JPH1054586A - Air-conditioning system - Google Patents

Air-conditioning system

Info

Publication number
JPH1054586A
JPH1054586A JP22592996A JP22592996A JPH1054586A JP H1054586 A JPH1054586 A JP H1054586A JP 22592996 A JP22592996 A JP 22592996A JP 22592996 A JP22592996 A JP 22592996A JP H1054586 A JPH1054586 A JP H1054586A
Authority
JP
Japan
Prior art keywords
air
desiccant
regeneration
path
conditioning system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22592996A
Other languages
Japanese (ja)
Inventor
Kensaku Maeda
健作 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP22592996A priority Critical patent/JPH1054586A/en
Priority to US08/780,276 priority patent/US5816065A/en
Priority to CNB971003912A priority patent/CN1175215C/en
Publication of JPH1054586A publication Critical patent/JPH1054586A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1028Rotary wheel combined with a spraying device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the regenerative capacity of a desiccant and make it recover its adsorption capacity quickly by retarding the adsorption of moisture in the treated air by the desiccant and by accelerating the increase of temperature of the regenerated air to decrease its relative humidity when the dehumidifying action of the desiccant is inadequate. SOLUTION: A controller 350 is provided for an auxiliary heating means 310 and a damper 370. When the dehumidifying action of a desiccant is inadequate, especially before the start, the controller actuates the auxiliary heating means 310 to heat the regenerated air and by adjusting the opening of the damper 370 controls the operation in such a manner as to decrease the flow rate of the regenerated air. By thus providing an operating mode preceding a start regenerated air of high temperature with a low relative humidity is produced and a desiccant rotor 103 can be regenerated to recover a good moisture-adsorption capacity. The auxiliary heating means 310 is useful not only in the operation mode of starting step but can also be used as an auxiliary means when the amount of heating of a heat pump is inadequate during operation.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空調システムに係
り、特にデシカントによる水分の吸着処理とヒートポン
プによるデシカントの再生処理を連続的に行えるように
した空調システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioning system, and more particularly to an air conditioning system capable of continuously performing a desiccant moisture adsorption process and a heat pump desiccant regeneration process.

【0002】[0002]

【従来の技術】図5は、USP4,430,864に開
示された従来技術であり、これは、処理空気経路Aと、
再生空気経路Bと、2つのデシカントベッド103A,
103Bと、デシカントの再生及び処理空気の冷却を行
うヒートポンプ200とを有している。このヒートポン
プ200は、2つのデシカントベッド103A,103
Bに埋設された熱交換器210,220を高低熱源とし
て用いるもので、一方のデシカントベッドは処理空気を
通過させて吸着工程を行い、他方のデシカントは再生空
気を通過させて再生工程を行う。この空調処理が所定時
間行われた後、4方切り換え弁105,106を切り換
えて、再生及び処理空気を逆のデシカントベッドに流し
て逆の工程を行う。
2. Description of the Related Art FIG. 5 shows a prior art disclosed in US Pat. No. 4,430,864, which includes a processing air path A,
Regeneration air path B and two desiccant beds 103A,
103B, and a heat pump 200 for regenerating the desiccant and cooling the processing air. This heat pump 200 has two desiccant beds 103A and 103A.
The heat exchangers 210 and 220 buried in B are used as high and low heat sources. One desiccant bed performs an adsorption step by passing process air, and the other desiccant performs a regeneration step by passing regeneration air. After the air-conditioning process has been performed for a predetermined time, the four-way switching valves 105 and 106 are switched to flow the regeneration and processing air to the opposite desiccant bed to perform the reverse process.

【0003】[0003]

【発明が解決しようとする課題】上記のような従来の技
術においては、ヒートポンプ200の高低の熱源と各デ
シカントがそれぞれ一体化されていたために、冷房効果
ΔQに相当する熱量がヒートポンプ(冷凍機)にそのま
ま負荷される。すなわち、ヒートポンプ(冷凍機)の能
力以上の効果が出せない。したがって、装置を複雑にし
ただけの効果が得られない。
In the prior art as described above, since the high and low heat sources of the heat pump 200 and the respective desiccants are integrated with each other, the amount of heat corresponding to the cooling effect ΔQ is equal to the heat pump (refrigerator). Is loaded as is. That is, the effect beyond the capacity of the heat pump (refrigerator) cannot be obtained. Therefore, it is not possible to obtain the effect of simply increasing the complexity of the device.

【0004】そこで、このような問題点を解決するため
に、図6に示すように、再生空気経路Bにヒートポンプ
の高温熱源220を配して再生空気を加熱し、処理空気
経路Aにヒートポンプの低温熱源240を配して処理空
気を冷却するとともに、デシカント103通過後の処理
空気とデシカント103通過前の再生空気との間で顕熱
交換を行う熱交換器104を設けることが考えられる。
ここでは、デシカント103が、処理空気経路Aと再生
空気経路Bの双方にまたがって回転するデシカントロー
タを用いている。
Therefore, in order to solve such a problem, as shown in FIG. 6, a high-temperature heat source 220 of a heat pump is disposed in a regeneration air path B to heat regeneration air, and a heat pump of a heat pump is disposed in a processing air path A. It is conceivable to arrange the low-temperature heat source 240 to cool the processing air, and to provide the heat exchanger 104 for performing sensible heat exchange between the processing air after passing through the desiccant 103 and the regeneration air before passing through the desiccant 103.
Here, the desiccant 103 uses a desiccant rotor that rotates over both the processing air path A and the regeneration air path B.

【0005】これにより、図7の湿り空気線図に示すよ
うに、ヒートポンプによる冷却効果の他に、処理空気と
再生空気の間の顕熱交換による冷却効果を併せた冷却効
果(ΔQ)を得ることができるので、コンパクトな構成
で図5の空調システムより高い効率を得ることができ
る。
As a result, as shown in the psychrometric chart of FIG. 7, in addition to the cooling effect by the heat pump, a cooling effect (ΔQ) combining the cooling effect by sensible heat exchange between the processing air and the regeneration air is obtained. Therefore, higher efficiency than the air conditioning system of FIG. 5 can be obtained with a compact configuration.

