WO2007080979A1 - Dehumidifying air conditioning system - Google Patents

Dehumidifying air conditioning system Download PDF

Info

Publication number
WO2007080979A1
WO2007080979A1 PCT/JP2007/050342 JP2007050342W WO2007080979A1 WO 2007080979 A1 WO2007080979 A1 WO 2007080979A1 JP 2007050342 W JP2007050342 W JP 2007050342W WO 2007080979 A1 WO2007080979 A1 WO 2007080979A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
conditioning system
heat
dehumidifying
regeneration
Prior art date
Application number
PCT/JP2007/050342
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuo Fujii
Masao Imanari
Minoru Takahashi
Takumi Sugiura
Yasuhiro Kashirajima
Itsushi Fukui
Original Assignee
Hitachi Plant Technologies, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006005474A external-priority patent/JP4591355B2/en
Priority claimed from JP2006159201A external-priority patent/JP4848211B2/en
Application filed by Hitachi Plant Technologies, Ltd. filed Critical Hitachi Plant Technologies, Ltd.
Publication of WO2007080979A1 publication Critical patent/WO2007080979A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1088Rotary wheel comprising three flow rotor segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Definitions

  • the present invention relates to a dehumidifying air conditioning system based on a desiccant air conditioner and provided with a heat pump as its air heating / cooling means.
  • a dehumidifying air-conditioning system for example, a technique described in JP-A-2005-34838 can be cited.
  • a refrigerant circuit that is, a heat pump and a desiccant rotor as a moisture absorption and desorption means are provided, the air to be dehumidified is heated by a heat radiator of the heat pump, and the air is humidified in the moisture release area of the desiccant rotor. The air is cooled by the heat pump heat sink and dehumidified in the moisture absorption region of the desiccant rotor.
  • the heat pump refrigerant dissipates heat at a supercritical pressure in a radiator, and carbon dioxide is used as the refrigerant.
  • the dehumidifier is composed of an air supply path and an exhaust path, an adsorbent holding mechanism and a heat pump, and the low temperature heat source and the high temperature heat source of the heat pump are respectively connected to the adsorbent holding mechanism in the air supply path and the exhaust path. It is arranged on the upstream side. Energy is saved by effectively using the low and high temperature heat sources of this heat pump.
  • the global warming potential is small as the refrigerant of the heat pump, carbon dioxide is used, and the regeneration air is heated at supercritical pressure.
  • high-temperature heating of regeneration air is performed using carbon dioxide as a heat pump refrigerant, it is necessary to compress the refrigerant to a high pressure in the compressor in order to obtain a high temperature.
  • the above-mentioned prior art does not give consideration to this point when there is a decrease in the energy consumption and the capacity of the heat pump device increases.
  • a sensible heat rotor is provided to exchange heat between the air exhausted from the room and the supply air dehumidified by the dehumidifying rotor and having a temperature increased to about 65 ° C.
  • the structure of cooling the supply air heat-exchanged with indoor air using a heat rotor with a low-temperature heat source of the heat pump suppresses the influence of fluctuations in the outside air, enabling the heat pump equipment to be effective regardless of time fluctuations and seasonal fluctuations in the outside air conditions. Is in operation.
  • this conventional technology requires a sensible heat rotor, which increases the size of the dehumidification system.
  • An object of the present invention is to supply a stable low-humidity air to a desiccant dehumidification system using a heat pump, regardless of fluctuations in the outside air conditions, and at the same time to operate the heat pump stably to save energy and dehumidify. This is to suppress the increase in size of the system device.
  • Another object of the present invention is to provide a heat pump in which the refrigerant of the heat radiating section using superoxide pressure such as carbon dioxide and carbon dioxide as a refrigerant is used for heating and cooling the air. The purpose is to improve the heat insulation efficiency of the compressor by reducing the refrigerant pressure and compression ratio, and to reduce the power consumption of the dehumidifying air conditioning system.
  • the dehumidifying air conditioning system uses a heat pump for heating the regenerative air and cooling the supply air, and in addition to a heat radiator for heating the regenerative air in this heat pump cycle.
  • a heat dissipating means for cooling the high-pressure side refrigerant by an external cooling medium is provided.
  • the indoor air that is recirculated through the outside air introduced from the outside and the air-conditioned room that is treated with the treated air is used as the mixed air of the indoor return air, and the air cooler that uses the heat absorption part of the heat pump as the cooling source is recirculated. It is provided in the return air flow path.
  • the regeneration air is heated using the heat pump. Therefore, the power consumption is reduced as compared with the case where heating is performed using only the electric heater. As efficiency increases, power consumption can be further reduced.
  • the indoor return air is cooled by the heat pump's heat absorption part, when performing dehumidification air conditioning in offices, factory production sites, clean rooms, etc. that generate cooling loads throughout the year, a nearly stable cooling load can be obtained throughout the year. As a result, it is possible to operate the heat pump equipment effectively and to obtain an energy saving effect according to its capacity.
  • FIG. 1 is an overall system diagram of a dehumidifying air conditioning system according to one embodiment of the present invention.
  • FIG. 2 is a Th diagram of the heat pump cycle in the embodiment of FIG.
  • FIG. 3 is a graph showing energy consumption of the dehumidifying air conditioning system in the embodiment of FIG.
  • FIG. 4 is an overall system diagram of a dehumidifying air conditioning system according to another embodiment of the present invention.
  • FIG. 5 is a Th diagram of the heat pump cycle in the embodiment of FIG.
  • FIG. 7 is a graph showing energy consumption of the dehumidifying air conditioning system in the embodiment of FIG. 4.
  • FIG. 8 is an overall system diagram of the dehumidifying air conditioning system according to another embodiment of the present invention.
  • FIG. 9 is a Th diagram of the heat pump cycle in the embodiment of FIG.
  • FIG. 10 is a diagram showing a unit configuration in the embodiment of FIG.
  • FIG. 11 is a graph showing power consumption of the dehumidifying air conditioning system in the embodiment of FIG.
  • FIG. 12 is a graph showing annual fluctuations in power consumption of the dehumidifying air conditioning system in the embodiment of FIG.
  • FIG. 13 is an overall system diagram of a dehumidifying air conditioning system according to another embodiment of the present invention.
  • FIG. 1 is an overall system diagram of the dehumidifying air conditioning system according to the present embodiment.
  • FIG. 2 is a diagram showing the heat pump cycle used in this example on a temperature-enthalpy diagram.
  • Fig. 3 is a graph comparing the energy consumption and breakdown of the dehumidifying air conditioning system according to this example with a similar system.
  • a dehumidifying air conditioning system includes a desiccant rotor (hereinafter referred to as a dehumidifying rotor) 10, a heat pump 30, an electric heater 70, a refrigerator 80, and a duct through which treated air and desiccant regenerated air are passed. And power such as fans is also configured.
  • the dehumidifying rotor 10 includes a processing zone 11 that adsorbs moisture from the processing air to dehumidify, a regeneration zone 12 that desorbs moisture from the rotor with high-temperature regeneration air, and a rotor whose temperature has increased in the regeneration zone. Then, dehumidification is performed by sequentially rotating the purge zone 13 for branching and cooling a part of the processing air.
  • the dehumidifying rotor 10 holds a dehumidifying member such as silica gel zeolite.
  • the heat pump 30 heats the rotor regeneration air 95 using a compressor 31 that compresses the refrigerant gas to a supercritical state and raises the temperature, and a refrigerant that is compressed to a supercritical pressure by the compressor 31 and reaches a high temperature.
  • Air heater 32, the outside air radiator 33 that further cools the refrigerant whose temperature has been lowered by the air heater 32 with the outside air for heat dissipation 99, and the refrigerant that exits the outside air heater 33 is reduced from the supercritical state to the two-phase region.
  • the pressure reducing valve 34, the air coolers 35 and 36 for cooling the processing air that is, the indoor return air 94 from the low dew point room (not shown) and the introduced outside air by evaporating the refrigerant liquid of the two-phase refrigerant and the like.
  • Power is also configured, such as the connecting refrigerant pipe 37.
  • a temperature sensor 39 for controlling the capacity of the heat pump 30, and A temperature sensor 79 for detecting the temperature of the rotor regeneration air 95 for controlling the electric heater 70, and a direct expansion type cooling coil provided in the refrigerator 80 for operation control including on / off of the refrigerator 80 A temperature sensor 89 for measuring the temperature of the introduced outside air 91 after passing through 81 is provided. That is, the refrigerator 80 and the direct expansion type cooling coil 81 constitute auxiliary cooling means for precooling the introduced outside air (process air).
  • the outside air 91 introduced for supplying air is first preliminarily cooled by the direct expansion type cooling coil 81 provided in the refrigerator 80. Further, after the precooled outside air is cooled by the air cooler 36 of the heat pump 30, the return air 94 from the low dew point chamber is joined with the air cooled by the air cooler 35 of the heat pump 30. This merged air is partly branched and guided to purge zone 13 as purge air 92, and the rest is guided to treatment zone 11 to reduce humidity and not shown as supply air! Led.
  • the purge air 92 cools the dehumidifying rotor 10 in the purge zone 13.
  • air is supplied only from a sufficiently cooled region, and as a result, air supply with very low humidity can be obtained.
  • Dehumidification The purge air 92 whose temperature has been increased by cooling the rotor 10 joins with the recirculation regenerated air 96 to become regenerated air, and is further heated in turn by the air heater 32 and the electric heater 70 of the heat pump 30 and then the regeneration zone 12 Regeneration, that is, desorption / removal of moisture from the dehumidifying rotor 10 is conducted.
  • a part of the regeneration air 95 from the regeneration zone 12 is branched as described above to join the purge air 92 as the recirculation regeneration air 96, and the rest is exhausted together with the water removed from the dehumidification rotor 10 97. Is discharged outside the machine.
  • the refrigerant compressed to the supercritical pressure by the compressor 31 rises in temperature to state A, and is guided to the air calorie heater 32.
  • the air heater 32 the regenerative air 97 is discharged as the refrigerant drops in temperature. Heated to state B and led to outside air radiator 33.
  • the outside air radiator 33 since the introduced outside air 99 for heat dissipation has a temperature lower than that of the regenerated air flowing into the air heater 32, the refrigerant further falls in temperature and enters the state C. After that, the refrigerant is led to the expansion valve 34 and depressurized to become a state D which is a two-phase state consisting of the refrigerant liquid and the refrigerant vapor force.
  • the refrigerant returns to the room by the latent heat of vaporization of the refrigerant liquid.
  • the air 94 and the introduced outside air 91 are cooled.
  • all the refrigerant liquid evaporates to become a state E on the saturation line, and further becomes a superheated steam state F by heat exchange with the outside air 91, and then is sucked into the compressor 31 and compressed again. Is done.
  • the heat pump 30 has an upper limit of capacity and refrigerant circulation amount based on the maximum amount of heat that can be recovered by the regenerated air 95 in the air heater 32. Therefore, it is considered that the cooling capacity is insufficient when the outside air temperature is high, and the refrigerator 80 is installed in preparation for this.
  • the refrigerator 80 is controlled based on the output of a temperature sensor 89 that measures the temperature of the outside air cooled by the refrigerator 80.
  • the refrigerator 80 is controlled so that the air temperature measured by the temperature sensor 89 becomes a substantially constant value.
  • This air temperature value is determined in accordance with the cooling capacity of the heat pump 30 in an operation state in which the heat pump 30 can supply the maximum amount of heat that can be recovered by the regenerative air 95 in the air heater 32. .
  • the operation of the refrigerator 80 is stopped because the outside air 91 and the indoor return air 94 can be sufficiently cooled only by the cooling capacity of the heat pump 30. In this case, it is not preferable to stop the operation of the heat pump 30 because the heating amount of the air heater 32 becomes zero and the power consumption of the electric heater 70 increases.
  • the air temperature measured by the temperature sensor 89 becomes lower than a predetermined value
  • the operation of the refrigerator 80 is stopped, and the air temperature rises again to maintain the predetermined operating gap at the predetermined value. When the value exceeds (hysteresis), the operation of the refrigerator 80 is resumed.
  • the heat pump 30 is controlled based on the output of the temperature sensor 39 that measures the temperature of the processing air after the indoor return air 94 and the outside air 91 that have been cooled by the air coolers 35 and 36 are mixed. At this time, the temperature of the indoor return air 94 at the inlet of the air cooler 35 is substantially constant, and the temperature of the outside air 91 at the inlet of the air cooler 36 is maintained below a certain temperature by the refrigerator 80 as described above. Therefore, the temperature of the processing air measured by the temperature sensor 39 is controlled to a substantially constant value within the capacity control range of the heat pump 30. This value is determined from the specifications of the supply air supplied from the dehumidification air conditioning system to the low dew point room.
  • the volume of the heat pump 30 is controlled as described above to maintain the temperature of the mixed air substantially constant.
  • the air heating amount in the air heater 32 also changes.
  • the amount of heating by the electric heater 70 is controlled based on the output of the temperature sensor 79 that detects the temperature of the regenerating air 95 from the electric heater 70 toward the regeneration zone 12 of the dehumidifying rotor 10.
  • the dehumidifying capacity in the treatment zone 11 is maintained by maintaining the temperature of the tank at a predetermined value.
  • the heat absorption part of the heat pump cycle that is, the evaporator
  • the heat radiation part is used as the heating source for the regeneration air 95, thereby reducing the load on the electric heater 70.
  • the outside air radiator 33 after the carbon dioxide as a refrigerant heats the regenerative air 95 at the heat radiating part of the heat pump cycle to become the state B, the outside air for heat radiation 99 is further cleaned. Dissipates heat and the temperature drops to state C.
  • the cooling capacity of the air coolers 35 and 36 is QE, which is the enthalpy difference between state D and state F in FIG.
  • this cooling capacity is reduced from the state B to the state D ′ when the outside air radiator 33 is used, and the cooling capacity is changed to the state D′—state.
  • QE which is the enthalpy difference between F. Therefore, it can be seen that the installation of the outside air radiator 33 increases the cooling capacity per unit coolant flow rate by (QE—QE ′), and the electric energy input to the compressor 31 is reduced.
  • the increase in the cooling capacity reduces the cooling load of the precooling refrigerator 80, and energy saving of the entire dehumidifying air conditioning system can be achieved.
  • the temperature of the air flowing into the processing zone 11 of the dehumidifying rotor 10 is controlled by controlling the capacity of the heat pump 30 based on the temperature of the processing air cooled by the air coolers 35 and 36. As a result, low dew point air can be supplied stably.
  • the regeneration air 95 can be heated to a temperature higher than the highest temperature that can be heated by the heat pump. As a result, the moisture of the dehumidifying member is reduced during the regeneration of the rotor, so that it is possible to supply low dew point air such as 50 ° C. Further, a temperature sensor 79 for detecting the temperature of the regeneration air 95 heated by the electric heater 70 is provided, and the heating amount of the electric heater 70 is controlled so that the temperature of the regeneration air 95 becomes a constant value. As a result, even when the operating state of the heat pump 30 changes, it is possible to stabilize the temperature of the regenerative air to secure the dehumidifying capacity in the treatment zone 11 and to supply the low dew point air stably. .
  • a refrigerator 80 for auxiliary cooling of the introduced outside air 91 is installed to make up for the lack of cooling capacity by the heat pump 30. Therefore, the cycle capacity of the heat pump 30 can be set in accordance with the amount of heat in the air heater 32, that is, the amount of heat that can be recovered when the temperature of the regeneration air 95 rises. Therefore, there is an effect that it is possible to prevent a decrease in energy use efficiency due to an excessive heating capacity of the heat pump 30 in the heat radiating portion.
  • each method (1) to (3) has the following configuration.
  • the configuration (1) the regeneration air 95 in the dehumidification system is all heated by the electric heater 70, and the processing air is all cooled by the refrigerator 80, and the heat pump 30 is not used.
  • the configuration (2) the cooling of the processing air is all performed by the evaporator of the heat pump 30 !, the regeneration air 95 is heated by the heat discharge part of the heat pump 30 and the electric heater 70, and the refrigerator 80 is not used. Is the case.
  • Configuration (3) is the configuration of the present embodiment, in which the heat pump 30 and the electric heater 70 are used for heating the regeneration air, and the heat pump 30 and the refrigerator 80 are used for cooling the processing air as described above. It should be noted that the heat pump used in configuration (2) has an outside air cooler 33 installed. And within the scope of the present invention.
  • the total energy consumption in configuration (1) is 100%, and the energy consumption in each configuration is classified and compared for each component device.
  • the energy required for cooling the processing air is greatly increased in the heat pump in (2) compared to the refrigerator in (1).
  • the refrigerant used in the heat pump 30 is a low-theoretical coefficient of performance and is carbon dioxide, whereas the refrigerant is an alternative fluorocarbon refrigerant.
  • the energy consumption of the electric heater 70 is smaller as shown in the figure due to the heating of the regenerated air 95 by the heat pump 30.
  • the energy consumption is lower than in (1). Has been reduced. This indicates that even when the refrigerator 80 is not used, energy can be saved by adopting the heat pump 30 provided with the outside air cooler 33.
  • the power consumption of the heat pump 30 is reduced because the capacity of the heat pump 30 is set according to the amount of heat that can be recovered by the regenerated air 95. Instead, the power consumption of the refrigerator 80 that supplements the cooling heat of the processing air that has become insufficient is generated.
  • the difference between (2) and (3) arises because the electric heater 70 is used for the purpose of heating the regeneration air 95 from the maximum temperature that can be heated by the heat pump 30 to a higher temperature. Not in.
