JP4418886B2 - Exhaust treatment apparatus and exhaust treatment method for suction ventilation type compost manufacturing facility - Google Patents

Exhaust treatment apparatus and exhaust treatment method for suction ventilation type compost manufacturing facility Download PDF

Info

Publication number
JP4418886B2
JP4418886B2 JP2006094900A JP2006094900A JP4418886B2 JP 4418886 B2 JP4418886 B2 JP 4418886B2 JP 2006094900 A JP2006094900 A JP 2006094900A JP 2006094900 A JP2006094900 A JP 2006094900A JP 4418886 B2 JP4418886 B2 JP 4418886B2
Authority
JP
Japan
Prior art keywords
exhaust
compost
suction
gas
chemical solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006094900A
Other languages
Japanese (ja)
Other versions
JP2007269517A (en
Inventor
佳之 阿部
善文 本田
信雄 伊藤
直輝 福重
正規 坪井
富夫 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2006094900A priority Critical patent/JP4418886B2/en
Publication of JP2007269517A publication Critical patent/JP2007269517A/en
Application granted granted Critical
Publication of JP4418886B2 publication Critical patent/JP4418886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/20Sludge processing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Landscapes

  • Treating Waste Gases (AREA)
  • Treatment Of Sludge (AREA)
  • Fertilizers (AREA)

Description

本発明は、堆肥発酵槽内に堆積した堆肥原料内部の通気を堆肥発酵槽からの吸引によって行う吸引通気式堆肥製造施設に装備されるものであって、吸引によって堆肥発酵槽から排出される排気を脱臭処理する過程で、肥料成分の回収を行うと共に排気熱の有効利用を可能にした排気処理装置及びこれを用いた排気処理方法に関するものである。   The present invention is equipped in a suction-ventilated compost manufacturing facility that performs aeration inside a compost raw material deposited in a compost fermenter by suction from the compost fermenter, and is exhausted from the compost fermenter by suction. The present invention relates to an exhaust treatment apparatus that recovers fertilizer components and enables effective use of exhaust heat in the process of deodorizing the gas, and an exhaust treatment method using the exhaust treatment apparatus.

家畜ふん尿等の堆肥原料の堆肥化処理では、堆肥原料内を通気して好気発酵を促す処理が一般に行われている。この好気発酵による堆肥化処理は、発酵に伴う原料の昇温によって殺菌及び雑草種子死滅効果が得られると共に、水分蒸発及び有機物分解による減量・減容効果が得られることから、低コストで衛生的且つハンドリンク性が良好な堆肥を製造することができる。   In composting processing of compost raw materials such as livestock manure, processing for aerobic fermentation by aeration in the compost raw materials is generally performed. This composting process by aerobic fermentation provides sterilization and weed seed killing effects by raising the temperature of the raw materials accompanying fermentation, and also provides weight reduction and volume reduction effects by water evaporation and organic substance decomposition, so it is hygienic at low cost. It is possible to produce compost with good target and hand linkability.

好気発酵を促すためには、堆肥原料の内部を大気に曝すための攪拌や切り返しを行うことが一般になされているが、それ加えて、送風機等を用いて堆肥原料内を積極的に通気する装備を併設した施設が増加している。この際の通気方式としては、送風機等によって加圧空気を堆肥原料内に送り込む圧送通気式と堆肥原料が堆積された発酵槽の底部から吸引ファン等で空気を吸引して堆肥原料内部に上方から下方に向けた通気経路を形成する吸引通気式がある。   In order to promote aerobic fermentation, it is common to perform agitation and turning over to expose the interior of the compost raw material to the atmosphere, but in addition, actively ventilate the compost raw material using a blower or the like. The number of facilities equipped with equipment is increasing. At this time, as a ventilation system, a pressurized air is sent into the compost raw material by a blower or the like, and air is sucked in from the bottom of the fermenter where the compost raw material is deposited with a suction fan or the like from above into the compost raw material. There is a suction ventilation type that forms a ventilation path directed downward.

既存の施設では前者の圧送通気式が主流であるが、これによると、アンモニアを主成分とする大量の臭気が堆肥原料表面から放散されることになるので、悪臭対策のための脱臭装置を装備するのに、空気で希釈された大量の臭気を回収して処理するための大がかりな装置が必要になる。これに対して、前述した吸引通気式では、吸引によって臭気を集約して排気できるので効率的な脱臭が可能になる利点はあるが、高濃度の臭気成分が排気中に含まれるのでそれを処理するために脱臭能力の高い脱臭装置が必要になる。   In the existing facilities, the former pumping ventilation method is the mainstream, but according to this, a large amount of odor mainly composed of ammonia is diffused from the compost raw material surface, so it is equipped with a deodorizing device to prevent malodors In order to do so, a large-scale apparatus for collecting and treating a large amount of odor diluted with air is required. On the other hand, the above-described suction ventilation type has the advantage of enabling efficient deodorization because odors can be collected and exhausted by suction, but since high-concentration odor components are contained in the exhaust, it is processed. Therefore, a deodorizing device having a high deodorizing capacity is required.

下記特許文献1には、吸引通気式の堆肥化処理装置が示されている。これによると、図1に示すように、堆肥原料が堆積された発酵槽J1の底部に吸引管J2を配備し、吸引ファンJ9による吸引によって、上方から堆肥原料内に導入される吸引通気が吸引管J3に引き込まれ、通気管J4,J6,J8によって接続された第1ドレイントラップJ3,アンモニアトラップJ5,第2ドレイントラップJ7を介して吸引ファンJ9の排気口から排気されるようになっている。ここで、第1ドレイントラップJ3及び第2ドレイントラップJ7は、吸引管J2に進入するれき汁や結露水を集水する機能を有し、アンモニアトラップJ5は充填材5a内に吸引通気を通過させることでアンモニア成分を吸着させ、これを固形肥料として回収する機能を有するものである。   Patent Document 1 listed below shows a suction ventilation type composting apparatus. According to this, as shown in FIG. 1, the suction pipe J2 is arranged at the bottom of the fermenter J1 on which the compost raw material is deposited, and the suction vent introduced into the compost raw material from above is sucked by the suction by the suction fan J9. It is drawn into the pipe J3 and exhausted from the exhaust port of the suction fan J9 through the first drain trap J3, ammonia trap J5, and second drain trap J7 connected by the vent pipes J4, J6, J8. . Here, the first drain trap J3 and the second drain trap J7 have a function of collecting sap and condensed water entering the suction pipe J2, and the ammonia trap J5 allows the suction air to pass through the filler 5a. Thus, it has a function of adsorbing the ammonia component and recovering it as a solid fertilizer.

特開2005−35811号公報JP 2005-35811 A

このような従来の吸引通気式堆肥化装置では、おが屑や籾殻といったバイオマスにリン酸を添加した充填材にアンモニア成分を吸収・固化させることで脱臭処理を行っていた。しかしながら、これによって十分な脱臭機能を得るためには、充填材層の通過幅を大きくする必要があり、脱臭装置の大型化と吸引通気抵抗の増大に伴う吸引ファンの出力増大を招く問題があった。   In such a conventional suction-air composting apparatus, deodorizing treatment is performed by absorbing and solidifying an ammonia component in a filler obtained by adding phosphoric acid to biomass such as sawdust and rice husk. However, in order to obtain a sufficient deodorizing function, it is necessary to increase the passage width of the filler layer, and there is a problem in that the output of the suction fan is increased with the increase in the size of the deodorizing device and the increase in the suction ventilation resistance. It was.

また、多量の堆肥原料を処理する際には、充填材を頻繁に交換する必要があり、堆肥化処理完了までの間のメンテナンス性にも問題があった。更には、充填材に吸収・固化されて回収されるアンモニア成分は固形状肥料になるため、その用途が限定されてしまい、汎用性の高い形態で肥料の回収ができない、という問題もあった。   Further, when a large amount of compost raw material is processed, it is necessary to frequently replace the filler, and there is a problem in maintainability until the composting process is completed. Furthermore, since the ammonia component absorbed and solidified by the filler becomes a solid fertilizer, its use is limited, and there is a problem that the fertilizer cannot be recovered in a highly versatile form.

また、吸引通気流量が設定された一定値になっているので、肥料原料の通気性が高い場合や外気温が低い場合には、通気量多加になって肥料原料の温度が低下し、好気発酵の進行が抑制されてしまうという問題もあった。   Also, since the suction ventilation flow rate is a set constant value, if the permeability of the fertilizer raw material is high or the outside air temperature is low, the ventilation rate will increase and the temperature of the fertilizer raw material will decrease, making it aerobic. There was also a problem that the progress of fermentation would be suppressed.

更に、発酵槽からの排気は良好な好気発酵が進行している場合には暖房等に利用可能な熱を有することになるが、これを有効利用しようとしても、好気発酵の進行が抑制されると脱臭装置で除去可能なアンモニア成分以外に、嫌気性発酵で発生する有機酸や硫化水素等のガス成分が排気中に含まれることになるので、室内暖房などに排気熱を直接利用することができないという問題があった。   In addition, when good aerobic fermentation is in progress, the exhaust from the fermenter will have heat that can be used for heating, etc., but even if you try to use it effectively, the progress of aerobic fermentation is suppressed. Then, in addition to the ammonia component that can be removed by the deodorizing device, gas components such as organic acids and hydrogen sulfide generated by anaerobic fermentation are included in the exhaust, so exhaust heat is directly used for indoor heating and the like. There was a problem that I could not.

本発明は、このような問題に対処するためのものであって、吸引通気式の堆肥製造施設における排気処理に際して、多量の堆肥原料を処理する場合にも小型且つ低消費エネルギで十分な脱臭が可能であり、継続処理時のメンテナンス性が良く、アンモニア成分を汎用性のある液肥として回収できること、更には、良好な好気発酵を維持した状態での堆肥化処理を継続させて、排気熱の有効利用を可能にすること、等が本発明の目的である。   The present invention is for coping with such a problem, and when exhaust processing is performed in a suction aeration type compost manufacturing facility, sufficient deodorization can be achieved with small size and low energy consumption even when a large amount of compost raw material is processed. It is possible to maintain and maintain ammonia during continuous treatment, and to recover the ammonia component as a versatile liquid fertilizer.Furthermore, the composting process is continued while maintaining good aerobic fermentation. Enabling the effective use is an object of the present invention.

このような目的を達成するために、本発明は、以下の特徴を具備するものである。   In order to achieve such an object, the present invention has the following features.