【0006】しかしながら、この構成の空調システムに
おいても、システムの長期停止後の運転開始時のような
場合で、デシカントが自然吸湿してまって吸湿能力が低
下してしまっているような場合、図7中で点線で示すよ
うに運転当初は処理空気から十分な吸湿ができず、デシ
カント出口はあまり温度が上昇しない(状態(L))。そ
のため、顕熱熱交換器104における処理空気と再生空
気の温度差が小さく、交換熱量が小さくなって、再生空
気を十分に加熱できず、再生空気のヒートポンプの高温
熱源220入口温度も低くなる(状態(R))。このよう
な状態からヒートポンプを運転しても、再生空気を十分
に加熱できず(状態(T))、従ってデシカントの吸湿能
力が回復しないためシステムの立ち上がりが遅くなる問
題があった。
However, even in the air-conditioning system having such a configuration, when the desiccant naturally absorbs moisture and the moisture absorbing ability is reduced in a case such as when the system is started after a long-term stoppage of the system, FIG. As indicated by the dotted line in FIG. 7, at the beginning of the operation, sufficient moisture was not absorbed from the treated air, and the temperature at the desiccant outlet did not rise much (state (L)). For this reason, the temperature difference between the processing air and the regeneration air in the sensible heat exchanger 104 is small, the amount of exchange heat is small, the regeneration air cannot be heated sufficiently, and the inlet temperature of the high-temperature heat source 220 of the heat pump for the regeneration air also decreases. State (R)). Even if the heat pump is operated from such a state, the regeneration air cannot be sufficiently heated (state (T)), and therefore, there is a problem that the desiccant does not recover its moisture absorbing ability, so that the start-up of the system is delayed.

【0007】本発明は上記課題に鑑み、デシカントの吸
湿能力の速やかな回復を可能にして、始動特性に優れた
空調システムを提供することを目的とするものである。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an air conditioning system which is capable of quickly recovering the desiccant's moisture absorbing ability and has excellent starting characteristics.

【0008】[0008]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたもので、請求項1に記載された発明
は、処理空気経路において処理空気中の水分を吸着し、
再生空気経路において再生されるデシカントと、処理空
気を低熱源とし、再生空気を高熱源として動作して再生
空気にデシカント再生用の熱を供給するヒートポンプと
を備えた空調システムにおいて、前記処理空気経路のデ
シカントへの水分吸着速度を抑制する手段と、前記再生
空気経路の再生空気の昇温を促進する手段とを有するこ
とを特徴とする空調システムである。
Means for Solving the Problems The present invention has been made to solve the above-mentioned problems, and the invention described in claim 1 adsorbs moisture in processing air in a processing air path.
An air conditioning system comprising: a desiccant to be regenerated in a regeneration air path; and a heat pump configured to use the treatment air as a low heat source and operate as a high heat source to supply heat for desiccant regeneration to the regeneration air. An air conditioning system comprising: means for suppressing the rate of adsorbing moisture to the desiccant; and means for promoting the temperature rise of the regeneration air in the regeneration air path.

【0009】このような構成により、デシカントの除湿
作用が十分でないときに、デシカントによる処理空気の
水分吸着速度を抑制するとともに、再生空気の昇温を促
進することによって、再生空気の相対湿度を低下させて
デシカントの再生能力を高めるので、デシカントの吸着
能力を早く回復させることができる。
With this configuration, when the desiccant does not have a sufficient dehumidifying effect, the desiccant suppresses the moisture adsorption rate of the treated air and promotes the temperature rise of the regeneration air, thereby lowering the relative humidity of the regeneration air. As a result, the desiccant regeneration ability is enhanced, so that the desiccant adsorption ability can be quickly restored.

【0010】請求項2に記載の発明は、前記再生空気昇
温手段は、前記再生空気経路中の再生空気の流量を減少
させ、再生空気の温度を上昇させるものであることを特
徴とする請求項1に記載の空調システムである。流量の
減少方法としては、ダンパ開度を調整するなどがあり、
単純な手段で吸着速度を制御することができ、状況に適
合した運転状態を得ることができる。
According to a second aspect of the present invention, the regeneration air heating means reduces the flow rate of the regeneration air in the regeneration air path and increases the temperature of the regeneration air. Item 2. The air conditioning system according to item 1. As a method of decreasing the flow rate, there is a method of adjusting the damper opening, etc.
The adsorption speed can be controlled by simple means, and an operation state suitable for the situation can be obtained.

【0011】請求項3に記載の発明は、前記再生空気昇
温手段は、再生空気の送風機の回転数を制御することに
よって、再生空気の流量を減少させることを特徴とする
請求項2に記載の空調システムであるので、吸着速度の
制御が正確に行える。請求項4に記載の発明は、前記再
生空気昇温手段は、再生空気経路のデシカントの上流側
に配置した補助加熱手段を用いて再生空気の温度を上昇
させるものであることを特徴とする請求項1ないし3の
いずれかに記載の空調システムであるので、補助熱源を
用いて迅速に再生能力を回復させることができる。
According to a third aspect of the present invention, the regeneration air heating means reduces the flow rate of the regeneration air by controlling the rotation speed of a blower for the regeneration air. Since the air conditioning system of the present invention, the suction speed can be accurately controlled. The invention according to claim 4 is characterized in that the regeneration air temperature raising means raises the temperature of the regeneration air using an auxiliary heating means arranged on the upstream side of the desiccant in the regeneration air path. Since the air conditioning system according to any one of Items 1 to 3, the regeneration capacity can be quickly restored using the auxiliary heat source.

【0012】請求項5に記載の発明は、前記吸着速度抑
制手段は、処理空気経路における処理空気の循環を停止
することにより水分吸着速度を抑制するものであること
を特徴とする請求項1に記載の空調システムであるの
で、最も単純な手段で吸着速度を抑制することができ
る。請求項6に記載の発明は、前記吸着速度抑制手段
は、処理空気経路中にデシカントの下流側から上流側へ
バイパスするバイパス流路を有することを特徴とする請
求項1に記載の空調システムであるので、比較的簡単な
手段で、しかもバイパス流量を調整することで吸着速度
を制御することができる。
The invention according to claim 5 is characterized in that the adsorption speed suppressing means stops the moisture adsorption speed by stopping the circulation of the processing air in the processing air path. Since the air conditioning system is described, the adsorption speed can be suppressed by the simplest means. The invention according to claim 6 is the air-conditioning system according to claim 1, wherein the adsorption speed suppressing means has a bypass flow path in a processing air path from a downstream side of the desiccant to an upstream side. Therefore, the adsorption speed can be controlled by relatively simple means and by adjusting the bypass flow rate.

【0013】請求項7に記載の発明は、前記吸着速度抑
制手段は、処理空気の送風機の回転数を制御することに
よってデシカントの水分吸着速度を抑制することを特徴
とする請求項1に記載の空調システムである。これによ
っても、吸着速度を制御することができる。
The invention according to claim 7 is characterized in that the adsorption speed suppressing means controls the desiccant moisture adsorption speed by controlling the number of revolutions of a blower of the processing air. It is an air conditioning system. This also allows the suction speed to be controlled.

【0014】請求項8に記載の発明は、処理空気経路に
おいて処理空気中の水分を吸着し、再生空気経路におい
て再生されるデシカントと、処理空気を低熱源とし、再
生空気を高熱源として動作して再生空気にデシカント再
生用の熱を供給するヒートポンプとを備えた空調システ
ムの制御方法において、前記処理空気経路のデシカント
への水分吸着速度を抑制するとともに、前記再生空気経
路の再生空気の昇温を促進することを特徴とする空調シ
ステムの制御方法である。
According to the present invention, the desiccant which is adsorbed in the processing air in the processing air path and is regenerated in the regeneration air path, the processing air is used as a low heat source, and the regenerated air is used as a high heat source. And a heat pump for supplying heat for desiccant regeneration to the regeneration air by controlling the rate of moisture adsorption to the desiccant in the processing air path and increasing the temperature of the regeneration air in the regeneration air path. This is a method for controlling an air conditioning system, characterized by promoting air conditioning.