  • the refrigerator 80 since the refrigerator 80 is installed, it is possible to cope with the load fluctuation of the outside air cooling due to the season by controlling the capacity of the refrigerator 80, so that the load of the heat pump 30 is stabilized and the air heater 32 There is an advantage that the heating amount can be secured. For example, when the outside air temperature is low and the cooling load is small, this can be dealt with by turning off the refrigerator 80. [0044] In addition, the start and stop and capacity control of the refrigerator 80 are performed based on the detected value of the temperature of the outside air 91 (the detected value of the temperature sensor 89) from the cooling coil 81 to the air cooler 36, and the outside air cooling load is controlled.
  • the desiccant dehumidifier used in the dehumidification system is a purge type. 1S
  • the effect is obtained. That is, the heat pump heat release part is not limited to the air heater introduced as process air as disclosed in JP-A-2005-34838, but the cooling air is introduced and the refrigerant after heating the process air is used.
  • the cooling capacity can be increased and the energy of the entire system can be saved.
  • FIGS. Fig. 4 is an overall system diagram of the dehumidifying air-conditioning system according to this example
  • Fig. 5 is a diagram showing the heat pump cycle used in this example on the temperature-enthalpy diagram
  • Fig. 6 is the internal heat used in this example.
  • Figure 7 shows the relationship between the temperature efficiency of the exchanger and the power consumption of the dehumidifying air-conditioning system according to this example.
  • Figure 7 shows the energy consumption and its breakdown of the dehumidifying air-conditioning system according to this example. It is the graph compared with the system of.
  • the same components as those in the embodiment of FIG. 1 are denoted by the same reference numerals as in FIG. In the following description, only the differences between the present embodiment and the embodiment of FIG. 1 will be described.
  • the dehumidifying air-conditioning system according to the present embodiment is different from the embodiment of FIG. 1 in that the heat pump 30 is provided without providing the refrigerator 80, the cooling coil 81 attached thereto, and the temperature sensor 89.
  • an internal heat exchanger 38 for exchanging heat between the refrigerant in the supercritical state cooled by the outside air radiator 33 and the refrigerant cooled to the outside air by the air cooler 36 is provided. It is a configuration.
  • the pressure reducing valve 34 is provided on the downstream side of the internal heat exchange.
  • the outside air 91 introduced for supply of air is directly cooled by the air cooler 36 and joined with the indoor return air 94 cooled by the air cooler 35.
  • part of the air is purged air 92 and the rest is dehumidified by the dehumidifying rotor 10 to become air supply 93.
  • the system of purge air 92 and regeneration air 95 is the same as that of the embodiment of FIG.
  • the operation of the heat pump 30 in the present embodiment is indicated by a thick line (4) in FIG.
  • Symbols P to W represent the state of the refrigerant in the same manner as symbols A to F in FIG.
  • the refrigerant whose pressure has been increased to the supercritical pressure by the compressor 31 rises to the state P, passes through the air heater 32 and the outside air radiator 33, and then enters the state R, and then enters the air cooler 36 in the internal heat exchanger 38. Then, heat is applied to the refrigerant vapor toward the compressor 31 and the state S is reached.
  • the refrigerant vapor led to the compressor 31 is heated by the internal heat exchange 38 and the temperature rises.
  • the discharge pressure of the compressor is the same as that in the embodiment of FIG. 1, the discharge temperature of the compressor rises.
  • the discharge temperature is set as shown in FIG. 1 by setting the discharge pressure of the compressor low. It is the same as the embodiment. Therefore, the compression ratio of the compressor 31 is smaller than that of the embodiment of FIG.
  • the efficiency of the compressor increases due to a decrease in the discharge pressure and the pressure ratio, and the power consumption is further reduced.
  • the horizontal axis is the temperature efficiency ⁇ of the internal heat exchanger 38
  • the vertical axis is the power consumption
  • the ratio of the compression ratio and the compressor efficiency that varies with the compression ratio
  • the discharge temperature of the compressor 31 is As a constant value
  • the change in the compression ratio at this time is indicated by a broken line.
  • the temperature efficiency ⁇ increased and the compressor inlet temperature increased, the discharge pressure was determined so that the discharge temperature was constant, and as a result, the discharge pressure and compression ratio were as shown in Fig. 6. It is falling.
  • the result of deriving the compressor efficiency ⁇ from this compression ratio is shown by the dotted line in Fig. 6.
  • the relationship between the compression ratio and the compressor efficiency is shown, for example, in the formula (5.1-4) on page 106 of the NEDD 2001 Survey Report.
  • the compressor efficiency increases as the temperature efficiency of the internal heat exchanger 38 increases.
  • Figure 6 shows the results of recalculating the power consumption of the entire dehumidifying air conditioning system in consideration of this increase in compressor efficiency.
  • the compressor efficiency is increased, and the power consumption is further reduced compared to the power consumption reduction effect due to the increased cooling capacity shown by the thin line.
  • a power consumption reduction effect of about 15% is obtained compared to the case without internal heat exchange.
  • FIG. 7 shows a comparison of the energy required for heating and cooling the air by the dehumidifying air conditioning system according to the present embodiment with the three types of systems compared in FIG. It can be seen that the power consumption is further reduced with respect to the embodiment shown in FIG.
  • the internal heat exchanger 38 is added to the heat pump 30, so that in addition to the generally known effect of increasing the cooling capacity, the compressor efficiency can be improved by reducing the compression ratio.
  • the improvement and the reduction effect of the power consumption accompanying this are acquired. That is, Figure 1
  • the compressor discharge pressure and compression ratio are lower than those of this example, the same compressor discharge temperature can be obtained. This is a major feature of this example, and the heat pump cycle is applied to the dehumidifying air conditioning system. This is a unique effect that occurs when
  • the internal heat exchanger 38 may be added to the heat pump of the dehumidification air conditioning system using the refrigerator 80 as in the embodiment of FIG. It is clear that a similar effect can be obtained. Further, when the refrigerator 80 is not used as in the present embodiment, the system is simplified, and the refrigerant of the heat pump 30 is made of carbon dioxide and carbon dioxide, so that alternative CFCs with a high global warming potential can be used. It is not necessary to use a refrigerant, and it is possible to obtain a dehumidifying air conditioning system that is extremely advantageous in terms of environmental conservation in combination with the effect of reducing energy consumption.
  • the refrigerant of the heat pump 30 dissipates heat at the supercritical pressure in the air heater 32, so that the regeneration air 95 can be heated to a high temperature.
  • the power consumption of the electric heater 70 is reduced and the energy saving effect of the entire dehumidification air conditioning system is reduced. Is obtained!
  • the outside air radiator 33 is installed as a cooling means for the refrigerant after exiting the air heater 32 and is cooled by the outside air 99 for heat radiation.
  • FIG. 8 is an overall system diagram of the dehumidifying air conditioning system according to the present embodiment.
  • FIG. 9 is a diagram showing the heat pump cycle used in this example on the temperature-enthalpy diagram.
  • FIG. 10 is a diagram showing the unit configuration of the present embodiment.
  • FIG. 11 is a graph comparing the energy consumption and the breakdown of the dehumidifying air-conditioning system according to the present embodiment under the summer peak conditions without using a heat pump.
  • FIG. 12 is a graph comparing the monthly average energy consumption according to this example with the case without using a heat pump as in FIG.
  • FIG. 8 differs from FIG. 1 in that a direct expansion type cooling coil (first cooling coil) 81, which is the output of the refrigerator 80, is provided with an on-off valve 83 and a direct cooling system for cooling the indoor return air 94.
  • An expansion cooling coil (second cooling coil) 82 and an on-off valve 84 are provided.
  • the air cooler 36 connected to the heat pump 30 is not provided, and the indoor atmosphere 94 that has passed through the air cooler 35 is further cooled by the refrigerator 80 and supplied to the dehumidifying rotor 10 together with the outside air 91. Yes.
  • the temperature sensor 39 is also used for controlling the refrigerator.
  • Other configurations are the same as those in FIG.
  • the introduced outside air 91 (process air) is cooled by the first cooling coil 81 provided in the refrigerator 80, and the indoor return air 94 from the low dew point room is cooled by the air cooler 35 of the heat pump 30 and It cools with the 2nd cooling coil 82 of the refrigerator 80, and joins these.
  • a part of the combined processing air is branched and guided to the purge zone 13 as purge air 92, and the rest is guided to the processing zone 11 to reduce the humidity, and then the air is supplied as air supply 93. Led to.
  • On-off valve 83 (solenoid valve) for controlling the refrigerant in the middle of the piping from the refrigerator 80 to the first cooling coil 81 1S
  • on-off valve in the middle of the piping from the refrigerator 80 to the second cooling coil 82 84 (solenoid valve) is provided.
  • the purge air 92 cools the dehumidifying rotor 10 in the purge zone 13.
  • power is supplied only in a sufficiently cooled region, and as a result, air supply with very low humidity can be obtained.
  • Removal The purge air 92 whose temperature has been increased by cooling the wet rotor 10 is merged with the recirculation regenerated air 96 to become regenerated air, which is further heated by the air heater 32 of the heat pump 30 and the electric heater 70 in order, and then the regeneration zone 12 Regeneration, that is, desorption / removal of moisture from the dehumidifying rotor 10 is conducted.
  • the regeneration air 95 from the regeneration zone 12 partially diverges as described above and merges with the purge air 92 as the recirculation regeneration air 96, and the rest is exhausted together with the water removed from the dehumidification rotor 97. Is discharged outside the machine.
  • the refrigerant compressed to the supercritical pressure by the compressor 31 rises in temperature to state A and is guided to the air-caloric heater 32.
  • the air heater 32 the regenerative air 95 is heated to the state B while the refrigerant drops in temperature, so that the refrigerant enters the state B and is led to the outside air radiator 33.
  • the introduced outside air 99 for heat dissipation has a lower temperature than the regenerative air 95 flowing into the air heater 32, so that the temperature of the cooling medium further drops to state C.
  • the refrigerant is led to the expansion valve 34 to reduce the pressure, and the refrigerant enters the state D in which the refrigerant liquid and the refrigerant vapor force are in the two-phase state D. Cool 94.
  • the air cooler 35 all the refrigerant liquid evaporates to a state E on the saturation line, and further becomes a superheated steam state F by heat exchange with the indoor return air 94, and then is sucked into the compressor 31 and compressed again. Is done.
  • FIG. 10 shows the unit configuration of the dehumidifying air conditioning system in this embodiment and the installation status of each component of the heat pump cycle.
  • the dehumidifying air conditioning system is mainly composed of a heat exhausting unit 101 and a dehumidifying unit 102.
  • the exhaust heat unit 101 includes a compressor 31, an outside air radiator 33, a fan 38 that allows the outside air radiator 33 to vent the outside air, an expansion valve 34, and the like.
  • the dehumidifier unit 102 is provided with an air heater 32 and an air cooler 35 among the components of the heat pump cycle.
  • the dehumidifying rotor 10 the electric heater 70, the first cooling coil 81 and the second cooling coil 82 of the refrigerator 80 shown in FIG. Duct, fan, etc. are built in the dehumidifier unit 102.
  • the refrigerant pipe 37 forming the heat pump cycle connects the exhaust heat unit 101 and the dehumidifier unit 102.
  • the operation control of the dehumidifying air conditioning system of the present embodiment will be described.
  • the temperature of the processing air supplied to the processing zone 11 of the dehumidification rotor 10 is maintained substantially constant by controlling the capacity of the refrigerator 80.
  • This treated air is a mixture of air obtained by cooling the outside air 91 using the first cooling coil 81 and air obtained by cooling the indoor return air 94 using the air cooler 35 of the heat pump 30 and the second cooling coil 82 of the refrigerator 80. Is. Therefore, even when the cooling load in the air-conditioned room or the temperature of the indoor return air 94 changes, the capacity control of the refrigerator 80 can cope with it.
  • the influence of fluctuations in the outside air temperature and the indoor load on the heat pump cycle is small, and the heat pump is operated at a substantially constant output during operation of this system.
  • the capacity of the heat pump is set so that the cooling capacity of the indoor return air 94 determined by the set temperature of the air-conditioned room set at the time of planning is lower than the cooling capacity of the air cooler 35.
  • FIG. 11 shows the calculation results of the power consumption of the dehumidifying air conditioning system in the summer peak period when the heat pump 30 is not used (the heat pump is not used), that is, the outside air 91 and the indoor return air 94 are cooled only by the refrigerator 80. This compares the case where the regeneration air 95 is heated only by the electric heater 70 and the case where the heat pump 30 is used. As shown in Figure 11, Power consumption is reduced by about 10%.
  • Fig. 12 shows the result of calculating the power consumption for each month of the year using the monthly average temperature in a certain region.
  • the comparison at summer peak shown in Fig. 11 is also shown in Fig. 12.
  • almost constant reduction in power consumption is obtained regardless of the season. This is because the heating and cooling loads by the heat pump are almost constant throughout the year, so that the heat pump can always be operated at its rated capacity.
  • the capacity of the heat pump 30 is set by a value that does not exceed the cooling load of the indoor return air, so that the scale of the device is zJ compared to the case of bearing the cooling load of the outside air. Therefore, it is possible to suppress an increase in initial cost. Furthermore, as the operating state of the heat pump 30 is stabilized, the operating state of the electric heater 70, that is, the heating amount is also stable throughout the year, as shown in Fig. 12 when the heat pump is used, and the capacity of the electric heater 70 is reduced. Thus, it is possible to reduce the size.
  • a refrigerator 80 for cooling the introduced outside air 91 is provided, and the refrigerator 80 is controlled so that the temperature of the processing air supplied to the processing zone 11 of the dehumidifying rotor 10 is constant. Therefore, it is possible to supply stable low-humidity air to the air-conditioned room and stabilize the operation state of the heat pump 30 regardless of fluctuations in the outside air temperature.
  • a second cooling coil 82 for recooling the indoor return air 94 cooled by the air cooler 35 of the heat pump 30 using a part of the cooling capacity of the refrigerator 30 is provided. Since the cooling is performed, it is possible to cope with the fluctuation of the indoor load in addition to the fluctuation of the outside air temperature without changing the operation state of the heat pump 30. [0082] Further, in this embodiment, since the outside air radiator 33 is installed as the heat radiating part of the heat pump 30 in addition to the air heater 32 that heats the regeneration air 95, as shown in FIG. The refrigerant enthalpy at the evaporator inlet drops to the value of state B in Fig. 9 as the value.
  • the entire dehumidifying air conditioning system is composed of a waste heat unit 101 including a compressor 31, an outside air radiator 33, a fan 38, a dehumidifying rotor 10, an air heater 32, an air cooler 35, and the like. Therefore, the exhaust heat unit 101 can be installed outdoors, and the dehumidifier unit 102 can be installed outdoors.
  • the dehumidifier unit 102 circulates the processing air, there is an advantage that installation of waterproofing or the like becomes unnecessary by installing the dehumidifier unit 102 indoors such as a machine room.
  • the lower the refrigerant outlet temperature from the outside air radiator 33 the greater the cooling capacity QE of the air cooler shown in FIG. 9 and the load on the refrigerator 30 is reduced, thereby saving energy. . Therefore, this energy saving effect is increased by installing the exhaust heat unit 101 outdoors and dissipating heat to the outside air whose temperature is lower than that in the machine room. In this embodiment, these advantages can be obtained simultaneously.
  • the refrigerant of the heat pump 30 dissipates heat at a supercritical pressure in the air heater 32, so that the refrigerant continuously passes through the air heater 32. Since heat is dissipated to the regenerative air 95 while the temperature is reduced, counter-flow heat exchange with the regenerative air 95 is possible, and as shown in the comparison of the use of heat pump “Yes” and “No” in FIGS. The power consumption of the electric heater 70 has been reduced and the energy saving effect of the entire dehumidifying air conditioning system has been obtained.
  • carbon dioxide is used as the refrigerant of the heat pump 30 and the critical temperature is relatively low at 31.1 ° C, so that the high pressure side of the cycle easily enters the supercritical state. As a result, the supercritical heat dissipation effect can be obtained.
  • carbon dioxide has a very low global warming potential, which is an environmental problem that does not require refrigerant recovery. A corresponding dehumidifying air conditioning system can be obtained.
  • the outside air radiator 33 is installed as a cooling means for the refrigerant after exiting the air heater 32 and cooled by the outside air 99 for heat dissipation, There is an advantage that water system facilities are unnecessary.
  • a water-cooled refrigerant cooler may be installed in place of the outside air radiator 33 and cooled by the cooling water.
  • cooling can be performed with a smaller heat transfer area compared to the air-cooled outside air radiator 33, so there is an advantage that the refrigerant cooler and the dehumidifying air conditioning system can be downsized. is there.
  • this cooling water may be river water or seawater.
  • the dehumidifying air conditioning system in Fig. 13 has almost the same configuration as in Fig. 8, but the following points are different.
  • the indoor return air 94 recirculated from the inside of the room is cooled by the second cooling coil 82, whereas in this embodiment, the indoor return air 94 and the outside air 91 introduced from the outside merge. After that, the processing air is cooled by the second cooling coil 82.
  • the processing air immediately before flowing into the processing zone 11 of the dehumidifying rotor 10 is cooled by the second cooling coil 82.
  • the rotor inlet air temperature detected by the temperature sensor 39 can be stably controlled near the target value by the capacity control of the refrigerator 80.
  • the dehumidifying performance is influenced by the inlet temperature of the processing air, and in this embodiment, the inlet temperature is stabilized, so that the temperature of the rotor outlet air, that is, the supply air 93 is increased.
  • humidity can be controlled stably near the target value. This is particularly important from the viewpoint of improving production quality in applications where a low humidity environment is required, such as in manufacturing processes for semiconductors and displays.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Drying Of Gases (AREA)