一つには、堆肥発酵槽内に堆積した堆肥原料内部の通気を堆肥発酵槽からの吸引によって行う吸引通気式堆肥製造施設に装備される排気処理装置であって、前記堆肥発酵槽に設けられた吸引管から排出される排気の集水処理を行う集水処理部と、前記集水処理部で処理された前記排気からアンモニア成分を回収処理するアンモニア成分回収部と、前記アンモニア成分回収部で回収処理された前記排気が導入される排気熱利用部と、前記吸引管から前記集水処理部,前記アンモニア成分回収部を経由して前記排気熱利用部に至る排気流路と、前記排気流路に配備される吸引手段とを備え、前記アンモニア成分回収部は、前記排気中のアンモニア成分を化学反応によって回収処理する薬液を溜めた気密容器からなり、前記排熱利用部に至る排気流路の端部が前記薬液の液面上部空間に連通する薬液槽と、前記液面上部空間に連通して、前記集水処理部から前記排気流路を介して供給される排気と前記薬液との気液反応を行う気液反応室と、前記薬液を前記薬液槽から前記気液反応室に供給することで薬液の循環を行う薬液循環手段と、前記薬液槽内の薬液を加熱する薬液加熱手段とを備え、前記アンモニア成分回収部より上流側の前記排気流路に排気温度を検出する入気温センサを設けると共に、前記アンモニア成分回収部より下流側の前記排気流路に排気温度を検出する排気温センサを設け、前記排気温センサの検出温度が前記入気温センサの検出温度に近づくように、前記薬液加熱手段を制御すると共に、前記入気温センサの検出温度に基づいて求められる前記堆肥原料の発酵温度が好気発酵進行状態に維持されるように前記吸引手段の出力を制御する制御手段を備えることを特徴とする。   One is an exhaust treatment device installed in a suction-ventilation-type compost manufacturing facility that ventilates the compost raw material deposited in the compost fermenter by suction from the compost fermenter, and is provided in the compost fermenter. A water collection processing unit that performs a water collection process of exhaust gas discharged from the suction pipe, an ammonia component recovery unit that recovers an ammonia component from the exhaust gas processed by the water collection processing unit, and an ammonia component recovery unit. An exhaust heat utilization section into which the exhaust gas that has been recovered is introduced; an exhaust passage from the suction pipe to the exhaust heat utilization section through the water collection treatment section and the ammonia component recovery section; and the exhaust flow A suction means disposed in a path, and the ammonia component recovery unit is an airtight container storing a chemical solution for recovering and processing the ammonia component in the exhaust gas by a chemical reaction, and the exhaust gas flow to the exhaust heat utilization unit Of the chemical liquid tank communicated with the liquid level upper space of the chemical liquid, the exhaust gas supplied from the water collection processing unit via the exhaust flow path, and the chemical liquid A gas-liquid reaction chamber for performing a gas-liquid reaction, a chemical liquid circulating means for circulating the chemical liquid by supplying the chemical liquid from the chemical liquid tank to the gas-liquid reaction chamber, and a chemical liquid heating means for heating the chemical liquid in the chemical liquid tank And an exhaust air temperature sensor that detects an exhaust temperature in the exhaust passage upstream of the ammonia component recovery section, and that detects an exhaust temperature in the exhaust passage downstream of the ammonia component recovery section. An air temperature sensor is provided, and the chemical solution heating means is controlled so that the detected temperature of the exhaust temperature sensor approaches the detected temperature of the incoming air temperature sensor, and the compost raw material obtained based on the detected temperature of the incoming air temperature sensor Fermentation temperature Characterized in that it comprises a control means for controlling the output of said suction means so as to maintain the aerobic fermentation progress.

また一つには、前述した特徴に加えて、前記排気流路内の圧力を検出する圧力センサと前記排気流路内の風量を検出する風量センサを更に備え、前記制御手段は、前記入気温センサの検出温度と前記圧力センサ及び前記風量センサの検出値から前記排気の熱流量を求め、前記堆肥原料の発酵熱量、外気の温湿度、前記堆肥発酵槽からの放熱及び蒸発による潜熱の推定値から熱収支を推定し、前記堆肥原料を所定の発酵温度に維持するために必要な前記吸引手段の出力を算出することを特徴とする。   In addition, in addition to the above-described features, the control unit may further include a pressure sensor that detects a pressure in the exhaust passage and an air amount sensor that detects an air amount in the exhaust passage, Obtain the heat flow of the exhaust from the detected temperature of the sensor and the detected value of the pressure sensor and the air volume sensor, the estimated value of the latent heat due to the heat of fermentation of the compost raw material, the temperature and humidity of the outside air, the heat release from the compost fermenter and evaporation The heat balance is estimated from the above, and the output of the suction means necessary for maintaining the compost raw material at a predetermined fermentation temperature is calculated.

また一つには、前記堆肥発酵槽上部に該堆肥発酵槽内の堆肥原料の切り返し処理を行う切り返し装置を設け、前記制御手段は、前記圧力センサ及び/又は前記風量センサの検出値に基づいて、吸引抵抗の上昇を検知し、前記堆肥原料内部が通気されていないことを推定して、前記切り返し装置を作動させることを制御することを特徴とする。   Moreover, one is provided with a turnover device for turning over the compost raw material in the compost fermenter at the upper part of the compost fermenter, and the control means is based on the detection value of the pressure sensor and / or the air volume sensor. Detecting an increase in suction resistance, estimating that the compost raw material is not ventilated, and controlling the operation of the turning-over device.

また一つには、前述した特徴に加えて、前記薬液槽内の液面水位を検出する水位センサを更に備え、前記制御手段は、前記水位センサの検出値に基づいて、設定水位を超えた場合には前記薬液加熱手段によって前記薬液を加熱し、設定水位より低い場合には前記薬液加熱手段を停止させることを特徴する。   In addition, in addition to the above-described features, the water tank further includes a water level sensor that detects a liquid level in the chemical tank, and the control means exceeds a set water level based on a detection value of the water level sensor. In this case, the chemical solution is heated by the chemical solution heating unit, and when the liquid level is lower than a set water level, the chemical solution heating unit is stopped.

また一つには、前述した特徴に加えて、前記アンモニア成分回収部より下流側の前記排気流路内にガス成分濃度を検出する排気ガス濃度センサを更に備え、前記制御手段は、前記排気ガス濃度センサの検出値に基づいて、前記排気中のアンモニアガス濃度が設定以下になるように前記薬液循環手段の循環量を制御することを特徴とする。   In addition, in addition to the above-described features, the exhaust gas concentration sensor further detects an exhaust gas concentration sensor in the exhaust passage downstream of the ammonia component recovery unit, and the control means includes the exhaust gas Based on the detection value of the concentration sensor, the circulation amount of the chemical solution circulation means is controlled so that the ammonia gas concentration in the exhaust gas is not more than a set value.

また一つには、前述した特徴に加えて、前記堆肥発酵槽上部に該堆肥発酵槽内の堆肥原料の切り返し処理を行う切り返し装置を設け、前記制御手段は、前記排気ガス濃度センサの検出値に基づいて、前記排気中に嫌気発酵によって発生するガス成分が設定値以上検出された場合には、前記切り返し装置を作動させると共に前記吸引手段の出力を制御することを特徴とする。   In addition, in addition to the above-described features, in addition to the above-described features, a reversing device that performs a reversing process of the compost raw material in the compost fermenter is provided at the upper portion of the compost fermenter, and the control means detects a value detected by the exhaust gas concentration sensor On the basis of the above, when a gas component generated by anaerobic fermentation is detected in the exhaust gas above a set value, the switching device is operated and the output of the suction means is controlled.

また一つには、前述した特徴に加えて、前記排気熱利用部は、熱利用室と該熱利用室の下に形成された土壌槽とを備え、前記排気流路の排出端を前記土壌槽の下層に配置し、前記土壌槽を介して前記排出端からの排気を前記熱利用室に導くことを特徴とする。   In addition, in addition to the above-described features, the exhaust heat utilization unit includes a heat utilization chamber and a soil tank formed under the heat utilization chamber, and the discharge end of the exhaust passage is connected to the soil. It arrange | positions in the lower layer of a tank, The exhaust_gas | exhaustion from the said discharge end is guide | induced to the said heat utilization chamber through the said soil tank.

また、堆肥発酵槽内に堆積した堆肥原料内部の通気を堆肥発酵槽からの吸引によって行う吸引通気式堆肥製造施設の排気処理方法であって、前記堆肥発酵槽に設けられた吸引管に接続される排気流路に吸引手段を配備し、該吸引手段の出力に応じた吸引通気を行う吸引通気工程と、前記吸引管から排出される排気の集水処理を行う集水処理工程と、前記集水処理工程で処理された前記排気からアンモニア成分を回収処理するアンモニア成分回収工程と、前記アンモニア成分回収工程で回収処理された前記排気の熱を利用する排気熱利用工程とを有し、前記アンモニア成分回収工程は、前記排気と当該排気中のアンモニア成分を化学反応によって回収処理する薬液との気液反応によってなされ、前記アンモニア成分回収工程前の排気温度を検出すると共に、前記アンモニア成分回収工程後の排気温度を検出し、前記アンモニア成分回収工程後の排気温度を前記アンモニア成分回収工程前の排気温度に近づけるように、前記薬液を加熱する薬液加熱手段を制御すると共に、前記アンモニア成分回収工程前の排気温度に基づいて求められる前記堆肥原料の発酵温度が好気発酵進行状態に維持されるように前記吸引手段の出力を制御することを特徴とする。   Further, it is an exhaust processing method of a suction aeration type compost manufacturing facility in which ventilation inside the compost raw material accumulated in the compost fermenter is performed by suction from the compost fermenter, which is connected to a suction pipe provided in the compost fermenter A suction ventilation process for providing suction ventilation according to the output of the suction means, a water collection treatment process for collecting water discharged from the suction pipe, and An ammonia component recovery step for recovering ammonia component from the exhaust gas treated in the water treatment step; and an exhaust heat utilization step for utilizing heat of the exhaust gas recovered in the ammonia component recovery step. The component recovery step is performed by a gas-liquid reaction between the exhaust gas and a chemical solution that recovers and processes the ammonia component in the exhaust gas through a chemical reaction, and detects the exhaust temperature before the ammonia component recovery step. In addition, the exhaust temperature after the ammonia component recovery step is detected, and the chemical solution heating means for heating the chemical solution is controlled so that the exhaust temperature after the ammonia component recovery step approaches the exhaust temperature before the ammonia component recovery step. In addition, the output of the suction means is controlled so that the fermentation temperature of the compost raw material obtained based on the exhaust temperature before the ammonia component recovery step is maintained in the aerobic fermentation progress state.

また一つには、前述した排気処理方法の特徴に加えて、前記堆肥発酵槽上部に該堆肥発酵槽内の堆肥原料の切り返し処理を行う切り返し装置を設け、前記アンモニア回収工程後の排気流路内のガス成分濃度を検出し、前記ガス成分濃度の検出値に基づいて、前記排気中に嫌気発酵によって発生するガス成分が設定値以上検出された場合には、前記切り返し装置を作動させると共に前記吸引手段の出力を制御することを特徴とする。   In addition, in addition to the above-described features of the exhaust treatment method, a reversing device for performing a reversing process of the compost raw material in the compost fermenter is provided on the upper portion of the compost fermenter, and the exhaust passage after the ammonia recovery step When the gas component generated by anaerobic fermentation in the exhaust gas is detected above a set value based on the detected value of the gas component concentration, the switching device is operated and the The output of the suction means is controlled.