【0015】[0015]

【発明の実施の形態】以下、本発明に係るデシカント空
調装置の一実施例を図面を参照して説明する。図1は本
発明の第1の実施例で、空調システムの基本構成を示す
図であり、このうち蒸気圧縮式ヒートポンプ200の部
分の構成は、圧縮機260、蒸発器240、凝縮器22
0、膨張弁250を構成機器として蒸気圧縮式冷凍サイ
クルを形成し、かつ蒸発器240がデシカント103通
過後の処理空気と熱交換関係をなし、かつ凝縮器220
がデシカント103通過前の再生空気と熱交換関係をな
すサイクルを形成したものである。デシカントロータ1
03は、図6において説明したものと同じように、デシ
カントが、処理空気経路Aと再生空気経路Bの双方に跨
がって所定のサイクルで回転するよう構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a desiccant air conditioner according to the present invention will be described below with reference to the drawings. FIG. 1 is a view showing a basic configuration of an air conditioning system according to a first embodiment of the present invention. Among them, a configuration of a part of a vapor compression heat pump 200 includes a compressor 260, an evaporator 240, and a condenser 22.
0, a vapor compression refrigeration cycle is formed with the expansion valve 250 as a constituent device, the evaporator 240 has a heat exchange relationship with the processing air after passing through the desiccant 103, and the condenser 220
Is a cycle that forms a heat exchange relationship with the regenerated air before passing through the desiccant 103. Desiccant rotor 1
Numeral 03 is configured so that the desiccant rotates in a predetermined cycle across both the processing air path A and the regeneration air path B, as described with reference to FIG.

【0016】処理空気経路Aは、空調空間と還気導入用
の送風機102の吸い込み口と経路107を介して接続
し、送風機102の吐出口はデシカントロータ103と
経路108を介して接続し、デシカントロータ103の
処理空気の出口は再生空気と熱交換関係にある顕熱熱交
換器104と経路109を介して接続し、顕熱熱交換器
104の処理空気の出口は蒸発器(冷却器)240と経
路110を介して接続し、蒸発器240の処理空気の出
口は加湿器105と経路111を介して接続し、加湿器
105の処理空気の出口は給気口となる処理空気出口と
経路112を介して接続して処理空気のサイクルを形成
する。
The processing air path A is connected to the air-conditioned space and the suction port of the blower 102 for introducing return air through a path 107, and the discharge port of the blower 102 is connected to the desiccant rotor 103 through a path 108. The outlet of the processing air of the rotor 103 is connected to the sensible heat exchanger 104, which has a heat exchange relationship with the regeneration air, via the path 109. The outlet of the processing air of the sensible heat exchanger 104 is connected to the evaporator (cooler) 240. And the outlet of the processing air of the evaporator 240 is connected to the humidifier 105 via the path 111, and the outlet of the processing air of the humidifier 105 is connected to the processing air outlet serving as the air supply port and the path 112. To form a cycle of process air.

【0017】一方、再生空気経路Bは、再生空気入口を
外気導入用の送風機140の吸い込み口と経路124を
介して接続し、送風機140の吐出口は処理空気と熱交
換関係にある顕熱熱交換器104と接続し、顕熱熱交換
器104の再生空気の出口は凝縮器(加熱器)220と
経路126を介して接続し、凝縮器(加熱器)220の
再生空気の出口は補助加熱手段310と経路127を介
して接続し、補助加熱手段310の再生空気の出口はデ
シカントロータ103の再生空気入口と経路128を介
して接続し、デシカントロータ103の再生空気の出口
はダンパ370と経路129を介して接続し、ダンパ3
70の出口は経路130を介して外部空間と接続し、こ
れにより再生空気を外部から取り入れて、外部に排気す
るサイクルを形成する。なお、図中、丸で囲ったアルフ
ァベットK〜Uは、図2と対応する空気の状態を示す記
号である。
On the other hand, the regeneration air path B connects the regeneration air inlet with the suction port of the blower 140 for introducing outside air through the path 124, and the discharge port of the blower 140 has a sensible heat heat exchange relation with the processing air. The outlet of the regeneration air of the sensible heat exchanger 104 is connected to the condenser (heater) 220 via the path 126, and the outlet of the regeneration air of the condenser (heater) 220 is connected to the auxiliary heating. And the outlet of the regeneration air of the auxiliary heating means 310 is connected to the regeneration air inlet of the desiccant rotor 103 via the path 128, and the exit of the regeneration air of the desiccant rotor 103 is connected to the damper 370. 129 and the damper 3
The outlet of 70 is connected to an external space via a path 130, thereby forming a cycle for taking in regeneration air from the outside and exhausting the same to the outside. In the drawing, circled letters K to U are symbols indicating the state of air corresponding to FIG.

【0018】補助加熱手段310およびダンパ370に
は、コントローラ350が設けられている。これは、特
に始動前において、デシカントの除湿作用が十分でない
ときに、補助加熱手段310を作動させて再生空気を加
熱するとともに、ダンパ370の開度を調整して、再生
空気の流量を減少させるような運転制御を行う。この
時、ヒートポンプ200および処理空気の送風機102
は作動させず、従って蒸発器240および凝縮器220
において処理空気および再生空気の冷却や加熱は行われ
ず、また処理空気は流動しないよう制御される。
A controller 350 is provided for the auxiliary heating means 310 and the damper 370. This is because the auxiliary heating means 310 is operated to heat the regeneration air, and the opening degree of the damper 370 is adjusted to reduce the flow rate of the regeneration air, particularly before starting, when the desiccant dehumidifying action is not sufficient. Such operation control is performed. At this time, the heat pump 200 and the processing air blower 102
Does not operate, and therefore evaporator 240 and condenser 220
Is not cooled or heated, and the processing air is controlled so as not to flow.

【0019】次に前述のように構成されたヒートポンプ
を熱源とするデシカント空調システムが長期停止後の運
転開始時のように、デシカントが自然吸湿してしまって
吸湿能力が低下してしまっているような場合の動作を図
2の湿り空気線図を参照して説明する。このような運転
形態は、システムの長期停止後の運転開始時に円滑な始
動を可能にするために行うものである。再生空気として
用いられる外気(状態Q)は経路124を経て送風機1
40に吸引され昇圧されて顕熱熱交換器104に送られ
る。顕熱熱交換器104では、処理空気が流動していな
いため熱交換が行われず、従って再生空気は温度上昇し
ないまま通過する。
Next, as in the desiccant air-conditioning system using the heat pump configured as described above as a heat source, the desiccant naturally absorbs moisture and the moisture absorption capacity is reduced as in the start of operation after a long-term stop. The operation in such a case will be described with reference to the psychrometric chart of FIG. Such an operation mode is performed to enable a smooth start at the time of starting operation after a long-term stop of the system. The outside air (state Q) used as the regeneration air passes through the path 124 and
It is sucked by 40 and pressurized and sent to the sensible heat exchanger 104. In the sensible heat exchanger 104, no heat exchange is performed because the processing air is not flowing, and thus the regeneration air passes without increasing the temperature.

