JP4848211B2 - Dehumidification air conditioning system - Google Patents

Dehumidification air conditioning system Download PDF

Info

Publication number
JP4848211B2
JP4848211B2 JP2006159201A JP2006159201A JP4848211B2 JP 4848211 B2 JP4848211 B2 JP 4848211B2 JP 2006159201 A JP2006159201 A JP 2006159201A JP 2006159201 A JP2006159201 A JP 2006159201A JP 4848211 B2 JP4848211 B2 JP 4848211B2
Authority
JP
Japan
Prior art keywords
air
heat
conditioning system
heat pump
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006159201A
Other languages
Japanese (ja)
Other versions
JP2007327693A (en
Inventor
達郎 藤居
正雄 今成
匠 杉浦
康博 頭島
伊津志 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2006159201A priority Critical patent/JP4848211B2/en
Priority to PCT/JP2007/050342 priority patent/WO2007080979A1/en
Priority to CN 200910209310 priority patent/CN101713573B/en
Publication of JP2007327693A publication Critical patent/JP2007327693A/en
Application granted granted Critical
Publication of JP4848211B2 publication Critical patent/JP4848211B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • F24F2203/106Electrical reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Landscapes

  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Description

本発明は、デシカント空調機と、その再生空気の加熱・処理空気の冷却手段としてヒートポンプを備えた除湿空調システムに関する。   The present invention relates to a desiccant air conditioner and a dehumidifying air conditioning system including a heat pump as means for heating the regenerated air and cooling the treated air.

本発明に関わる除湿空調システムとしては、例えば特許文献1に開示のものがある。特許文献1では、除湿装置を、給気路および排気路,吸着材保持機構とヒートポンプから構成し、ヒートポンプの低温熱源および高温熱源を、各々、給気路および排気路において吸着剤保持機構よりも上流側に配置している。そして、このヒートポンプの低温熱源と高温熱源とを有効に利用することによって省エネルギーを図っている。   As a dehumidification air-conditioning system concerning this invention, there exists a thing disclosed by patent document 1, for example. In Patent Document 1, the dehumidifying device is configured by an air supply path and an exhaust path, an adsorbent holding mechanism and a heat pump, and the low-temperature heat source and the high-temperature heat source of the heat pump are more than the adsorbent holding mechanism in the air supply path and the exhaust path, respectively. Arranged upstream. And energy saving is aimed at by using effectively the low temperature heat source and high temperature heat source of this heat pump.

また本発明に係る他の従来技術としては、非特許文献1の公知技術が挙げられる。本公知例では、ヒートポンプの導入により省エネルギーを図ると同時に、除湿ロータの再生空気用として補助ヒータを設け、再生空気をヒートポンプの高温熱源で加熱した後にこの補助ヒータでさらに加熱して除湿ロータの再生ゾーンに導く構成としている。   In addition, as another conventional technique according to the present invention, a known technique of Non-Patent Document 1 can be cited. In this known example, energy is saved by introducing a heat pump, and at the same time, an auxiliary heater is provided for the regeneration air of the dehumidification rotor, and the regeneration air is heated by the high-temperature heat source of the heat pump and further heated by this auxiliary heater to regenerate the dehumidification rotor. The structure leads to the zone.

特開2005−201624号公報(図1)Japanese Patent Laying-Open No. 2005-201624 (FIG. 1) 平成17年度空気調和・衛生工学会大会講演論文集 pp.1233−1236 図−1Proceedings of the 2005 Air Conditioning and Sanitation Engineering Conference pp. FIG. 1

特許文献1の従来技術では、同一の冷凍サイクルによって、屋外などの外部から給気路に取り入れた供給給気の冷却と、室内から排気路に取り入れた排出空気(再生空気)を吸着剤の再生に用いるための加熱を行っている。ところで、供給給気の冷却熱量は、外気温度の時間変動や季節変動によって大きく変化する。このため、この変化に合わせてヒートポンプサイクルを稼動させると、排出空気の加熱量も変動して吸着剤の再生状態、さらにはこの吸着剤によって行われる供給空気の除湿性能が変動するという課題があった。さらに、前述のようにヒートポンプの運転状態が外気条件に対する冷却負荷によって大きく変動し、ヒートポンプ設備が有効に稼動する条件が冷却負荷の大きい状態に限定され、運転期間全体を通しての省エネルギー効果が小さいという課題があった。   In the prior art of Patent Document 1, the same refrigeration cycle is used to cool the supply air taken into the air supply path from outside, such as outdoors, and to regenerate the adsorbent from the exhaust air (regenerated air) taken into the exhaust path from the room. Heating is performed for use. By the way, the cooling heat quantity of the supply air supply varies greatly depending on the time variation and seasonal variation of the outside air temperature. For this reason, when the heat pump cycle is operated in accordance with this change, there is a problem that the heating amount of the exhaust air also fluctuates to change the regeneration state of the adsorbent and also the dehumidification performance of the supply air performed by this adsorbent. It was. Furthermore, as described above, the operation state of the heat pump largely fluctuates depending on the cooling load with respect to the outside air condition, and the condition that the heat pump equipment operates effectively is limited to the state where the cooling load is large, and the problem that the energy saving effect is small throughout the operation period. was there.

また、排出空気の加熱量の変動を補償するために、電気などを用いた補助ヒータを設けて排出空気を再加熱する場合は、ヒートポンプの運転状態の変動によって補助ヒータの負荷が増大して消費エネルギーが増加するという課題が生じる。   In addition, when reheating the exhaust air by providing an auxiliary heater using electricity to compensate for fluctuations in the heating amount of the exhaust air, the load on the auxiliary heater increases due to fluctuations in the operating state of the heat pump. The problem of increased energy arises.

これらの課題に対して上記非特許文献1では、再生空気をヒートポンプの高温熱源で加熱した後に補助ヒータでさらに加熱することにより、再生ゾーンに供給される再生空気の温度を安定させて、吸着剤の再生状態および供給空気の除湿性能を安定させている。   With respect to these problems, in Non-Patent Document 1 described above, the regeneration air is heated with a high-temperature heat source of a heat pump and then further heated with an auxiliary heater, thereby stabilizing the temperature of the regeneration air supplied to the regeneration zone. The regeneration state and the dehumidifying performance of the supply air are stabilized.