Abstract

In a dehumidifying system using a desiccant dehumidifier, regeneration air at the desiccant dehumidifier is heated by the condenser of a heat pump or a gas cooler, indoor return air re-circulated from an air-conditioned indoor to a dehumidifying rotor is cooled by an evaporator. Since the cooling load of indoor return air is almost stable during operations, the size of a heat pump unit is made small as compared with outdoor air cooling by setting the capacity of the heat pump to match this cooling load to thereby reduce initial costs. Furthermore, the heat pump can be operated at an almost maximum capacity throughout operating periods to provide a stabilized energy saving effect.

Description

明 細 書  Specification
除湿空調システム  Dehumidification air conditioning system
技術分野  Technical field
[0001] 本発明は、デシカント空調機を基本とし、その空気加熱 ·冷却手段としてヒートボン プを備えた除湿空調システムに関する。  TECHNICAL FIELD [0001] The present invention relates to a dehumidifying air conditioning system based on a desiccant air conditioner and provided with a heat pump as its air heating / cooling means.
背景技術  Background art
[0002] 本発明に関わる除湿空調システムとしては、例えば特開 2005— 34838号公報に 記載の技術が挙げられる。本公報には、冷媒回路すなわちヒートポンプと吸放湿手 段としてのデシカントロータを備え、除湿対象空気を前記ヒートポンプの放熱器でカロ 熱し、この空気を前記デシカントロータの放湿領域で加湿し、この空気を前記ヒートポ ンプの吸熱器で冷却しさらにデシカントロータの吸湿領域において除湿する構成とな つている。また本公知例では、ヒートポンプの冷媒は放熱器において超臨界圧力に て放熱を行い、冷媒には二酸ィ匕炭素を用いている。  [0002] As a dehumidifying air-conditioning system according to the present invention, for example, a technique described in JP-A-2005-34838 can be cited. In this publication, a refrigerant circuit, that is, a heat pump and a desiccant rotor as a moisture absorption and desorption means are provided, the air to be dehumidified is heated by a heat radiator of the heat pump, and the air is humidified in the moisture release area of the desiccant rotor. The air is cooled by the heat pump heat sink and dehumidified in the moisture absorption region of the desiccant rotor. In this publicly known example, the heat pump refrigerant dissipates heat at a supercritical pressure in a radiator, and carbon dioxide is used as the refrigerant.
[0003] また本発明で用いるヒートポンプサイクルに関する背景技術としては、特公平 7—1 8602号公報および NEDO平成 13年度調査報告書 51401011— 0—1 二酸化炭 素冷媒等を使用した応用機器に関する調査 P. 105が挙げられる。これら文献には 、高圧冷媒の熱によって低圧冷媒が蒸発及び加熱を受けるようになつている付加的 熱交換器、すなわち内部熱交換器を設置して能力の増大を図った超臨界蒸気圧縮 サイクルが開示されている。  [0003] In addition, as background technology related to the heat pump cycle used in the present invention, Japanese Examined Patent Publication No. 7-18602 and NEDO 2001 Survey Report 51401011-0-1 Survey on applied equipment using carbon dioxide refrigerant, etc. P 105. In these documents, there is an additional heat exchanger in which the low-pressure refrigerant is evaporated and heated by the heat of the high-pressure refrigerant, that is, a supercritical vapor compression cycle in which an internal heat exchanger is installed to increase the capacity. It is disclosed.
[0004] 更に、除湿空調システムとして特開 2005— 201624号公報に開示のものがある。  [0004] Further, there is a dehumidifying air conditioning system disclosed in Japanese Patent Laid-Open No. 2005-201624.
この公報では、除湿装置を、給気路および排気路、吸着材保持機構とヒートポンプか ら構成し、ヒートポンプの低温熱源および高温熱源を、各々、給気路および排気路に おいて吸着剤保持機構よりも上流側に配置している。そして、このヒートポンプの低 温熱源と高温熱源とを有効に利用することによって省エネルギーを図っている。  In this publication, the dehumidifier is composed of an air supply path and an exhaust path, an adsorbent holding mechanism and a heat pump, and the low temperature heat source and the high temperature heat source of the heat pump are respectively connected to the adsorbent holding mechanism in the air supply path and the exhaust path. It is arranged on the upstream side. Energy is saved by effectively using the low and high temperature heat sources of this heat pump.
[0005] また本発明に係る他の従来技術としては、平成 17年度空気調和 '衛生工学会大会 講演論文集 PP. 1233- 1236 図一 1に公知技術が挙げられる。本公知例では、 ヒートポンプの導入により省エネルギーを図ると同時に、除湿ロータの再生空気用と して補助ヒータを設け、再生空気をヒートポンプの高温熱源で加熱した後にこの補助 ヒータでさらに加熱して除湿ロータの再生ゾーンに導く構成としている。 [0005] As another conventional technique according to the present invention, a publicly known technique is shown in Fig. 1 of 2005 Air Conditioning 'Sanitary Engineering Society Conference Proceedings PP. 1233-1236. In this known example, energy is saved by introducing a heat pump, and at the same time, the regeneration air for the dehumidifying rotor is used. Then, an auxiliary heater is provided so that the regeneration air is heated by the high-temperature heat source of the heat pump and then further heated by the auxiliary heater to be led to the regeneration zone of the dehumidifying rotor.
[0006] 上記特開 2005— 34838号公報の従来技術では、一般的な空調に用いる除湿装 置を対象にして 、るため、ヒートポンプで加熱する再生用空気に外気を用いて 、る。 ところが、低湿度、低露点環境が必要な場合には、デシカントロータにパージゾーン を設けた!/、わゆるパージ型デシカント除湿機が用いられ、この場合ヒートポンプでカロ 熱する再生用空気には、ロータのパージすなわち冷却に用いた空気を用いる力 こ の空気は外気よりも温度が高 、ためにヒートポンプ力 の放熱が不十分となって冷却 COPが低下し、消費電力が増大するという課題が生じる。  [0006] In the prior art disclosed in Japanese Patent Laid-Open No. 2005-34838, since a dehumidifying device used for general air conditioning is targeted, outside air is used as regeneration air heated by a heat pump. However, when a low humidity and low dew point environment is required, a purge zone is provided in the desiccant rotor! /, A so-called purge type desiccant dehumidifier is used. Power used to purge or cool the rotor This air has a higher temperature than the outside air, so heat pump power is not sufficiently dissipated, resulting in lower cooling COP and increased power consumption. .
[0007] さらに上記特開 2005— 34838号公報の従来技術では、外部から取り入れた空気 をヒートポンプの放熱部を用いて加熱し、デシカントロータの再生を行っている力 外 気条件の変動に対する配慮がされていないため、再生温度やそれに伴う給気の湿 度が季節によって大きく変動すると共に、加熱量と冷却熱量の配分がヒートポンプサ イタルによって決定するために、外気変動に対する対応が難 、と 、う課題があった 。また、再生用空気の加熱をヒートポンプの放熱部のみで行っているため、再生空気 温度の上限が低ぐ除湿能力もこれに制限されるという課題があった。  [0007] Further, in the prior art disclosed in the above Japanese Patent Laid-Open No. 2005-34838, consideration is given to fluctuations in the external air condition in which the air taken from outside is heated using the heat radiating part of the heat pump to regenerate the desiccant rotor. Therefore, the regeneration temperature and the humidity of the supplied air vary greatly depending on the season, and the distribution of heating and cooling heat is determined by the heat pump site, making it difficult to respond to fluctuations in the outside air. There were challenges. In addition, since the regeneration air is heated only by the heat radiating part of the heat pump, there is a problem that the dehumidifying ability with which the upper limit of the regeneration air temperature is low is limited to this.
[0008] さらに上記特開 2005— 34838号公報の従来技術では、ヒートポンプの冷媒に地 球温暖化係数の小さ!、二酸化炭素を用い、再生空気の加熱を超臨界圧力にて行う としているが、二酸ィ匕炭素をヒートポンプの冷媒に用いて再生用空気の高温加熱を 行う場合は、高温を得るために、圧縮機において冷媒を高圧に圧縮する必要が生じ 、圧縮機の断熱効率や体積効率が低下して消費エネルギーやヒートポンプ装置の容 量の増大を招くと 、う課題があり、上記従来技術ではこの点に対する配慮がされて 、 ない。 [0008] Further, according to the prior art disclosed in the above Japanese Patent Application Laid-Open No. 2005-34838, the global warming potential is small as the refrigerant of the heat pump, carbon dioxide is used, and the regeneration air is heated at supercritical pressure. When high-temperature heating of regeneration air is performed using carbon dioxide as a heat pump refrigerant, it is necessary to compress the refrigerant to a high pressure in the compressor in order to obtain a high temperature. However, the above-mentioned prior art does not give consideration to this point when there is a decrease in the energy consumption and the capacity of the heat pump device increases.
[0009] なお上記 NEDO平成 13年度調査報告書 51401011— 0— 1の従来技術では、圧 縮比の低減によってもたらされる圧縮機の断熱効率の向上および消費エネルギーの 低減、この効果に対して内部熱交換器の設置が大きな役割を果たす点については 言及していない。  [0009] The NEDO 2001 survey report 51401011-0-1 described above improves the heat insulation efficiency of the compressor and reduces the energy consumption caused by the reduction of the compression ratio. It does not mention that the installation of the exchanger plays a major role.
[0010] 更に、特開 2005— 201624号公報の従来技術では、同一の冷凍サイクルによって 、屋外などの外部から給気路に取り入れた供給空気の冷却と、室内から排気路に取 り入れた排出空気 (再生空気)を吸着剤の再生に用いるための加熱を行っている。と ころで、供給空気の冷却熱量は、外気温度の時間変動や季節変動によって大きく変 化する。このため、この変化に合わせてヒートポンプサイクルを稼動させると、排出空 気の加熱量も変動して吸着剤の再生状態、さらにはこの吸着剤によって行われる供 給空気の除湿性能が変動するという課題があった。さらに、前述のようにヒートポンプ の運転状態が外気条件に対する冷却負荷によって大きく変動し、ヒートポンプ設備が 有効に稼動する条件が冷却負荷の大きい状態に限定され、運転期間全体を通して の省エネルギー効果が小さ 、と 、う課題があった。 [0010] Further, in the prior art disclosed in JP 2005-201624, the same refrigeration cycle is used. Cooling of supply air taken into the air supply path from outside, such as outdoors, and heating to use exhaust air (regeneration air) taken into the exhaust path from indoors for regeneration of the adsorbent. On the other hand, the cooling heat quantity of the supply air changes greatly depending on the time fluctuation and seasonal fluctuation of the outside air temperature. For this reason, if the heat pump cycle is operated in accordance with this change, the amount of heating of the exhaust air also fluctuates, and the regeneration state of the adsorbent and further the dehumidification performance of the supply air performed by this adsorbent fluctuate. was there. Furthermore, as described above, the operating state of the heat pump largely fluctuates depending on the cooling load with respect to the outside air condition, and the conditions under which the heat pump equipment operates effectively are limited to the state where the cooling load is large. There was a problem.
[0011] また、排出空気の加熱量の変動を補償するために、電気などを用いた補助ヒータを 設けて排出空気を再加熱する場合は、ヒートポンプの運転状態の変動によって補助 ヒータの負荷が増大して消費エネルギーが増加するという課題が生じる。  [0011] In addition, in order to compensate for fluctuations in the heating amount of the exhaust air, when an auxiliary heater using electricity is provided to reheat the exhaust air, the load on the auxiliary heater increases due to fluctuations in the operating state of the heat pump. As a result, the problem of increased energy consumption arises.
これらの課題に対して上記平成 17年度空気調和'衛生工学会大会講演論文集で は、再生空気をヒートポンプの高温熱源で加熱した後に補助ヒータでさらに加熱する ことにより、再生ゾーンに供給される再生空気の温度を安定させて、吸着剤の再生状 態および供給空気の除湿性能を安定させて!/ヽる。  In response to these issues, in the 2005 Air Conditioning Sanitation Engineering Society Conference Proceedings, the regeneration air heated by the high-temperature heat source of the heat pump and then further heated by the auxiliary heater, the regeneration supplied to the regeneration zone Stabilize the air temperature to stabilize the adsorbent regeneration and dehumidification performance of the supply air! / Speak.
[0012] また冷却負荷の変動に対しては、室内からの排出空気と、除湿ロータで除湿され、 かつ約 65°Cに温度上昇した供給空気を熱交換させる顕熱ロータを設けて、この顕熱 ロータで室内空気と熱交換した供給空気をヒートポンプの低温熱源で冷却する構成 とすることにより外気変動の影響を抑制して、外気条件の時間変動や季節変動にか かわらず、ヒートポンプ設備を有効に稼動させている。ただし本従来技術では、顕熱 ロータが必要となるため、除湿システムが大型化するという課題があった。 [0012] For fluctuations in the cooling load, a sensible heat rotor is provided to exchange heat between the air exhausted from the room and the supply air dehumidified by the dehumidifying rotor and having a temperature increased to about 65 ° C. The structure of cooling the supply air heat-exchanged with indoor air using a heat rotor with a low-temperature heat source of the heat pump suppresses the influence of fluctuations in the outside air, enabling the heat pump equipment to be effective regardless of time fluctuations and seasonal fluctuations in the outside air conditions. Is in operation. However, this conventional technology requires a sensible heat rotor, which increases the size of the dehumidification system.
発明の開示  Disclosure of the invention
[0013] 本発明の目的は、ヒートポンプを用いたデシカント除湿システムにお 、て外気条件 の変動にかかわらず、安定した低湿度空気を供給し、同時にヒートポンプを安定稼動 させて省エネルギーを図ると共に、除湿システム装置の大型化を抑制することにある 。また本発明の他の目的は、二酸ィ匕炭素などを冷媒とした放熱部の冷媒が超臨界圧 力となるヒートポンプを空気の加熱および冷却に用いる場合に、圧縮機出口における 冷媒圧力、圧縮比を低減して圧縮機の断熱効率を向上し、除湿空調システムの消費 電力を低減することにある。 [0013] An object of the present invention is to supply a stable low-humidity air to a desiccant dehumidification system using a heat pump, regardless of fluctuations in the outside air conditions, and at the same time to operate the heat pump stably to save energy and dehumidify. This is to suppress the increase in size of the system device. Another object of the present invention is to provide a heat pump in which the refrigerant of the heat radiating section using superoxide pressure such as carbon dioxide and carbon dioxide as a refrigerant is used for heating and cooling the air. The purpose is to improve the heat insulation efficiency of the compressor by reducing the refrigerant pressure and compression ratio, and to reduce the power consumption of the dehumidifying air conditioning system.
[0014] 上記目的を達成するために、本発明に係る除湿空調システムは、再生空気の加熱 および給気の冷却にヒートポンプを用いると共に、このヒートポンプサイクルに、再生 空気の加熱を行う放熱器に加えて、外部の冷却媒体によって高圧側の冷媒を冷却 する放熱手段を設けたものである。  [0014] In order to achieve the above object, the dehumidifying air conditioning system according to the present invention uses a heat pump for heating the regenerative air and cooling the supply air, and in addition to a heat radiator for heating the regenerative air in this heat pump cycle. Thus, a heat dissipating means for cooling the high-pressure side refrigerant by an external cooling medium is provided.
[0015] また、処理空気を外部から導入した外気と空調対象室内から導いて再循環させる 室内還気の混合空気とし、ヒートポンプの吸熱部を冷却源とする空気冷却器を、再循 環する室内還気の流路に設けたものである。  [0015] In addition, the indoor air that is recirculated through the outside air introduced from the outside and the air-conditioned room that is treated with the treated air is used as the mixed air of the indoor return air, and the air cooler that uses the heat absorption part of the heat pump as the cooling source is recirculated. It is provided in the return air flow path.
[0016] 上記の除湿空調システムによれば、ヒートポンプを用いて再生空気を加熱するので 、電気ヒータのみを用いて加熱した場合に対して消費電力が減少し、外部への放熱 手段によりヒートポンプの冷却効率が上昇することにより、消費電力をさらに減少させ ることができる。また、ヒートポンプの吸熱部で室内還気を冷却するので、年間を通じ て冷却負荷が生じる事務所、工場の生産現場、クリーンルーム等の除湿空調を行う 場合、年間を通してほぼ安定した冷却負荷が得られ、その結果ヒートポンプ設備を有 効に稼動させ、その能力に応じた省エネルギー効果を得ることができる。  [0016] According to the dehumidifying air conditioning system described above, the regeneration air is heated using the heat pump. Therefore, the power consumption is reduced as compared with the case where heating is performed using only the electric heater. As efficiency increases, power consumption can be further reduced. In addition, since the indoor return air is cooled by the heat pump's heat absorption part, when performing dehumidification air conditioning in offices, factory production sites, clean rooms, etc. that generate cooling loads throughout the year, a nearly stable cooling load can be obtained throughout the year. As a result, it is possible to operate the heat pump equipment effectively and to obtain an energy saving effect according to its capacity.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明の一実施例に係る除湿空調システムの全体系統図である。 FIG. 1 is an overall system diagram of a dehumidifying air conditioning system according to one embodiment of the present invention.
[図 2]図 1の実施例におけるヒートポンプサイクルの T—h線図である。  2 is a Th diagram of the heat pump cycle in the embodiment of FIG.
[図 3]図 1の実施例における除湿空調システムの消費エネルギーを示すグラフである  FIG. 3 is a graph showing energy consumption of the dehumidifying air conditioning system in the embodiment of FIG.
[図 4]本発明の他の実施例に係る除湿空調システムの全体系統図である。 FIG. 4 is an overall system diagram of a dehumidifying air conditioning system according to another embodiment of the present invention.
[図 5]図 4の実施例におけるヒートポンプサイクルの T—h線図である。  FIG. 5 is a Th diagram of the heat pump cycle in the embodiment of FIG.
[図 6]図 4の実施例における除湿空調システムの消費電力および圧縮機の圧縮比を [Figure 6] The power consumption of the dehumidifying air conditioning system and the compression ratio of the compressor in the embodiment of FIG.
、内部熱交換器の温度効率との関係で示したグラフである。 It is the graph shown by the relationship with the temperature efficiency of an internal heat exchanger.
[図 7]図 4の実施例における除湿空調システムの消費エネルギーを示すグラフである [図 8]本発明の他の実施例に係る除湿空調システムの全体系統図である。 [図 9]図 8の実施例におけるヒートポンプサイクルの T—h線図である。 FIG. 7 is a graph showing energy consumption of the dehumidifying air conditioning system in the embodiment of FIG. 4. FIG. 8 is an overall system diagram of the dehumidifying air conditioning system according to another embodiment of the present invention. FIG. 9 is a Th diagram of the heat pump cycle in the embodiment of FIG.
[図 10]図 8の実施例におけるユニット構成を表す図である。  FIG. 10 is a diagram showing a unit configuration in the embodiment of FIG.