【0020】顕熱熱交換器104を出た再生空気は経路
126を経て凝縮器(加熱器)220に送られるが、ヒ
ートポンプは停止しているため温度上昇せず、そのまま
通過する(状態S)。凝縮器(加熱器)220を出た再
生空気は経路127を経て補助加熱手段310において
加熱されるが、この時、再生空気の流量はダンパ370
によって減少しており、空気の熱容量が小さいため、わ
ずかな加熱量によって、最終的に定格負荷で運転されて
いる場合と同じく60〜80℃まで温度上昇させること
ができ(状態T)、相対湿度が低い再生空気を得ること
ができる。補助加熱手段310を出て十分に相対湿度が
低下した再生空気はデシカントロータ103を通過して
デシカントロータの水分を除去し再生作用をする。デシ
カントロータ103を通過した再生空気は経路129、
ダンパ370を経て排気として外部に捨てられる。
The regenerated air that has exited the sensible heat exchanger 104 is sent to the condenser (heater) 220 via the path 126. However, since the heat pump is stopped, the temperature does not rise and passes without change (state S). . The regeneration air that has exited the condenser (heater) 220 is heated by the auxiliary heating means 310 via the path 127. At this time, the flow rate of the regeneration air is controlled by the damper 370.
And the heat capacity of air is small, so that a small amount of heating can eventually raise the temperature to 60 to 80 ° C. as in the case of operation at the rated load (state T), and the relative humidity But low regeneration air can be obtained. The regeneration air having a sufficiently reduced relative humidity after exiting the auxiliary heating means 310 passes through the desiccant rotor 103 to remove moisture from the desiccant rotor and perform a regeneration operation. The regeneration air that has passed through the desiccant rotor 103 passes through a path 129,
After passing through the damper 370, it is discarded as exhaust gas.

【0021】このようにして、長期停止によりデシカン
ト103が自然吸湿して吸湿能力が低下しているような
場合でも、始動の前に、始動前の運転モードとして、補
助加熱手段310が再生空気を加熱するとともに、ダン
パ370の開度を調整して、再生空気の流量を減少さ
せ、デシカント103の再生に必要な相対湿度の低い高
温の再生空気を作ることによってデシカント103を再
生して十分な吸湿能力を回復させることができる。
In this manner, even when the desiccant 103 absorbs moisture naturally due to a long-term stop and the moisture absorbing ability is reduced, the auxiliary heating means 310 switches the regeneration air to the operation mode before the start before the start. While heating, the opening degree of the damper 370 is adjusted to reduce the flow rate of the regeneration air, and the desiccant 103 is regenerated by producing high-temperature regeneration air having a low relative humidity required for regeneration of the desiccant 103, thereby achieving sufficient moisture absorption. The ability can be restored.

【0022】次に、このようにしてデシカントの吸湿能
力が十分に回復した状態にする始動準備を完了した後、
始動した後の本実施例の作用について図7の実線で示し
たサイクルを参照して説明する。処理空気経路Aにおい
ては、導入される還気(処理空気:状態K)は経路10
7を経て送風機102に吸引され昇圧されて経路108
を経てデシカントロータ103に送られるが、本実施例
によれば始動時にもデシカントに十分な除湿能力がある
ため、デシカントロータの吸湿剤で処理空気中の水分を
吸着し、絶対湿度が低下するとともに吸着熱によって空
気は温度上昇する(状態L)。湿度が下がり温度上昇し
た空気は経路109を経て顕熱熱交換器104に送ら
れ、外気(再生空気)と熱交換して冷却される(状態
M)。顕熱熱交換器104を出た処理空気は経路110
を経て蒸発器(冷却器)240を通過して冷却される
(状態N)。冷却された処理空気は加湿器105に送ら
れ水噴射または気化式加湿によって等エンタルピ過程で
温度低下し(状態P)、経路112を経て給気として空
調空間に戻される。
Next, after preparation for starting the desiccant to a state in which the desiccant has sufficiently recovered the moisture absorption capacity is completed,
The operation of the present embodiment after starting will be described with reference to the cycle indicated by the solid line in FIG. In the processing air path A, the introduced return air (processing air: state K)
7, the air is sucked into the blower 102, the pressure is increased, and
According to the present embodiment, the desiccant has a sufficient dehumidifying ability even at the time of startup, so that the desiccant rotor absorbs the moisture in the processing air with the desiccant rotor to reduce the absolute humidity. The temperature of the air rises due to the heat of adsorption (state L). The air whose humidity has decreased and the temperature has increased is sent to the sensible heat exchanger 104 via the path 109, where it is cooled by exchanging heat with outside air (regenerated air) (state M). The process air leaving the sensible heat exchanger 104 passes through a path 110
Then, it passes through the evaporator (cooler) 240 and is cooled (state N). The cooled processing air is sent to the humidifier 105, and its temperature is reduced in the isenthalpy process by water injection or vaporization humidification (state P), and is returned to the air-conditioned space via the path 112 as air supply.

【0023】一方、再生空気経路Bでは、コントローラ
350によって始動とともにダンパ370が全開され、
補助加熱手段310は停止させられた状態で以下のよう
に作動する。再生空気として用いられる外気(状態Q)
は経路124を経て送風機140に吸引され昇圧されて
顕熱熱交換器104に送られる。顕熱熱交換器104で
は、処理空気と熱交換して温度上昇する(状態R)。顕
熱熱交換器104を出た再生空気は経路126を経て凝
縮器(加熱器)220に送られ60〜80℃まで加熱さ
れ(状態S)、相対湿度が低下する。凝縮器(加熱器)
220を出て相対湿度が低下した再生空気は経路127
を経て補助加熱手段310をそのまま通過し(状態
T)、デシカントロータの水分を除去し再生作用をす
る。デシカントロータ103を通過した再生空気は経路
129、始動とともに全開されたダンパ370、経路1
30を経て排気として外部に捨てられる。
On the other hand, in the regeneration air path B, the damper 370 is fully opened at the same time as the start by the controller 350.
The auxiliary heating means 310 operates as follows in a stopped state. Outside air used as regeneration air (state Q)
Is sucked into the blower 140 via the path 124, is pressurized, and is sent to the sensible heat exchanger 104. The sensible heat exchanger 104 exchanges heat with the processing air to increase the temperature (state R). The regenerated air exiting the sensible heat exchanger 104 is sent to a condenser (heater) 220 via a path 126 and is heated to 60 to 80 ° C. (state S), and the relative humidity is reduced. Condenser (heater)
Regenerated air exiting 220 and having a reduced relative humidity passes through path 127
After passing through the auxiliary heating means 310 as it is (state T), water is removed from the desiccant rotor to perform a regeneration action. The regenerated air that has passed through the desiccant rotor 103 passes through a path 129, a damper 370 that is fully opened upon startup, and a path 1.
After 30, it is discarded outside as exhaust gas.