このような特徴によると、吸引通気式の堆肥製造施設における排気処理に際して、多量の堆肥原料を処理する場合にも小型且つ低消費エネルギで十分な脱臭が可能であり、継続処理時のメンテナンス性が良く、アンモニア成分を汎用性のある液肥として回収できる。更には、良好な好気発酵を維持した状態での堆肥化処理を継続させて、排気熱の有効利用が可能になる。   According to such a feature, in the case of exhaust processing at a suction aeration type compost manufacturing facility, even when a large amount of compost raw material is processed, sufficient deodorization is possible with small size and low energy consumption, and maintenance performance during continuous processing is improved. Well, the ammonia component can be recovered as a versatile liquid fertilizer. Furthermore, the composting process can be continued while maintaining good aerobic fermentation, and the exhaust heat can be effectively used.

以下、本発明の実施形態を説明する。図2は、本発明の実施形態に係る吸引通気式堆肥製造施設の排気処理装置を説明する説明図である。   Embodiments of the present invention will be described below. FIG. 2 is an explanatory view for explaining an exhaust treatment device of a suction-air compost manufacturing facility according to an embodiment of the present invention.

吸引通気式堆肥製造施設は、堆肥発酵槽1内の底部に吸引管2を配備し、吸引管2の所定間隔毎に吸引口2Aを形成し、吸引管2を介した吸引通気によって堆肥発酵槽1内に堆積された家畜ふん尿等の堆肥原料M内に上方から下方に至る通気経路を形成するものである。ここに示す実施形態では、堆肥発酵槽1は上方開放の槽であって所定の方向に沿って延設されており、その延設方向に直交する方向に吸引管2が所定間隔で複数本配備され、これらの吸引管2が並列的に連結されて後述する排気流路に接続されている。   The suction aeration type compost manufacturing facility has a suction pipe 2 at the bottom of the compost fermenter 1, a suction port 2 </ b> A is formed at every predetermined interval of the suction pipe 2, and a compost fermenter is provided by suction aeration through the suction pipe 2. An aeration path extending from the upper side to the lower side is formed in the compost raw material M such as livestock manure accumulated in 1. In the embodiment shown here, the compost fermenter 1 is an upwardly open tank and extends along a predetermined direction, and a plurality of suction tubes 2 are arranged at predetermined intervals in a direction orthogonal to the extending direction. These suction pipes 2 are connected in parallel and connected to an exhaust passage which will be described later.

また、堆肥発酵槽1の上部にはクレーン式堆肥切り返し装置9が装備されており、この堆肥切り返し装置9が堆肥発酵槽1の長手方向に沿って移動しながら、堆肥発酵槽1内の堆肥原料Mを切り返し処理して、その堆積位置を移動させるようにしている。   Moreover, the upper part of the compost fermenter 1 is equipped with a crane-type compost reversing device 9, and the compost reversing device 9 moves along the longitudinal direction of the compost fermenter 1 while compost raw material in the compost fermenter 1. M is turned back to move the deposition position.

ここで、吸引口2Aの直径は30cm程度の大口径として、吸引口2A内を木質系チップで充填することで目詰まりしない構造にしている。また、吸引口2Aの間隔を3〜7m2につき1つと分散配置することで、重力で沈降するれき汁が吸引口2Aに集水され難く、れき汁の吸引管2への吸引を大幅に減らしている。また、クレーン式堆肥切り返し装置9を装備して、堆肥原料Mの切り返し処理を自動化することができ、複数に区切られた堆肥発酵槽1の間で堆肥原料Mを移動させながら切り返すバッチ式搬送処理を行うことで、堆肥発酵槽1内の所定の箇所を空にすることができるので、吸引口2Aの詰まり除去処理を簡易に行うことができる。また、バッチ式搬送処理で開放した吸引口2Aを1〜2日間程度乾燥させることで、長期間目詰まり無く継続利用することができる。 Here, the suction port 2A has a large diameter of about 30 cm, and the suction port 2A is filled with a wood chip so as not to be clogged. Also, by dispersing the suction port 2A at a distance of 3 to 7m 2, it is difficult for gravy juice that settles down by gravity to be collected in the suction port 2A, and drastically reduces the suction of the juice into the suction tube 2. ing. In addition, it is equipped with a crane-type compost turning device 9 so that the turning-over processing of the compost raw material M can be automated, and the batch-type transport processing for turning back the compost raw material M while moving it between the compost fermenters 1 divided into a plurality of sections. Since the predetermined location in the compost fermenter 1 can be emptied, the clogging removal process of the suction port 2A can be easily performed. Further, by drying the suction port 2A opened by the batch type conveyance process for about 1 to 2 days, it can be continuously used for a long time without clogging.

ここで説明している堆肥発酵槽1の形態、吸引管2の配置状態、切り返し装置の装備などは、あくまで一例を示すもので、本発明の実施形態としては特にこれに限定されるものではない。   The form of the compost fermenter 1 described here, the arrangement state of the suction pipe 2, the equipment of the turning-back device, etc. are merely examples, and the embodiment of the present invention is not particularly limited thereto. .

そして、本発明の実施形態に係る排気処理装置は、集水処理部3と、アンモニア成分回収部4と、排気熱利用部5と、吸引管2から集水処理部3,アンモニア成分回収部4を経由して排気熱利用部5に至る排気流路6(吸引管2と集水処理部3とを連結する排気流路6A、集水処理部3とアンモニア成分回収部4とを連結する排気流路6B、アンモニア成分回収部4と排気熱利用部5とを連結する排気流路6Cを備えている)と、排気流路6に配備される吸引手段としての送風機7とを備えている。また、アンモニア成分回収部4の作動や送風機7の作動、更には必要に応じて切り返し装置9の作動を制御する制御部10を備えている。   The exhaust treatment apparatus according to the embodiment of the present invention includes a water collection processing unit 3, an ammonia component recovery unit 4, an exhaust heat utilization unit 5, a suction pipe 2 to a water collection processing unit 3, and an ammonia component recovery unit 4. To the exhaust heat utilization section 5 via the exhaust pipe 6 (exhaust flow path 6A connecting the suction pipe 2 and the water collection processing section 3, exhaust for connecting the water collection processing section 3 and the ammonia component recovery section 4 A flow path 6 </ b> B, an exhaust flow path 6 </ b> C connecting the ammonia component recovery unit 4 and the exhaust heat utilization unit 5), and a blower 7 as a suction means provided in the exhaust flow path 6. Moreover, the control part 10 which controls the action | operation of the ammonia component collection | recovery part 4, the action | operation of the air blower 7, and also the operation | movement of the switching device 9 as needed is provided.

ここで、集水処理部3は、排気中の水分が少ない場合には省略することができ、また、集水処理部3に換えて排気中の排塵を除去するフィルタを設けたものであっても良い。また、排気流路6には、排気状態を検出する検出手段8(入気温センサ8A、排気温センサ8B、圧力センサ8C、風量センサ8D、排気ガス濃度センサ8E)が設けられている。   Here, the water collection processing unit 3 can be omitted when the moisture in the exhaust is low, and a filter for removing dust in the exhaust is provided instead of the water collection processing unit 3. May be. The exhaust passage 6 is provided with detection means 8 (an air temperature sensor 8A, an exhaust temperature sensor 8B, a pressure sensor 8C, an air volume sensor 8D, and an exhaust gas concentration sensor 8E) for detecting an exhaust state.

以下に、各部の構成を詳細に説明する。   Below, the structure of each part is demonstrated in detail.

[集水処理部]
集水処理部3は、吸引管2から排出される排気の集水処理を行うもので、吸引管2或いは排気流路6A内で発生する結露水を一次貯留するドレイントラップ30、ドレイントラップ30に溜まった水を集水・貯留するドレインタンク31、ドレインタンク31に貯留された水を堆肥発酵槽1内の堆肥原料表面に散水するドレイン散水装置からなる。
[Water collection processing section]
The water collection processing unit 3 performs a water collection process for the exhaust gas discharged from the suction pipe 2, and is provided in the drain trap 30 and the drain trap 30 for primarily storing condensed water generated in the suction pipe 2 or the exhaust flow path 6 </ b> A. A drain tank 31 that collects and stores the accumulated water, and a drain sprinkler that sprays the water stored in the drain tank 31 onto the compost raw material surface in the compost fermenter 1.

吸引管2の端部に接続された排気流路6Aの下流側端部は気密容器からなるドレイントラップ30の上部空間に連通されて、そのドレイントラップ30の上部空間にはアンモニア成分回収部4に向かう排気流路6Bの上流側端部が連通されている。これによって、吸引管2或いは排気流路6Aで発生した結露水をドレイントラップ30内に溜めることできる。   The downstream end of the exhaust flow path 6A connected to the end of the suction pipe 2 communicates with the upper space of the drain trap 30 formed of an airtight container. The upper space of the drain trap 30 is connected to the ammonia component recovery unit 4. The upstream end of the exhaust flow path 6B is connected. As a result, the dew condensation water generated in the suction pipe 2 or the exhaust passage 6A can be stored in the drain trap 30.

本発明の実施形態では、前述した吸引口2Aの形態によって吸引管2内に堆肥原料Mのれき汁が入り込むのを抑えることができ、また、適量の副資材を堆肥原料Mに混合することでれき汁の発生量を減らすこともできるので、ドレイントラップ30内には少量の結露水のみが溜まることになる。ドレイントラップ30には、満水センサ30Aが設けられ、ドレイントラップ30に溜まった水が満水センサ30Aで所定の水位を超えたら、送水ポンプ30Bが作動して溜まった水をドレインタンク31に搬送する。   In the embodiment of the present invention, the form of the suction port 2A described above can prevent the compost raw material M from entering into the suction pipe 2, and by mixing an appropriate amount of the auxiliary material into the compost raw material M. Since the amount of waste juice generated can be reduced, only a small amount of condensed water is accumulated in the drain trap 30. The drain trap 30 is provided with a full water sensor 30 </ b> A. When the water accumulated in the drain trap 30 exceeds a predetermined water level by the full water sensor 30 </ b> A, the water supply pump 30 </ b> B is activated to convey the accumulated water to the drain tank 31.