[図 11]図 8の実施例における除湿空調システムの消費電力を示すグラフである。  FIG. 11 is a graph showing power consumption of the dehumidifying air conditioning system in the embodiment of FIG.
[図 12]図 8の実施例における除湿空調システムの消費電力の年間変動を示すグラフ である。  FIG. 12 is a graph showing annual fluctuations in power consumption of the dehumidifying air conditioning system in the embodiment of FIG.
[図 13]本発明の他の実施例に係る除湿空調システムの全体系統図である。  FIG. 13 is an overall system diagram of a dehumidifying air conditioning system according to another embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] 《実施例 1》  <Example 1>
図 1、図 2および図 3を用いて実施例 1を説明する。図 1は本実施例に係る除湿空調 システムの全体系統図である。図 2は本実施例で用いるヒートポンプサイクルを温度 ーェンタルピー線図上に表した図である。図 3は本実施例に係る除湿空調システム の消費エネルギーおよびその内訳を類似のシステムと比較したグラフである。  Example 1 will be described with reference to FIG. 1, FIG. 2, and FIG. FIG. 1 is an overall system diagram of the dehumidifying air conditioning system according to the present embodiment. FIG. 2 is a diagram showing the heat pump cycle used in this example on a temperature-enthalpy diagram. Fig. 3 is a graph comparing the energy consumption and breakdown of the dehumidifying air conditioning system according to this example with a similar system.
[0019] 図 1に示すように除湿空調システムは、デシカントロータ(以後、除湿ロータと称する ) 10、ヒートポンプ 30、電気ヒータ 70、冷凍機 80およびこれらに処理空気およびデシ カント再生空気を通風させるダクトおよびファンなど力も構成されている。  As shown in FIG. 1, a dehumidifying air conditioning system includes a desiccant rotor (hereinafter referred to as a dehumidifying rotor) 10, a heat pump 30, an electric heater 70, a refrigerator 80, and a duct through which treated air and desiccant regenerated air are passed. And power such as fans is also configured.
[0020] 除湿ロータ 10は、処理空気の湿分を吸着して除湿を行う処理ゾーン 11と、高温の 再生空気でロータから湿分を脱着する再生ゾーン 12と、再生ゾーンで温度上昇した ロータを、処理空気の一部を分岐して冷却するパージゾーン 13を順次回転すること によって除湿を行う。なお除湿ロータ 10には、シリカゲルゃゼオライト等の除湿部材 が保持される。  [0020] The dehumidifying rotor 10 includes a processing zone 11 that adsorbs moisture from the processing air to dehumidify, a regeneration zone 12 that desorbs moisture from the rotor with high-temperature regeneration air, and a rotor whose temperature has increased in the regeneration zone. Then, dehumidification is performed by sequentially rotating the purge zone 13 for branching and cooling a part of the processing air. The dehumidifying rotor 10 holds a dehumidifying member such as silica gel zeolite.
[0021] ヒートポンプ 30は、冷媒ガスを超臨界状態まで圧縮して温度上昇させる圧縮機 31 と、圧縮機 31で超臨界圧力に圧縮され高温となった冷媒を用いてロータ再生空気 9 5を加熱する空気加熱器 32と、空気加熱器 32で温度低下した冷媒を放熱用外気 99 でさらに冷却する外気放熱器 33と、外気加熱器 33から出た冷媒を超臨界状態から 二相域に減圧する減圧弁 34と、二相になった冷媒の冷媒液の蒸発などによって処 理空気すなわち図示しない低露点室内からの室内還気 94と導入した外気を冷却す る空気冷却器 35、 36およびこれらを結ぶ冷媒配管 37など力も構成されて 、る。  [0021] The heat pump 30 heats the rotor regeneration air 95 using a compressor 31 that compresses the refrigerant gas to a supercritical state and raises the temperature, and a refrigerant that is compressed to a supercritical pressure by the compressor 31 and reaches a high temperature. Air heater 32, the outside air radiator 33 that further cools the refrigerant whose temperature has been lowered by the air heater 32 with the outside air for heat dissipation 99, and the refrigerant that exits the outside air heater 33 is reduced from the supercritical state to the two-phase region. The pressure reducing valve 34, the air coolers 35 and 36 for cooling the processing air, that is, the indoor return air 94 from the low dew point room (not shown) and the introduced outside air by evaporating the refrigerant liquid of the two-phase refrigerant and the like. Power is also configured, such as the connecting refrigerant pipe 37.
[0022] さらにダクトの各所には、ヒートポンプ 30の容量制御を行うための温度センサ 39と、 電気ヒータ 70の制御を行うためにロータ再生空気 95の温度を検出する温度センサ 7 9と、冷凍機 80の発停を含む運転制御を行うために冷凍機 80に設けられた直膨式 冷却コイル 81を通過した後の導入外気 91の温度を測定する温度センサ 89が設けら れている。すなわち、この冷凍機 80と直膨式冷却コイル 81とで導入外気 (処理空気) を予備冷却する補助冷却手段を構成して ヽる。 [0022] Further, in each part of the duct, a temperature sensor 39 for controlling the capacity of the heat pump 30, and A temperature sensor 79 for detecting the temperature of the rotor regeneration air 95 for controlling the electric heater 70, and a direct expansion type cooling coil provided in the refrigerator 80 for operation control including on / off of the refrigerator 80 A temperature sensor 89 for measuring the temperature of the introduced outside air 91 after passing through 81 is provided. That is, the refrigerator 80 and the direct expansion type cooling coil 81 constitute auxiliary cooling means for precooling the introduced outside air (process air).
[0023] 次に本実施例に係る除湿空調システムの基本的な動作について説明する。除湿空 調システムでは、給気用として導入した外気 91を最初に冷凍機 80に設けられた直膨 式冷却コイル 81で予備冷却する。さらに、予備冷却された外気はヒートポンプ 30の 空気冷却器 36で冷却された後、低露点室内からの還気 94をヒートポンプ 30の空気 冷却器 35で冷却した空気と合流する。この合流した空気は、一部が分岐してパージ 空気 92としてパージゾーン 13に導かれ、残りは処理ゾーン 11に導かれて湿度を下 げた後、給気として図示しな!ヽ低露点室に導かれる。  Next, the basic operation of the dehumidifying air conditioning system according to the present embodiment will be described. In the dehumidifying air conditioning system, the outside air 91 introduced for supplying air is first preliminarily cooled by the direct expansion type cooling coil 81 provided in the refrigerator 80. Further, after the precooled outside air is cooled by the air cooler 36 of the heat pump 30, the return air 94 from the low dew point chamber is joined with the air cooled by the air cooler 35 of the heat pump 30. This merged air is partly branched and guided to purge zone 13 as purge air 92, and the rest is guided to treatment zone 11 to reduce humidity and not shown as supply air! Led.
[0024] 一方、パージ空気 92は、パージゾーン 13で除湿ロータ 10を冷却する。これにより、 パージ型デシカント除湿機の特徴としてよく知られて 、るように、十分に冷却された領 域のみから給気を行い、結果として非常に湿度の低い給気を得ることができる。除湿 ロータ 10を冷却して温度上昇したパージ空気 92は、再循環再生空気 96と合流して 再生空気となり、さらにヒートポンプ 30の空気加熱器 32、電気ヒータ 70で順次加熱さ れた後に再生ゾーン 12に導かれて再生すなわち除湿ロータ 10からの水分の脱着除 去を行う。  On the other hand, the purge air 92 cools the dehumidifying rotor 10 in the purge zone 13. As a result, as is well known as a feature of the purge-type desiccant dehumidifier, air is supplied only from a sufficiently cooled region, and as a result, air supply with very low humidity can be obtained. Dehumidification The purge air 92 whose temperature has been increased by cooling the rotor 10 joins with the recirculation regenerated air 96 to become regenerated air, and is further heated in turn by the air heater 32 and the electric heater 70 of the heat pump 30 and then the regeneration zone 12 Regeneration, that is, desorption / removal of moisture from the dehumidifying rotor 10 is conducted.
[0025] 再生ゾーン 12からの再生空気 95は、上記のように一部が分岐して再循環再生空 気 96としてパージ空気 92と合流し、残りは除湿ロータ 10から除去した水分とともに排 気 97として機外に排出される。  [0025] A part of the regeneration air 95 from the regeneration zone 12 is branched as described above to join the purge air 92 as the recirculation regeneration air 96, and the rest is exhausted together with the water removed from the dehumidification rotor 10 97. Is discharged outside the machine.
[0026] 次に、このときのヒートポンプ 30の動作について図 2を用いて説明する。本実施例 ではヒートポンプ 30の作動媒体として二酸化炭素を用いており、図 2における記号 A 〜Fは図 2に示した温度ーェンタルピー線図上における冷媒の状態を示しており、曲 線 (細線) Hは飽和線を表して ヽる。  Next, the operation of the heat pump 30 at this time will be described with reference to FIG. In this embodiment, carbon dioxide is used as the working medium of the heat pump 30. Symbols A to F in FIG. 2 indicate the state of the refrigerant on the temperature-enthalpy diagram shown in FIG. Represents a saturation line.
[0027] 圧縮機 31で超臨界圧力に圧縮された冷媒は、温度上昇して状態 Aとなり、空気カロ 熱器 32に導かれる。空気加熱器 32では、冷媒が温度降下しながら再生空気 97をカロ 熱して状態 Bとなり、外気放熱器 33へ導かれる。外気放熱器 33において、導入され る放熱用外気 99は空気加熱器 32に流入する再生空気よりも温度が低いため、冷媒 はさらに温度降下して状態 Cとなる。その後、冷媒は膨張弁 34に導かれて減圧し、冷 媒液と冷媒蒸気力 なる二相状態である状態 Dとなって、空気冷却器 35、 36におい て、冷媒液の蒸発潜熱によって室内還気 94、導入した外気 91をそれぞれ冷却する 。空気冷却器 36内では全ての冷媒液が蒸発して飽和線上の状態 Eとなり、さらに外 気 91との熱交換によって過熱蒸気の状態 Fとなった後に、圧縮機 31に吸引されて再 び圧縮される。 [0027] The refrigerant compressed to the supercritical pressure by the compressor 31 rises in temperature to state A, and is guided to the air calorie heater 32. In the air heater 32, the regenerative air 97 is discharged as the refrigerant drops in temperature. Heated to state B and led to outside air radiator 33. In the outside air radiator 33, since the introduced outside air 99 for heat dissipation has a temperature lower than that of the regenerated air flowing into the air heater 32, the refrigerant further falls in temperature and enters the state C. After that, the refrigerant is led to the expansion valve 34 and depressurized to become a state D which is a two-phase state consisting of the refrigerant liquid and the refrigerant vapor force. In the air coolers 35 and 36, the refrigerant returns to the room by the latent heat of vaporization of the refrigerant liquid. The air 94 and the introduced outside air 91 are cooled. In the air cooler 36, all the refrigerant liquid evaporates to become a state E on the saturation line, and further becomes a superheated steam state F by heat exchange with the outside air 91, and then is sucked into the compressor 31 and compressed again. Is done.
[0028] なお、実際には各熱交換器内では圧力損失があるが、図 2ではその影響を省略し て状態 A、 B、 Cを超臨界領域の等圧線上に示し、状態 D、 E、 Fを二相域およびガス 域の等圧線上に示して 、る。  [0028] In reality, there is a pressure loss in each heat exchanger, but in Fig. 2, the influence is omitted, and states A, B, and C are shown on the isobaric line in the supercritical region, and states D, E, F is shown on the isobaric lines of the two-phase region and gas region.
[0029] 次に本実施例に係る除湿空調システムの運転制御について説明する。本実施例 においてヒートポンプ 30は、空気加熱器 32において再生空気 95が回収可能な最大 熱量に基づいて能力および冷媒循環量の上限が設定されている。従って、外気温度 が高い場合などには冷却能力が不足することが考えられ、これに備えて冷凍機 80が 設置されている。この冷凍機 80は、冷凍機 80によって冷却された外気の温度を計測 する温度センサ 89の出力に基づ 、て制御される。  Next, operation control of the dehumidifying air conditioning system according to the present embodiment will be described. In the present embodiment, the heat pump 30 has an upper limit of capacity and refrigerant circulation amount based on the maximum amount of heat that can be recovered by the regenerated air 95 in the air heater 32. Therefore, it is considered that the cooling capacity is insufficient when the outside air temperature is high, and the refrigerator 80 is installed in preparation for this. The refrigerator 80 is controlled based on the output of a temperature sensor 89 that measures the temperature of the outside air cooled by the refrigerator 80.
[0030] 外気温度が高い場合には、温度センサ 89によって計測される空気温度が略一定 値となるように冷凍機 80が制御される。この空気温度の値は、ヒートポンプ 30が、空 気加熱器 32において再生空気 95が回収可能な最大熱量を供給できるような運転状 態における、ヒートポンプ 30の冷却能力に対応して決められて 、る。  [0030] When the outside air temperature is high, the refrigerator 80 is controlled so that the air temperature measured by the temperature sensor 89 becomes a substantially constant value. This air temperature value is determined in accordance with the cooling capacity of the heat pump 30 in an operation state in which the heat pump 30 can supply the maximum amount of heat that can be recovered by the regenerative air 95 in the air heater 32. .
外気温度が低い場合には、冷却負荷が小さくなり、ヒートポンプ 30の冷却能力のみ で外気 91および室内還気 94の冷却を十分賄えるため冷凍機 80の運転を停止する 。なおこの場合、ヒートポンプ 30の運転を停止することは、空気加熱器 32の加熱量 がゼロとなって電気ヒータ 70の消費電力が増大するため、好ましくない。本実施例で は、温度センサ 89で計測される空気温度が所定の値よりも低くなると冷凍機 80の運 転を停止し、この空気温度が再び上昇して前記所定の値に一定の動作隙間(ヒステリ シス)を加えた値を上回ると冷凍機 80の運転を再開する。 [0031] ヒートポンプ 30は、空気冷却器 35、 36でそれぞれ冷却された室内還気 94と外気 9 1が混合した後の処理空気温度を計測する温度センサ 39の出力に基づいて制御さ れる。このとき、空気冷却器 35の入口における室内還気 94の温度は略一定であり、 空気冷却器 36の入口における外気 91の温度は上述のように冷凍機 80によって一 定温度以下に維持されているので、温度センサ 39によって計測される処理空気の温 度はヒートポンプ 30の容量制御の範囲内でほぼ一定値に制御される。なお、この値 は除湿空調システムから低露点室へ供給する給気の仕様から決定する。 When the outside air temperature is low, the cooling load is reduced, and the operation of the refrigerator 80 is stopped because the outside air 91 and the indoor return air 94 can be sufficiently cooled only by the cooling capacity of the heat pump 30. In this case, it is not preferable to stop the operation of the heat pump 30 because the heating amount of the air heater 32 becomes zero and the power consumption of the electric heater 70 increases. In the present embodiment, when the air temperature measured by the temperature sensor 89 becomes lower than a predetermined value, the operation of the refrigerator 80 is stopped, and the air temperature rises again to maintain the predetermined operating gap at the predetermined value. When the value exceeds (hysteresis), the operation of the refrigerator 80 is resumed. The heat pump 30 is controlled based on the output of the temperature sensor 39 that measures the temperature of the processing air after the indoor return air 94 and the outside air 91 that have been cooled by the air coolers 35 and 36 are mixed. At this time, the temperature of the indoor return air 94 at the inlet of the air cooler 35 is substantially constant, and the temperature of the outside air 91 at the inlet of the air cooler 36 is maintained below a certain temperature by the refrigerator 80 as described above. Therefore, the temperature of the processing air measured by the temperature sensor 39 is controlled to a substantially constant value within the capacity control range of the heat pump 30. This value is determined from the specifications of the supply air supplied from the dehumidification air conditioning system to the low dew point room.
[0032] 外気温度が低ぐ冷凍機 80が前記制御動作によって停止している状態では、上述 のようにヒートポンプ 30を容量制御することにより混合空気の温度をほぼ一定に維持 するため、これに伴って、空気加熱器 32における空気加熱量も変化する。この変化 に対しては、電気ヒータ 70から除湿ロータ 10の再生ゾーン 12へ向う再生空気 95の 温度を検出する温度センサ 79の出力に基づいて電気ヒータ 70による加熱量を制御 することにより、再生空気の温度を所定の値に維持して、処理ゾーン 11における除湿 能力を維持する。  [0032] In the state where the refrigerator 80 whose outside air temperature is low is stopped by the control operation, the volume of the heat pump 30 is controlled as described above to maintain the temperature of the mixed air substantially constant. Thus, the air heating amount in the air heater 32 also changes. For this change, the amount of heating by the electric heater 70 is controlled based on the output of the temperature sensor 79 that detects the temperature of the regenerating air 95 from the electric heater 70 toward the regeneration zone 12 of the dehumidifying rotor 10. The dehumidifying capacity in the treatment zone 11 is maintained by maintaining the temperature of the tank at a predetermined value.
[0033] 以上説明したように本実施例では、ヒートポンプサイクルの吸熱部すなわち蒸発器 を処理空気の冷却源、放熱部を再生空気 95の加熱源として用いることにより、電気ヒ ータ 70の負荷を低減するなどの作用によって消費エネルギーの低減を図って!/、る。 また、外気放熱器 33を設けたことにより、冷媒である二酸ィ匕炭素がヒートポンプサイク ルの放熱部で再生空気 95を加熱して状態 Bとなった後に、放熱用外気 99でさら〖こ 放熱して状態 Cまで温度低下する。すなわち、空気冷却器 35, 36における冷却能力 が図 2における状態 D—状態 F間のェンタルピー差である QEとなっている。この冷却 能力は外気放熱器 33を用いな ヽ場合と比較すると、外気放熱器 33を用いな ヽ場合 には、冷媒が状態 Bから減圧されて状態 D'となり、冷却能力が状態 D'—状態 F間の ェンタルピー差である QE,となる。このため、外気放熱器 33の設置によって単位冷 媒流量当りの冷却能力が (QE— QE' )の分だけ増加し、圧縮機 31に投入する電気 エネルギーが低減されたことがわかる。あるいは、上記冷却能力の増加分によって予 備冷却用の冷凍機 80の冷却負荷が軽減されて、除湿空調システム全体の省エネル ギーを図ることが可能となる。 [0034] また本実施例では、空気冷却器 35、 36で冷却された処理空気の温度に基づいて ヒートポンプ 30の容量制御を行うことにより、除湿ロータ 10の処理ゾーン 11に流入す る空気の温度が安定して、結果として低露点空気の供給を安定して行うことが可能と なる。 [0033] As described above, in this embodiment, the heat absorption part of the heat pump cycle, that is, the evaporator, is used as the cooling source for the processing air, and the heat radiation part is used as the heating source for the regeneration air 95, thereby reducing the load on the electric heater 70. Reduce energy consumption through actions such as reducing! In addition, by providing the outside air radiator 33, after the carbon dioxide as a refrigerant heats the regenerative air 95 at the heat radiating part of the heat pump cycle to become the state B, the outside air for heat radiation 99 is further cleaned. Dissipates heat and the temperature drops to state C. In other words, the cooling capacity of the air coolers 35 and 36 is QE, which is the enthalpy difference between state D and state F in FIG. Compared to the case where the outside air radiator 33 is not used, this cooling capacity is reduced from the state B to the state D ′ when the outside air radiator 33 is used, and the cooling capacity is changed to the state D′—state. QE, which is the enthalpy difference between F. Therefore, it can be seen that the installation of the outside air radiator 33 increases the cooling capacity per unit coolant flow rate by (QE—QE ′), and the electric energy input to the compressor 31 is reduced. Alternatively, the increase in the cooling capacity reduces the cooling load of the precooling refrigerator 80, and energy saving of the entire dehumidifying air conditioning system can be achieved. In this embodiment, the temperature of the air flowing into the processing zone 11 of the dehumidifying rotor 10 is controlled by controlling the capacity of the heat pump 30 based on the temperature of the processing air cooled by the air coolers 35 and 36. As a result, low dew point air can be supplied stably.