【0024】次に、デシカント空調システムの蒸気圧縮
式冷凍サイクル部分のサイクルを説明する。冷媒は蒸発
器(冷却器)240でデシカント103を出た処理空気
から蒸発潜熱を奪って蒸発し、経路204を経て圧縮機
260に吸引され圧縮されたのち経路201を経て凝縮
器(加熱器)220に流入し凝縮熱をデシカント103
に流入前の再生空気に放出して凝縮する。凝縮した冷媒
は経路202を経て膨張弁250に至りそこで減圧膨張
した後、蒸発器(冷却器)240に還流する。
Next, the cycle of the vapor compression refrigeration cycle portion of the desiccant air conditioning system will be described. The refrigerant evaporates by removing latent heat of evaporation from the processing air that has exited the desiccant 103 in the evaporator (cooler) 240, is sucked by the compressor 260 through the path 204, is compressed, and then passes through the path 201 and is condensed (heater). 220 and heat of condensation is desiccant 103
It is released to the regenerated air before flowing into and condensed. The condensed refrigerant reaches the expansion valve 250 via the path 202, is decompressed and expanded there, and then returns to the evaporator (cooler) 240.

【0025】このようにして、まず再生空気の流量を減
少させて、相対湿度の低い高温の再生空気をつくる始動
準備の工程によってデシカントを再生して十分な吸湿能
力を回復させた後に、処理空気系統の送風とヒートポン
プの運転を開始するので、処理空気のデシカント出口の
温度が始動後直ちに高まり、従ってそれと熱交換関係に
ある再生空気の顕熱熱交換器出口の温度も上昇するた
め、ヒートポンプの作用によって、凝縮器出口の再生空
気温度も高くなり相対湿度の低い再生空気が得られ、従
って、運転開始後すぐに十分な再生能力が得られる。そ
のため、始動立ち上がり特性に優れた空調システムを提
供することができる。
In this way, first, the desiccant is regenerated in a start preparation step of reducing the flow rate of the regenerating air to produce high-temperature regenerating air having a low relative humidity to restore a sufficient moisture absorbing ability. Since the ventilation of the system and the operation of the heat pump are started, the temperature of the desiccant outlet of the processing air rises immediately after the start, and the temperature of the sensible heat exchanger outlet of the regenerated air, which has a heat exchange relationship with it, also rises. By operation, the regeneration air temperature at the outlet of the condenser is also increased, so that regeneration air having a low relative humidity is obtained, and thus sufficient regeneration capacity is obtained immediately after the start of operation. Therefore, it is possible to provide an air conditioning system having excellent start-up characteristics.

【0026】なお、本実施例では補助加熱手段310を
設けたが、これは短時間に再生能力を回復させる場合の
みに使用すればよく、安価な装置が望ましいため、実施
例では電気ヒータを採用したが、他の加熱方法としてヒ
ートポンプを用いても差し支えない。また該補助加熱手
段310は始動準備の運転モードの時ばかりでなく、運
転中にヒートポンプの加熱量が十分でない場合の補助手
段として使用してもよく、そのような場合、ヒートポン
プに比べて電気ヒータのような補助加熱手段は高温が得
やすく、逆にヒートポンプで高温を得ようとすると、圧
縮機の圧縮比が過大になってしまうため、補助加熱装置
は再生空気のデシカントの上流側でかつ凝縮器の下流側
に設けることが望ましい。
In this embodiment, the auxiliary heating means 310 is provided. However, the auxiliary heating means 310 may be used only when the regeneration capability is restored in a short time, and an inexpensive device is desirable. However, a heat pump may be used as another heating method. The auxiliary heating means 310 may be used not only in the operation mode for starting preparation but also as an auxiliary means when the heating amount of the heat pump is not sufficient during the operation. Auxiliary heating means such as this can easily obtain a high temperature, and conversely, when trying to obtain a high temperature with a heat pump, the compression ratio of the compressor becomes excessive, so the auxiliary heating device is located upstream of the desiccant of the regeneration air and condensed. It is desirable to provide it downstream of the vessel.

【0027】また補助加熱手段310およびダンパ37
0はコントローラ350によって、とくに始動前にデシ
カントの除湿作用が十分でないときに、補助加熱手段3
10が再生空気を加熱するとともに、ダンパ370が閉
じて、再生空気の流量を減少させるように制御されるも
のであるが、始動前にデシカントの除湿作用が十分でな
いことを検知する手段としては、全開運転停止後の経過
時間を計るタイマーで設定時間を超過したことを検知す
る手段を用いてもよく、またデシカントの重量によって
吸湿量を検知する手段を用いても差し支えない。また前
記の始動準備の運転モードを完了する判断の手段として
は、一旦必ず、前記の始動準備の運転モードを一定時間
経た後、タイマーによって、始動準備の運転モードを終
了して始動を行うように構成してもよく、また始動準備
の運転モード中にデシカント通過後の再生空気温度を検
出し、再生が終わるとデシカントでの吸熱作用がなくな
る現象を利用して、該再生空気温度が上昇し一定値を上
回ったことで、始動準備の運転モードを終了して始動を
行うように構成しても差し支えない。また処理空気のデ
シカントの出入口で相対湿度差を検出して、該相対湿度
差が所定値よりも小さいことで判断しても差し支えな
い。
The auxiliary heating means 310 and the damper 37
0 means the auxiliary heating means 3 by the controller 350, especially when the desiccant dehumidifying action is not sufficient before starting.
10 heats the regeneration air, and the damper 370 is closed to control the flow rate of the regeneration air. However, as means for detecting that the desiccant dehumidifying effect is not sufficient before the start, Means for detecting that the set time has been exceeded with a timer for measuring the elapsed time after the stoppage of the full-open operation may be used, or means for detecting the amount of moisture absorption by the weight of the desiccant may be used. As means for determining the completion of the start preparation operation mode, the start preparation operation mode is always terminated by the timer after the fixed time of the start preparation operation mode for a predetermined time. Alternatively, the regeneration air temperature after the desiccant has been detected during the operation mode of the start preparation may be detected, and the regeneration air temperature may be increased to a constant value by utilizing the phenomenon that the heat absorption by the desiccant disappears after the regeneration is completed. If the value exceeds the value, the start preparation operation mode may be terminated and the start may be performed. Alternatively, the relative humidity difference may be detected at the entrance / exit of the desiccant of the processing air, and the relative humidity difference may be determined to be smaller than a predetermined value.