れき汁がほとんど混入されていない結露水は透明度の高いアンモニア水であり、堆肥原料Mに掛け戻すことで肥料成分として利用することができる。そこで、ドレインタンク31にも満水センサ31Aを設け、ドレインタンク31内に溜まった水が所定の量に達したら満水センサ31Aがそれを検知して警報を発し、加えてドレインタンク31内の水を送水ポンプ31Bで散水管32に送り込み、散水管32に設けられた散水ノズル32Aから堆肥原料Mの表面に掛け戻すようにしている。散水時には、3方弁34は散水管32に向かう流れのみを許容するように切り換えられている。   Condensed water in which almost no soup is mixed is ammonia water with high transparency, and can be used as a fertilizer component by being applied back to the compost raw material M. Therefore, a full water sensor 31A is also provided in the drain tank 31, and when the water accumulated in the drain tank 31 reaches a predetermined amount, the full water sensor 31A detects it and issues an alarm. In addition, the water in the drain tank 31 is discharged. The water is fed into the water spray pipe 32 by the water feed pump 31B, and is hung back to the surface of the compost raw material M from the water spray nozzle 32A provided in the water spray pipe 32. At the time of watering, the three-way valve 34 is switched to allow only the flow toward the watering pipe 32.

また、3方弁33を切り換えてドレインタンク31内の水を別途設けた排液口(図示省略)へ送ることもできる。これら集水処理部3の動作は、満水センサ30A,31Aの検出によって自動で送水ポンプ30A,30Bを作動させることで自動化することができる。   It is also possible to switch the three-way valve 33 to send water in the drain tank 31 to a separately provided drainage port (not shown). The operation of the water collection processing unit 3 can be automated by automatically operating the water supply pumps 30A and 30B by the detection of the full water sensors 30A and 31A.

吸引管2或いは排気流路6A内で発生した結露水を堆肥原料M上に掛け戻すことで、堆肥への肥料成分の追加と堆肥原料Mが過乾燥したときの水分調整を行うことが可能になるが、集水処理部3の基本機能はドレイントラップ30或いはドレインタンク31による結露水の集水・貯留にあるので、前述した送水ポンプ31B,散水管32,散水ノズル32A等からなるドレイン散水装置は付属的な構成である。   By adding the dew condensation water generated in the suction pipe 2 or the exhaust flow path 6A back onto the compost raw material M, it is possible to add the fertilizer component to the compost and to adjust the moisture when the compost raw material M is overdried. However, since the basic function of the water collection treatment unit 3 is to collect and store the condensed water by the drain trap 30 or the drain tank 31, the drain watering device comprising the water pump 31B, the watering pipe 32, the watering nozzle 32A and the like described above. Is an accessory configuration.

[アンモニア成分回収部]
アンモニア成分回収部4は、集水処理部3で処理された排気からアンモニア成分を回収処理するもので、排気中のアンモニア成分を化学反応によって回収処理する薬液を溜めた気密容器からなる薬液槽40、集水処理部から排気流路6Bを介して供給される排気と薬液との気液反応を行う気液反応室41、薬液を薬液槽40から気液反応室41に供給することで薬液の循環を行う薬液循環手段(循環ポンプ42,循環路43)、薬液槽内の薬液を加熱する薬液加熱手段である薬液ヒータ44を備える。
[Ammonia component recovery unit]
The ammonia component recovery unit 4 recovers the ammonia component from the exhaust gas processed by the water collection processing unit 3, and a chemical solution tank 40 including an airtight container storing a chemical solution for recovering and processing the ammonia component in the exhaust gas through a chemical reaction. The gas-liquid reaction chamber 41 for performing a gas-liquid reaction between the exhaust gas supplied from the water collection processing unit via the exhaust flow path 6B and the chemical solution, and supplying the chemical solution from the chemical solution tank 40 to the gas-liquid reaction chamber 41 A chemical solution circulation means (circulation pump 42, circulation path 43) for performing circulation and a chemical solution heater 44 that is a chemical solution heating means for heating the chemical solution in the chemical solution tank are provided.

薬液槽40内の薬液は、リン酸,硫酸等の酸性溶液であり、気密容器である薬液槽40の液面上部空間40Aに気液反応室41が連通し、この気液反応室41に排気流路6Bの下流側端部が連通している。そして、薬液槽40の底部に接続された循環ポンプ42によって循環路43を介して気液反応室41に薬液が供給され、この供給された薬液と排気流路6Bから供給される排気とが気液反応室41内で反応してアンモニア成分の回収がなされる。この際、3方弁45は循環路43から気液反応室41へ至る流路のみが確保されている。   The chemical solution in the chemical solution tank 40 is an acidic solution such as phosphoric acid or sulfuric acid, and the gas-liquid reaction chamber 41 communicates with the liquid surface upper space 40A of the chemical solution tank 40 that is an airtight container, and the gas-liquid reaction chamber 41 is exhausted. The downstream end of the channel 6B communicates. Then, the chemical liquid is supplied to the gas-liquid reaction chamber 41 through the circulation path 43 by the circulation pump 42 connected to the bottom of the chemical liquid tank 40, and the supplied chemical liquid and the exhaust gas supplied from the exhaust flow path 6B are separated from each other. The ammonia component is recovered by reacting in the liquid reaction chamber 41. At this time, the three-way valve 45 has only a flow path from the circulation path 43 to the gas-liquid reaction chamber 41.

気液反応室41内では、薬液が上方からノズルで微小な液滴として散水され、樹脂製の網を層状に重ねた滞留層内を通過しながら細滴となり減速され、気液反応室41の側方から供給される排気中のアンモニアガスと薬液のリン酸,硫酸等が化学反応して、安定した液肥(リン酸アンモニウム,硫酸アンモニウム等)が生成されて薬液槽40内に回収される。なお、アンモニアガスと酸性溶液の反応は気液反応室41の内部に留まらず、気液反応室41から流下する細滴が排気流と混合・攪拌される液面上部空間40A、及び液面が排気流と細滴で攪乱されて発生する細かい気泡が時間を掛けて浮遊する液面上層においても反応が促進される。   In the gas-liquid reaction chamber 41, the chemical solution is sprinkled as fine droplets from above with a nozzle, and is slowed down as a fine droplet while passing through a staying layer in which resin nets are stacked in layers. The ammonia gas in the exhaust gas supplied from the side and phosphoric acid, sulfuric acid, etc. in the chemical solution chemically react to generate stable liquid fertilizer (ammonium phosphate, ammonium sulfate, etc.) and are collected in the chemical solution tank 40. The reaction between the ammonia gas and the acidic solution does not stay inside the gas-liquid reaction chamber 41, and the liquid level upper space 40A in which the fine droplets flowing down from the gas-liquid reaction chamber 41 are mixed and stirred with the exhaust flow, and the liquid level is The reaction is also promoted in the upper surface of the liquid surface where fine bubbles generated by being disturbed by the exhaust flow and fine droplets float over time.

薬液槽40内に流下した薬液は、再度循環ポンプ42で循環され、薬液(酸性溶液)がアンモニアと反応できる能力を失うまで、循環して使用することができる。また、薬液槽40内の薬液は薬液ヒータ44によって温度制御がなされており、循環路43に設けられた薬液温度センサ46からの出力に応じて設定された基準温度に制御されている。   The chemical solution flowing down into the chemical solution tank 40 is circulated again by the circulation pump 42, and can be circulated and used until the chemical solution (acidic solution) loses its ability to react with ammonia. Further, the temperature of the chemical solution in the chemical solution tank 40 is controlled by a chemical solution heater 44 and controlled to a reference temperature set according to the output from the chemical solution temperature sensor 46 provided in the circulation path 43.

そして、薬液槽40の液面上部空間40Aには、排熱利用部5に至る排気流路6Cの下流側端部が連通しており、アンモニア成分の回収処理がなされた排気が排気流路6Cを介して排熱利用部5に導入されることになる。   The liquid surface upper space 40A of the chemical tank 40 communicates with the downstream end of the exhaust passage 6C reaching the exhaust heat utilization section 5, and the exhaust after the ammonia component recovery processing is performed on the exhaust passage 6C. It will be introduced into the exhaust heat utilization part 5 via.

[制御部]
制御部10は、排気流路6に設けられた検出手段8(入気温センサ8A、排気温センサ8B、圧力センサ8C、風量センサ8D、排気ガス濃度センサ8E)からの検出信号8a,8b,8c,8d,8eと薬液槽40内の薬液水位を検出する水位センサ47の検出信号47a、或いは堆肥発酵槽1周囲の外気温センサ(図示省略)等からの検出信号が必要に応じて選択入力され、その入力に基づいて、送風機7,循環ポンプ42,薬液ヒータ44,切り返し装置9の作動を必要に応じて選択的に制御するものであって、図3に示すように、制御部10に組み込まれる制御プログラムとして、薬液加温制御手段11、吸引力制御手段12、薬液循環制御手段13、切り返し装置作動制御手段14からなるものである。
[Control unit]
The control unit 10 detects detection signals 8a, 8b, and 8c from detection means 8 (an air temperature sensor 8A, an exhaust temperature sensor 8B, a pressure sensor 8C, an air volume sensor 8D, and an exhaust gas concentration sensor 8E) provided in the exhaust passage 6. , 8d, 8e and a detection signal 47a of the water level sensor 47 for detecting the chemical liquid level in the chemical tank 40, or a detection signal from an outside air temperature sensor (not shown) around the compost fermenter 1 is selected and input as necessary. Based on the input, the operation of the blower 7, the circulation pump 42, the chemical heater 44, and the switching device 9 is selectively controlled as necessary, and is incorporated in the control unit 10 as shown in FIG. The control program includes a chemical solution heating control unit 11, a suction force control unit 12, a chemical solution circulation control unit 13, and a switching device operation control unit 14.

ここで、入気温センサ8Aは、アンモニア成分回収部4よりも上流側の排気流路6B内での排気温度を検出するものであり、排気温センサ8Bは、アンモニア成分回収部4より下流側の排気流路6C内での排気温度を検出するものであり、圧力センサ8Cは、排気流路6B内の圧力を検出するものであり、風量センサ8Dは、排気流路6B内の風量を検出するものであり、排気ガス濃度センサ8Eは、アンモニア成分回収部4の下流側の排気流路6C内でのガス成分濃度を検出するものである。   Here, the air temperature sensor 8 </ b> A detects the exhaust temperature in the exhaust flow path 6 </ b> B upstream of the ammonia component recovery unit 4, and the exhaust temperature sensor 8 </ b> B is downstream of the ammonia component recovery unit 4. The exhaust temperature in the exhaust passage 6C is detected, the pressure sensor 8C detects the pressure in the exhaust passage 6B, and the air volume sensor 8D detects the air volume in the exhaust passage 6B. The exhaust gas concentration sensor 8E detects the gas component concentration in the exhaust passage 6C on the downstream side of the ammonia component recovery unit 4.

以下、制御部10による各種制御を個々に説明するが、これらの制御は単独又は全ての組み合わせで複合して制御がなされるものであって、その主要な制御目的は、排気流路6内の排気から回収されるアンモニア成分を有効な液肥として適正に回収すること、及び/又は、排気流路6内の排気からアンモニア成分と他の有害成分を除き、排気自体を活用する排気熱利用部5で有効な熱利用を可能にすることにある。   Hereinafter, various controls by the control unit 10 will be individually described. These controls are performed individually or in combination in all combinations, and the main control purpose thereof is the inside of the exhaust passage 6. Exhaust heat utilization unit 5 that appropriately recovers the ammonia component recovered from the exhaust as an effective liquid fertilizer and / or removes the ammonia component and other harmful components from the exhaust in the exhaust passage 6 and uses the exhaust itself. It is to enable effective heat utilization.