[0035] また本実施例では、電気ヒータ 70を設置しているので、再生空気 95をヒートポンプ で加熱可能な最高温度以上に加熱することができる。これにより、ロータ再生時に除 湿部材の湿分が少なくなるため、例えば 50°Cなどの低露点空気の供給が可能と なる。さらに、この電気ヒータ 70によって加熱された再生空気 95の温度を検出する温 度センサ 79を設け、この再生空気 95の温度が一定値となるように電気ヒータ 70の加 熱量を制御する。これにより、ヒートポンプ 30の運転状態が変化した場合でも再生空 気の温度を安定させて処理ゾーン 11での除湿能力を確保し、上記低露点空気の供 給を安定して行うことが可能となる。  In this embodiment, since the electric heater 70 is provided, the regeneration air 95 can be heated to a temperature higher than the highest temperature that can be heated by the heat pump. As a result, the moisture of the dehumidifying member is reduced during the regeneration of the rotor, so that it is possible to supply low dew point air such as 50 ° C. Further, a temperature sensor 79 for detecting the temperature of the regeneration air 95 heated by the electric heater 70 is provided, and the heating amount of the electric heater 70 is controlled so that the temperature of the regeneration air 95 becomes a constant value. As a result, even when the operating state of the heat pump 30 changes, it is possible to stabilize the temperature of the regenerative air to secure the dehumidifying capacity in the treatment zone 11 and to supply the low dew point air stably. .
[0036] また本実施例では、導入した外気 91を補助冷却する冷凍機 80を設置して、ヒート ポンプ 30による冷却能力の不足分を補う構成としている。このため、空気加熱器 32 での加熱量、すなわち再生空気 95が温度上昇する際に回収可能な熱量に対応させ てヒートポンプ 30のサイクルの容量を設定することができる。従って、放熱部において ヒートポンプ 30の加熱能力が過剰となることによるエネルギーの利用効率の低下を 防止できる効果がある。  In the present embodiment, a refrigerator 80 for auxiliary cooling of the introduced outside air 91 is installed to make up for the lack of cooling capacity by the heat pump 30. Therefore, the cycle capacity of the heat pump 30 can be set in accordance with the amount of heat in the air heater 32, that is, the amount of heat that can be recovered when the temperature of the regeneration air 95 rises. Therefore, there is an effect that it is possible to prevent a decrease in energy use efficiency due to an excessive heating capacity of the heat pump 30 in the heat radiating portion.
[0037] この効果について、図 3を用いて説明する。図 3は、本実施例に係る除湿空調シス テムにおける空気の加熱と冷却に要するエネルギーを他の方式と比較したものであ る。(1)〜(3)の各方式は以下のような構成である。構成(1)は除湿システムにおける 再生空気 95の加熱を全て電気ヒータ 70で行 ヽ、処理空気の冷却を全て冷凍機 80 で行い、ヒートポンプ 30を用いない場合を表している。次に構成(2)は処理空気の冷 却を全てヒートポンプ 30の蒸発器で行!、、再生空気 95の加熱はヒートポンプ 30の放 熱部と電気ヒータ 70によって行 、、冷凍機 80は用いな 、場合である。  [0037] This effect will be described with reference to FIG. Fig. 3 compares the energy required for air heating and cooling in the dehumidifying air conditioning system according to this example with other methods. Each method (1) to (3) has the following configuration. In the configuration (1), the regeneration air 95 in the dehumidification system is all heated by the electric heater 70, and the processing air is all cooled by the refrigerator 80, and the heat pump 30 is not used. Next, in the configuration (2), the cooling of the processing air is all performed by the evaporator of the heat pump 30 !, the regeneration air 95 is heated by the heat discharge part of the heat pump 30 and the electric heater 70, and the refrigerator 80 is not used. Is the case.
[0038] 構成(3)は本実施例の構成であり、前述のように再生空気の加熱にヒートポンプ 30 と電気ヒータ 70、処理空気の冷却にヒートポンプ 30と冷凍機 80を用いる場合である 。なお、構成(2)で用いるヒートポンプには外気冷却器 33が設置されていることを想 定しており、本発明の範囲内である。 [0038] Configuration (3) is the configuration of the present embodiment, in which the heat pump 30 and the electric heater 70 are used for heating the regeneration air, and the heat pump 30 and the refrigerator 80 are used for cooling the processing air as described above. It should be noted that the heat pump used in configuration (2) has an outside air cooler 33 installed. And within the scope of the present invention.
[0039] 図 3では、構成(1)における消費エネルギーの総和を 100%として、各構成におけ る消費エネルギーを要素機器ごとに分類して比較して 、る。 (1)と(2)の比較では、 処理空気の冷却に要するエネルギーが(1)の冷凍機に対して(2)のヒートポンプが 大幅に増加して 、るが、これは冷凍機 80で用いて 、る冷媒が代替フロン系の冷媒で あるのに対して、ヒートポンプ 30で用いて 、る冷媒が理論成績係数の低 、二酸化炭 素であること〖こよる。  [0039] In Fig. 3, the total energy consumption in configuration (1) is 100%, and the energy consumption in each configuration is classified and compared for each component device. In the comparison between (1) and (2), the energy required for cooling the processing air is greatly increased in the heat pump in (2) compared to the refrigerator in (1). This is because the refrigerant used in the heat pump 30 is a low-theoretical coefficient of performance and is carbon dioxide, whereas the refrigerant is an alternative fluorocarbon refrigerant.
[0040] しかしながら、(2)ではヒートポンプ 30による再生空気 95の加熱を行っていることに より電気ヒータ 70の消費エネルギーが図に示すように小さぐ結果として(1)よりもェ ネルギー消費量が低減されている。このことは、冷凍機 80を用いない場合でも、外気 冷却器 33を設けたヒートポンプ 30の採用により省エネルギーが図られることを示して いる。  [0040] However, in (2), the energy consumption of the electric heater 70 is smaller as shown in the figure due to the heating of the regenerated air 95 by the heat pump 30. As a result, the energy consumption is lower than in (1). Has been reduced. This indicates that even when the refrigerator 80 is not used, energy can be saved by adopting the heat pump 30 provided with the outside air cooler 33.
[0041] 次に(2)と(3)の比較では、ヒートポンプ 30の能力を、再生空気 95で回収可能な熱 量に合わせて設定しているためにヒートポンプ 30の消費電力が減少し、その換わり に不足となった処理空気の冷却熱量を補う冷凍機 80の消費電力が発生している。な お電気ヒータ 70は、 、ずれも再生空気 95をヒートポンプ 30で加熱可能な最高温度 からさらに高温に加熱する用途に用いられて 、るために(2)と(3)での差異は生じて いない。  [0041] Next, in the comparison between (2) and (3), the power consumption of the heat pump 30 is reduced because the capacity of the heat pump 30 is set according to the amount of heat that can be recovered by the regenerated air 95. Instead, the power consumption of the refrigerator 80 that supplements the cooling heat of the processing air that has become insufficient is generated. The difference between (2) and (3) arises because the electric heater 70 is used for the purpose of heating the regeneration air 95 from the maximum temperature that can be heated by the heat pump 30 to a higher temperature. Not in.
[0042] 全消費エネルギーの比較では、本実施例の構成である(3)が(2)に対してさらに減 少している。これは、(2)においてヒートポンプ 30の能力が冷却負荷に合わせて設定 されているために加熱能力が過剰となり、そのエネルギーを外気に放出することによ るロスと、空気冷却の一部を成績係数の高い冷凍機 80によって行うことによる。なお 、構成(3)で冷凍機 80の冷却負荷を増加させ、ヒートポンプ 30の容量を減少させた 場合は、システムの構成が(1)に近づくために消費エネルギーは増加する。  [0042] In the comparison of total energy consumption, (3), which is the configuration of the present example, is further reduced from (2). This is because, in (2), the capacity of the heat pump 30 is set according to the cooling load, so the heating capacity becomes excessive, the loss due to releasing that energy to the outside air, and part of the air cooling. By using a refrigerator 80 with a high coefficient. When the cooling load of the refrigerator 80 is increased in configuration (3) and the capacity of the heat pump 30 is decreased, the energy consumption increases because the system configuration approaches (1).
[0043] さらに冷凍機 80を設置したことにより、季節による外気冷却の負荷変動に対して、 冷凍機 80の容量制御で対応することができるため、ヒートポンプ 30の負荷が安定し、 空気加熱器 32での加熱量が確保できるという利点がある。例えば外気温度が低く冷 却負荷が小さい場合には、冷凍機 80をオフにすることによって対応できる。 [0044] また、冷凍機 80の発停および容量制御を、冷却コイル 81から空気冷却器 36に向う 外気 91の温度の検出値 (温度センサ 89の検出値)に基づいて行い、外気冷却負荷 のうち、ヒートポンプ 30の最大能力を超える分のみを冷凍機 80で賄うことにより、ヒー トポンプ 30の運転能力を最大限確保して空気加熱器 32での加熱量を最大とし、電 気ヒータ 70の入力を低減することにより、図 3に示される省エネルギー効果を発揮す ることが可能となる。 [0043] Further, since the refrigerator 80 is installed, it is possible to cope with the load fluctuation of the outside air cooling due to the season by controlling the capacity of the refrigerator 80, so that the load of the heat pump 30 is stabilized and the air heater 32 There is an advantage that the heating amount can be secured. For example, when the outside air temperature is low and the cooling load is small, this can be dealt with by turning off the refrigerator 80. [0044] In addition, the start and stop and capacity control of the refrigerator 80 are performed based on the detected value of the temperature of the outside air 91 (the detected value of the temperature sensor 89) from the cooling coil 81 to the air cooler 36, and the outside air cooling load is controlled. Of these, only the amount exceeding the maximum capacity of the heat pump 30 is covered by the refrigerator 80, thereby ensuring the maximum operating capacity of the heat pump 30 and maximizing the amount of heating in the air heater 32, and the input of the electric heater 70. By reducing this, it is possible to achieve the energy saving effect shown in Fig. 3.
[0045] なお本実施例では、除湿システムで用いるデシカント除湿機をパージ型としている 1S 上記特開 2005— 34838号公報に見られるようなパージゾーンを持たない標準 型のデシカント除湿機としても、同様の効果が得られる。すなわち、ヒートポンプの放 熱部を、特開 2005— 34838号公報のように処理空気として導入した空気の加熱器 のみとせず、冷却用の空気を導入して、処理空気を加熱した後の冷媒をさらに温度 降下させるような外気放熱器を設置することによって、冷却能力の増大および装置全 体の省エネルギーが図られる。  [0045] In this embodiment, the desiccant dehumidifier used in the dehumidification system is a purge type. 1S The same applies to a standard type desiccant dehumidifier having no purge zone as seen in JP 2005-34838 A. The effect is obtained. That is, the heat pump heat release part is not limited to the air heater introduced as process air as disclosed in JP-A-2005-34838, but the cooling air is introduced and the refrigerant after heating the process air is used. In addition, by installing an outside air radiator that lowers the temperature, the cooling capacity can be increased and the energy of the entire system can be saved.
[0046] 《実施例 2》  [Example 2]
次に、本発明の他の実施例について、図 4〜図 7を用いて説明する。図 4は本実施 例に係る除湿空調システムの全体系統図、図 5は本実施例で用いるヒートポンプサイ クルを温度ーェンタルピー線図上に表した図、図 6は本実施例で用 、る内部熱交換 器の温度効率と本実施例に係る除湿空調システムの消費電力等の関係を表すダラ フ、図 7は本実施例に係る除湿空調システムの消費エネルギーおよびその内訳を図 3で比較した 3種類のシステムと比較したグラフである。それぞれの図において、図 1 の実施例と同一の構成要素に対しては、図 1と同一の符号を付してある。なお以下の 説明では、本実施例と図 1の実施例との相違点に絞って説明を行う。  Next, another embodiment of the present invention will be described with reference to FIGS. Fig. 4 is an overall system diagram of the dehumidifying air-conditioning system according to this example, Fig. 5 is a diagram showing the heat pump cycle used in this example on the temperature-enthalpy diagram, and Fig. 6 is the internal heat used in this example. Figure 7 shows the relationship between the temperature efficiency of the exchanger and the power consumption of the dehumidifying air-conditioning system according to this example. Figure 7 shows the energy consumption and its breakdown of the dehumidifying air-conditioning system according to this example. It is the graph compared with the system of. In each figure, the same components as those in the embodiment of FIG. 1 are denoted by the same reference numerals as in FIG. In the following description, only the differences between the present embodiment and the embodiment of FIG. 1 will be described.
[0047] 図 4に示すように本実施例に係る除湿空調システムは、図 1の実施例に対して冷凍 機 80およびこれに附属する冷却コイル 81、温度センサ 89を設けずに、ヒートポンプ 3 0のサイクルに、外気放熱器 33で冷却された超臨界状態の冷媒と、空気冷却器 36 で外気を冷却して冷媒蒸気となった冷媒との間で熱交換を行う内部熱交換器 38が 設ける構成としたものである。なお、減圧弁 34は内部熱交 の下流側に設ける 構成としている。 [0048] 本実施例の除湿空調システムでは、給気用として導入した外気 91は、直接空気冷 却器 36で冷却されて、空気冷却器 35で冷却された室内還気 94と合流した後、図 1 の実施例と同様に一部はパージ空気 92となり、残りは除湿ロータ 10で除湿されて給 気 93となる。パージ空気 92および再生空気 95の系統は図 1の実施例と同様である。 As shown in FIG. 4, the dehumidifying air-conditioning system according to the present embodiment is different from the embodiment of FIG. 1 in that the heat pump 30 is provided without providing the refrigerator 80, the cooling coil 81 attached thereto, and the temperature sensor 89. In this cycle, an internal heat exchanger 38 for exchanging heat between the refrigerant in the supercritical state cooled by the outside air radiator 33 and the refrigerant cooled to the outside air by the air cooler 36 is provided. It is a configuration. The pressure reducing valve 34 is provided on the downstream side of the internal heat exchange. [0048] In the dehumidifying air conditioning system of the present embodiment, the outside air 91 introduced for supply of air is directly cooled by the air cooler 36 and joined with the indoor return air 94 cooled by the air cooler 35. As in the embodiment of FIG. 1, part of the air is purged air 92 and the rest is dehumidified by the dehumidifying rotor 10 to become air supply 93. The system of purge air 92 and regeneration air 95 is the same as that of the embodiment of FIG.
[0049] 本実施例におけるヒートポンプ 30の動作を図 5内の太線 (4)で示す。記号 P〜Wは 、図 2における記号 A〜Fと同様に冷媒の状態を表している。圧縮機 31で超臨界圧 力に昇圧された冷媒は温度上昇して状態 Pとなり、空気加熱器 32、外気放熱器 33を 経て状態 Rとなった後、内部熱交換器 38において空気冷却器 36から圧縮機 31に向 ぅ冷媒蒸気に熱を与えて状態 Sとなる。そして、膨張弁 34を通って二相状態 Tとなり、 空気冷却器 35、 36内で飽和蒸気 U、過熱蒸気 Vとなった後に内部熱交翻38にお いてさらに加熱されて温度上昇して状態 Wとなつた後に圧縮機 31の吸込側に吸引さ れる。  [0049] The operation of the heat pump 30 in the present embodiment is indicated by a thick line (4) in FIG. Symbols P to W represent the state of the refrigerant in the same manner as symbols A to F in FIG. The refrigerant whose pressure has been increased to the supercritical pressure by the compressor 31 rises to the state P, passes through the air heater 32 and the outside air radiator 33, and then enters the state R, and then enters the air cooler 36 in the internal heat exchanger 38. Then, heat is applied to the refrigerant vapor toward the compressor 31 and the state S is reached. Then, it enters the two-phase state T through the expansion valve 34, becomes saturated steam U and superheated steam V in the air coolers 35 and 36, and then further heats in the internal heat exchanger 38 and rises in temperature. After reaching W, the air is sucked into the suction side of the compressor 31.
[0050] 本実施例におけるヒートポンプサイクルを、図 5中に点線で示す図 1の実施例のサ イタルと比較すると、外気放熱器 33で放熱した後の内部熱交 において冷媒 が状態 Rから状態 Sに冷却されたことにより、空気冷却器 35、 36における単位冷媒 量当りの冷却能力が図中に示す QE力も QE"に増大している。この効果は、主に冷 媒として二酸ィ匕炭素を用いた冷凍サイクルにおける内部熱交換による冷凍効果の増 大として一般的に知られているものである。  [0050] When the heat pump cycle in this example is compared with the site of the example of Fig. 1 indicated by the dotted line in Fig. 5, the refrigerant changes from state R to state S in the internal heat exchange after heat is radiated by the external air radiator 33. The cooling capacity per unit amount of refrigerant in the air coolers 35 and 36 is also increased to QE "as shown in the figure. This effect is mainly due to the use of carbon dioxide as a cooling medium. This is generally known as an increase in the refrigeration effect due to internal heat exchange in the refrigeration cycle.
[0051] さらに本実施例では、圧縮機 31に導かれる冷媒蒸気が内部熱交 38で加熱さ れて温度上昇している。ここで圧縮機の吐出圧力が図 1の実施例と同じ場合は圧縮 機の吐出温度が上昇するが、本実施例では圧縮機の吐出圧力を低く設定することに より、吐出温度を図 1の実施例と同一としている。従って、圧縮機 31の圧縮比が図 1 の実施例と比較して小さくなつている。ここで、圧縮機の効率は一般的に圧縮比が小 さい方が良いため、本実施例では吐出圧力及び圧力比の低下によって圧縮機の効 率が上昇し、消費電力がさらに低減される。次にこれらの関係を、図 6を用いて説明 する。  Furthermore, in the present embodiment, the refrigerant vapor led to the compressor 31 is heated by the internal heat exchange 38 and the temperature rises. Here, when the discharge pressure of the compressor is the same as that in the embodiment of FIG. 1, the discharge temperature of the compressor rises.In this embodiment, however, the discharge temperature is set as shown in FIG. 1 by setting the discharge pressure of the compressor low. It is the same as the embodiment. Therefore, the compression ratio of the compressor 31 is smaller than that of the embodiment of FIG. Here, since it is generally better for the compressor to have a small compression ratio, in this embodiment, the efficiency of the compressor increases due to a decrease in the discharge pressure and the pressure ratio, and the power consumption is further reduced. Next, these relationships will be described with reference to FIG.