また冷却負荷の変動に対しては、室内からの排出空気と、除湿ロータで除湿され、かつ約65℃に温度上昇した供給空気を熱交換させる顕熱ロータを設けて、この顕熱ロータで室内空気と熱交換した供給空気をヒートポンプの低温熱源で冷却する構成とすることにより外気変動の影響を抑制して、外気条件の時間変動や季節変動に係らず、ヒートポンプ設備を有効に稼動させている。ただし本従来技術では、顕熱ロータが必要となるため、除湿システムが大型化するという課題があった。   For fluctuations in the cooling load, a sensible heat rotor is provided for exchanging heat between the exhaust air from the room and the supply air dehumidified by the dehumidification rotor and having a temperature increased to about 65 ° C. The supply air that has exchanged heat with the air is cooled by the low-temperature heat source of the heat pump, thereby suppressing the influence of fluctuations in the outside air, effectively operating the heat pump equipment regardless of time fluctuations and seasonal fluctuations in the outside air conditions. . However, in this prior art, since a sensible heat rotor is required, there is a problem that the dehumidification system is enlarged.

本発明の目的は、ヒートポンプを用いたデシカント除湿空調システムにおいて、外気条件の変動に係らず、安定した低湿度空気を供給し、同時にヒートポンプを安定稼動させて省エネルギーを図ると共に、除湿システム装置の大型化を抑制することにある。   The object of the present invention is to provide a desiccant dehumidification air-conditioning system using a heat pump, supplying stable low-humidity air regardless of fluctuations in the outside air conditions, and simultaneously operating the heat pump stably to save energy, and to increase the size of the dehumidification system device. It is to suppress the conversion.

上記目的を達成するために本発明に係る除湿空調システムは、処理空気を外部から導入した外気と空調対象室内から導いて再循環させる室内還気の混合空気とし、ヒートポンプの吸熱部を冷却源とする空気冷却器を、再循環する室内還気の流路に設けたものである。   In order to achieve the above object, a dehumidifying air conditioning system according to the present invention uses mixed air of outside air introduced from the outside and indoor return air to be recirculated through the air-conditioning target room, and the heat absorption part of the heat pump as a cooling source. The air cooler is provided in the flow path of the indoor return air to be recirculated.

本発明に係る除湿空調システムによれば、ヒートポンプの吸熱部で室内還気を冷却するので、年間を通じて冷却負荷が生じる事務所,工場の生産現場,クリーンルーム等の除湿空調を行う場合、年間を通してほぼ安定した冷却負荷が得られ、その結果ヒートポンプ設備を有効に稼動させ、その能力に応じた省エネルギー効果を得ることができる。   According to the dehumidifying air-conditioning system of the present invention, the indoor return air is cooled by the heat absorption part of the heat pump. Therefore, when performing dehumidifying air-conditioning in offices, factory production sites, clean rooms, etc. where cooling loads occur throughout the year, A stable cooling load can be obtained. As a result, the heat pump equipment can be operated effectively, and an energy saving effect corresponding to the capacity can be obtained.

以下本発明の実施例を図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず、実施例1を図1から図5用いて説明する。図1は本実施例に係る除湿空調システムの全体系統図である。図2は本実施例で用いるヒートポンプサイクルを温度−エンタルピー線図上に表した図である。図3は本実施例のユニット構成を示した図である。また図4は本実施例に係る除湿空調システムの夏期ピーク条件における消費エネルギーおよびその内訳を、ヒートポンプを用いない場合と比較したグラフである。また図5は本実施例による月別の平均消費エネルギーを、図3と同様にヒートポンプを用いない場合と比較したグラフである。   First, Example 1 will be described with reference to FIGS. FIG. 1 is an overall system diagram of a dehumidifying air conditioning system according to the present embodiment. FIG. 2 is a diagram showing the heat pump cycle used in this embodiment on a temperature-enthalpy diagram. FIG. 3 is a diagram showing a unit configuration of the present embodiment. FIG. 4 is a graph comparing the energy consumption and the breakdown of the dehumidifying air-conditioning system according to the present embodiment in the summer peak conditions with no heat pump. FIG. 5 is a graph comparing the monthly average energy consumption according to the present embodiment with the case where no heat pump is used as in FIG.

図1に示すように除湿空調システムは、デシカント除湿ロータ10(以下除湿ロータと称する),ヒートポンプ30,電気ヒータ70,冷凍機80およびこれらに処理空気およびデシカント再生空気を通風させるダクトおよび図示しないファンなどから構成されている。   As shown in FIG. 1, the dehumidifying air conditioning system includes a desiccant dehumidifying rotor 10 (hereinafter referred to as a dehumidifying rotor), a heat pump 30, an electric heater 70, a refrigerator 80, a duct for passing processing air and desiccant regenerating air through them, and a fan (not shown). Etc.

除湿ロータ10は、処理空気の湿分を吸着して除湿を行う処理ゾーン11と、高温の再生空気で除湿ロータ10から湿分を脱着する再生ゾーン12と、再生ゾーン12で温度上昇した除湿ロータ10を、処理空気の一部を分岐して冷却するパージゾーン13とから構成されている。この除湿ロータ10を回転し、各ゾーンを動作させることによって、処理空気の除湿を行う。なお除湿ロータ10には、シリカゲルやゼオライト等の除湿部材が保持される。   The dehumidifying rotor 10 includes a processing zone 11 that adsorbs moisture from the processing air to dehumidify, a regeneration zone 12 that desorbs moisture from the dehumidifying rotor 10 with high-temperature regeneration air, and a dehumidification rotor that has increased in temperature in the regeneration zone 12. 10 is constituted by a purge zone 13 that cools by branching a part of the processing air. By rotating the dehumidifying rotor 10 and operating each zone, the process air is dehumidified. The dehumidifying rotor 10 holds a dehumidifying member such as silica gel or zeolite.