【0028】図3は本発明の第2の実施例である。この
実施例では、空調システムの蒸気圧縮式ヒートポンプ2
00の部分の構成は第1の実施例と同じであるが、再生
空気の経路の補助加熱手段を省略するとともに、処理空
気の経路にはデシカントの下流側から、上流側である送
風機の入口にバイパスする経路381,382と、バイ
パス経路中にダンパ380を設けている。これにより、
前記第1の実施例と同様に、デシカント空調システムが
長期停止後の運転開始時のように、デシカントが自然吸
湿してしまって吸湿能力が低下してしまっているような
場合に、始動前の運転モードとしてデシカントの再生を
重点的に行う。そして、ヒートポンプ200を運転する
とともに、再生空気のダンパ370の開度をコントロー
ラ350で調整して再生空気量を減少させた上でヒート
ポンプ200の凝縮器220で加熱し、温度上昇させて
相対湿度を低下させて再生能力を高める。一方、処理空
気のバイパスダンパ380を開いて、処理空気を送風機
102とデシカント103の間でバイパス循環させて、
処理空気の外部からの水分補給を抑えることによってデ
シカントへの水分吸着を抑制して、デシカントの再生を
促進する。
FIG. 3 shows a second embodiment of the present invention. In this embodiment, a vapor compression heat pump 2 of an air conditioning system is used.
The configuration of the portion of 00 is the same as that of the first embodiment, but the auxiliary heating means for the path of the regeneration air is omitted, and the path of the processing air is connected from the downstream side of the desiccant to the inlet of the blower on the upstream side. Paths 381 and 382 for bypassing and a damper 380 are provided in the bypass path. This allows
As in the first embodiment, when the desiccant has naturally absorbed moisture and the moisture absorption capacity has been reduced, such as when the desiccant air-conditioning system starts operating after a long-term stop, Regeneration of desiccant is mainly performed as an operation mode. Then, while operating the heat pump 200, the opening degree of the regeneration air damper 370 is adjusted by the controller 350 to reduce the amount of regeneration air, and then heated by the condenser 220 of the heat pump 200, the temperature is increased, and the relative humidity is increased. Decrease and increase the regeneration ability. On the other hand, the process air bypass damper 380 is opened, and the process air is circulated by-pass between the blower 102 and the desiccant 103,
By suppressing the supply of water from the outside of the processing air, the adsorption of water to the desiccant is suppressed, and the regeneration of the desiccant is promoted.

【0029】第2の実施例のデシカント空調システムの
動作について、長期停止によりデシカントが自然吸湿し
て吸湿能力が低下しているような場合を図4の湿り空気
線図を参照して説明する。導入される処理空気(状態
K)はデシカント通過後のバイパス空気(状態L)と混
合され(状態J)、経路107を経て送風機102に吸
引されて昇圧され、経路108を経てデシカントロータ
103に送られ、デシカントロータの吸湿剤で空気中の
水分を吸着され、絶対湿度が低下するとともに吸着熱に
よって空気は温度上昇する(状態L)。この吸着過程で
の水分吸着量は状態Jと状態Lの差であり、バイパスを
閉じた通常運転時の状態KからLまでの吸着量よりも少
なくなり、水分補給を抑えることができる。湿度が下が
り、温度上昇した空気は2つに分岐し、一方は経路10
9を経て顕熱熱交換器104に送られ、外気(再生空
気)と熱交換して冷却され(状態M)、経路110を経
て蒸発器(冷却器)240を通過して冷却されて(状態
N)、加湿器105に送られ、水噴射または気化式加湿
によって等エンタルピ過程で温度低下し(状態P)、経
路112を経て給気として空調空間に戻される。分岐し
た他の一方は、前記の通りバイパス経路381,382
およびバイパスダンパ380を経て、状態Kの処理空気
と混合される。
The operation of the desiccant air-conditioning system according to the second embodiment will be described with reference to the psychrometric chart of FIG. 4 in a case where the desiccant absorbs moisture spontaneously due to a long-term stop and the moisture absorption capacity is reduced. The introduced processing air (state K) is mixed with the bypass air (state L) after passing through the desiccant (state J), sucked by the blower 102 through the path 107, pressurized, and sent to the desiccant rotor 103 through the path 108. Then, the moisture in the air is adsorbed by the desiccant rotor's moisture absorbent, the absolute humidity decreases, and the temperature of the air rises due to the heat of adsorption (state L). The amount of water adsorbed in the adsorption process is the difference between the state J and the state L, which is smaller than the amount adsorbed from the state K to the state L during the normal operation with the bypass closed, and water replenishment can be suppressed. The air whose humidity has decreased and whose temperature has increased divides into two, one of which is in a path 10.
9, is sent to the sensible heat exchanger 104, is cooled by exchanging heat with outside air (regenerated air) (state M), is cooled through the evaporator (cooler) 240 through the path 110 (state M) N), it is sent to the humidifier 105, the temperature is reduced in the isenthalpy process by water injection or vaporization humidification (state P), and returned to the air-conditioned space via the path 112 as air supply. The other one of the branches is the bypass path 381, 382 as described above.
Then, the air is mixed with the processing air in the state K through the bypass damper 380.

【0030】一方、再生空気は(状態Q)は、経路12
4を経て送風機140に吸引され昇圧されて顕熱熱交換
器104に送られ、処理空気を冷却して自らは温度上昇
し(状態R)、経路126を経て凝縮器(加熱器)22
0に送られて、第1の実施例と同様に流量をダンパ37
0で絞られ熱容量が減少した状態で、ヒートポンプによ
って加熱されて最終的に60〜80℃まで温度上昇し
(状態T)、相対湿度が低下する。相対湿度が低下した
再生空気はデシカントロータ103を通過してデシカン
トロータの水分を除去し再生作用をする。デシカントロ
ータ103を通過した再生空気は経路129を経て排気
として外部に捨てられる。
On the other hand, the regeneration air (state Q)
4, the air is sucked by the blower 140, pressurized and sent to the sensible heat exchanger 104, cools the processing air and rises in temperature (state R), and passes through the path 126 to the condenser (heater) 22.
0, and the flow rate is adjusted to the damper 37 as in the first embodiment.
In the state where the heat capacity is reduced at 0 and heated by the heat pump, the temperature finally rises to 60 to 80 ° C. (state T), and the relative humidity decreases. The regeneration air having a reduced relative humidity passes through the desiccant rotor 103 to remove moisture from the desiccant rotor and perform a regeneration operation. The regenerated air that has passed through the desiccant rotor 103 is discarded as exhaust gas through a path 129.