[0052] 図 6は横軸を内部熱交換器 38の温度効率 ε、縦軸を消費電力および圧縮比の比 率と圧縮比に伴って変化する圧縮機効率とし、圧縮機 31の吐出温度を一定値として これらの関係を示したものである。温度効率 ε =0の点は、図 4において内部熱交換 器 38を設置しない場合、すなわち図 3における(2)と同じ構成を表しており、ヒートポ ンプサイクルは T—h線図上において図 1の実施例と同様、図 2あるいは図 5中に破 線で示したサイクルとなる。本実施例におけるヒートポンプ 30の内部熱交^^ 38は、 定格運転時に横軸上に (4)で示す温度効率で動作するものである。 [0052] In FIG. 6, the horizontal axis is the temperature efficiency ε of the internal heat exchanger 38, the vertical axis is the power consumption, the ratio of the compression ratio, and the compressor efficiency that varies with the compression ratio, and the discharge temperature of the compressor 31 is As a constant value These relationships are shown. The point of temperature efficiency ε = 0 represents the same configuration as (2) in Fig. 3 when the internal heat exchanger 38 is not installed in Fig. 4, that is, the heat pump cycle is shown in Fig. 1 on the Th diagram. Similar to the previous example, the cycle indicated by the broken line in FIG. 2 or FIG. The internal heat exchange 38 of the heat pump 30 in this embodiment operates at the temperature efficiency indicated by (4) on the horizontal axis during rated operation.
[0053] まず、前記冷凍効果の増大のみを考慮して、すなわち圧縮機効率は一定値として 除湿空調システム全体の消費電力を算出した結果を細線で示す。内部熱交換器の 温度効率が大きくなると、単位冷媒量当りの冷却能力が増大する効果によって圧縮 機の仕事が軽減されて、システム全体の消費電力が減少して!/、る。  [0053] First, considering only the increase in the refrigeration effect, that is, the compressor efficiency is a constant value, the result of calculating the power consumption of the entire dehumidifying air conditioning system is indicated by a thin line. When the temperature efficiency of the internal heat exchanger increases, the work of the compressor is reduced due to the effect of increasing the cooling capacity per unit refrigerant volume, reducing the overall power consumption of the system! /
[0054] 次に、このときの圧縮比の変化を破線で示す。温度効率 εが増カロして圧縮機の入 口温度が上昇したことに対して、吐出温度が一定となるように吐出圧力を決定した結 果、吐出圧力と圧縮比が図 6に示すように低下している。この圧縮比から圧縮機効率 ηを導いた結果を図 6に点線で示す。なお、圧縮比と圧縮機効率の関係は、例えば 前記 NEDD平成 13年度調査報告書の p. 106の式(5. 1— 4)等に示されている。図 に示すように、圧縮機効率は内部熱交換器 38の温度効率の増加と共に上昇してい る。  Next, the change in the compression ratio at this time is indicated by a broken line. As the temperature efficiency ε increased and the compressor inlet temperature increased, the discharge pressure was determined so that the discharge temperature was constant, and as a result, the discharge pressure and compression ratio were as shown in Fig. 6. It is falling. The result of deriving the compressor efficiency η from this compression ratio is shown by the dotted line in Fig. 6. The relationship between the compression ratio and the compressor efficiency is shown, for example, in the formula (5.1-4) on page 106 of the NEDD 2001 Survey Report. As shown in the figure, the compressor efficiency increases as the temperature efficiency of the internal heat exchanger 38 increases.
[0055] この圧縮機効率の上昇を考慮して除湿空調システム全体の消費電力を再計算した 結果を図 6に太線で示す。内部熱交換器 38を設置したことにより圧縮機効率が上昇 し、細線で示した冷却能力増大による消費電力低減効果に比較して、さらに消費電 力が低減されている。本実施例の動作条件である(4)では、内部熱交^^なしの場 合と比べて約 15%の消費電力低減効果が得られている。  [0055] Figure 6 shows the results of recalculating the power consumption of the entire dehumidifying air conditioning system in consideration of this increase in compressor efficiency. By installing the internal heat exchanger 38, the compressor efficiency is increased, and the power consumption is further reduced compared to the power consumption reduction effect due to the increased cooling capacity shown by the thin line. In the operating condition (4) of this embodiment, a power consumption reduction effect of about 15% is obtained compared to the case without internal heat exchange.
[0056] 本実施例に係る除湿空調システムによる空気の加熱および冷却に要するエネルギ 一を図 3で比較した 3種類のシステムと比較すると図 7のようになる。以上説明した消 費電力の低減効果によって、図 1の実施例に対してさらに消費電力が減少しているこ とがわかる。  FIG. 7 shows a comparison of the energy required for heating and cooling the air by the dehumidifying air conditioning system according to the present embodiment with the three types of systems compared in FIG. It can be seen that the power consumption is further reduced with respect to the embodiment shown in FIG.
[0057] 以上説明したように本実施例では、ヒートポンプ 30に内部熱交換器 38を追加した ことにより、一般に知られている冷却能力の増大効果に加えて、圧縮比の低減による 圧縮機効率の向上とこれに伴う消費電力の低減効果が得られている。すなわち、図 1 の実施例よりも低い圧縮機吐出圧および圧縮比でありながら、同等の圧縮機吐出温 度が得られて 、る点が本実施例の大きな特徴であり、ヒートポンプサイクルを除湿空 調システムに適用した場合に生じる独特の効果である。 [0057] As described above, in this embodiment, the internal heat exchanger 38 is added to the heat pump 30, so that in addition to the generally known effect of increasing the cooling capacity, the compressor efficiency can be improved by reducing the compression ratio. The improvement and the reduction effect of the power consumption accompanying this are acquired. That is, Figure 1 Although the compressor discharge pressure and compression ratio are lower than those of this example, the same compressor discharge temperature can be obtained.This is a major feature of this example, and the heat pump cycle is applied to the dehumidifying air conditioning system. This is a unique effect that occurs when
[0058] なお本実施例では、冷凍機 80を用いていないが、図 1の実施例のような冷凍機 80 を用いた除湿空調システムのヒートポンプに対して内部熱交換器 38を追加しても同 様の効果が得られることは明白である。また本実施例のように冷凍機 80を用いない 場合には、システムが簡素化されるとともに、ヒートポンプ 30の冷媒をニ酸ィ匕炭素と することによって、地球温暖化係数の高い代替フロン等の冷媒用いる必要がなくなり 、消費エネルギーの低減効果と合わせて環境保全の点で極めて有利な除湿空調シ ステムを得ることが可能となる。  [0058] Although the refrigerator 80 is not used in this embodiment, the internal heat exchanger 38 may be added to the heat pump of the dehumidification air conditioning system using the refrigerator 80 as in the embodiment of FIG. It is clear that a similar effect can be obtained. Further, when the refrigerator 80 is not used as in the present embodiment, the system is simplified, and the refrigerant of the heat pump 30 is made of carbon dioxide and carbon dioxide, so that alternative CFCs with a high global warming potential can be used. It is not necessary to use a refrigerant, and it is possible to obtain a dehumidifying air conditioning system that is extremely advantageous in terms of environmental conservation in combination with the effect of reducing energy consumption.
[0059] 以上示した各実施例においては、ヒートポンプ 30の冷媒が空気加熱器 32において 超臨界圧力にて放熱を行って 、るので、再生空気 95を高温に加熱することが可能と なり、図 3または図 7における構成(1)と本発明の実施による(2) (3) (4)との比較に 示されるように電気ヒータ 70の消費電力が減少して除湿空調システム全体の省エネ ルギー効果が得られて!/、る。  [0059] In each of the embodiments described above, the refrigerant of the heat pump 30 dissipates heat at the supercritical pressure in the air heater 32, so that the regeneration air 95 can be heated to a high temperature. As shown in the comparison of the configuration (1) in Fig. 3 or Fig. 7 with the implementation of the present invention (2) (3) (4), the power consumption of the electric heater 70 is reduced and the energy saving effect of the entire dehumidification air conditioning system is reduced. Is obtained!
[0060] さらに以上示した各実施例においては、ヒートポンプ 30の冷媒として、臨界温度が 31. 1°Cと比較的低い二酸ィ匕炭素を用いているので、サイクルの高圧側が容易に超 臨界状態となり、上記超臨界での放熱による効果が得られる。また、二酸化炭素はよ く知られているように地球温暖化係数が極めて小さいため、冷媒回収の必要がなぐ 環境問題に対応した除湿空調システムを得ることができる。  [0060] Further, in each of the above-described embodiments, as the refrigerant of the heat pump 30, carbon dioxide with a relatively low critical temperature of 31.1 ° C is used, so that the high pressure side of the cycle is easily supercritical. Thus, the supercritical heat dissipation effect is obtained. Also, as is well known, carbon dioxide has a very low global warming potential, so it is possible to obtain a dehumidifying air conditioning system that addresses environmental problems that do not require refrigerant recovery.
[0061] さらに以上示した各実施例においては、空気加熱器 32を出た後の冷媒の冷却手 段として外気放熱器 33を設置し、放熱用外気 99によって冷却する構成としたので、 冷却水系統の設備が不要であるという利点がある。  Further, in each of the embodiments described above, the outside air radiator 33 is installed as a cooling means for the refrigerant after exiting the air heater 32 and is cooled by the outside air 99 for heat radiation. There is an advantage that no system facilities are required.
[0062] 一方、冷却水系統が予め整備された工場などに本システムを導入する際は、外気 放熱器 33の代わりに水冷式の冷媒冷却器を設置して、冷却水によって冷却する構 成としても良い。この場合は、冷却水系統が必要となる代わりに、空冷式の外気放熱 器 33に比べて小さな伝熱面積で冷却することができるので、冷媒冷却器および除湿 空調システムを小型化できるという利点がある。なお、この冷却水は河川水や海水で あっても良いことは明白である。 [0062] On the other hand, when introducing this system in a factory or the like where the cooling water system has been prepared in advance, a configuration in which a water-cooled refrigerant cooler is installed instead of the outside air radiator 33 and the cooling water is cooled. Also good. In this case, instead of requiring a cooling water system, cooling can be performed with a smaller heat transfer area compared to the air-cooled outside air radiator 33, so there is an advantage that the refrigerant cooler and the dehumidifying air conditioning system can be downsized. is there. This cooling water is river water or seawater. It is clear that it may be.
[0063] 《実施例 3》  [Example 3]
第 3の実施例を図 8から図 12用いて説明する。図 8は本実施例に係る除湿空調シ ステムの全体系統図である。図 9は本実施例で用いるヒートポンプサイクルを温度一 ェンタルピー線図上に表した図である。図 10は本実施例のユニット構成を示した図 である。また図 11は本実施例に係る除湿空調システムの夏期ピーク条件における消 費エネルギー及びその内訳を、ヒートポンプを用いな 、場合と比較したグラフである。 また図 12は本実施例による月別の平均消費エネルギーを、図 10と同様にヒートボン プを用いな 、場合と比較したグラフである。  A third embodiment will be described with reference to FIGS. FIG. 8 is an overall system diagram of the dehumidifying air conditioning system according to the present embodiment. FIG. 9 is a diagram showing the heat pump cycle used in this example on the temperature-enthalpy diagram. FIG. 10 is a diagram showing the unit configuration of the present embodiment. FIG. 11 is a graph comparing the energy consumption and the breakdown of the dehumidifying air-conditioning system according to the present embodiment under the summer peak conditions without using a heat pump. Also, FIG. 12 is a graph comparing the monthly average energy consumption according to this example with the case without using a heat pump as in FIG.
[0064] 図 8において、図 1と異なる点は、冷凍機 80の出力である直膨式冷却コイル (第 1冷 却コイル) 81に開閉弁 83を設けると共に、室内還気 94を冷却する直膨式冷却コイル (第 2冷却コイル) 82及び開閉弁 84を設けた点である。また、ヒートポンプ 30に接続さ れた空気冷却器 36を設けず、空気冷却器 35を通過した室内環気 94を冷凍機 80で さらに冷却して外気 91と一緒に除湿ロータ 10に供給する構成としている。さらにまた 、温度センサ 89を設ける代わりに温度センサ 39を兼用して冷凍機の制御に用いるよ うにした点である。その他の構成は図 1と同じである。  FIG. 8 differs from FIG. 1 in that a direct expansion type cooling coil (first cooling coil) 81, which is the output of the refrigerator 80, is provided with an on-off valve 83 and a direct cooling system for cooling the indoor return air 94. An expansion cooling coil (second cooling coil) 82 and an on-off valve 84 are provided. Further, the air cooler 36 connected to the heat pump 30 is not provided, and the indoor atmosphere 94 that has passed through the air cooler 35 is further cooled by the refrigerator 80 and supplied to the dehumidifying rotor 10 together with the outside air 91. Yes. Furthermore, instead of providing the temperature sensor 89, the temperature sensor 39 is also used for controlling the refrigerator. Other configurations are the same as those in FIG.
[0065] そこで、本実施例に係る除湿空調システムの基本的な動作について説明する。除 湿空調システムでは、導入した外気 91(処理空気)を冷凍機 80に設けられた第 1冷 却コイル 81で冷却し、低露点室内からの室内還気 94をヒートポンプ 30の空気冷却 器 35および冷凍機 80の第 2冷却コイル 82で冷却し、これらを合流させる。この合流 した処理空気は、前述のように一部が分岐してパージ空気 92としてパージゾーン 13 に導かれ、残りは処理ゾーン 11に導かれて湿度を下げた後、給気 93として被空調室 に導かれる。尚、冷凍機 80から第 1冷却コイル 81までの配管の途中に冷媒を制御す るための開閉弁 83 (電磁弁) 1S 同じく冷凍機 80から第 2冷却コイル 82までの配管の 途中に開閉弁 84 (電磁弁)が設けてある。  [0065] Therefore, the basic operation of the dehumidifying air conditioning system according to the present embodiment will be described. In the dehumidifying air conditioning system, the introduced outside air 91 (process air) is cooled by the first cooling coil 81 provided in the refrigerator 80, and the indoor return air 94 from the low dew point room is cooled by the air cooler 35 of the heat pump 30 and It cools with the 2nd cooling coil 82 of the refrigerator 80, and joins these. As described above, a part of the combined processing air is branched and guided to the purge zone 13 as purge air 92, and the rest is guided to the processing zone 11 to reduce the humidity, and then the air is supplied as air supply 93. Led to. On-off valve 83 (solenoid valve) for controlling the refrigerant in the middle of the piping from the refrigerator 80 to the first cooling coil 81 1S Similarly on-off valve in the middle of the piping from the refrigerator 80 to the second cooling coil 82 84 (solenoid valve) is provided.
[0066] 一方、パージ空気 92は、パージゾーン 13で除湿ロータ 10を冷却する。これにより、 パージ型デシカント除湿機の特徴として良く知られて ヽるように、十分に冷却された 領域のみ力も給気を行い、結果として非常に湿度の低い給気を得ることができる。除 湿ロータ 10を冷却して温度上昇したパージ空気 92は、再循環再生空気 96と合流し て再生空気となり、さらにヒートポンプ 30の空気加熱器 32、電気ヒータ 70で順次カロ 熱された後に再生ゾーン 12に導かれて再生すなわち除湿ロータ 10からの水分の脱 着除去を行う。 On the other hand, the purge air 92 cools the dehumidifying rotor 10 in the purge zone 13. As a result, as is well known as a feature of the purge-type desiccant dehumidifier, power is supplied only in a sufficiently cooled region, and as a result, air supply with very low humidity can be obtained. Removal The purge air 92 whose temperature has been increased by cooling the wet rotor 10 is merged with the recirculation regenerated air 96 to become regenerated air, which is further heated by the air heater 32 of the heat pump 30 and the electric heater 70 in order, and then the regeneration zone 12 Regeneration, that is, desorption / removal of moisture from the dehumidifying rotor 10 is conducted.
[0067] 再生ゾーン 12からの再生空気 95は、上記のように一部が分岐して再循環再生空 気 96としてパージ空気 92と合流し、残りは除湿ロータ 10から除去した水分と共に排 気 97として機外に排出される。  [0067] The regeneration air 95 from the regeneration zone 12 partially diverges as described above and merges with the purge air 92 as the recirculation regeneration air 96, and the rest is exhausted together with the water removed from the dehumidification rotor 97. Is discharged outside the machine.
[0068] 次に、このときのヒートポンプ 30の動作について図 9を用いて説明する。本実施例 ではヒートポンプ 30の作動媒体として二酸化炭素を用いており、図 9における記号 A 〜Fは図 9に示した温度ーェンタルピー線図上における冷媒の状態を示しており、曲 線 Hは飽和線を表して ヽる。  Next, the operation of the heat pump 30 at this time will be described with reference to FIG. In this embodiment, carbon dioxide is used as the working medium of the heat pump 30. Symbols A to F in FIG. 9 indicate the state of the refrigerant on the temperature-enthalpy diagram shown in FIG. 9, and the curve H is the saturation line. It expresses and expresses.
[0069] 圧縮機 31で超臨界圧力に圧縮された冷媒は、温度上昇して状態 Aとなり、空気カロ 熱器 32に導かれる。空気加熱器 32では、冷媒が温度降下しながら再生空気 95をカロ 熱して状態 Bとなり、外気放熱器 33へ導かれる。外気放熱器 33において、導入され る放熱用外気 99は空気加熱器 32に流入する再生空気 95よりも温度が低いため、冷 媒はさらに温度降下して状態 Cとなる。その後、冷媒は膨張弁 34に導かれて減圧し、 冷媒液と冷媒蒸気力もなる二相状態である状態 Dとなって、空気冷却器 35にお 、て 、冷媒液の蒸発潜熱によって室内還気 94を冷却する。空気冷却器 35内では全ての 冷媒液が蒸発して飽和線上の状態 Eとなり、さらに室内還気 94との熱交換によって 過熱蒸気の状態 Fとなった後に、圧縮機 31に吸引されて再び圧縮される。  [0069] The refrigerant compressed to the supercritical pressure by the compressor 31 rises in temperature to state A and is guided to the air-caloric heater 32. In the air heater 32, the regenerative air 95 is heated to the state B while the refrigerant drops in temperature, so that the refrigerant enters the state B and is led to the outside air radiator 33. In the outside air radiator 33, the introduced outside air 99 for heat dissipation has a lower temperature than the regenerative air 95 flowing into the air heater 32, so that the temperature of the cooling medium further drops to state C. Thereafter, the refrigerant is led to the expansion valve 34 to reduce the pressure, and the refrigerant enters the state D in which the refrigerant liquid and the refrigerant vapor force are in the two-phase state D. Cool 94. In the air cooler 35, all the refrigerant liquid evaporates to a state E on the saturation line, and further becomes a superheated steam state F by heat exchange with the indoor return air 94, and then is sucked into the compressor 31 and compressed again. Is done.
[0070] なお、実際には各熱交換器内では圧力損失があるが、図 9ではその影響を省略し て状態 A、 B、 Cを超臨界領域の等圧線上に示し、状態 D、 E、 Fを二相域およびガス 域の等圧線上に示して 、る。  [0070] Actually, there is pressure loss in each heat exchanger, but in Fig. 9, the influence is omitted, and states A, B, and C are shown on the isobaric lines in the supercritical region, and states D, E, F is shown on the isobaric lines of the two-phase region and gas region.