ヒートポンプ30は、冷媒ガスを超臨界状態まで圧縮して温度上昇させる圧縮機31と、圧縮機31で超臨界圧力に圧縮されて高温となった冷媒を用いてロータ再生空気95を加熱する空気加熱器32と、空気加熱器32で温度低下した冷媒を外気99でさらに冷却する外気放熱器33と、外気放熱器33から出た冷媒を超臨界状態から二相域に減圧する減圧弁34と、二相になった冷媒の冷媒液の蒸発などによって、処理空気すなわち図示しない被空調室内からの室内還気94を冷却する空気冷却器35と、これらを結ぶ冷媒配管37等から構成されている。さらに、空気ダクトの各所には、電気ヒータ70の制御を行うための温度センサ79と、冷凍機80の発停を含む運転制御を行うための温度センサ
89とが設けられている。
The heat pump 30 heats the rotor regeneration air 95 using a compressor 31 that compresses the refrigerant gas to a supercritical state and raises the temperature, and a refrigerant that has been compressed to a supercritical pressure by the compressor 31 and has reached a high temperature. An outside air radiator 33 that further cools the refrigerant whose temperature has been lowered by the air heater 32 with the outside air 99, and a pressure reducing valve 34 that decompresses the refrigerant that has come out of the outside air radiator 33 from a supercritical state to a two-phase region, The air cooler 35 cools the process air, that is, the indoor return air 94 from the air-conditioned room (not shown) by evaporating the refrigerant liquid of the two-phase refrigerant, the refrigerant pipe 37 connecting these, and the like. Furthermore, a temperature sensor 79 for controlling the electric heater 70 and a temperature sensor 89 for performing operation control including on / off of the refrigerator 80 are provided at various locations of the air duct.

次に本実施例に係る除湿空調システムの基本的な動作について説明する。除湿空調システムでは、導入した外気91を冷凍機80に設けられた第1冷却コイル81で冷却し、低露点室内からの室内還気94をヒートポンプ30の空気冷却器35および冷凍機80の第2冷却コイル82で冷却し、これらを合流させる。この合流した空気は、前述のように一部が分岐してパージ空気92としてパージゾーン13に導かれ、残りは処理ゾーン11に導かれて湿度を下げた後、給気93として被空調室に導かれる。尚、冷凍機80から第1冷却コイル81までの配管の途中に冷媒を制御するための開閉弁83(電磁弁)が、同じく冷凍機80から第2冷却コイルまでの配管の途中に開閉弁84(電磁弁)が設けてある。   Next, the basic operation of the dehumidifying air conditioning system according to the present embodiment will be described. In the dehumidifying air conditioning system, the introduced outside air 91 is cooled by the first cooling coil 81 provided in the refrigerator 80, and the indoor return air 94 from the low dew point chamber is converted into the air cooler 35 of the heat pump 30 and the second of the refrigerator 80. It cools with the cooling coil 82, and joins these. As described above, a part of this merged air branches and is guided to the purge zone 13 as purge air 92, and the rest is guided to the processing zone 11 to lower the humidity, and then is supplied as air supply 93 to the air-conditioned room. Led. Note that an on-off valve 83 (solenoid valve) for controlling the refrigerant in the middle of the pipe from the refrigerator 80 to the first cooling coil 81 and an on-off valve 84 in the middle of the pipe from the refrigerator 80 to the second cooling coil. (Electromagnetic valve) is provided.

一方、パージ空気92は、パージゾーン13で除湿ロータ10を冷却する。これにより、パージ型デシカント除湿機の特徴としてよく知られているように、十分に冷却された領域のみから給気を行い、結果として非常に湿度の低い給気を得ることができる。除湿ロータ10を冷却して温度上昇したパージ空気92は、再循環再生空気96と合流して再生空気となり、さらにヒートポンプ30の空気加熱器32,電気ヒータ70で順次加熱された後に再生ゾーン12に導かれて再生すなわち除湿ロータ10からの水分の脱着除去を行う。   On the other hand, the purge air 92 cools the dehumidifying rotor 10 in the purge zone 13. Thus, as is well known as a feature of the purge type desiccant dehumidifier, air is supplied from only a sufficiently cooled region, and as a result, air supply with very low humidity can be obtained. The purge air 92 that has risen in temperature by cooling the dehumidifying rotor 10 merges with the recirculation regenerated air 96 to become regenerated air, and is further heated sequentially by the air heater 32 and the electric heater 70 of the heat pump 30 and then into the regeneration zone 12. It is guided and regenerated, that is, desorbs and removes moisture from the dehumidifying rotor 10.

再生ゾーン12からの再生空気95は、上記のように一部が分岐して再循環再生空気
96としてパージ空気92と合流し、残りは除湿ロータ10から除去した水分と共に排気97として機外に排出される。
A part of the regeneration air 95 from the regeneration zone 12 is branched as described above and merged with the purge air 92 as the recirculation regeneration air 96, and the rest is discharged out of the apparatus as the exhaust 97 together with the water removed from the dehumidification rotor 10. Is done.

次に、このときのヒートポンプ30の動作について図2を用いて説明する。本実施例ではヒートポンプ30の作動媒体として二酸化炭素を用いており、図2における記号A〜Fは図2に示した温度−エンタルピー線図上における冷媒の状態を示しており、曲線Hは飽和線を表している。   Next, the operation of the heat pump 30 at this time will be described with reference to FIG. In the present embodiment, carbon dioxide is used as the working medium of the heat pump 30. Symbols A to F in FIG. 2 indicate the state of the refrigerant on the temperature-enthalpy diagram shown in FIG. Represents.

圧縮機31で超臨界圧力に圧縮された冷媒は、温度上昇して状態Aとなり、空気加熱器32に導かれる。空気加熱器32では、冷媒が温度降下しながら再生空気95を加熱して状態Bとなり、外気放熱器33へ導かれる。外気放熱器33において、導入される放熱用外気99は空気加熱器32に流入する再生空気よりも温度が低いため、冷媒はさらに温度降下して状態Cとなる。その後、冷媒は減圧弁34に導かれて減圧し、冷媒液と冷媒蒸気からなる二相状態である状態Dとなって、空気冷却器35において、冷媒液の蒸発潜熱によって室内還気94を冷却する。空気冷却器35内では全ての冷媒液が蒸発して飽和線上の状態Eとなり、さらに室内還気94との熱交換によって過熱蒸気の状態Fとなった後に、圧縮機31に吸引されて再び圧縮される。   The refrigerant compressed to the supercritical pressure by the compressor 31 rises in temperature to the state A and is led to the air heater 32. In the air heater 32, the regenerative air 95 is heated while the refrigerant is lowered in temperature to be in the state B, and is led to the outside air radiator 33. In the outside air radiator 33, the introduced outside air 99 for heat radiation has a temperature lower than that of the regenerated air flowing into the air heater 32. Therefore, the refrigerant further falls in temperature and enters the state C. Thereafter, the refrigerant is led to the pressure reducing valve 34 to reduce the pressure, and the state D is a two-phase state composed of the refrigerant liquid and the refrigerant vapor, and the indoor cooler 94 is cooled by the latent heat of evaporation of the refrigerant liquid in the air cooler 35. To do. In the air cooler 35, all the refrigerant liquid is evaporated to become the state E on the saturation line, and further to the superheated steam state F by heat exchange with the indoor return air 94, and then sucked into the compressor 31 and compressed again. Is done.