薬液加温制御手段11;
薬液とアンモニアガスの反応後に結晶が生じると、前述した循環ポンプ42による薬液の循環を円滑に行うことができなくなり、排気処理を連続的且つ継続的に行うことができなくなる。結晶が生じないようにするためには、薬液の濃度を低くすればよいが、薬液濃度を低くすると脱臭能力が低下するので、吸引通気式による高濃度のアンモニアガスを含む排気を処理するためには、気液反応室41の大型化或いは循環量の増大が必要になり、小型且つ低消費エネルギでの脱臭装置を得ることができなくなる。また、アンモニア成分回収部4で処理される排気は湿度が飽和状態であるため、薬液槽40内で結露水が溜まることがあり、これによって、回収された液肥のアンモニア成分濃度が低くなる問題が生じる。
Chemical heating control means 11;
If crystals are generated after the reaction between the chemical liquid and ammonia gas, the chemical liquid cannot be circulated smoothly by the circulation pump 42 described above, and the exhaust treatment cannot be performed continuously and continuously. In order to prevent the formation of crystals, the concentration of the chemical solution may be lowered. However, since the deodorizing ability is lowered when the chemical solution concentration is lowered, in order to treat exhaust gas containing high-concentration ammonia gas by the suction aeration type. Requires an increase in the size of the gas-liquid reaction chamber 41 or an increase in the amount of circulation, making it impossible to obtain a deodorizing apparatus with a small size and low energy consumption. Moreover, since the exhaust gas processed by the ammonia component recovery unit 4 is saturated in humidity, dew condensation water may accumulate in the chemical tank 40, which causes a problem that the ammonia component concentration of the recovered liquid fertilizer is lowered. Arise.

これに対処するために、本発明の実施形態では、薬液槽40内に薬液ヒータ44を装備し、入気温センサ8Aと排気温センサ8Bから入排気の温度差を常時検出し、所定の温度差が生じた場合には、薬液ヒータ44を起動させて薬液槽40内での薬液温度を上昇させる。気液反応室41内に供給された排気が加温された薬液の熱を受け取ることで排気温度が上昇することになり、排気温センサ8Bの検出温度が入気温センサ8Aの検出温度に近づくように薬液ヒータ44を制御する。   In order to cope with this, in the embodiment of the present invention, a chemical heater 44 is provided in the chemical tank 40, and the temperature difference between the intake and exhaust is constantly detected from the intake temperature sensor 8A and the exhaust temperature sensor 8B, and a predetermined temperature difference is detected. When this occurs, the chemical heater 44 is activated to increase the chemical temperature in the chemical tank 40. The exhaust gas supplied to the gas-liquid reaction chamber 41 receives the heat of the heated chemical solution, so that the exhaust gas temperature rises, and the detected temperature of the exhaust gas temperature sensor 8B approaches the detected temperature of the air temperature sensor 8A. The chemical heater 44 is controlled.

これによると、薬液が比較的高温に維持されるため、薬液の溶解度が上がって結晶が生じ難くなる。これによって、高濃度の薬液を使用することでき、高温化と高濃度化の相乗効果によって、アンモニアガスと薬液の反応速度が向上し、気液反応室41の小型化が可能になる。また、結晶を生じなくすることで、薬液循環手段の継続動作が可能になり、薬液がアンモニア回収能力を失うまで連続的且つ継続的な処理を行うことができる。更に、薬液槽40内が上流側の排気温度とほぼ同じに制御されるため、結露水が溜まり難くなり、回収される液肥のアンモニア成分濃度が低下するのを防ぐことができる。   According to this, since the chemical solution is maintained at a relatively high temperature, the solubility of the chemical solution is increased and crystals are hardly formed. As a result, a high-concentration chemical solution can be used, and the reaction rate between the ammonia gas and the chemical solution is improved by the synergistic effect of high temperature and high concentration, and the gas-liquid reaction chamber 41 can be downsized. Further, by eliminating the generation of crystals, the chemical solution circulating means can be continuously operated, and continuous and continuous treatment can be performed until the chemical solution loses the ammonia recovery capability. Furthermore, since the inside of the chemical tank 40 is controlled to be substantially the same as the exhaust temperature on the upstream side, it is difficult for dew condensation water to accumulate, and it is possible to prevent the ammonia component concentration of the recovered liquid fertilizer from decreasing.

また、この制御に対して付加的に、水位センサ47によって薬液槽40内の水位を検出し、最適水位より増水傾向であれば薬液ヒータ44で薬液を加温し、最適水位より減水傾向であれば薬液ヒータ44を止めて薬液槽40内での結露水を発生させることで最適水位を維持するようにする。すなわち、制御部10は、水位センサ47の検出値に基づいて、設定水位を超えた場合には薬液ヒータ44によって薬液を加熱し、設定水位より低い場合には薬液ヒータ44を停止させる制御を行う。更に、この水位センサ47で検出される水位が所定の上限を超えたとき或いは下限より下回ったときに警報を発する制御を行うようにしても良い。   In addition to this control, the water level sensor 47 detects the water level in the chemical tank 40. If the water level tends to increase from the optimum water level, the chemical heater 44 heats the chemical solution and tends to decrease from the optimum water level. For example, the chemical water heater 44 is stopped to generate dew condensation water in the chemical tank 40 so that the optimum water level is maintained. That is, based on the detection value of the water level sensor 47, the control unit 10 performs control to heat the chemical solution by the chemical solution heater 44 when the set water level is exceeded and stop the chemical solution heater 44 when it is lower than the set water level. . Furthermore, control may be performed to issue an alarm when the water level detected by the water level sensor 47 exceeds a predetermined upper limit or falls below a lower limit.

吸引力制御手段12;
堆肥原料Mに対する通気性が高すぎる場合或いは外気温が低い場合等は、通気量過多によって堆肥原料Mの温度が低下して発酵が抑制されることがある。また、通気性が低い場合には好気発酵を十分に促すことができない。このように堆肥原料Mに対して適正な好気発酵を継続することができない場合には、吸引管2内に引き込む排気中に嫌気発酵によって発生する有機酸や硫化水素等のガス成分が含まれることになり、この排気を直接利用する排気熱利用部5に悪影響が出る。
Suction force control means 12;
When the air permeability with respect to the compost raw material M is too high, or when the outside air temperature is low, the temperature of the compost raw material M may be lowered due to excessive air flow and the fermentation may be suppressed. In addition, when the air permeability is low, aerobic fermentation cannot be promoted sufficiently. Thus, when proper aerobic fermentation cannot be continued with respect to the compost raw material M, gas components, such as an organic acid and hydrogen sulfide which generate | occur | produce by anaerobic fermentation, are contained in the exhaust_gas | exhaustion drawn in in the suction pipe 2. FIG. As a result, the exhaust heat utilization section 5 that directly uses the exhaust has an adverse effect.

そこで、本発明の実施形態では、入気温センサ8Aの検出温度に基づいて求められる堆肥原料Mの発酵温度が好気発酵進行状態に維持されるように送風機7の出力を制御する。詳しくは、圧力センサ8C,風量センサ8D及び入気温センサ8Aの出力値から吸引している熱流量を求め、堆肥原料Mの発酵熱量、外気の温湿度、発酵槽周面からの放熱及び蒸発による潜熱等の推定値から熱収支を推定し、堆肥原料を所定の発酵温度に維持するための送風機7の送風量を計算している。   Therefore, in the embodiment of the present invention, the output of the blower 7 is controlled so that the fermentation temperature of the compost raw material M obtained based on the temperature detected by the air temperature sensor 8A is maintained in the aerobic fermentation progress state. Specifically, the heat flow sucked from the output values of the pressure sensor 8C, the air volume sensor 8D and the air temperature sensor 8A is obtained, and the amount of fermentation heat of the compost raw material M, the temperature and humidity of the outside air, the heat radiation from the peripheral surface of the fermentation tank, and evaporation. The heat balance is estimated from an estimated value such as latent heat, and the amount of air blown by the blower 7 for maintaining the compost raw material at a predetermined fermentation temperature is calculated.

これによると、発酵促進によって堆肥製造の生産性が向上すると共に、排気中に嫌気発酵によって発生する有機酸や硫化水素等のガス成分が含まれることがないので、排気熱利用部5で効率的に排気の熱を活用することができる。   According to this, productivity of compost production is improved by promoting fermentation, and gas components such as organic acids and hydrogen sulfide generated by anaerobic fermentation are not included in the exhaust gas. The heat of the exhaust can be utilized.

薬液循環制御手段13;
更に、アンモニア成分回収部4の下流側の排気流路6C内に排気ガス濃度センサ8Eを備えており、これによって検出される排気中のアンモニアガス濃度に基づいて、アンモニア成分回収部4の回収能力を制御する。すなわち、排気ガス濃度センサ8Eの検出値に基づいて、排気中のアンモニア濃度が設定以下になるように循環ポンプ42の循環量を制御する。
Chemical solution circulation control means 13;
Further, an exhaust gas concentration sensor 8E is provided in the exhaust flow path 6C on the downstream side of the ammonia component recovery unit 4, and the recovery capability of the ammonia component recovery unit 4 based on the ammonia gas concentration in the exhaust gas detected thereby. To control. That is, based on the detection value of the exhaust gas concentration sensor 8E, the circulation amount of the circulation pump 42 is controlled so that the ammonia concentration in the exhaust gas is equal to or less than the set value.

また、循環量の制御によっても排気中のアンモニア濃度が低下しない場合には、薬液のアンモニア成分回収能力が低下したと判断できるので、循環ポンプ42による循環量の増大制御後にアンモニア濃度の低下が生じないことを検知して、薬液を交換する時期を推測・通報する破知検知を行うようにしてもよい。   Further, if the ammonia concentration in the exhaust gas does not decrease even when the circulation amount is controlled, it can be determined that the ammonia component recovery capability of the chemical solution has decreased. Therefore, the ammonia concentration decreases after the circulation amount increase control by the circulation pump 42 occurs. It is also possible to detect that there is no detection and to perform a detection of detection of informing / notifying when to replace the chemical.

