature of the exhaust gas that contacts the secondary catalyst 30 is as low as 300°C, so the secondary catalyst 30 is temporarily poisoned by SOx. The portion that has received I moves toward the flow path 8 side by rotation by the motor 32 and comes into contact with exhaust gas at a high temperature of 418° C., so that it self-regenerates and recovers its purification performance. Also,
Tar mist adhering to the primary catalyst 30 in the low-temperature flow path A also comes into contact with high-temperature exhaust gas as it rotates to become the flow path B, and is purified by vaporization or combustion.

立ち上げ運転時には、熱交換器26中の伝熱エレメント
などの蓄熱のために、排ガス温度が低下するが、この場
合には、昇温補助装置34を作動させ、燃料ガスや高温
ガスを、往流路27を経由して回転触媒装置f28内に
導入する。燃料ガス導入により、排ガス中の有臭可燃性
成分の濃度を高め、−次触媒30での酸化熱を大きくす
ることで一次触媒30の温度が高められ、高温ガス導入
でも直接に一次触媒30の温度か高められ、立ち上げ運
転時間の短縮が図れる。−次触媒30の被毒が苦しく、
自己再生に支障をきたす場合にも、昇温補助装置34を
作動させ、燃料ガスや高温ガスを導入すれば、被毒した
一次触媒30ヲ活性化することができる。
During start-up operation, the exhaust gas temperature decreases due to heat storage in the heat transfer element in the heat exchanger 26, but in this case, the temperature increase auxiliary device 34 is activated to pump the fuel gas and high-temperature gas back and forth. It is introduced into the rotary catalyst device f28 via the flow path 27. By introducing fuel gas, the concentration of odorous flammable components in the exhaust gas is increased, and the heat of oxidation at the secondary catalyst 30 is increased, thereby raising the temperature of the primary catalyst 30. Even when high-temperature gas is introduced, the temperature of the primary catalyst 30 is increased. The temperature can be raised, reducing startup time. -The next catalyst 30 is poisoned,
Even if self-regeneration is hindered, the poisoned primary catalyst 30 can be activated by operating the temperature raising auxiliary device 34 and introducing fuel gas or high temperature gas.

回転触媒装置28の出口部では、シール部からのリーク
も加わって排ガス中のエチルセロソルブ濃度が365p
pmとなっているが、この排ガスは、熱交換器26を経
て第2の流路37を通り、ダンパ38によつ流量調整さ
れ、その内のI 700ONm’ /M)X塗装乾燥炉
21に循環される。また、排ガスの残部、すなわち30
00 Nrr?/hは、第20流路37がら分岐した第
3の流路39を通り、ダンパ40で流量調整されて二次
触媒41でざらに酸化処理される9二次触媒41は浄化
効率が99%以上となるような触媒体積とされており、
処絢前の排ガス中に365ppm含まれでいたエチルセ
ロソルブは4ppmまで減少する。
At the outlet of the rotary catalytic converter 28, the concentration of ethyl cellosolve in the exhaust gas increases to 365p due to leakage from the seal.
pm, but this exhaust gas passes through the heat exchanger 26, the second flow path 37, the flow rate is adjusted by the damper 38, and the I 700ONm' /M) It is circulated. In addition, the remaining part of the exhaust gas, that is, 30
00 Nrr? /h passes through a third flow path 39 branched from the 20th flow path 37, whose flow rate is adjusted by a damper 40, and is roughly oxidized by a secondary catalyst 41.The secondary catalyst 41 has a purification efficiency of 99%. The catalyst volume is said to be above,
Ethyl cellosolve, which was contained in the exhaust gas before treatment at 365 ppm, is reduced to 4 ppm.