なお、実際には各熱交換器内では圧力損失があるが、図2ではその影響を省略して状態A,B,Cを超臨界領域の等圧線上に示し、状態D,E,Fを二相域およびガス域の等圧線上に示している。   Actually, there is a pressure loss in each heat exchanger, but in FIG. 2, the influence is omitted, and states A, B, and C are shown on the isobaric lines in the supercritical region, and states D, E, and F are two. It is shown on the isobaric lines of the phase region and gas region.

図3は本実施例における除湿空調システムのユニット構成と、ヒートポンプサイクルの各構成要素の設置状況を示している。除湿空調システムは、大きく排熱ユニット101と除湿機ユニット102から構成されている。排熱ユニット101には、圧縮機31と、外気放熱器33と、外気放熱器33に外気を通風させるファン38と、減圧弁34などが内蔵されている。   FIG. 3 shows the unit configuration of the dehumidifying air conditioning system in this embodiment and the installation status of each component of the heat pump cycle. The dehumidifying air conditioning system is mainly composed of a heat exhaust unit 101 and a dehumidifier unit 102. The exhaust heat unit 101 includes a compressor 31, an outside air radiator 33, a fan 38 that allows the outside air radiator 33 to vent outside air, a pressure reducing valve 34, and the like.

また除湿機ユニット102にはヒートポンプサイクルの構成要素のうち空気加熱器32と、空気冷却器35とが設置されている。なお、図3には示さないが、図1に示した除湿ロータ10,電気ヒータ70,冷凍機80の第1冷却コイル81,第2冷却コイルおよびこれらに処理空気と再生空気を通風させるダクトとファン等が除湿機ユニット102に内蔵されている。そして、ヒートポンプサイクルを形成する冷媒配管37が排熱ユニット
101,除湿機ユニット102を接続している。
The dehumidifier unit 102 is provided with an air heater 32 and an air cooler 35 among the components of the heat pump cycle. Although not shown in FIG. 3, the dehumidification rotor 10, the electric heater 70, the first cooling coil 81 and the second cooling coil of the refrigerator 80 shown in FIG. A fan or the like is built in the dehumidifier unit 102. And the refrigerant | coolant piping 37 which forms a heat pump cycle has connected the exhaust heat unit 101 and the dehumidifier unit 102. FIG.

次に、本実施例の除湿空調システムの運転制御について説明する。外気温度の変化に対しては、冷凍機80の容量制御により、除湿ロータ10の処理ゾーン11に供給される処理空気の温度がほぼ一定に維持される。この処理空気は、外気91を第1冷却コイル81で冷却した空気と、室内還気94をヒートポンプ30の空気冷却器35と冷凍機80の第2冷却コイル82とで冷却した空気と、を混合したものである。従って、被空調室内の冷却負荷や室内還気94の温度が変化した際にも、冷凍機80の容量制御で対応することができる。   Next, operation control of the dehumidifying air conditioning system of the present embodiment will be described. With respect to changes in the outside air temperature, the temperature of the processing air supplied to the processing zone 11 of the dehumidifying rotor 10 is maintained substantially constant by controlling the capacity of the refrigerator 80. This treated air is a mixture of air obtained by cooling the outside air 91 using the first cooling coil 81 and air obtained by cooling the indoor return air 94 using the air cooler 35 of the heat pump 30 and the second cooling coil 82 of the refrigerator 80. It is a thing. Therefore, even when the cooling load in the air-conditioned room or the temperature of the indoor return air 94 changes, the capacity control of the refrigerator 80 can cope with it.

さらに、外気温度が変動して外気放熱器33の冷媒出口温度が変化し、その影響で空気冷却器35の冷却熱量や、室内還気94の出口温度が変動した場合に対しても、冷凍機
80の容量制御で対応することができる。また、このヒートポンプサイクルの変化に伴って、空気加熱器32における再生空気95の加熱量が変化する。この変化に対しては、電気ヒータ70の容量制御によって、温度センサ79によって計測された再生空気温度を一定に保持することで対応する。
Furthermore, the refrigerator is also used in the case where the outside air temperature fluctuates and the refrigerant outlet temperature of the outside air radiator 33 changes, and the amount of cooling heat of the air cooler 35 and the outlet temperature of the indoor return air 94 fluctuate due to the influence. 80 capacity control can cope with this. Moreover, the heating amount of the regeneration air 95 in the air heater 32 changes with the change of the heat pump cycle. This change is dealt with by keeping the regeneration air temperature measured by the temperature sensor 79 constant by controlling the capacity of the electric heater 70.

従って、外気温度や室内負荷の変動がヒートポンプサイクルに与える影響は小さく、本システムの運転中はヒートポンプはほぼ一定出力で運転される。なお、ヒートポンプの容量は、計画時に設定した被空調室内の設定温度などから決まる室内還気94の冷却負荷を、空気冷却器35の冷却能力が下回るように設定されている。   Accordingly, the influence of fluctuations in the outside air temperature and the indoor load on the heat pump cycle is small, and the heat pump is operated at a substantially constant output during operation of this system. The capacity of the heat pump is set so that the cooling capacity of the indoor return air 94 determined by the set temperature of the air-conditioned room set at the time of planning is lower than the cooling capacity of the air cooler 35.