切り返し装置作動制御手段14;
更に、アンモニア成分回収部4の下流側の排気流路6C内に設けられた排気ガス濃度センサ8Eによって検出される排気中の嫌気発酵によって発生するガス成分濃度に基づいて、切り返し装置9の作動を制御する。これによって、嫌気発酵によって発生するガス成分濃度が所定量検出された場合に、堆肥原料Mを積極的に切り返すことで好気発酵を良好に促す。併せて、送風機7の出力も制御して、適正な好気発酵の維持を図る。
Switching device operation control means 14;
Further, based on the gas component concentration generated by the anaerobic fermentation in the exhaust gas detected by the exhaust gas concentration sensor 8E provided in the exhaust gas flow path 6C on the downstream side of the ammonia component recovery unit 4, the operation of the switching device 9 is performed. Control. Thereby, when a predetermined amount of gas component concentration generated by anaerobic fermentation is detected, aerobic fermentation is favorably promoted by actively turning back the compost raw material M. In addition, the output of the blower 7 is also controlled to maintain proper aerobic fermentation.

また、圧力センサ8C及び/又は風量センサ8Dの検出値に基づいて、吸引抵抗の上昇を検知し、堆肥原料M内部が通気されていないことを推定して、切り返し装置9を作動させるようにすることもできる。これによると、嫌気発酵によって発生する有機酸や硫化水素等のガスの発生を未然に防止することができる。   Moreover, based on the detected value of the pressure sensor 8C and / or the air volume sensor 8D, an increase in the suction resistance is detected, and it is estimated that the inside of the compost raw material M is not ventilated, and the switching device 9 is operated. You can also According to this, generation | occurrence | production of gas, such as an organic acid and hydrogen sulfide which generate | occur | produces by anaerobic fermentation, can be prevented beforehand.

[排気熱利用部]
排気熱利用部5は、基本的には排気流路6Cから排出される排気自体を利用することで効率的な排熱利用ができるものであればどのような形態であってもよい。図4は、排気熱利用部5の一例を示したものである。ここでは、熱利用室50とこの熱利用室50の下に形成された土壌槽51とを備え、排気流路6Cの排出端を土壌槽51の下層に配置し、土壌槽51を介して排出端からの排気を熱利用室50に導くようにしている。この土壌槽51は、排気中に含まれる微量の臭気を脱臭するためのものである。
[Exhaust heat utilization part]
The exhaust heat utilization unit 5 may basically have any form as long as the exhaust heat can be efficiently utilized by utilizing the exhaust itself discharged from the exhaust passage 6C. FIG. 4 shows an example of the exhaust heat utilization unit 5. Here, a heat utilization chamber 50 and a soil tank 51 formed under the heat utilization chamber 50 are provided, and the discharge end of the exhaust passage 6C is arranged in the lower layer of the soil tank 51 and discharged through the soil tank 51. The exhaust from the end is guided to the heat utilization chamber 50. This soil tank 51 is for deodorizing a trace amount of odor contained in the exhaust gas.

また、付属的な設備として、排気の一部を分岐して廃棄するためのダンパ52、排気の熱を外気の空気に与える熱交換器53、熱交換器53を通して外気を熱利用室50内に導入する送風機54等を備えるものであってもよい。   Further, as ancillary equipment, a damper 52 for branching and discarding a part of the exhaust, a heat exchanger 53 for giving heat of the exhaust to the outside air, and the outside air through the heat exchanger 53 into the heat utilization chamber 50 You may provide the air blower 54 grade | etc., To introduce.

本発明の実施形態では、吸引通気によって堆肥原料M内を通過する加熱された排気をすべて捕集しており、また、臭気の主成分であるアンモニアガスをアンモニア成分回収部4でほぼ全量回収しながら、排気温度が低下しないように薬液ヒータ44による加温制御を行っているので、臭気がほとんどない高温の飽和水蒸気によって大きな熱量が得られる利点がある。   In the embodiment of the present invention, all the heated exhaust gas passing through the compost raw material M is collected by suction ventilation, and the ammonia component, which is the main component of the odor, is collected almost entirely by the ammonia component recovery unit 4. However, since the heating control by the chemical heater 44 is performed so that the exhaust temperature does not decrease, there is an advantage that a large amount of heat can be obtained by the high-temperature saturated steam with almost no odor.

この実施形態での熱利用室50は、冬期は施設園芸の温室として利用し、夏期は製品堆肥や堆肥原料Mの通気性確保に用いられる副資材の乾燥、或いは牧草の乾燥等に利用することができる。このためには、ダンパ52からの廃棄流量と送風機54による送風量或いは熱交換器53での熱交換率を適宜制御して、送風機54からの乾燥温風及び排気流路6Cからの湿潤温風の流量比を制御することで、熱利用室50内の温湿度を制御する。なお、乾燥温風のみが必要な場合には、排気流路6Cの排出端を土壌槽51の外に向けて、湿潤温風を全て熱利用室50外に直接放出する。また、熱利用室50内の温度が不足する場合には、別途ヒータ等で加熱しても良い。   The heat utilization room 50 in this embodiment is used as a greenhouse for facility horticulture in the winter season, and is used for drying auxiliary materials used for ensuring the air permeability of the product compost and compost raw material M in the summer season or drying grass. Can do. For this purpose, the waste flow rate from the damper 52 and the amount of air blown by the blower 54 or the heat exchange rate in the heat exchanger 53 are appropriately controlled so that the dry hot air from the blower 54 and the wet hot air from the exhaust passage 6C. By controlling the flow rate ratio, the temperature and humidity in the heat utilization chamber 50 are controlled. When only dry hot air is required, the exhaust end of the exhaust passage 6C is directed to the outside of the soil tank 51, and all the wet hot air is directly discharged out of the heat utilization chamber 50. Moreover, when the temperature in the heat utilization chamber 50 is insufficient, it may be heated separately by a heater or the like.

[排気処理方法]
このような構成の排気処理装置を用いた処理方法は、堆肥発酵槽1に設けられた吸引管2に接続される排気流路6に吸引手段となる送風機7を配備し、この送風機7の出力に応じた吸引通気を行う吸引通気工程、吸引管2から排出される排気の集水処理を集水処理部3で行う集水処理工程、アンモニア成分回収部4において、集水処理工程で処理された排気からアンモニア成分を回収処理するアンモニア成分回収工程、アンモニア成分回収工程で回収処理され、アンモニア成分が除去された排気の熱を利用する排気熱利用工程を有する。
[Exhaust treatment method]
In the treatment method using the exhaust treatment apparatus having such a configuration, a blower 7 serving as a suction means is provided in the exhaust passage 6 connected to the suction pipe 2 provided in the compost fermenter 1, and the output of the blower 7 is provided. Processed in the water collection treatment process in the water collection treatment process in which the water collection treatment unit 3 performs the water collection treatment of the exhaust gas discharged from the suction pipe 2, and the ammonia component recovery unit 4. An ammonia component recovery step for recovering the ammonia component from the exhaust gas, and an exhaust heat utilization step for using the heat of the exhaust gas that has been recovered and processed in the ammonia component recovery step and from which the ammonia component has been removed.

吸引通気工程では、送風機7の吸引力によって、堆肥発酵槽1内の堆肥原料M上方から空気を堆肥原料M内部に引き込み、堆肥原料M内部を通過した臭気成分を含む排気が吸引口2Aから吸引管2内に引き込まれる。   In the suction ventilation process, air is drawn into the compost raw material M from above the compost raw material M in the compost fermenter 1 by the suction force of the blower 7, and the exhaust gas containing the odor component passing through the compost raw material M is sucked from the suction port 2A. It is drawn into the tube 2.

そして、制御部10によって、送風機7の吸引力はアンモニア成分回収工程前の排気温度に基づいて求められる堆肥原料Mの発酵温度が好気発酵進行状態に維持されるように制御されるので、堆肥原料Mは好気発酵に適した状態で適正な吸引通気がなされる。   And since the suction | attraction force of the air blower 7 is controlled by the control part 10 so that the fermentation temperature of the compost raw material M calculated | required based on the exhaust gas temperature before an ammonia component collection | recovery process is maintained in an aerobic fermentation progress state, compost The raw material M is properly aspirated and aerated in a state suitable for aerobic fermentation.

また、堆肥原料Mに対しては、所定の時間間隔でのバッチ処理で切り返し装置9による切り返し処理がなされるので、堆肥原料M内部をムラ無く吸引通気することができる。更には、この切り返し装置9の作動も制御部10によって制御されるので、排気中に嫌気発酵によって発生する有機酸や硫化水素等のガス成分が含まれることがない。   In addition, since the composting material M is turned back by the turning-back device 9 by batch processing at predetermined time intervals, the inside of the composting material M can be sucked and vented without unevenness. Furthermore, since the operation of the switching device 9 is also controlled by the control unit 10, gas components such as organic acid and hydrogen sulfide generated by anaerobic fermentation are not included in the exhaust gas.

集水処理工程では、吸引管2内に引き込まれた排気が排気流路6Aを介してドレイントラップ30の上部空間に導かれ、その間に発生する結露水がドレイントラップ30内に溜められる。ドレイントラップ30が満水状態になると、満水センサ30Aがこれを検出して送水ポンプ30Bを作動させ、ドレイントラップ30内に溜められた水がドレインタンク31内に送られる。更にドレインタンク31が満水状態になると、満水センサ31Aがこれを検出して送水ポンプ31Bを作動させ、散水管32を介して散水ノズル32Aから溜められた水を堆肥原料M上に散水する。結露水が多量に溜まった場合は、3方弁33を切り換えてドレインタンク31内の水を別途設けた排液口に放出する。   In the water collection process, the exhaust gas drawn into the suction pipe 2 is guided to the upper space of the drain trap 30 through the exhaust passage 6A, and dew condensation water generated in the meantime is accumulated in the drain trap 30. When the drain trap 30 becomes full, the full sensor 30A detects this and activates the water pump 30B, and the water stored in the drain trap 30 is sent into the drain tank 31. Further, when the drain tank 31 becomes full, the full water sensor 31A detects this and activates the water pump 31B, and water accumulated from the water nozzle 32A is sprinkled on the compost raw material M via the water pipe 32. When a large amount of condensed water accumulates, the three-way valve 33 is switched to discharge the water in the drain tank 31 to a separately provided drainage port.

アンモニア成分回収工程では、排気流路6Bを介してドレイントラップ30を通過した排気を気液反応室41に導き、薬液槽40内の薬液を気液反応室41に循環供給することで、排気中のアンモニア成分と薬液の酸性成分とを化学反応させ安定した液肥を生成し、これを薬液槽40内に回収する。   In the ammonia component recovery step, the exhaust gas that has passed through the drain trap 30 via the exhaust passage 6B is guided to the gas-liquid reaction chamber 41, and the chemical liquid in the chemical liquid tank 40 is circulated and supplied to the gas-liquid reaction chamber 41, thereby The ammonia component and the acidic component of the chemical solution are chemically reacted to generate a stable liquid fertilizer, which is collected in the chemical solution tank 40.