したがって、−次触媒30および二次触媒41と合せて
、合計99.8%以上のエチルセロソルブが浄化される
。この場合、二次触媒41ヲ通過する排ガス量は300
0 Nm/hであるため、99%以上の浄化効率を得る
ための触媒体積は比較的少なくてすみ、総しで少ない触
媒体積で可燃性成分を効果的に除去することができる。
Therefore, in combination with the secondary catalyst 30 and the secondary catalyst 41, a total of 99.8% or more of ethyl cellosolve is purified. In this case, the amount of exhaust gas passing through the secondary catalyst 41 is 300
0 Nm/h, the catalyst volume required to obtain a purification efficiency of 99% or more is relatively small, and combustible components can be effectively removed with a small total catalyst volume.

このように浄化された排ガスは、空2予熱器42を通っ
て室温のバーナ予熱空気と熱交換されたのち、煙突43
を通って大気へ放出される。昇温されたバーナ予熱空気
は流路44を通ってバーナ45に導かれ、塗装乾燥炉2
1に再び導入される。
The exhaust gas purified in this way passes through the air 2 preheater 42 and exchanges heat with the burner preheated air at room temperature, and then passes through the chimney 43.
and is released into the atmosphere. The heated burner preheated air is guided to the burner 45 through the flow path 44 and then to the paint drying furnace 2.
1 will be reintroduced.