次に、本実施例による省エネルギー効果について図4,図5を説明する。図4は夏期ピーク期における除湿空調システムの消費電力の計算結果を、ヒートポンプ30を用いない場合(ヒートポンプの使用:無)すなわち、外気91と室内還気94の冷却を冷凍機80のみで行い、再生空気95の加熱を電気ヒータ70のみで行う場合と、ヒートポンプ30使用した場合を比較したものである。図4に示すように、ヒートポンプの導入により消費電力が約10%削減されている。   Next, FIGS. 4 and 5 will be described with respect to the energy saving effect according to the present embodiment. FIG. 4 shows the calculation result of the power consumption of the dehumidifying air conditioning system in the summer peak period when the heat pump 30 is not used (use of the heat pump: none), that is, the outside air 91 and the indoor return air 94 are cooled only by the refrigerator 80. This compares the case where the regeneration air 95 is heated only by the electric heater 70 and the case where the heat pump 30 is used. As shown in FIG. 4, the power consumption is reduced by about 10% by the introduction of the heat pump.

また図5は、年間の各月について、ある地域の月間平均気温を用いて消費電力を計算した結果である。図4に示した夏期ピーク時の比較を図5中に併記した。図5に示すように、消費電力は季節によらずほぼ一定の削減量が得られている。これは、ヒートポンプによる加熱,冷却の負荷が年間を通じてほぼ一定であるために、ヒートポンプを定格容量で常時運転可能であることによる。   FIG. 5 shows the result of calculating the power consumption for each month of the year using the monthly average temperature in a certain region. The comparison at the summer peak shown in FIG. 4 is also shown in FIG. As shown in FIG. 5, a substantially constant reduction amount is obtained regardless of the season. This is because the heating and cooling loads by the heat pump are almost constant throughout the year, so that the heat pump can always be operated at the rated capacity.

以上示したように本実施例では、ヒートポンプ30の空気冷却器35を、年間を通して冷却負荷がある室内還気94の流路に設けたので、ヒートポンプの年間の運転状態が安定し、図5に示したように年間を通して省エネルギー効果を得ることが可能となる。本実施例では、図4に示した消費電力の削減量が年間を通して得られており、中間期と冬期には合計の消費電力値が減少するために、削減率は10%を超える。その結果、年間を通しての消費電力削減率もまた10%以上である。   As described above, in this embodiment, since the air cooler 35 of the heat pump 30 is provided in the flow path of the indoor return air 94 having a cooling load throughout the year, the annual operation state of the heat pump is stabilized, and FIG. As shown, it is possible to obtain energy saving effects throughout the year. In the present embodiment, the power consumption reduction amount shown in FIG. 4 is obtained throughout the year, and the total power consumption value decreases in the intermediate period and winter season, so the reduction rate exceeds 10%. As a result, the power consumption reduction rate throughout the year is also 10% or more.

また本実施例によれば、ヒートポンプ30の容量が、室内還気の冷却負荷を上回らない値で設定されるので、外気の冷却負荷を負担する場合と比較して装置の規模が小さく、初期コストの上昇を抑制することが可能となる。さらに、ヒートポンプ30の運転状態が安定したことにより、図5におけるヒートポンプの使用「有」の場合に示すように電気ヒータ70の運転状態すなわち加熱量も年間を通して安定し、電気ヒータ70の容量を削減して小型化することが可能となる。   In addition, according to the present embodiment, the capacity of the heat pump 30 is set to a value that does not exceed the cooling load of the indoor return air, so the scale of the apparatus is small compared to the case where the cooling load of the outside air is borne, and the initial cost is reduced. It is possible to suppress the rise of Further, since the operation state of the heat pump 30 is stabilized, the operation state, that is, the heating amount of the electric heater 70 is also stable throughout the year as shown in the case of “use” of the heat pump in FIG. 5, and the capacity of the electric heater 70 is reduced. Thus, it is possible to reduce the size.

さらには、これらの機器が年間を通して有効に稼動することから、初期コストの増加に対する省エネルギー効果が大きくなる。   Furthermore, since these devices operate effectively throughout the year, the energy saving effect on the increase in initial cost is increased.

また本実施例では、導入した外気91を冷却する冷凍機80を設け、除湿ロータ10の処理ゾーン11に供給する処理空気の温度が一定となるように冷凍機80の制御を行う構成としたので、外気温度の変動に係らず、安定した低湿度空気を被空調質に供給し、かつヒートポンプ30の運転状態も安定させることが可能となる。   In this embodiment, the refrigerator 80 for cooling the introduced outside air 91 is provided, and the refrigerator 80 is controlled so that the temperature of the processing air supplied to the processing zone 11 of the dehumidification rotor 10 is constant. Regardless of fluctuations in the outside air temperature, it is possible to supply stable low-humidity air to the air-conditioned material and to stabilize the operation state of the heat pump 30.

さらに本実施例では、ヒートポンプ30の空気冷却器35によって冷却された室内還気94を、ヒートポンプ30の冷却能力の一部を用いて再冷却する第2冷却コイル82を設けて再冷却するので、外気温度の変動に加えて室内負荷の変動に対しても、ヒートポンプ30の運転状態を変化させることなく対応することができる。   Furthermore, in this embodiment, the indoor return air 94 cooled by the air cooler 35 of the heat pump 30 is re-cooled by providing a second cooling coil 82 that re-cools using a part of the cooling capacity of the heat pump 30. In addition to fluctuations in the outside air temperature, fluctuations in the indoor load can be handled without changing the operating state of the heat pump 30.

さらに本実施例では、ヒートポンプ30の放熱部として、再生空気95を加熱する空気加熱器32に加えて外気放熱器33を設置したので、図2に示すように空気冷却器35すなわち蒸発器入口の冷媒のエンタルピーが図2における状態Bの値から状態Cの値まで低下する。その結果、空気冷却器における冷却能力が、外気放熱器33を設置しない場合は状態Bと状態Fのエンタルピー差から、状態Dと状態Fのエンタルピー差すなわち図2に示したQEに増大している。従って、冷凍機80の冷凍負荷が軽減され、冷凍機80の小型化と省エネルギーの効果が得られる。   Further, in this embodiment, since the outside air radiator 33 is installed as the heat radiating portion of the heat pump 30 in addition to the air heater 32 that heats the regeneration air 95, the air cooler 35, that is, the evaporator inlet as shown in FIG. The enthalpy of the refrigerant decreases from the value of the state B in FIG. As a result, the cooling capacity of the air cooler increases from the enthalpy difference between the state B and the state F to the QE shown in FIG. 2 from the enthalpy difference between the state D and the state F when the outside air radiator 33 is not installed. . Therefore, the refrigeration load of the refrigerator 80 is reduced, and the effect of reducing the size of the refrigerator 80 and saving energy can be obtained.