この際、制御部10によって薬液ヒータ44が制御されるので、薬液槽40内の薬液は適温に加温され、薬液槽40内に結晶が生じることがない。また、加温された薬液が排気と接するので、排気の温度を低下させることもない。更には、制御部10によって循環ポンプ42が制御されるので、排気に対して適量の薬液供給がなされ、排気中の高濃度アンモニア成分をほぼ完全に回収することができる。また、制御部10によって薬液槽40内の水位が最適水位に制御されるので、薬液槽40内に適正濃度の良質な液肥を回収することができる。   At this time, since the chemical solution heater 44 is controlled by the control unit 10, the chemical solution in the chemical solution tank 40 is heated to an appropriate temperature, and crystals are not generated in the chemical solution tank 40. Further, since the heated chemical liquid is in contact with the exhaust, the temperature of the exhaust is not lowered. Furthermore, since the circulation pump 42 is controlled by the control unit 10, an appropriate amount of chemical solution is supplied to the exhaust, and the high-concentration ammonia component in the exhaust can be almost completely recovered. Moreover, since the water level in the chemical tank 40 is controlled to the optimum water level by the control unit 10, high-quality liquid fertilizer with an appropriate concentration can be collected in the chemical tank 40.

そして、排気熱利用工程では、有害成分が無く、ほぼ完全にアンモニア成分が除去された高温・高湿の排気が得られるので、この排気を直接室内暖房などに利用することで、効率的な排熱利用を実現することができる。   In the exhaust heat utilization process, high-temperature and high-humidity exhaust from which ammonia components are almost completely removed without any harmful components can be obtained. By using this exhaust directly for indoor heating, efficient exhaust is achieved. Heat utilization can be realized.

このような実施形態によると、吸引通気式の堆肥製造施設における排気処理に際して、多量の堆肥原料を処理する場合にも小型且つ低消費エネルギで十分な脱臭が可能であり、継続処理時のメンテナンス性が良く、アンモニア成分を汎用性のある液肥として回収できる。更には、良好な好気発酵を維持した状態での堆肥化処理を継続させながら、排気熱を有効利用することができる。   According to such an embodiment, in the case of exhaust processing at a suction aeration type compost manufacturing facility, even when a large amount of compost raw material is processed, sufficient deodorization is possible with small size and low energy consumption, and maintainability during continuous processing. The ammonia component can be recovered as a versatile liquid fertilizer. Furthermore, exhaust heat can be effectively used while continuing composting in a state where good aerobic fermentation is maintained.

これによると、従来の堆肥化製造施設が臭気と排熱を周辺環境に拡散していたのに対して、良質の液肥と熱を回収することができることになり、環境保全に加えて資源とエネルギを有効利用できる堆肥化技術を確立することができる。   According to this, while conventional composting facilities diffuse odors and exhaust heat to the surrounding environment, it is possible to recover high-quality liquid fertilizer and heat, in addition to environmental conservation, resources and energy. It is possible to establish composting technology that can be used effectively.

従来技術の説明図である。It is explanatory drawing of a prior art. 本発明の実施形態に係る吸引通気式堆肥製造施設の排気処理装置を説明する説明図である。It is explanatory drawing explaining the exhaust-gas treatment apparatus of the suction ventilation type compost manufacturing facility which concerns on embodiment of this invention. 本発明の実施形態における制御部を説明する説明図である。It is explanatory drawing explaining the control part in embodiment of this invention. 本発明の実施形態における排気熱利用部の一例を説明する説明図である。It is explanatory drawing explaining an example of the exhaust-heat utilization part in embodiment of this invention.

符号の説明Explanation of symbols

1 堆肥発酵槽
2 吸引管
2A 吸引口
3 集水処理部
30 ドレイントラップ
31 ドレインタンク
30A,31A 満水センサ
30B,31A 送水ポンプ
32 散水管
32A 散水ノズル
33,34 3方弁
4 アンモニア成分回収部
40 薬液槽
41 気液反応室
42 循環ポンプ(薬液循環手段)
43 循環路(薬液循環手段)
44 薬液ヒータ(薬液加熱手段)
45 3方弁
46 薬液温度センサ
47 水位センサ
5 排気熱利用部
50 熱利用室
51 土壌槽
52 ダンパ
53 熱交換器
54 送風機
6,6A,6B,6C 排気流路
7 送風機(吸引手段)
8 検出手段
8A 入気温センサ
8B 排気温センサ
8C 圧力センサ
8D 風量センサ
8E 排気ガス濃度センサ
9 切り返し装置
10 制御部(制御手段)
DESCRIPTION OF SYMBOLS 1 Compost fermenter 2 Suction pipe 2A Suction port 3 Water collection processing part 30 Drain trap 31 Drain tank 30A, 31A Full sensor 30B, 31A Water pump 32 Sprinkling pipe 32A Sprinkling nozzle 33, 34 3-way valve 4 Ammonia component recovery part 40 Chemical solution Tank 41 Gas-liquid reaction chamber 42 Circulation pump (chemical solution circulation means)
43 Circulation path (chemical solution circulation means)
44 Chemical heater (chemical heating means)
45 Three-way valve 46 Chemical temperature sensor 47 Water level sensor 5 Exhaust heat utilization part 50 Heat utilization chamber 51 Soil tank 52 Damper 53 Heat exchanger 54 Blower 6, 6, A, 6B, 6C Exhaust flow path 7 Blower (suction means)
DESCRIPTION OF SYMBOLS 8 Detection means 8A Air temperature sensor 8B Exhaust temperature sensor 8C Pressure sensor 8D Air flow sensor 8E Exhaust gas concentration sensor 9 Switch device 10 Control part (control means)

Claims (9)