[0071] 図 10は本実施例における除湿空調システムのユニット構成と、ヒートポンプサイクル の各構成要素の設置状況を示している。除湿空調システムは、大きく排熱ユニット 10 1と除湿機ユニット 102から構成されている。排熱ユニット 101には、圧縮機 31と、外 気放熱器 33と、外気放熱器 33に外気を通風させるファン 38と、膨張弁 34などが内 蔵されている。 [0072] また除湿機ユニット 102にはヒートポンプサイクルの構成要素のうち空気加熱器 32 と、空気冷却器 35とが設置されている。なお、図 10には示さないが、図 8に示した除 湿ロータ 10、電気ヒータ 70、冷凍機 80の第 1冷却コイル 81、第 2冷却コイル 82およ びこれらに処理空気と再生空気を通風させるダクトとファン等が除湿機ユニット 102に 内蔵されている。そして、ヒートポンプサイクルを形成する冷媒配管 37が排熱ユニット 101、除湿機ユニット 102を接続している。 FIG. 10 shows the unit configuration of the dehumidifying air conditioning system in this embodiment and the installation status of each component of the heat pump cycle. The dehumidifying air conditioning system is mainly composed of a heat exhausting unit 101 and a dehumidifying unit 102. The exhaust heat unit 101 includes a compressor 31, an outside air radiator 33, a fan 38 that allows the outside air radiator 33 to vent the outside air, an expansion valve 34, and the like. [0072] The dehumidifier unit 102 is provided with an air heater 32 and an air cooler 35 among the components of the heat pump cycle. Although not shown in FIG. 10, the dehumidifying rotor 10, the electric heater 70, the first cooling coil 81 and the second cooling coil 82 of the refrigerator 80 shown in FIG. Duct, fan, etc. are built in the dehumidifier unit 102. The refrigerant pipe 37 forming the heat pump cycle connects the exhaust heat unit 101 and the dehumidifier unit 102.
[0073] 次に、本実施例の除湿空調システムの運転制御にっ 、て説明する。外気温度の変 ィ匕に対しては、冷凍機 80の容量制御により、除湿ロータ 10の処理ゾーン 11に供給さ れる処理空気の温度がほぼ一定に維持される。この処理空気は、外気 91を第 1冷却 コイル 81で冷却した空気と、室内還気 94をヒートポンプ 30の空気冷却器 35と冷凍 機 80の第 2冷却コイル 82とで冷却した空気とを混合したものである。従って、被空調 室内の冷却負荷や室内還気 94の温度が変化した際にも、冷凍機 80の容量制御で 対応することができる。  [0073] Next, the operation control of the dehumidifying air conditioning system of the present embodiment will be described. For changes in the outside air temperature, the temperature of the processing air supplied to the processing zone 11 of the dehumidification rotor 10 is maintained substantially constant by controlling the capacity of the refrigerator 80. This treated air is a mixture of air obtained by cooling the outside air 91 using the first cooling coil 81 and air obtained by cooling the indoor return air 94 using the air cooler 35 of the heat pump 30 and the second cooling coil 82 of the refrigerator 80. Is. Therefore, even when the cooling load in the air-conditioned room or the temperature of the indoor return air 94 changes, the capacity control of the refrigerator 80 can cope with it.
[0074] さらに、外気温度が変動して外気放熱器 33の冷媒出口温度が変化し、その影響で 空気冷却器 35の冷却熱量や、室内還気 94の出口温度が変動した場合に対しても、 冷凍機 80の容量制御で対応することができる。また、このヒートポンプサイクルの変 ィ匕に伴って、空気加熱器 32における再生空気 95の加熱量が変化する。この変化に 対しては、電気ヒータ 70の容量制御によって、温度センサ 79によって計測された再 生空気温度を一定に保持することで対応する。  [0074] Furthermore, even when the outside air temperature fluctuates and the refrigerant outlet temperature of the outside air radiator 33 changes, and the influence causes the cooling heat amount of the air cooler 35 and the outlet temperature of the indoor return air 94 to fluctuate. The capacity of the refrigerator 80 can be controlled. Further, the heating amount of the regeneration air 95 in the air heater 32 changes with the change of the heat pump cycle. This change is dealt with by keeping the regenerated air temperature measured by the temperature sensor 79 constant by controlling the capacity of the electric heater 70.
[0075] 従って、外気温度や室内負荷の変動がヒートポンプサイクルに与える影響は小さく 、本システムの運転中は、ヒートポンプはほぼ一定出力で運転される。なお、ヒートポ ンプの容量は、計画時に設定した被空調室内の設定温度など力 決まる室内還気 9 4の冷却負荷を、空気冷却器 35の冷却能力が下回るように設定されている。  [0075] Accordingly, the influence of fluctuations in the outside air temperature and the indoor load on the heat pump cycle is small, and the heat pump is operated at a substantially constant output during operation of this system. The capacity of the heat pump is set so that the cooling capacity of the indoor return air 94 determined by the set temperature of the air-conditioned room set at the time of planning is lower than the cooling capacity of the air cooler 35.
[0076] 次に、本実施例による省エネルギー効果について図 11、図 12を説明する。図 11 は夏期ピーク期における除湿空調システムの消費電力の計算結果を、ヒートポンプ 3 0を用いな 、場合 (ヒートポンプの使用:無)すなわち、外気 91と室内還気 94の冷却 を冷凍機 80のみで行い、再生空気 95の加熱を電気ヒータ 70のみで行う場合と、ヒー トポンプ 30使用した場合を比較したものである。図 11に示すように、ヒートポンプの導 入により消費電力が約 10%削減されている。 Next, FIG. 11 and FIG. 12 will be described with respect to the energy saving effect according to the present embodiment. Fig. 11 shows the calculation results of the power consumption of the dehumidifying air conditioning system in the summer peak period when the heat pump 30 is not used (the heat pump is not used), that is, the outside air 91 and the indoor return air 94 are cooled only by the refrigerator 80. This compares the case where the regeneration air 95 is heated only by the electric heater 70 and the case where the heat pump 30 is used. As shown in Figure 11, Power consumption is reduced by about 10%.
[0077] また図 12は、年間の各月について、ある地域の月間平均気温を用いて消費電力を 計算した結果である。図 11に示した夏期ピーク時の比較を図 12中に併記した。図 1 2に示すように、消費電力は季節によらずほぼ一定の削減量が得られている。これは 、ヒートポンプによる加熱、冷却の負荷が年間を通じてほぼ一定であるために、ヒート ポンプを定格容量で常時運転可能であることによる。  [0077] Fig. 12 shows the result of calculating the power consumption for each month of the year using the monthly average temperature in a certain region. The comparison at summer peak shown in Fig. 11 is also shown in Fig. 12. As shown in Fig. 12, almost constant reduction in power consumption is obtained regardless of the season. This is because the heating and cooling loads by the heat pump are almost constant throughout the year, so that the heat pump can always be operated at its rated capacity.
[0078] 以上示したように本実施例では、ヒートポンプ 30の空気冷却器 35を、年間を通して 冷却負荷がある室内還気 94の流路に設けたので、ヒートポンプの年間の運転状態が 安定し、図 12に示したように年間を通して省エネルギー効果を得ることが可能となる 。本実施例では、図 11に示した消費電力の削減量が年間を通して得られており、中 間期と冬期には合計の消費電力値が減少するために、削減率は 10%を超える。そ の結果、年間を通しての消費電力削減率もまた 10%以上である。  [0078] As described above, in this embodiment, since the air cooler 35 of the heat pump 30 is provided in the flow path of the indoor return air 94 having a cooling load throughout the year, the annual operation state of the heat pump is stabilized, As shown in Fig. 12, energy saving effects can be obtained throughout the year. In this example, the amount of power consumption reduction shown in Fig. 11 was obtained throughout the year, and the total power consumption value decreased in the middle and winter seasons, so the reduction rate exceeded 10%. As a result, the annual power consumption reduction rate is also over 10%.
[0079] また本実施例によれば、ヒートポンプ 30の容量力 室内還気の冷却負荷を上回ら な 、値で設定されるので、外気の冷却負荷を負担する場合と比較して装置の規模が zJ、さぐ初期コストの上昇を抑制することが可能となる。さらに、ヒートポンプ 30の運転 状態が安定したことにより、図 12におけるヒートポンプの使用「有」の場合に示すよう に電気ヒータ 70の運転状態すなわち加熱量も年間を通して安定し、電気ヒータ 70の 容量を削減して小型化することが可能となる。  [0079] Further, according to the present embodiment, the capacity of the heat pump 30 is set by a value that does not exceed the cooling load of the indoor return air, so that the scale of the device is zJ compared to the case of bearing the cooling load of the outside air. Therefore, it is possible to suppress an increase in initial cost. Furthermore, as the operating state of the heat pump 30 is stabilized, the operating state of the electric heater 70, that is, the heating amount is also stable throughout the year, as shown in Fig. 12 when the heat pump is used, and the capacity of the electric heater 70 is reduced. Thus, it is possible to reduce the size.
さらには、これらの機器が年間を通して有効に稼動することから、初期コストの増加 に対する省エネルギー効果が大きくなる。  In addition, since these devices operate effectively throughout the year, the energy saving effect on the increase in initial costs is increased.
[0080] また本実施例では、導入した外気 91を冷却する冷凍機 80を設け、除湿ロータ 10 の処理ゾーン 11に供給する処理空気の温度が一定となるように冷凍機 80の制御を 行う構成としたので、外気温度の変動に係らず、安定した低湿度空気を被空調室に 供給し、かつヒートポンプ 30の運転状態も安定させることが可能となる。  In this embodiment, a refrigerator 80 for cooling the introduced outside air 91 is provided, and the refrigerator 80 is controlled so that the temperature of the processing air supplied to the processing zone 11 of the dehumidifying rotor 10 is constant. Therefore, it is possible to supply stable low-humidity air to the air-conditioned room and stabilize the operation state of the heat pump 30 regardless of fluctuations in the outside air temperature.
[0081] さらに本実施例では、ヒートポンプ 30の空気冷却器 35によって冷却された室内還 気 94を、冷凍機 30の冷却能力の一部を用いて再冷却する第 2冷却コイル 82を設け て再冷却するので、外気温度の変動に加えて室内負荷の変動に対しても、ヒートポ ンプ 30の運転状態を変化させることなく対応することができる。 [0082] さらに本実施例では、ヒートポンプ 30の放熱部として、再生空気 95を加熱する空気 加熱器 32にカ卩えて外気放熱器 33を設置したので、図 9に示すように空気冷却器 35 すなわち蒸発器入口の冷媒のェンタルピーが図 9における状態 Bの値力 状態じの 値まで低下する。その結果、空気冷却器における冷却能力が、外気放熱器 33を設 置しな 、場合は状態 Bと状態 Fのェンタルピー差から、状態 Dと状態 Fのェンタルピ 一差すなわち図 9に示した QEに増大している。従って、冷凍機 80の冷凍負荷が軽 減され、冷凍機 80の小型化と省エネルギーの効果が得られる。 Furthermore, in the present embodiment, a second cooling coil 82 for recooling the indoor return air 94 cooled by the air cooler 35 of the heat pump 30 using a part of the cooling capacity of the refrigerator 30 is provided. Since the cooling is performed, it is possible to cope with the fluctuation of the indoor load in addition to the fluctuation of the outside air temperature without changing the operation state of the heat pump 30. [0082] Further, in this embodiment, since the outside air radiator 33 is installed as the heat radiating part of the heat pump 30 in addition to the air heater 32 that heats the regeneration air 95, as shown in FIG. The refrigerant enthalpy at the evaporator inlet drops to the value of state B in Fig. 9 as the value. As a result, if the outside air radiator 33 is not installed, the cooling capacity of the air cooler is changed from the enthalpy difference between state B and state F to the difference in enthalpy between state D and state F, that is, QE shown in Fig. 9. It is increasing. Accordingly, the refrigeration load of the refrigerator 80 is reduced, and the effect of reducing the size of the refrigerator 80 and saving energy can be obtained.
[0083] さらに本実施例では、除湿空調システム全体を、圧縮機 31、外気放熱器 33、ファ ン 38などを含む排熱ユニット 101と、除湿ロータ 10、空気加熱器 32、空気冷却器 35 などを含む除湿機ユニット 102から構成したので、排熱ユニット 101を屋外に、除湿 機ユニット 102を屋外に設置することができる。  [0083] Further, in this embodiment, the entire dehumidifying air conditioning system is composed of a waste heat unit 101 including a compressor 31, an outside air radiator 33, a fan 38, a dehumidifying rotor 10, an air heater 32, an air cooler 35, and the like. Therefore, the exhaust heat unit 101 can be installed outdoors, and the dehumidifier unit 102 can be installed outdoors.
[0084] 除湿機ユニット 102は処理空気を循環させる点から、機械室などの屋内に設置する ことにより防水施工などが不要になる利点がある。一方、排熱ユニット 101は、外気放 熱器 33からの冷媒出口温度が低いほど、図 9に示した空気冷却器の冷却能力 QEが 増大して冷凍機 30の負荷が軽減されて省エネルギーとなる。したがって排熱ユニット 101を屋外に設置して機械室内よりも気温の低い外気に放熱することにより、この省 エネルギー効果が大きくなる。本実施例ではこれらの利点を同時に得ることが可能と なっている。  [0084] Since the dehumidifier unit 102 circulates the processing air, there is an advantage that installation of waterproofing or the like becomes unnecessary by installing the dehumidifier unit 102 indoors such as a machine room. On the other hand, in the exhaust heat unit 101, the lower the refrigerant outlet temperature from the outside air radiator 33, the greater the cooling capacity QE of the air cooler shown in FIG. 9 and the load on the refrigerator 30 is reduced, thereby saving energy. . Therefore, this energy saving effect is increased by installing the exhaust heat unit 101 outdoors and dissipating heat to the outside air whose temperature is lower than that in the machine room. In this embodiment, these advantages can be obtained simultaneously.
[0085] また、本実施例においては、ヒートポンプ 30の冷媒が空気加熱器 32において超臨 界圧力にて放熱を行って!/ヽるので、空気加熱器 32にお ヽて冷媒は連続的に温度低 下しながら再生空気 95に放熱するため、再生空気 95との対向流型の熱交換が可能 となり、図 11および図 12におけるヒートポンプの使用「有」「無」の比較に示されるよう に電気ヒータ 70の消費電力が減少して除湿空調システム全体の省エネルギー効果 が得られている。  [0085] Further, in this embodiment, the refrigerant of the heat pump 30 dissipates heat at a supercritical pressure in the air heater 32, so that the refrigerant continuously passes through the air heater 32. Since heat is dissipated to the regenerative air 95 while the temperature is reduced, counter-flow heat exchange with the regenerative air 95 is possible, and as shown in the comparison of the use of heat pump “Yes” and “No” in FIGS. The power consumption of the electric heater 70 has been reduced and the energy saving effect of the entire dehumidifying air conditioning system has been obtained.
[0086] さらに本実施例においては、ヒートポンプ 30の冷媒として、臨界温度が 31. 1°Cと比 較的低 、二酸化炭素を用いて 、るので、サイクルの高圧側が容易に超臨界状態とな り、上記超臨界での放熱による効果が得られる。また、二酸化炭素はよく知られてい るように地球温暖化係数が極めて小さいため、冷媒回収の必要がなぐ環境問題に 対応した除湿空調システムを得ることができる。 [0086] Further, in the present embodiment, carbon dioxide is used as the refrigerant of the heat pump 30 and the critical temperature is relatively low at 31.1 ° C, so that the high pressure side of the cycle easily enters the supercritical state. As a result, the supercritical heat dissipation effect can be obtained. In addition, as is well known, carbon dioxide has a very low global warming potential, which is an environmental problem that does not require refrigerant recovery. A corresponding dehumidifying air conditioning system can be obtained.
[0087] さらに、以上示した各実施例においては、空気加熱器 32を出た後の冷媒の冷却手 段として外気放熱器 33を設置し、放熱用外気 99によって冷却する構成としたので、 冷却水系統の設備が不要であるという利点がある。  [0087] Further, in each of the embodiments described above, since the outside air radiator 33 is installed as a cooling means for the refrigerant after exiting the air heater 32 and cooled by the outside air 99 for heat dissipation, There is an advantage that water system facilities are unnecessary.
一方、冷却水系統が予め整備された工場などに本システムを導入する際は、外気 放熱器 33の代わりに水冷式の冷媒冷却器を設置して、冷却水によって冷却する構 成としても良い。この場合は、冷却水系統が必要となる代わりに、空冷式の外気放熱 器 33に比べて小さな伝熱面積で冷却することができるので、冷媒冷却器および除湿 空調システムを小型化できるという利点がある。なお、この冷却水は河川水や海水で あっても良いことは明白である。  On the other hand, when the present system is introduced in a factory where a cooling water system has been prepared in advance, a water-cooled refrigerant cooler may be installed in place of the outside air radiator 33 and cooled by the cooling water. In this case, instead of requiring a cooling water system, cooling can be performed with a smaller heat transfer area compared to the air-cooled outside air radiator 33, so there is an advantage that the refrigerant cooler and the dehumidifying air conditioning system can be downsized. is there. Obviously, this cooling water may be river water or seawater.
[0088] 《実施例 4》  [0088] Example 4
次に、本発明の第 4の実施例について、図 13を用いて説明する。図 13の除湿空調 システムは、図 8とほぼ同一の構成であるが、次の点が異なる。図 8の実施例では、室 内から再循環させる室内還気 94を第 2冷却コイル 82によって冷却するのに対して、 本実施例では、前記室内還気 94と外部から導入した外気 91が合流した後の処理空 気を第 2冷却コイル 82によって冷却して 、る。  Next, a fourth embodiment of the present invention will be described with reference to FIG. The dehumidifying air conditioning system in Fig. 13 has almost the same configuration as in Fig. 8, but the following points are different. In the embodiment of FIG. 8, the indoor return air 94 recirculated from the inside of the room is cooled by the second cooling coil 82, whereas in this embodiment, the indoor return air 94 and the outside air 91 introduced from the outside merge. After that, the processing air is cooled by the second cooling coil 82.
[0089] 本実施例では、除湿ロータ 10の処理ゾーン 11に流入する直前の処理空気を第 2 冷却コイル 82によって冷却する構成とした。これにより、実施例 3と比較して、温度セ ンサ 39によって検出されるロータ入口空気温度を、冷凍機 80の容量制御によって目 標値近傍に且つ安定に制御できる。前述のように除湿部材を保持した除湿ロータで は、除湿性能は処理空気の入口温度によって影響を受けるため、本実施例ではこの 入口温度が安定することによって、ロータ出口空気すなわち給気 93の温度と湿度が 目標値近傍に且つ安定に制御できるという利点がある。これは、半導体やディスプレ ィなどの製造工程のように低湿度環境が要求される用途において、生産品質の向上 の観点力 特に重要である。  In this embodiment, the processing air immediately before flowing into the processing zone 11 of the dehumidifying rotor 10 is cooled by the second cooling coil 82. As a result, as compared with the third embodiment, the rotor inlet air temperature detected by the temperature sensor 39 can be stably controlled near the target value by the capacity control of the refrigerator 80. As described above, in the dehumidifying rotor holding the dehumidifying member, the dehumidifying performance is influenced by the inlet temperature of the processing air, and in this embodiment, the inlet temperature is stabilized, so that the temperature of the rotor outlet air, that is, the supply air 93 is increased. And there is an advantage that humidity can be controlled stably near the target value. This is particularly important from the viewpoint of improving production quality in applications where a low humidity environment is required, such as in manufacturing processes for semiconductors and displays.
[0090] なお、本実施例におけるヒートポンプサイクル、消費電力および消費電力の年間変 動は第 3の実施例と同様にそれぞれ図 9、図 11および図 12で表され、同様の効果を 得ることができる。また図 10と同様のユニット構成とすることも可能であり、第 3の実施 例と同様の効果を得ることができる。 [0090] It should be noted that the heat pump cycle, the power consumption, and the annual variation of the power consumption in this example are shown in Figs. 9, 11, and 12, respectively, as in the third example, and the same effects can be obtained. it can. A unit configuration similar to that shown in Fig. 10 is also possible. The same effect as the example can be obtained.