「発明の効果」 以上説明したように、本発明によれば、塗装乾燥炉から
取出した排ガスを、事前に除塵フィルタに通した後、熱
交換器の伝熱エレメントおよびその後の回転触媒装置に
導入するようにしたので、伝熱エレメントや触媒にダス
トが付着することを防止できる。また、排ガスの酸化脱
臭処理に、加熱ガスと被加熱ガスとが交互に流れる回転
触媒装置を用い、これを熱交換器の受熱流体側の流路と
加熱流体側の流路に接続しているので、回転触媒装置の
一次触媒が、例えばSOxなどによつ被毒を受けても、
高温の排ガスに接触して自己再生することができ、ざら
に、タールミストなどが熱交換器の伝熱エレメントや一
次触媒に付着しでも高温の排ガスにより浄化することが
できる。したがって、触媒の活性を長期間安定に保ち、
ガスの圧力損失などをできるだけ抑え、伝熱性能を良好
に維持しで、長期間安定して排ガスの浄化を行なうこと
ができる。また、第3の流路に二次触媒を設けたことに
より、−次触媒での有臭可燃性成分の除去が元方でなく
でも、あるいは回転触媒装置にリークが主しでも、この
二次触媒により、目的とする値まで有臭可燃性成分を除
去して、系外に排出することができる。
"Effects of the Invention" As explained above, according to the present invention, the exhaust gas taken out from the paint drying oven is passed through a dust removal filter in advance, and then introduced into the heat transfer element of the heat exchanger and the subsequent rotary catalyst device. This makes it possible to prevent dust from adhering to the heat transfer element and the catalyst. In addition, for the oxidation and deodorization treatment of exhaust gas, a rotary catalyst device is used in which heated gas and heated gas alternately flow, and this is connected to the flow path on the heat-receiving fluid side and the flow path on the heated fluid side of the heat exchanger. Therefore, even if the primary catalyst of a rotary catalytic converter is poisoned by, for example, SOx,
It can self-regenerate when it comes into contact with high-temperature exhaust gas, and even if tar mist or the like adheres to the heat transfer element or primary catalyst of the heat exchanger, it can be purified by the high-temperature exhaust gas. Therefore, the activity of the catalyst can be kept stable for a long time,
By suppressing gas pressure loss as much as possible and maintaining good heat transfer performance, exhaust gas can be purified stably over a long period of time. In addition, by providing a secondary catalyst in the third flow path, even if the secondary catalyst does not remove the odoriferous combustible components or if there is a leak mainly in the rotary catalytic converter, the secondary catalyst The catalyst can remove odoriferous and combustible components to a desired level and discharge them out of the system.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による塗装乾燥炉の排ガス処理袋=の一
実施例を示す概略説明図、第2図は従来の塗装乾燥炉の
排ガス処理装置の一例を示す概略説明図である。 図中、211.を塗装乾燥炉、22は第1の流路、25
は除塵フィルタ、26は熱交換器、28は回転触媒装置
、30は一次触媒、34は昇温補助装置、37は第2の
流路、39は第3の流路、41は二次触媒、42は空気
予熱器である。 特許出願人    旭硝子株式会社 同      住友金属工業株式会社 代理人     弁理士 松井 反 問      弁理士 三浦邦夫 同      弁理士 笹山善美 第2図
FIG. 1 is a schematic diagram showing an embodiment of the exhaust gas treatment bag for a paint drying oven according to the present invention, and FIG. 2 is a schematic diagram showing an example of a conventional exhaust gas treatment device for a paint drying oven. In the figure, 211. a coating drying oven, 22 is the first flow path, 25
is a dust removal filter, 26 is a heat exchanger, 28 is a rotary catalyst device, 30 is a primary catalyst, 34 is a temperature raising auxiliary device, 37 is a second flow path, 39 is a third flow path, 41 is a secondary catalyst, 42 is an air preheater. Patent applicant: Asahi Glass Co., Ltd. Agent: Sumitomo Metal Industries, Ltd. Patent attorney: Matsui Counter-question: Patent attorney: Kunio Miura Patent attorney: Yoshimi Sasayama Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)塗装乾燥炉の排ガスを所定量ずつ取出す第1の流
路と、この第1の流路に設けられた除塵フィルタと、前
記第1の流路から導入された排ガスを昇温させる受熱流
体側の流路および可燃性成分が酸化処理された後の排ガ
スを降温させる放熱流体側の流路を備えた熱交換器と、
この熱交換器の受熱流体側の流路から導入された排ガス
の可燃性成分を酸化処理する一次触媒を備えた回転触媒
装置と、この回転触媒装置で酸化処理され前記熱交換器
の放熱流体側の流路を経由した排ガスの一部を前記塗装
乾燥炉に循環させる第2の流路と、この第2の流路から
分岐して前記排ガスの残部を系外に排出する第3の流路
と、この第3の流路の途中に前記排ガスの残部に含まれ
る可燃性成分をさらに酸化処理する二次触媒を備えてい
ることを特徴とする塗装乾燥炉の排ガス処理装置。
(1) A first flow path that takes out a predetermined amount of exhaust gas from the paint drying oven, a dust removal filter provided in this first flow path, and a heat receiver that raises the temperature of the exhaust gas introduced from the first flow path. a heat exchanger including a flow path on the fluid side and a flow path on the heat dissipating fluid side that lowers the temperature of the exhaust gas after oxidizing the combustible components;
A rotary catalyst device including a primary catalyst that oxidizes combustible components of exhaust gas introduced from a flow path on the heat receiving fluid side of the heat exchanger; a second flow path that circulates a part of the exhaust gas that has passed through the flow path to the paint drying furnace; and a third flow path that branches from the second flow path and discharges the remainder of the exhaust gas to the outside of the system. An exhaust gas treatment device for a paint drying furnace, comprising: a secondary catalyst that further oxidizes combustible components contained in the remainder of the exhaust gas in the middle of the third flow path.
(2)特許請求の範囲第1項において、前記熱交換器の
受熱流体側の流路と前記回転触媒装置の間または前記回
転触媒装置内部に、燃料ガスまたは高温ガスを導入する
昇温補助装置か設けられている塗装乾燥炉の排ガス処理
装置。
(2) In claim 1, a temperature-raising auxiliary device that introduces fuel gas or high-temperature gas between the flow path on the heat-receiving fluid side of the heat exchanger and the rotary catalyst device or into the rotary catalyst device. Exhaust gas treatment equipment for paint drying ovens installed.
JP61154886A 1986-07-01 1986-07-01 Exhaust gas treating apparatus for painting dryer furnace Granted JPS6312326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61154886A JPS6312326A (en) 1986-07-01 1986-07-01 Exhaust gas treating apparatus for painting dryer furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61154886A JPS6312326A (en) 1986-07-01 1986-07-01 Exhaust gas treating apparatus for painting dryer furnace