堆肥発酵槽内に堆積した堆肥原料内部の通気を堆肥発酵槽からの吸引によって行う吸引通気式堆肥製造施設に装備される排気処理装置であって、
前記堆肥発酵槽に設けられた吸引管から排出される排気の集水処理を行う集水処理部と、
前記集水処理部で処理された前記排気からアンモニア成分を回収処理するアンモニア成分回収部と、
前記アンモニア成分回収部で回収処理された前記排気が導入される排気熱利用部と、
前記吸引管から前記集水処理部,前記アンモニア成分回収部を経由して前記排気熱利用部に至る排気流路と、
前記排気流路に配備される吸引手段とを備え、
前記アンモニア成分回収部は、
前記排気中のアンモニア成分を化学反応によって回収処理する薬液を溜めた気密容器からなり、前記排熱利用部に至る排気流路の端部が前記薬液の液面上部空間に連通する薬液槽と、
前記液面上部空間に連通して、前記集水処理部から前記排気流路を介して供給される排気と前記薬液との気液反応を行う気液反応室と、
前記薬液を前記薬液槽から前記気液反応室に供給することで薬液の循環を行う薬液循環手段と、
前記薬液槽内の薬液を加熱する薬液加熱手段とを備え、
前記アンモニア成分回収部より上流側の前記排気流路に排気温度を検出する入気温センサを設けると共に、前記アンモニア成分回収部より下流側の前記排気流路に排気温度を検出する排気温センサを設け、
前記排気温センサの検出温度が前記入気温センサの検出温度に近づくように、前記薬液加熱手段を制御すると共に、前記入気温センサの検出温度に基づいて求められる前記堆肥原料の発酵温度が好気発酵進行状態に維持されるように前記吸引手段の出力を制御する制御手段を備えることを特徴とする吸引通気式堆肥製造施設の排気処理装置。
An exhaust treatment device equipped in a suction-air-type compost production facility that performs ventilation inside a compost raw material by suction from the compost fermenter,
A water collection treatment unit for collecting water discharged from a suction pipe provided in the compost fermenter;
An ammonia component recovery unit that recovers an ammonia component from the exhaust gas processed by the water collection processing unit;
An exhaust heat utilization part into which the exhaust gas recovered by the ammonia component recovery part is introduced;
An exhaust passage from the suction pipe to the exhaust heat utilization section via the water collection processing section and the ammonia component recovery section;
A suction means disposed in the exhaust flow path,
The ammonia component recovery unit is
A chemical solution tank comprising an airtight container storing a chemical solution for recovering and processing the ammonia component in the exhaust gas by a chemical reaction, and an end portion of an exhaust flow path leading to the exhaust heat utilization unit communicating with the liquid surface upper space of the chemical solution;
A gas-liquid reaction chamber communicating with the upper surface of the liquid level and performing a gas-liquid reaction between the exhaust gas supplied from the water collection processing unit via the exhaust flow path and the chemical liquid;
A chemical solution circulating means for circulating the chemical solution by supplying the chemical solution from the chemical solution tank to the gas-liquid reaction chamber;
A chemical heating means for heating the chemical in the chemical tank,
An intake air temperature sensor for detecting the exhaust temperature is provided in the exhaust passage upstream of the ammonia component recovery section, and an exhaust temperature sensor for detecting the exhaust temperature is provided in the exhaust passage downstream of the ammonia component recovery section. ,
The chemical solution heating means is controlled so that the temperature detected by the exhaust temperature sensor approaches the temperature detected by the air temperature sensor, and the fermentation temperature of the compost material obtained based on the temperature detected by the air temperature sensor is aerobic. An exhaust treatment apparatus for a suction aeration-type compost production facility, comprising control means for controlling the output of the suction means so as to be maintained in a fermentation progress state.
前記排気流路内の圧力を検出する圧力センサと前記排気流路内の風量を検出する風量センサを更に備え、
前記制御手段は、前記入気温センサの検出温度と前記圧力センサ及び前記風量センサの検出値から前記排気の熱流量を求め、前記堆肥原料の発酵熱量、外気の温湿度、前記堆肥発酵槽からの放熱及び蒸発による潜熱の推定値から熱収支を推定し、前記堆肥原料を所定の発酵温度に維持するために必要な前記吸引手段の出力を算出することを特徴とする請求項1に記載された吸引通気式堆肥製造施設の排気処理装置。
A pressure sensor for detecting the pressure in the exhaust passage and an air volume sensor for detecting the amount of air in the exhaust passage;
The control means obtains the heat flow rate of the exhaust gas from the detection temperature of the air temperature sensor and the detection values of the pressure sensor and the air flow sensor, and the fermentation heat amount of the compost raw material, the temperature and humidity of the outside air, from the compost fermenter The heat balance is estimated from an estimated value of latent heat due to heat dissipation and evaporation, and the output of the suction means necessary for maintaining the compost raw material at a predetermined fermentation temperature is calculated. Exhaust treatment equipment for suction ventilation type compost manufacturing facility.
前記堆肥発酵槽上部に該堆肥発酵槽内の堆肥原料の切り返し処理を行う切り返し装置を設け、
前記制御手段は、前記圧力センサ及び/又は前記風量センサの検出値に基づいて、吸引抵抗の上昇を検知し、前記堆肥原料内部が通気されていないことを推定して、前記切り返し装置を作動させることを制御することを特徴とする請求項2に記載された吸引通気式堆肥製造施設の排気処理装置。
Provided with a turn-back device for turning over the compost raw material in the compost fermenter at the top of the compost fermenter,
The control means detects an increase in suction resistance based on a detection value of the pressure sensor and / or the air flow sensor, estimates that the compost raw material is not ventilated, and operates the switching device. It controls this, The exhaust-air-treatment apparatus of the suction ventilation type compost manufacturing facility described in Claim 2 characterized by the above-mentioned.
前記薬液槽内の液面水位を検出する水位センサを更に備え、
前記制御手段は、前記水位センサの検出値に基づいて、設定水位を超えた場合には前記薬液加熱手段によって前記薬液を加熱し、設定水位より低い場合には前記薬液加熱手段を停止させることを特徴する請求項1〜3のいずれかに記載された吸引通気式堆肥製造施設の排気処理装置。
A water level sensor for detecting a liquid level in the chemical tank,
The control unit heats the chemical solution by the chemical solution heating unit when the set water level is exceeded based on the detection value of the water level sensor, and stops the chemical solution heating unit when the set level is lower than the set water level. The exhaust-air treatment apparatus of the suction ventilation type compost manufacturing facility according to any one of claims 1 to 3.
前記アンモニア成分回収部より下流側の前記排気流路内にガス成分濃度を検出する排気ガス濃度センサを更に備え、
前記制御手段は、前記排気ガス濃度センサの検出値に基づいて、前記排気中のアンモニアガス濃度が設定以下になるように前記薬液循環手段の循環量を制御することを特徴とする請求項1〜4のいずれかに記載された吸引通気式堆肥製造施設の排気処理装置。
An exhaust gas concentration sensor for detecting a gas component concentration in the exhaust flow path downstream of the ammonia component recovery unit;
The control means controls the circulation amount of the chemical liquid circulation means based on a detection value of the exhaust gas concentration sensor so that an ammonia gas concentration in the exhaust gas is not more than a set value. 4. An exhaust treatment device for a suction-air compost manufacturing facility according to any one of 4 above.
前記堆肥発酵槽上部に該堆肥発酵槽内の堆肥原料の切り返し処理を行う切り返し装置を設け、
前記制御手段は、前記排気ガス濃度センサの検出値に基づいて、前記排気中に嫌気発酵によって発生するガス成分が設定値以上検出された場合には、前記切り返し装置を作動させると共に前記吸引手段の出力を制御することを特徴とする請求項5に記載された吸引通気式堆肥製造施設の排気処理装置。
Provided with a turn-back device for turning over the compost raw material in the compost fermenter at the top of the compost fermenter,
When the gas component generated by anaerobic fermentation in the exhaust gas is detected more than a set value based on the detection value of the exhaust gas concentration sensor, the control means operates the switching device and controls the suction means. 6. The exhaust treatment apparatus of a suction aeration type compost manufacturing facility according to claim 5, wherein the output is controlled.
前記排気熱利用部は、熱利用室と該熱利用室の下に形成された土壌槽とを備え、前記排気流路の排出端を前記土壌槽の下層に配置し、前記土壌槽を介して前記排出端からの排気を前記熱利用室に導くことを特徴とする請求項1〜6のいずれかに記載された吸引通気式堆肥製造施設の排気処理装置。   The exhaust heat utilization unit includes a heat utilization chamber and a soil tank formed below the heat utilization chamber, and the discharge end of the exhaust passage is disposed in a lower layer of the soil tank, The exhaust treatment apparatus for a suction-ventilated compost manufacturing facility according to any one of claims 1 to 6, wherein exhaust from the discharge end is guided to the heat utilization chamber. 堆肥発酵槽内に堆積した堆肥原料内部の通気を堆肥発酵槽からの吸引によって行う吸引通気式堆肥製造施設の排気処理方法であって、
前記堆肥発酵槽に設けられた吸引管に接続される排気流路に吸引手段を配備し、該吸引手段の出力に応じた吸引通気を行う吸引通気工程と、
前記吸引管から排出される排気の集水処理を行う集水処理工程と、
前記集水処理工程で処理された前記排気からアンモニア成分を回収処理するアンモニア成分回収工程と、
前記アンモニア成分回収工程で回収処理された前記排気の熱を利用する排気熱利用工程とを有し、
前記アンモニア成分回収工程は、前記排気と当該排気中のアンモニア成分を化学反応によって回収処理する薬液との気液反応によってなされ、
前記アンモニア成分回収工程前の排気温度を検出すると共に、前記アンモニア成分回収工程後の排気温度を検出し、
前記アンモニア成分回収工程後の排気温度を前記アンモニア成分回収工程前の排気温度に近づけるように、前記薬液を加熱する薬液加熱手段を制御すると共に、前記アンモニア成分回収工程前の排気温度に基づいて求められる前記堆肥原料の発酵温度が好気発酵進行状態に維持されるように前記吸引手段の出力を制御することを特徴とする吸引通気式堆肥製造施設の排気処理方法。
An exhaust treatment method for an aeration-type compost production facility that performs aeration inside a compost raw material deposited in a compost fermenter by suction from the compost fermenter,
A suction aeration process in which a suction means is provided in an exhaust passage connected to a suction pipe provided in the compost fermenter, and suction suction is performed according to the output of the suction means;
A water collection process for collecting water discharged from the suction pipe;
An ammonia component recovery step of recovering an ammonia component from the exhaust gas treated in the water collection treatment step;
An exhaust heat utilization step using the heat of the exhaust recovered in the ammonia component recovery step,
The ammonia component recovery step is performed by a gas-liquid reaction between the exhaust and a chemical solution that recovers and processes the ammonia component in the exhaust by a chemical reaction,
While detecting the exhaust temperature before the ammonia component recovery step, and detecting the exhaust temperature after the ammonia component recovery step,
The chemical solution heating means for heating the chemical solution is controlled so as to bring the exhaust temperature after the ammonia component recovery step closer to the exhaust temperature before the ammonia component recovery step, and obtained based on the exhaust temperature before the ammonia component recovery step. An exhaust processing method for a suction aeration type compost manufacturing facility, wherein the output of the suction means is controlled so that the fermentation temperature of the compost raw material is maintained in an aerobic fermentation progress state.
前記堆肥発酵槽上部に該堆肥発酵槽内の堆肥原料の切り返し処理を行う切り返し装置を設け、
前記アンモニア回収工程後の排気流路内のガス成分濃度を検出し、前記ガス成分濃度の検出値に基づいて、前記排気中に嫌気発酵によって発生するガス成分が設定値以上検出された場合には、前記切り返し装置を作動させると共に前記吸引手段の出力を制御することを特徴とする請求項8に記載された吸引通気式堆肥製造施設の排気処理方法。
Provided with a turn-back device for turning over the compost raw material in the compost fermenter at the top of the compost fermenter,
When the gas component concentration in the exhaust flow path after the ammonia recovery step is detected, and a gas component generated by anaerobic fermentation in the exhaust gas is detected above a set value based on the detected value of the gas component concentration The exhaust treatment method for a suction aeration-type compost manufacturing facility according to claim 8, wherein the switching device is operated and the output of the suction means is controlled.
JP2006094900A 2006-03-30 2006-03-30 Exhaust treatment apparatus and exhaust treatment method for suction ventilation type compost manufacturing facility Active JP4418886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006094900A JP4418886B2 (en) 2006-03-30 2006-03-30 Exhaust treatment apparatus and exhaust treatment method for suction ventilation type compost manufacturing facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094900A JP4418886B2 (en) 2006-03-30 2006-03-30 Exhaust treatment apparatus and exhaust treatment method for suction ventilation type compost manufacturing facility

Publications (2)

Publication Number Publication Date
JP2007269517A JP2007269517A (en) 2007-10-18
JP4418886B2 true JP4418886B2 (en) 2010-02-24

Family

ID=38672699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094900A Active JP4418886B2 (en) 2006-03-30 2006-03-30 Exhaust treatment apparatus and exhaust treatment method for suction ventilation type compost manufacturing facility

Country Status (1)

Country Link
JP (1) JP4418886B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106123951B (en) * 2016-06-14 2018-11-30 中国农业大学 A kind of film covering aerobic compost dual-purpose type gas, pressure monitoring device
JP7058413B2 (en) * 2017-03-31 2022-04-22 国立研究開発法人農業・食品産業技術総合研究機構 Composting control method
JP6979848B2 (en) * 2017-10-16 2021-12-15 清水建設株式会社 Ammonia-containing wastewater treatment method and treatment equipment
CN108641937B (en) * 2018-05-25 2024-01-30 李文跃 Straw feed aerobic anaerobic fermentation equipment and application method thereof
JP7486281B2 (en) * 2018-10-25 2024-05-17 株式会社トクヤマ Storage method for palm kernel shells
JP7190133B2 (en) * 2018-11-07 2022-12-15 国立研究開発法人農業・食品産業技術総合研究機構 Composting device and its control method
KR102162151B1 (en) * 2018-11-20 2020-10-08 서문석 Fermentation apparatus using exhaust heat and double blower
CN111649951B (en) * 2020-04-15 2021-10-15 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Method and device for detecting faults of aircraft engine, computer equipment and storage medium

Also Published As

Publication number Publication date
JP2007269517A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4418886B2 (en) Exhaust treatment apparatus and exhaust treatment method for suction ventilation type compost manufacturing facility
KR100860077B1 (en) Inorganic and organic offensive odor deodorize apparatus
KR100951307B1 (en) Deodorizing System for livestock facility
KR100793115B1 (en) Waste treatment device
JPS62501904A (en) Method and apparatus for producing fertilizer by drying and conditioning chicken manure or similar pasty material
CN103626538B (en) Trench type composting method for treating breeding sewage and solid wastes simultaneously
KR20110038500A (en) The device for deodorizing polluted air of fermentation room and stable using scrubber
CN207137688U (en) A kind of container-type VOCS and foul gas bioanalysis emission-control equipment
US20100115786A1 (en) Method and system for drying a water containing substance
CN212687914U (en) Full-automatic environmental protection treatment all-in-one
CN205815471U (en) Organic stench biological treatment device
CN211035734U (en) Double-deck canopy membrane structure slot type compost system
CN206613363U (en) A kind of raising shed ventilating deodorizing device
FI127177B (en) Pet stalls comprising a composting system, as well as a method for recovering heat and / or one or more chemicals from a compost in a pet stall
CN106621770A (en) Ventilation and deodorization device of breeding shed
JP5839262B2 (en) Odor amount leveling method and apparatus
CN209362224U (en) A kind of biofilter removing foul gas
CN106268292A (en) High-performance bio filler odor removal
KR101239738B1 (en) Vaporizer with hybrid solar energy collector
KR100944954B1 (en) Excretions treatment apparatus by aerobic microbe
CN111659234A (en) Compost fermentation tail gas emission reduction system based on heat pump technology
CN221044067U (en) Biological deodorization and fresh air system device for hermetia illucens cultivation
CN210825891U (en) Intelligent decomposing pool
RU2818053C1 (en) Organic waste composting device
KR102497580B1 (en) Cleaning and deodorizing equipment for livestock manure composting facilities

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4418886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250