【0031】このようにして、再生空気の再生能力を増
加させる一方、処理空気の水分吸着を抑制することによ
って、始動前の運転モードとして、デシカント103の
吸着能力を回復させることができる。なお本運転形態に
よれば、始動前の運転モードにおいても、処理空気を低
湿度、低温で空調空間に若干供給することができる。ま
た始動前の運転モードを終了し、通常の運転モードに移
行した後の運転時の作用は第1の実施例と同様であるた
め説明を省略する。
As described above, while the regeneration capacity of the regeneration air is increased, the adsorption capacity of the desiccant 103 can be restored as the operation mode before the start by suppressing the moisture adsorption of the processing air. According to this operation mode, even in the operation mode before the start, the processing air can be slightly supplied to the air-conditioned space at low humidity and low temperature. The operation during the operation after the operation mode before the start is ended and the operation mode is shifted to the normal operation mode is the same as that of the first embodiment, and therefore, the description thereof is omitted.

【0032】なお、第2の実施例において、再生空気経
路Bの凝縮器220の下流に第1の実施例と同様に補助
加熱手段を用いても差し支えない。また第1および第2
の実施例において、ダンパの代わりの手段あるいはダン
パと併用する手段として、コントローラ350によって
送風機の回転数制御を行って、再生空気の流量を減少さ
せても良く、また同じく送風機の回転数制御を行って処
理空気の流量を減少させて処理空気とデシカントとの接
触風量を減少させることによって、デシカントへの水分
吸着を抑制しても差し支えない。
In the second embodiment, an auxiliary heating means may be used downstream of the condenser 220 in the regeneration air path B as in the first embodiment. The first and second
In this embodiment, as a means instead of the damper or a means used in combination with the damper, the rotation speed of the blower may be controlled by the controller 350 to reduce the flow rate of the regeneration air, and the rotation speed of the blower may also be controlled. By reducing the flow rate of the processing air to reduce the contact air volume between the processing air and the desiccant, moisture adsorption to the desiccant may be suppressed.

【0033】[0033]

【発明の効果】以上説明したように本発明によれば、デ
シカントによる水分の吸着処理とヒートポンプによるデ
シカントの再生処理を連続的に行えるようにした空調シ
ステムにおいて、特に、始動時などデシカントの除湿作
用が十分でないときに、デシカントによる処理空気の水
分吸着速度を抑制するとともに、再生空気の相対湿度を
低下させてデシカントの再生能力を高め、デシカントの
吸着能力を早く回復させることができるため、始動特性
および信頼性に優れた空調システムを提供することがで
きる。
As described above, according to the present invention, in an air conditioning system capable of continuously performing the desiccant adsorption process with the desiccant and the desiccant regeneration process with the heat pump, in particular, the desiccant dehumidifying action such as at the time of starting. When the desiccant is not enough, the desiccant suppresses the moisture adsorption rate of the treated air and reduces the relative humidity of the regeneration air to increase the desiccant regeneration ability, allowing the desiccant adsorption ability to be restored quickly, thus improving the starting characteristics. And an air conditioning system with excellent reliability can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る空調システムの第1の実施例の基
本構成を示す説明図である。
FIG. 1 is an explanatory diagram showing a basic configuration of a first embodiment of an air conditioning system according to the present invention.

【図2】図1の空調システムの空気のデシカント空調サ
イクルを湿り空気線図で示す説明図である。
FIG. 2 is an explanatory diagram showing a desiccant air-conditioning cycle of air of the air-conditioning system of FIG. 1 in a psychrometric chart.

【図3】本発明の第2の実施例の空調システムの基本構
成を示す説明図である。
FIG. 3 is an explanatory diagram illustrating a basic configuration of an air conditioning system according to a second embodiment of the present invention.

【図4】図3の空調システムの空気のデシカント空調サ
イクルを湿り空気線図で示す説明図である。
4 is an explanatory diagram showing a desiccant air-conditioning cycle of air in the air-conditioning system of FIG. 3 in a psychrometric chart.

【図5】従来の空調システムの基本構成を示す説明図で
ある。
FIG. 5 is an explanatory diagram showing a basic configuration of a conventional air conditioning system.

【図6】仮想的な空調システムの構成を示す説明図であ
る。
FIG. 6 is an explanatory diagram showing a configuration of a virtual air conditioning system.

【図7】図6の例に係る空調システムの基本構成を示す
説明図である。
FIG. 7 is an explanatory diagram showing a basic configuration of an air conditioning system according to the example of FIG.

【符号の説明】[Explanation of symbols]

102,140 送風機 103 デシカントロータ 104 顕熱熱交換器 200 ヒートポンプ 220 蒸発器 240 凝縮器 260 圧縮機 310 補助加熱手段 350 コントローラ 370 ダンパ 381,382 バイパス経路 A 処理空気経路 B 再生空気経路 102, 140 Blower 103 Desiccant rotor 104 Sensible heat exchanger 200 Heat pump 220 Evaporator 240 Condenser 260 Compressor 310 Auxiliary heating means 350 Controller 370 Damper 381, 382 Bypass path A Processing air path B Regeneration air path