さらに本実施例では、除湿空調システム全体を、圧縮機31,外気放熱器33,ファン38などを含む排熱ユニット101と、除湿ロータ10,空気加熱器32,空気冷却器
35などを含む除湿機ユニット102から構成したので、排熱ユニット101を屋外に、除湿機ユニット102を屋外に設置することができる。
Furthermore, in this embodiment, the entire dehumidifying air conditioning system is divided into a heat removal unit 101 including a compressor 31, an outside air radiator 33, a fan 38, and a dehumidifier including a dehumidification rotor 10, an air heater 32, an air cooler 35, and the like. Since it comprises the unit 102, the exhaust heat unit 101 can be installed outdoors, and the dehumidifier unit 102 can be installed outdoors.

除湿機ユニット102は処理空気を循環させる点から、機械室などの屋内に設置することにより防水施工などが不要になる利点がある。一方、排熱ユニット101は、外気放熱器33からの冷媒出口温度が低いほど、図2に示した空気冷却器の冷却能力QEが増大してヒートポンプ30の負荷が軽減されて省エネルギーとなる。したがって排熱ユニット
101を屋外に設置して機械室内よりも気温の低い外気に放熱することにより、この省エネルギー効果が大きくなる。本実施例ではこれらの利点を同時に得ることが可能となっている。
Since the dehumidifier unit 102 circulates the processing air, there is an advantage that a waterproof construction or the like becomes unnecessary by installing the dehumidifier unit 102 indoors such as a machine room. On the other hand, in the exhaust heat unit 101, as the refrigerant outlet temperature from the outside air radiator 33 is lower, the cooling capacity QE of the air cooler shown in FIG. 2 is increased and the load of the heat pump 30 is reduced to save energy. Therefore, the energy saving effect is increased by installing the exhaust heat unit 101 outdoors and dissipating heat to the outside air whose temperature is lower than that in the machine room. In this embodiment, these advantages can be obtained simultaneously.

また、本実施例においては、ヒートポンプ30の冷媒が空気加熱器32において超臨界圧力にて放熱を行っているので、空気加熱器32において冷媒は連続的に温度低下しながら再生空気95に放熱するため、再生空気95との対向流型の熱交換が可能となり、図4および図5におけるヒートポンプの使用「有」「無」の比較に示されるように電気ヒータ70の消費電力が減少して除湿空調システム全体の省エネルギー効果が得られている。   Further, in the present embodiment, the refrigerant of the heat pump 30 radiates heat at the supercritical pressure in the air heater 32, so that the refrigerant radiates heat to the regeneration air 95 while the temperature continuously decreases in the air heater 32. Therefore, the counter-flow type heat exchange with the regenerated air 95 is possible, and the power consumption of the electric heater 70 is reduced and dehumidification as shown in the comparison of the use “present” and “none” of the heat pump in FIGS. The energy saving effect of the entire air conditioning system is obtained.

さらに本実施例においては、ヒートポンプ30の冷媒として、臨界温度が31.1℃ と比較的低い二酸化炭素を用いているので、サイクルの高圧側が容易に超臨界状態となり、上記超臨界での放熱による効果が得られる。また、二酸化炭素はよく知られているように地球温暖化係数が極めて小さいため、冷媒回収の必要がなく、環境問題に対応した除湿空調システムを得ることができる。   Further, in this embodiment, carbon dioxide having a relatively low critical temperature of 31.1 ° C. is used as the refrigerant of the heat pump 30, so that the high pressure side of the cycle easily enters a supercritical state, and is due to heat dissipation in the supercritical state. An effect is obtained. Moreover, since carbon dioxide has a very low global warming coefficient as is well known, it is not necessary to recover the refrigerant, and a dehumidifying air conditioning system corresponding to environmental problems can be obtained.

さらに、以上示した各実施例においては、空気加熱器32を出た後の冷媒の冷却手段として外気放熱器33を設置し、放熱用外気99によって冷却する構成としたので、冷却水系統の設備が不要であるという利点がある。   Furthermore, in each Example shown above, since it was set as the structure which installs the external air heat radiator 33 as a cooling means of the refrigerant | coolant after leaving the air heater 32, and cools with the external air 99 for heat radiation, it is the equipment of a cooling water system | strain. There is an advantage that is unnecessary.

一方、冷却水系統が予め整備された工場などに本システムを導入する際は、外気放熱器33の代わりに水冷式の冷媒冷却器を設置して、冷却水によって冷却する構成としても良い。この場合は、冷却水系統が必要となる代わりに、空冷式の外気放熱器33に比べて小さな伝熱面積で冷却することができるので、冷媒冷却器および除湿空調システムを小型化できるという利点がある。なお、この冷却水は河川水や海水であっても良いことは明白である。   On the other hand, when the present system is introduced into a factory or the like where a cooling water system has been prepared in advance, a water-cooled refrigerant cooler may be installed in place of the outside air radiator 33 and cooled by the cooling water. In this case, instead of requiring a cooling water system, cooling can be performed with a smaller heat transfer area compared to the air-cooled outside air radiator 33, so that the refrigerant cooler and the dehumidifying air conditioning system can be reduced in size. is there. Obviously, this cooling water may be river water or seawater.

次に、本発明の第2の実施例について、図6を用いて説明する。図6の除湿空調システムは、図1とほぼ同一の構成であるが、次の点が異なる。図1の実施例では、室内から再循環させる室内還気94を第2冷却コイル82によって冷却するのに対して、本実施例では、前記室内還気94と外部から導入した外気91が合流した後の処理空気を第2冷却コイル82によって冷却している。   Next, a second embodiment of the present invention will be described with reference to FIG. The dehumidifying air-conditioning system in FIG. 6 has substantially the same configuration as that in FIG. 1, but the following points are different. In the embodiment of FIG. 1, the indoor return air 94 to be recirculated from the room is cooled by the second cooling coil 82, whereas in this embodiment, the indoor return air 94 and the outside air 91 introduced from the outside merge. The subsequent processing air is cooled by the second cooling coil 82.