Claims

請求の範囲 The scope of the claims
[1] 処理空気の水分を吸収する処理ゾーン、この水分を高温の再生空気に放出する再 生ゾーン、再生ゾーンで温度上昇して水分を放出した領域を冷却用空気で冷却する パージゾーンとを有し、前記除湿ロータが回転することによって順次、前記処理ゾー ン、前記再生ゾーンおよび前記パージゾーンを通過するパージ型デシカント除湿機 と、吸熱部と放熱部を有するヒートポンプと、前記吸熱部を冷却源として前記処理空 気を冷却する冷却器と、前記放熱部を加熱源として前記再生空気を再生ゾーン入口 側で加熱する加熱器とを有する除湿空調システムにおいて、  [1] A treatment zone that absorbs moisture from the treatment air, a regeneration zone that releases this moisture to the high-temperature regeneration air, and a purge zone that cools the area where the moisture has been released due to the temperature rise in the regeneration zone. The dehumidification rotor sequentially rotates, the purge type desiccant dehumidifier passing through the processing zone, the regeneration zone and the purge zone, a heat pump having a heat absorbing portion and a heat radiating portion, and cooling the heat absorbing portion. In a dehumidification air conditioning system having a cooler that cools the processing air as a source, and a heater that heats the regeneration air at the regeneration zone inlet side using the heat dissipating unit as a heating source,
前記放熱部は、前記再生空気に熱を放出する第 1の放熱器と、外部冷却媒体に熱 を放出する第 2の放熱器と、カゝら構成されていることを特徴とする除湿空調システム。  The dehumidifying air conditioning system is characterized in that the heat radiating section includes a first heat radiator that releases heat to the regeneration air, a second heat radiator that releases heat to an external cooling medium, and a fan. .
[2] 請求項 1に記載の除湿空調システムにお ヽて、 [2] In the dehumidifying air-conditioning system according to claim 1,
前記ヒートポンプは、前記第 2の放熱器で放熱した冷媒と、前記吸熱部で吸熱した 冷媒との間で熱交換を行う内部熱交 を設けたことを特徴とする除湿空調システ ム。  The dehumidifying air conditioning system according to claim 1, wherein the heat pump is provided with an internal heat exchange for exchanging heat between the refrigerant radiated by the second radiator and the refrigerant absorbed by the heat absorbing unit.
[3] 請求項 1又は 2のいずれかに記載の除湿空調システムにおいて、 [3] In the dehumidifying air conditioning system according to claim 1 or 2,
Figure imgf000024_0001
ヽて冷却された前記処理空気の温度を検出して、前記ヒートポンプの 容量制御を行う制御装置を設けたことを特徴とする除湿空調システム
Figure imgf000024_0001
A dehumidifying air-conditioning system comprising a control device that detects the temperature of the treated air that has been cooled and controls the capacity of the heat pump.
[4] 請求項 1又は 2の 、ずれかに記載の除湿空調システムにお ヽて、 [4] In the dehumidifying air-conditioning system according to any one of claims 1 and 2,
前記再生空気を前記第 1の放熱器において加熱した後に、さらに加熱する再加熱 手段を設け、この再加熱手段力も前記デシカント除湿機の再生ゾーンに、再生空気 を導く構成としたことを特徴とする除湿空調システム。  After the regeneration air is heated in the first radiator, reheating means for heating is further provided, and this reheating means force is also configured to guide the regeneration air to the regeneration zone of the desiccant dehumidifier. Dehumidification air conditioning system.
[5] 請求項 3に記載の除湿空調システムにお ヽて、 [5] In the dehumidifying air conditioning system according to claim 3,
前記再生空気を前記第 1の放熱器において加熱した後に、さらに加熱する再加熱 手段を設け、この再加熱手段力も前記デシカント除湿機の再生ゾーンに、再生空気 を導く構成としたことを特徴とする除湿空調システム。  After the regeneration air is heated in the first radiator, reheating means for heating is further provided, and this reheating means force is also configured to guide the regeneration air to the regeneration zone of the desiccant dehumidifier. Dehumidification air conditioning system.
[6] 請求項 4に記載の除湿空調システムにお ヽて、 [6] In the dehumidifying air-conditioning system according to claim 4,
前記再加熱手段で加熱された再生空気の温度を検出して、この再加熱手段の加 熱量を調節する制御装置を設けたことを特徴とする除湿空調システム。 A dehumidifying air-conditioning system comprising a control device for detecting a temperature of regenerated air heated by the reheating means and adjusting a heating amount of the reheating means.
[7] 請求項 5に記載の除湿空調システムにお ヽて、 [7] In the dehumidifying air-conditioning system according to claim 5,
前記再加熱手段で加熱された再生空気の温度を検出して、この再加熱手段の加 熱量を調節する制御装置を設けたことを特徴とする除湿空調システム。  A dehumidifying air-conditioning system comprising a control device for detecting a temperature of regenerated air heated by the reheating means and adjusting a heating amount of the reheating means.
[8] 請求項 6に記載の除湿空調システムにお ヽて、 [8] In the dehumidifying air-conditioning system according to claim 6,
前記処理空気を冷却する補助冷却手段を設けたことを特徴とする除湿空調システム  A dehumidifying air-conditioning system comprising auxiliary cooling means for cooling the processing air
[9] 請求項 7に記載の除湿空調システムにお ヽて、 [9] In the dehumidifying air-conditioning system according to claim 7,
前記処理空気を冷却する補助冷却手段を設けたことを特徴とする除湿空調システム  A dehumidifying air-conditioning system comprising auxiliary cooling means for cooling the processing air
[10] 請求項 8に記載の除湿空調システムにお ヽて、 [10] In the dehumidifying air-conditioning system according to claim 8,
前記補助冷却手段によって冷却された処理空気の温度を検出する温度センサを 設け、この温度センサ力もの出力を用いて前記補助冷却手段の発停または容量制 御を行う制御装置を設けたことを特徴とする除湿空調システム。  A temperature sensor for detecting the temperature of the processing air cooled by the auxiliary cooling means is provided, and a control device for starting / stopping or controlling the capacity of the auxiliary cooling means using an output of the temperature sensor power is provided. And dehumidifying air conditioning system.
[11] 請求項 9に記載の除湿空調システムにおいて、 [11] In the dehumidifying air-conditioning system according to claim 9,
前記補助冷却手段によって冷却された処理空気の温度を検出する温度センサを 設け、この温度センサ力もの出力を用いて前記補助冷却手段の発停または容量制 御を行う制御装置を設けたことを特徴とする除湿空調システム。  A temperature sensor for detecting the temperature of the processing air cooled by the auxiliary cooling means is provided, and a control device for starting / stopping or controlling the capacity of the auxiliary cooling means using an output of the temperature sensor power is provided. And dehumidifying air conditioning system.
[12] 請求項 10に記載の除湿空調システムにおいて、 [12] In the dehumidifying air-conditioning system according to claim 10,
前記外部冷却媒体が空気であることを特徴とする除湿空調システム。  The dehumidifying air conditioning system, wherein the external cooling medium is air.
[13] 請求項 11に記載の除湿空調システムにお 、て、 [13] In the dehumidifying air-conditioning system according to claim 11,
前記外部冷却媒体が空気であることを特徴とする除湿空調システム。  The dehumidifying air conditioning system, wherein the external cooling medium is air.
[14] 請求項 12に記載の除湿空調システムにおいて、 [14] In the dehumidifying air-conditioning system according to claim 12,
前記外部冷却媒体が冷却水であることを特徴とする除湿空調システム。  The dehumidifying air conditioning system, wherein the external cooling medium is cooling water.
[15] 請求項 13に記載の除湿空調システムにおいて、 [15] In the dehumidifying air-conditioning system according to claim 13,
前記外部冷却媒体が冷却水であることを特徴とする除湿空調システム。  The dehumidifying air conditioning system, wherein the external cooling medium is cooling water.
[16] 請求項 14に記載の除湿空調システムにお ヽて、 [16] In the dehumidifying air-conditioning system according to claim 14,
前記ヒートポンプの冷媒が、前記放熱部において超臨界圧力にて放熱を行うことを 特徴とする除湿空調システム。 The dehumidifying air conditioning system characterized in that the refrigerant of the heat pump radiates heat at a supercritical pressure in the heat radiating section.
[17] 請求項 15に記載の除湿空調システムにお 、て、 [17] In the dehumidifying air-conditioning system according to claim 15,
前記ヒートポンプの冷媒が、前記放熱部において超臨界圧力にて放熱を行うことを 特徴とする除湿空調システム。  The dehumidifying air conditioning system characterized in that the refrigerant of the heat pump radiates heat at a supercritical pressure in the heat radiating section.
[18] 請求項 16に記載の除湿空調システムにお 、て、 [18] In the dehumidifying air-conditioning system according to claim 16,
前記ヒートポンプの冷媒がニ酸ィ匕炭素であることを特徴とする除湿空調システム。  The dehumidifying air conditioning system characterized in that the refrigerant of the heat pump is carbon dioxide.
[19] 請求項 17に記載の除湿空調システムにお 、て、 [19] In the dehumidifying air-conditioning system according to claim 17,
前記ヒートポンプの冷媒がニ酸ィ匕炭素であることを特徴とする除湿空調システム。  The dehumidifying air conditioning system characterized in that the refrigerant of the heat pump is carbon dioxide.
[20] 除湿ロータが、処理空気の水分を吸収する処理ゾーンと、この水分を高温の再生 空気に放出する再生ゾーンとを有し、前記除湿ロータが回転することによって、前記 処理ゾーンと前記再生ゾーンとを順次通過するデシカント除湿機と、吸熱部と放熱部 を有するヒートポンプと、前記吸熱部を冷却源として前記処理空気を冷却する空気冷 却器と、前記放熱部を加熱源として前記再生空気を再生ゾーン入口側で加熱する空 気加熱器とを有する除湿空調システムにお!/ヽて、 [20] The dehumidification rotor has a treatment zone that absorbs moisture of the treatment air and a regeneration zone that releases this moisture to the high-temperature regeneration air, and the treatment zone and the regeneration are obtained by rotating the dehumidification rotor. A desiccant dehumidifier that sequentially passes through a zone, a heat pump having an endothermic part and a heat radiating part, an air cooler that cools the processing air using the endothermic part as a cooling source, and the regeneration air using the radiating part as a heating source. A dehumidifying air conditioning system with an air heater that heats the air at the regeneration zone entrance! /
前記処理空気を、外部から導入した外気と、空調対象とする室内から導いて再循 環させる室内還気の混合空気とし、前記吸熱部を冷却源とする空気冷却器を、前記 室内還気の流路に設けたことを特徴とする除湿空調システム。  The treated air is a mixed air of outside air introduced from the outside and indoor return air to be recirculated by being guided from the room to be air-conditioned, and an air cooler using the heat absorption part as a cooling source A dehumidifying air conditioning system provided in a flow path.
[21] 除湿ロータが、処理空気の水分を吸収する処理ゾーンと、この水分を高温の再生 空気に放出する再生ゾーンと、再生ゾーンで温度上昇して水分を放出した領域を冷 却用空気で冷却するパージゾーンとを有し、前記除湿ロータが回転することによって 順次、前記処理ゾーン、前記再生ゾーンおよび前記パージゾーンとを通過するパー ジ型デシカント除湿機と、吸熱部と放熱部を有するヒートポンプと、前記吸熱部を冷 却源として前記処理空気を冷却する空気冷却器と、前記放熱部を加熱源として前記 再生空気を再生ゾーン入口側で加熱する空気加熱器を有する除湿空調システム〖こ おいて、 [21] A treatment zone in which the dehumidification rotor absorbs moisture from the treatment air, a regeneration zone that releases this moisture to the high-temperature regeneration air, and a region where the moisture is released due to a temperature rise in the regeneration zone are And a purge type desiccant dehumidifier that sequentially passes through the treatment zone, the regeneration zone and the purge zone as the dehumidifying rotor rotates, and a heat pump having a heat absorbing portion and a heat radiating portion. An air cooler that cools the processing air using the heat absorption part as a cooling source, and an air heater that heats the regeneration air on the regeneration zone inlet side using the heat dissipation part as a heating source. And
前記処理空気を、外部から導入した導入外気と、空調対象とする室内から導いて 再循環させる室内還気の混合空気とし、前記空気冷却器を、前記室内還気の流路 に設けると共に、前記導入外気を、前記室内還気との混合部の上流側で冷却する冷 凍機を設けたことを特徴とする除湿空調システム。 The treated air is a mixed air of introduced outside air introduced from the outside and indoor return air that is guided and recirculated from the room to be air-conditioned, and the air cooler is provided in the flow path of the indoor return air, and A dehumidifying air conditioning system comprising a refrigerator that cools the introduced outside air upstream of the mixing section with the indoor return air.
[22] 請求項 21に記載の除湿空調システムにお 、て、 [22] In the dehumidifying air-conditioning system according to claim 21,
前記冷凍機は、前記導入外気を前記室内還気との混合部の上流側で冷却すると 共に、前記ヒートポンプの吸熱部を冷却源とした前記空気冷却器によって冷却された 室内還気を、前記導入外気との合流前または合流後に再冷却することを特徴とする 除湿空調システム。  The refrigerator cools the introduced outside air upstream of the mixing portion with the indoor return air and introduces the indoor return air cooled by the air cooler using the heat absorption portion of the heat pump as a cooling source. A dehumidifying air conditioning system characterized by recooling before or after merging with outside air.
[23] 請求項 22に記載の除湿空調システムにお 、て、 [23] In the dehumidifying air-conditioning system according to claim 22,
前記ヒートポンプの放熱部は、前記再生空気の加熱源として再生空気に放熱する 空気加熱器と、外部冷却媒体に熱を放出する外気放熱器と、から構成されていること を特徴とする除湿空調システム。  The heat dissipation part of the heat pump is composed of an air heater that radiates heat to the regeneration air as a heating source of the regeneration air, and an outside air radiator that releases heat to an external cooling medium. .
[24] 除湿ロータが、処理空気の水分を吸収する処理ゾーンと、この水分を高温の再生 空気に放出する再生ゾーンとを有し、前記除湿ロータが回転することによって、前記 処理ゾーンと前記再生ゾーンとを順次通過するデシカント除湿機と、吸熱部と放熱部 を有するヒートポンプと、前記吸熱部を冷却源として前記処理空気を冷却する冷却器 とを有する除湿空調システムにお 、て、 [24] The dehumidification rotor has a treatment zone that absorbs moisture of the treatment air and a regeneration zone that releases this moisture to the high-temperature regeneration air, and the treatment zone and the regeneration are obtained by rotating the dehumidification rotor. In a dehumidifying air conditioning system comprising a desiccant dehumidifier that sequentially passes through a zone, a heat pump having a heat absorbing portion and a heat radiating portion, and a cooler that cools the processing air using the heat absorbing portion as a cooling source,
前記放熱部は、前記再生空気を再生ゾーン入口側で加熱する空気加熱器と、外 部冷却媒体に熱を放出する外気放熱器とから構成され、さらに装置全体を、前記除 湿ロータ、ヒートポンプの吸熱部すなわち冷却器、ヒートポンプの空気加熱器などから なる除湿機ユニットと、前記圧縮機と前記第 2の放熱器など力もなる排熱ユニットとこ れらを結ぶ冷媒配管などから構成したことを特徴とする除湿空調システム。  The heat radiating section is composed of an air heater that heats the regeneration air on the regeneration zone inlet side, and an outside air radiator that releases heat to an external cooling medium. Further, the entire apparatus includes the dehumidification rotor and the heat pump. A dehumidifier unit consisting of a heat absorption part, that is, a cooler, an air heater of a heat pump, and the like, and a heat exhaust unit such as the compressor and the second radiator, and a refrigerant pipe connecting them. Dehumidifying air conditioning system.
[25] 請求項 24に記載の除湿空調システムにお 、て、 [25] In the dehumidifying air-conditioning system according to claim 24,
前記除湿機ユニットを屋内に、前記排熱ユニットを屋外にそれぞれ設置したことを 特徴とする除湿空調システム。  The dehumidifying air conditioning system characterized in that the dehumidifier unit is installed indoors and the exhaust heat unit is installed outdoors.
[26] 請求項 24に記載の除湿空調システムにお 、て、 [26] In the dehumidifying air-conditioning system according to claim 24,
前記外部冷却媒体が空気又は冷却水であることを特徴とする除湿空調システム。  The dehumidifying air conditioning system, wherein the external cooling medium is air or cooling water.
[27] 請求項 24に記載の除湿空調システムにお ヽて、 [27] In the dehumidifying air-conditioning system according to claim 24,
前記ヒートポンプの冷媒が、前記放熱部において超臨界圧力にて放熱を行うことを 特徴とする除湿空調システム。  The dehumidifying air conditioning system characterized in that the refrigerant of the heat pump radiates heat at a supercritical pressure in the heat radiating section.
[28] 請求項 27に記載の除湿空調システムにお 、て、 前記ヒートポンプの冷媒がニ酸ィ匕炭素であることを特徴とする除湿空調システム。 [28] In the dehumidifying air-conditioning system according to claim 27, The dehumidifying air conditioning system characterized in that the refrigerant of the heat pump is carbon dioxide.
PCT/JP2007/050342 2006-01-13 2007-01-12 Dehumidifying air conditioning system WO2007080979A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-005474 2006-01-13
JP2006005474A JP4591355B2 (en) 2006-01-13 2006-01-13 Dehumidification air conditioning system
JP2006159201A JP4848211B2 (en) 2006-06-08 2006-06-08 Dehumidification air conditioning system
JP2006-159201 2006-06-08

Publications (1)

Publication Number Publication Date
WO2007080979A1 true WO2007080979A1 (en) 2007-07-19

Family

ID=38256383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/050342 WO2007080979A1 (en) 2006-01-13 2007-01-12 Dehumidifying air conditioning system

Country Status (2)

Country Link
CN (1) CN101713573B (en)
WO (1) WO2007080979A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118854A (en) * 2005-11-24 2009-06-04 Peptide Door Co Ltd Lipopolysaccharide or lipid a binder and new peptide
CN113242675A (en) * 2021-05-11 2021-08-10 珠海格力电器股份有限公司 Data computer lab environmental conditioning system and data computer lab
SE2151014A1 (en) * 2021-08-23 2023-02-24 Munters Europe Ab Gas sorption system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102641649A (en) * 2012-05-03 2012-08-22 安徽工业大学 Two-stage distributary solution dehumidifying device
CN105003979B (en) * 2015-07-29 2017-12-15 永春新盛环保科技有限公司 A kind of air cleaning unit with air energy moisture absorbing
KR102310953B1 (en) * 2019-12-20 2021-10-12 멜콘 주식회사 Apparatus and method for supplying dry air

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718602B2 (en) * 1989-01-09 1995-03-06 シンヴェント・アクシェセルスカープ Operation method and apparatus for supercritical vapor compression cycle
JPH1054586A (en) * 1996-08-08 1998-02-24 Ebara Corp Air-conditioning system
JP2000240979A (en) * 1999-02-18 2000-09-08 Taikisha Ltd Dehumidifier
JP2000314540A (en) * 1999-04-30 2000-11-14 Daikin Ind Ltd Air conditioner
JP2004085096A (en) * 2002-08-27 2004-03-18 Univ Waseda Hybrid-type desiccant air-conditioning system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG104251A1 (en) * 1998-01-26 2004-06-21 Kankyo Co Ltd Method and apparatus for dehumidifying air

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718602B2 (en) * 1989-01-09 1995-03-06 シンヴェント・アクシェセルスカープ Operation method and apparatus for supercritical vapor compression cycle
JPH1054586A (en) * 1996-08-08 1998-02-24 Ebara Corp Air-conditioning system
JP2000240979A (en) * 1999-02-18 2000-09-08 Taikisha Ltd Dehumidifier
JP2000314540A (en) * 1999-04-30 2000-11-14 Daikin Ind Ltd Air conditioner
JP2004085096A (en) * 2002-08-27 2004-03-18 Univ Waseda Hybrid-type desiccant air-conditioning system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009118854A (en) * 2005-11-24 2009-06-04 Peptide Door Co Ltd Lipopolysaccharide or lipid a binder and new peptide
CN113242675A (en) * 2021-05-11 2021-08-10 珠海格力电器股份有限公司 Data computer lab environmental conditioning system and data computer lab
CN113242675B (en) * 2021-05-11 2022-02-11 珠海格力电器股份有限公司 Data computer lab environmental conditioning system and data computer lab
SE2151014A1 (en) * 2021-08-23 2023-02-24 Munters Europe Ab Gas sorption system
SE545070C2 (en) * 2021-08-23 2023-03-21 Munters Europe Ab Gas sorption system

Also Published As

Publication number Publication date
CN101713573A (en) 2010-05-26
CN101713573B (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP4591355B2 (en) Dehumidification air conditioning system
JP6494765B2 (en) Air conditioning system
JP5068235B2 (en) Refrigeration air conditioner
JP5822931B2 (en) Humidity control apparatus, air conditioning system, and control method of humidity control apparatus
KR20170086496A (en) Methods and systems for mini-split liquid desiccant air conditioning
JP2012026700A (en) Desiccant air-conditioning system
US10309676B2 (en) Air-source heat pump air conditioner
CN102901193A (en) Stepless temperature regulating type condensation heat recovery air conditioning unit
JP2001241693A (en) Air conditioner
WO2007080979A1 (en) Dehumidifying air conditioning system
JP2012207872A (en) Air-conditioning system
JP6018938B2 (en) Air conditioning system for outside air treatment
JP4848211B2 (en) Dehumidification air conditioning system
JP2005195285A (en) Air conditioner
JP2002022291A (en) Air conditioner
JP2011208828A (en) Air conditioning system using steam adsorbent
JP5360893B2 (en) Desiccant air conditioner
JP4011724B2 (en) Desiccant air conditioning method
KR100901726B1 (en) Heat pump type thermo - hygrostat have a cooling and heating apparatus
JP6653428B1 (en) Heat exchange ventilator with dehumidification function
JP6938950B2 (en) Air conditioning system
JP2009168434A (en) Air conditioning equipment
JP2002130738A (en) Air conditioner
CN117858446B (en) Constant temperature and humidity air conditioning system with built-in high temperature heat pump device
KR102382588B1 (en) Heat pump system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, EPO FORM 1205A DATED 10.10.2008

122 Ep: pct application non-entry in european phase

Ref document number: 07706684

Country of ref document: EP

Kind code of ref document: A1