Publications (2)

Publication Number Publication Date
JPS6312326A true JPS6312326A (en) 1988-01-19
JPH0425051B2 JPH0425051B2 (en) 1992-04-28

Family

ID=15594105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61154886A Granted JPS6312326A (en) 1986-07-01 1986-07-01 Exhaust gas treating apparatus for painting dryer furnace

Country Status (1)

Country Link
JP (1) JPS6312326A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122856A (en) * 2004-10-29 2006-05-18 Nippon Muki Co Ltd Filter medium for drying oven, and filter for drying oven using it
US8501126B1 (en) * 2012-05-22 2013-08-06 Proxxent Technologies, LLC Dynamic mandrel catalytic reactor method, apparatus, and system
JP2016036334A (en) * 2014-08-07 2016-03-22 Jfeエンジニアリング株式会社 Supply apparatus and supply method of carbon dioxide-containing gas and heat to facility for crop production

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006122856A (en) * 2004-10-29 2006-05-18 Nippon Muki Co Ltd Filter medium for drying oven, and filter for drying oven using it
US8501126B1 (en) * 2012-05-22 2013-08-06 Proxxent Technologies, LLC Dynamic mandrel catalytic reactor method, apparatus, and system
JP2016036334A (en) * 2014-08-07 2016-03-22 Jfeエンジニアリング株式会社 Supply apparatus and supply method of carbon dioxide-containing gas and heat to facility for crop production
JP2019107007A (en) * 2014-08-07 2019-07-04 Jfeエンジニアリング株式会社 Supply device and method of carbon dioxide containing gas and heat to crop production facility

Also Published As

Publication number Publication date
JPH0425051B2 (en) 1992-04-28

Similar Documents

Publication Publication Date Title
JP5046504B2 (en) System and method for removing material from combustion gases by regeneration selective catalytic reduction
JP3534702B2 (en) Evaporative thermal storage incineration system for organic wastewater
KR100678335B1 (en) Regenerative thermal oxidizer with no switching vlave
US4877592A (en) Method of catalytic cleaning of exhaust gases
JPH10267248A (en) Catalyst type exhaust gas processor
KR100597695B1 (en) A Selective Catalyst And Non-Catalyst Reduction System Using Regenerative Heat Recovery
JPS6312326A (en) Exhaust gas treating apparatus for painting dryer furnace
JP3913934B2 (en) Thermal storage type exhaust gas treatment equipment
US6019597A (en) Process for minimizing condensibles in process streams treated by thermal oxidizers
KR100331034B1 (en) Configuration and operating method of RCO system for waste gas purification
JPH0425049B2 (en)
JPS6312325A (en) Exhaust gas treating apparatus for painting dryer furnace
JPS62266120A (en) Apparatus for treating waste gas of painting drying oven
JP3940832B2 (en) Thermal storage type exhaust gas treatment equipment
JPS62266119A (en) Apparatus for treating waste gas of painting drying oven
JPH1144416A (en) Regenerative exhaust gas processing device, and its operational method
KR200380624Y1 (en) Regenerative thermal oxidizer with no switching vlave
KR102338658B1 (en) Generative thermal oxidizer system installed enhanced purge system for removing remain ordor
JPH10156142A (en) Catalyst purifying device
JP4085298B2 (en) Thermal storage type exhaust gas treatment equipment
JP2003139316A (en) Heat storage type volatile organic compound treatment device and treatment method
KR102023569B1 (en) Thermal storage type volatile organic compound combustion apparatus
JPH0434938Y2 (en)
JPH11253754A (en) Flue exhaust gas treatment device
CN110998186A (en) Regenerative thermal oxidizer system and method of operating regenerative thermal oxidizer system