本実施例では、除湿ロータ10の処理ゾーン11に流入する直前の処理空気を第2冷却コイル82によって冷却する構成とした。これにより、実施例1と比較して、温度センサ89によって検出されるロータ入口空気温度を、冷凍機80の容量制御によって目標値近傍に且つ安定に制御できる。前述のように除湿部材を保持した除湿ロータでは、除湿性能は処理空気の入口温度によって影響を受けるため、本実施例ではこの入口温度が安定することによって、ロータ出口空気すなわち給気93の温度と湿度が目標値近傍に且つ安定に制御できるという利点がある。これは、半導体やディスプレイなどの製造工程のように低湿度環境が要求される用途において、生産品質の向上の観点から特に重要である。   In this embodiment, the processing air immediately before flowing into the processing zone 11 of the dehumidifying rotor 10 is cooled by the second cooling coil 82. Thereby, as compared with the first embodiment, the rotor inlet air temperature detected by the temperature sensor 89 can be stably controlled near the target value by the capacity control of the refrigerator 80. As described above, in the dehumidifying rotor holding the dehumidifying member, the dehumidifying performance is affected by the inlet temperature of the processing air. Therefore, in this embodiment, the inlet temperature is stabilized, so that the temperature of the rotor outlet air, that is, the supply air 93 is increased. There is an advantage that the humidity can be controlled near the target value and stably. This is particularly important from the viewpoint of improving production quality in applications where a low-humidity environment is required, such as manufacturing processes for semiconductors and displays.

なお、本実施例におけるヒートポンプサイクル,消費電力および消費電力の年間変動は第1の実施例と同様にそれぞれ図2,図4および図5で表され、同様の効果を得ることができる。また図3と同様のユニット構成とすることも可能であり、第1の実施例と同様の効果を得ることができる。   The annual variation of the heat pump cycle, power consumption, and power consumption in this embodiment is shown in FIGS. 2, 4, and 5 as in the first embodiment, and the same effect can be obtained. Further, it is possible to adopt a unit configuration similar to that in FIG. 3, and the same effect as in the first embodiment can be obtained.

本発明の一実施例に係る除湿空調システムの全体系統図。1 is an overall system diagram of a dehumidifying air conditioning system according to an embodiment of the present invention. 図1の実施例におけるヒートポンプサイクルのT−h線図。The Th diagram of the heat pump cycle in the Example of FIG. 図1の実施例におけるユニット構成を表す図。The figure showing the unit structure in the Example of FIG. 図1の実施例における除湿空調システムの消費電力を示すグラフ。The graph which shows the power consumption of the dehumidification air conditioning system in the Example of FIG. 図1の実施例における除湿空調システムの消費電力の年間変動を示すグラフ。The graph which shows the annual fluctuation | variation of the power consumption of the dehumidification air conditioning system in the Example of FIG. 本発明の第2の実施例に係る除湿空調システムの全体系統図。The whole system chart of the dehumidification air-conditioning system concerning the 2nd example of the present invention.

符号の説明Explanation of symbols

10…除湿ロータ、11…処理ゾーン、12…再生ゾーン、13…パージゾーン、30…ヒートポンプ、31…圧縮機、32…空気加熱器、33…外気放熱器、34…減圧弁、35…空気冷却器、37…冷媒配管、38…ファン、70…電気ヒータ、79…電気ヒータ制御用温度センサ、80…冷凍機、81…第1冷却コイル、82…第2冷却コイル、
89…冷凍機制御用温度センサ、91…給気用外気、92…パージ空気、93…給気、
95…再生空気、96…再循環再生空気、97…排気、99…放熱用外気、101…排熱ユニット、102…除湿機ユニット、A〜F…T−h線図上における冷媒の状態、H…飽和線、QE…冷却能力。
DESCRIPTION OF SYMBOLS 10 ... Dehumidification rotor, 11 ... Processing zone, 12 ... Regeneration zone, 13 ... Purge zone, 30 ... Heat pump, 31 ... Compressor, 32 ... Air heater, 33 ... Outside air radiator, 34 ... Pressure reducing valve, 35 ... Air cooling 37 ... refrigerant pipe, 38 ... fan, 70 ... electric heater, 79 ... temperature sensor for electric heater control, 80 ... refrigerator, 81 ... first cooling coil, 82 ... second cooling coil,
89 ... Temperature sensor for refrigerator control, 91 ... Outside air for air supply, 92 ... Purge air, 93 ... Air supply,
95 ... Regenerative air, 96 ... Recirculation regenerated air, 97 ... Exhaust, 99 ... Outside air for heat dissipation, 101 ... Exhaust heat unit, 102 ... Dehumidifier unit, A to F ... Refrigerant state on Th diagram, H ... saturation line, QE ... cooling capacity.

Claims (3)