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 処理空気経路において処理空気中の水分
を吸着し、再生空気経路において再生されるデシカント
と、処理空気を低熱源とし、再生空気を高熱源として動
作して再生空気にデシカント再生用の熱を供給するヒー
トポンプとを備えた空調システムにおいて、 前記処理空気経路のデシカントへの水分吸着速度を抑制
する手段と、前記再生空気経路の再生空気の昇温を促進
する手段とを有することを特徴とする空調システム。
1. A desiccant which adsorbs moisture in processing air in a processing air path and is regenerated in a regeneration air path, and a desiccant for desiccant regeneration by operating the processing air as a low heat source and the regeneration air as a high heat source. An air conditioning system comprising: a heat pump that supplies heat of the processing air; a means for suppressing a rate of adsorbing moisture to the desiccant in the processing air path; and a means for promoting a temperature rise of the regeneration air in the regeneration air path. Characteristic air conditioning system.
【請求項2】 前記再生空気昇温手段は、再生空気の経
路中の再生空気の流量を減少させ、再生空気の温度を上
昇させることを特徴とする請求項1に記載の空調システ
ム。
2. The air conditioning system according to claim 1, wherein the regeneration air temperature raising means decreases the flow rate of the regeneration air in the regeneration air path to increase the temperature of the regeneration air.
【請求項3】 前記再生空気昇温手段は、再生空気の送
風機の回転数を制御することによって、再生空気の流量
を減少させることを特徴とする請求項2に記載の空調シ
ステム。
3. The air conditioning system according to claim 2, wherein the regeneration air temperature raising means reduces the flow rate of the regeneration air by controlling a rotation speed of a regeneration air blower.
【請求項4】 前記再生空気昇温手段は、再生空気経路
のデシカントの上流側に配置した補助加熱手段を用いて
再生空気の温度を上昇させることを特徴とする請求項1
ないし3のいずれかに記載の空調システム。
4. The regeneration air temperature raising means raises the temperature of the regeneration air by using an auxiliary heating means arranged on the upstream side of the desiccant in the regeneration air path.
4. The air conditioning system according to any one of claims 1 to 3.
【請求項5】 前記吸着速度抑制手段は、処理空気経路
における処理空気の循環を停止することにより水分吸着
速度を抑制することを特徴とする請求項1に記載の空調
システム。
5. The air conditioning system according to claim 1, wherein the adsorption speed suppressing means stops the moisture adsorption speed by stopping circulation of the processing air in the processing air path.
【請求項6】 前記吸着速度抑制手段は、処理空気経路
中に設けたデシカントの下流側から上流側へバイパスす
るバイパス流路に処理空気を流通させることにより水分
吸着速度を抑制することを特徴とする請求項1に記載の
空調システム。
6. The method according to claim 1, wherein the adsorption speed suppressing means suppresses the moisture adsorption speed by flowing the processing air through a bypass flow path provided from a downstream side of the desiccant to an upstream side provided in the processing air path. The air conditioning system according to claim 1.
【請求項7】 前記吸着速度抑制手段は、処理空気の送
風機の回転数を制御することにより水分吸着速度を抑制
することを特徴とする請求項1に記載の空調システム。
7. The air conditioning system according to claim 1, wherein the adsorption speed suppressing unit controls the water adsorption speed by controlling a rotation speed of a blower of the processing air.
【請求項8】 処理空気経路において処理空気中の水分
を吸着し、再生空気経路において再生されるデシカント
と、処理空気を低熱源とし、再生空気を高熱源として動
作して再生空気にデシカント再生用の熱を供給するヒー
トポンプとを備えた空調システムの制御方法において、 前記処理空気経路のデシカントへの水分吸着速度を抑制
するとともに、前記再生空気経路の再生空気の昇温を促
進することを特徴とする空調システムの制御方法。
8. A desiccant which adsorbs moisture in the processing air in the processing air path and is regenerated in the regeneration air path, and a desiccant for desiccant regeneration by operating the processing air as a low heat source and the regeneration air as a high heat source. A heat pump that supplies heat of the air conditioning system, comprising: suppressing the rate of moisture adsorption to the desiccant in the processing air path, and promoting the temperature rise of the regeneration air in the regeneration air path. Air conditioning system control method.
JP22592996A 1996-01-12 1996-08-08 Air-conditioning system Pending JPH1054586A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP22592996A JPH1054586A (en) 1996-08-08 1996-08-08 Air-conditioning system
US08/780,276 US5816065A (en) 1996-01-12 1997-01-09 Desiccant assisted air conditioning system
CNB971003912A CN1175215C (en) 1996-01-12 1997-01-13 Air-conditioning system of drying-agent assisting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22592996A JPH1054586A (en) 1996-08-08 1996-08-08 Air-conditioning system

Publications (1)

Publication Number Publication Date
JPH1054586A true JPH1054586A (en) 1998-02-24

Family

ID=16837112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22592996A Pending JPH1054586A (en) 1996-01-12 1996-08-08 Air-conditioning system

Country Status (1)

Country Link
JP (1) JPH1054586A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262621A (en) * 1998-03-17 1999-09-28 Ebara Corp Dehumidifying air conditioner
JP2002089903A (en) * 2000-09-12 2002-03-27 Daikin Ind Ltd Air conditioner
US6442951B1 (en) 1998-06-30 2002-09-03 Ebara Corporation Heat exchanger, heat pump, dehumidifier, and dehumidifying method
KR100459190B1 (en) * 2002-11-14 2004-12-03 엘지전자 주식회사 cooling system
WO2005098326A1 (en) 2004-03-31 2005-10-20 Daikin Industries, Ltd. Air conditioner and method of controlling air conditioner
WO2007080979A1 (en) * 2006-01-13 2007-07-19 Hitachi Plant Technologies, Ltd. Dehumidifying air conditioning system
JP2007327693A (en) * 2006-06-08 2007-12-20 Hitachi Plant Technologies Ltd Dehumidifying air-conditioning system
CN113306368A (en) * 2020-02-26 2021-08-27 本田技研工业株式会社 Dehumidifying device for vehicle
CN114322122A (en) * 2021-12-21 2022-04-12 珠海格力电器股份有限公司 Rotary dehumidifier, heat exchange system and control method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11262621A (en) * 1998-03-17 1999-09-28 Ebara Corp Dehumidifying air conditioner
US6442951B1 (en) 1998-06-30 2002-09-03 Ebara Corporation Heat exchanger, heat pump, dehumidifier, and dehumidifying method
JP2002089903A (en) * 2000-09-12 2002-03-27 Daikin Ind Ltd Air conditioner
KR100459190B1 (en) * 2002-11-14 2004-12-03 엘지전자 주식회사 cooling system
WO2005098326A1 (en) 2004-03-31 2005-10-20 Daikin Industries, Ltd. Air conditioner and method of controlling air conditioner
US7810339B2 (en) 2004-03-31 2010-10-12 Daikin Industries, Ltd. Air conditioner and method of controlling air conditioner
WO2007080979A1 (en) * 2006-01-13 2007-07-19 Hitachi Plant Technologies, Ltd. Dehumidifying air conditioning system
JP2007327693A (en) * 2006-06-08 2007-12-20 Hitachi Plant Technologies Ltd Dehumidifying air-conditioning system
CN113306368A (en) * 2020-02-26 2021-08-27 本田技研工业株式会社 Dehumidifying device for vehicle
CN114322122A (en) * 2021-12-21 2022-04-12 珠海格力电器股份有限公司 Rotary dehumidifier, heat exchange system and control method
CN114322122B (en) * 2021-12-21 2022-11-25 珠海格力电器股份有限公司 Rotary dehumidifier, heat exchange system and control method

Similar Documents

Publication Publication Date Title
JP2968241B2 (en) Dehumidifying air conditioning system and operating method thereof
JP2968232B2 (en) Air conditioning system and operating method thereof
US5816065A (en) Desiccant assisted air conditioning system
JP2994303B2 (en) Air conditioning system and operating method thereof
JP5068235B2 (en) Refrigeration air conditioner
JP2012026700A (en) Desiccant air-conditioning system
JPH09318127A (en) Air-conditioning system
JPH10288421A (en) Air conditioner system
JP2001241693A (en) Air conditioner
JP2000314569A (en) Refrigerating apparatus
JP2010190495A (en) Humidity conditioning device
JPH1054586A (en) Air-conditioning system
JPH1026369A (en) Air conditioning system and control method
JP3729595B2 (en) Air conditioning system and operation method thereof
JPH09318129A (en) Air-conditioning system
JPH1026434A (en) Air conditioning system
JPH1026433A (en) Air conditioning system
JPH09178289A (en) Desiccant air-conditioner
JP2000329375A (en) Air conditioner, air conditioning/refrigerating system and operating method for air conditioner
JP2002130738A (en) Air conditioner
JP2968230B2 (en) Air conditioning system
JP3765930B2 (en) Dehumidification air conditioner and dehumidification air conditioning system
JPH09318126A (en) Air-conditioning system
JP3765932B2 (en) Dehumidification air conditioner and dehumidification air conditioning system
JP3434110B2 (en) Desiccant air conditioner