除湿ロータに処理空気の水分を吸収する処理ゾーンと、この水分を高温の再生空気に放出する再生ゾーンと、再生ゾーンで温度上昇して水分を放出した領域を冷却用空気で冷却するパージゾーンとを備え、前記除湿ロータが回転することによって各ゾーンが順次通過するパージ型デシカント除湿機と、吸熱部と放熱部を有するヒートポンプと、前記吸熱部を冷却源として前記処理空気を冷却する空気冷却器と、前記放熱部を加熱源として前記再生空気を前記再生ゾーン入口側で加熱する空気加熱器を有する除湿空調システムにおいて、
前記処理空気を、外部から導入した導入外気と、空調対象とする室内から導いて再循環させる室内還気の混合空気とし、
記空気冷却器を、前記室内還気の流路に設けると共に、前記導入外気を、前記室内還気との混合部の上流側で冷却する冷凍機を設けたことを特徴とする除湿空調システム。
A treatment zone for absorbing moisture treatment air dehumidification rotor, the purge zone and the regeneration zone to release the water in hot regeneration air, the area to release moisture and temperature rise in the regeneration zone is cooled by cooling air with the door, the dehumidifying rotor cooling and purging type desiccant dehumidifier each zone sequentially passes by to rotate, and a heat pump having a heat radiating portion and the heat absorbing portion, the process air the heat absorbing section as a cooling source In a dehumidifying air conditioning system having an air cooler and an air heater that heats the regeneration air at the regeneration zone inlet side using the heat radiating portion as a heating source,
The treated air is a mixed air of introduced outside air introduced from the outside and indoor return air that is guided from the room to be air-conditioned and recirculated,
The pre Kisora air cooler, with kicking set in the flow path of the indoor return air, the introduction outside air is dehumidified, characterized in that said digits set the refrigerator to cool the upstream side of the mixing portion of the indoor return air Air conditioning system.
請求項1に記載の除湿空調システムにおいて、
前記冷凍機は、前記導入外気を前記室内還気との混合部の上流側で冷却すると共に、前記ヒートポンプの吸熱部を冷却源とした前記空気冷却器によって冷却された室内還気を、前記導入外気との合流前または合流後に再冷却することを特徴とする除湿空調システム。
In the dehumidification air-conditioning system according to claim 1,
The refrigerator cools the introduced outside air on the upstream side of the mixing portion with the indoor return air, and introduces the indoor return air cooled by the air cooler using the heat absorption portion of the heat pump as a cooling source. A dehumidifying air-conditioning system that re-cools before or after merging with outside air.
請求項1又は2に記載の除湿空調システムにおいて、
前記ヒートポンプの放熱部は、前記再生空気の加熱源として再生空気に放熱する空気加熱器と、外部冷却媒体に熱を放出する外気放熱器と、から構成され、前記外気放熱器が前記空気加熱器の冷媒流路の下流側に接続されていることを特徴とする除湿空調システム。
In the dehumidification air-conditioning system according to claim 1 or 2,
The heat dissipation part of the heat pump includes an air heater that radiates heat to the regeneration air as a heating source of the regeneration air, and an outside air radiator that releases heat to an external cooling medium, and the outside air radiator is the air heater. A dehumidifying air-conditioning system connected to the downstream side of the refrigerant flow path .
JP2006159201A 2006-01-13 2006-06-08 Dehumidification air conditioning system Expired - Fee Related JP4848211B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006159201A JP4848211B2 (en) 2006-06-08 2006-06-08 Dehumidification air conditioning system
PCT/JP2007/050342 WO2007080979A1 (en) 2006-01-13 2007-01-12 Dehumidifying air conditioning system
CN 200910209310 CN101713573B (en) 2006-01-13 2007-01-12 Dehumidifying air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006159201A JP4848211B2 (en) 2006-06-08 2006-06-08 Dehumidification air conditioning system

Publications (2)

Publication Number Publication Date
JP2007327693A JP2007327693A (en) 2007-12-20
JP4848211B2 true JP4848211B2 (en) 2011-12-28

Family

ID=38928275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006159201A Expired - Fee Related JP4848211B2 (en) 2006-01-13 2006-06-08 Dehumidification air conditioning system

Country Status (1)

Country Link
JP (1) JP4848211B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245074B2 (en) * 2009-05-22 2013-07-24 オリオン機械株式会社 Dehumidifier with temperature adjustment function
JP5680456B2 (en) * 2011-03-22 2015-03-04 株式会社西部技研 Dehumidifying air conditioner
JP5548650B2 (en) * 2011-06-01 2014-07-16 株式会社西部技研 Dehumidifier
KR101568785B1 (en) 2014-03-13 2015-11-16 대우조선해양 주식회사 Interior Circulation Type Dehumidifier
JP5991698B2 (en) * 2014-06-03 2016-09-14 株式会社西部技研 Dehumidifier
KR102050694B1 (en) * 2019-04-30 2019-12-02 (주)유천써모텍 Heat pump system and control method thereof using cooling type dehumidification unit and thermal stratification type hot water tank

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO890076D0 (en) * 1989-01-09 1989-01-09 Sinvent As AIR CONDITIONING.
JPH06343819A (en) * 1993-06-04 1994-12-20 Kobe Steel Ltd Dry type dehumidifying device
JPH1054586A (en) * 1996-08-08 1998-02-24 Ebara Corp Air-conditioning system
JP3081601B1 (en) * 1999-02-18 2000-08-28 株式会社大氣社 Dehumidifier
JP4300631B2 (en) * 1999-04-30 2009-07-22 ダイキン工業株式会社 Air conditioner
JP2004085096A (en) * 2002-08-27 2004-03-18 Univ Waseda Hybrid-type desiccant air-conditioning system

Also Published As

Publication number Publication date
JP2007327693A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
JP4591355B2 (en) Dehumidification air conditioning system
JP4169747B2 (en) Air conditioner
US7428821B2 (en) Dehumidifying system
JP6494765B2 (en) Air conditioning system
US9518765B2 (en) System and method for controlling temperature and humidity in multiple spaces using liquid desiccant
CN103075770B (en) Rotating wheel dehumidification device utilizing indoor exhaust evaporation cooling and use method of rotating wheel dehumidification device
US20120023988A1 (en) Desiccant air-conditioning system
US20120085112A1 (en) Heat pump humidifier and dehumidifier system and method
US20170321909A1 (en) Dehumidification system and method
JP5576327B2 (en) Air conditioning system
JP5611079B2 (en) Outside air treatment equipment using desiccant rotor
US9671117B2 (en) Desiccant dehumidification system with chiller boost
JP4848211B2 (en) Dehumidification air conditioning system
CN110173776B (en) Pre-cooling type runner humidifying fresh air treatment device
JP2012137201A (en) Heat pump system for drying equipment, and drying equipment with the same, and method of controlling heat pump system for drying equipment
JP5681360B2 (en) Dehumidifier
JP6018938B2 (en) Air conditioning system for outside air treatment
JP5890873B2 (en) Outside air treatment equipment using desiccant rotor
JPWO2010044392A1 (en) Painting equipment
JP6873721B2 (en) Air treatment device, control device for air treatment device, control method for air treatment system and air treatment device
WO2007080979A1 (en) Dehumidifying air conditioning system
JP2010255970A (en) Outdoor air conditioner and outdoor air conditioning system
KR102257544B1 (en) Energy enhanced air-conditioning system and control method thereof
US11815286B1 (en) Dual-wheel HVAC system and method having improved dew point control
JP6372992B2 (en) Heat recovery system using air heat source

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100303

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100325

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees