JP5360893B2 - Desiccant air conditioner - Google Patents

Desiccant air conditioner Download PDF

Info

Publication number
JP5360893B2
JP5360893B2 JP2009131623A JP2009131623A JP5360893B2 JP 5360893 B2 JP5360893 B2 JP 5360893B2 JP 2009131623 A JP2009131623 A JP 2009131623A JP 2009131623 A JP2009131623 A JP 2009131623A JP 5360893 B2 JP5360893 B2 JP 5360893B2
Authority
JP
Japan
Prior art keywords
air
desiccant
evaporator
air conditioner
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009131623A
Other languages
Japanese (ja)
Other versions
JP2010276317A (en
Inventor
泰 鍋島
将人 塩見
雅弘 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinko Industries Ltd
Original Assignee
Sinko Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinko Industries Ltd filed Critical Sinko Industries Ltd
Priority to JP2009131623A priority Critical patent/JP5360893B2/en
Publication of JP2010276317A publication Critical patent/JP2010276317A/en
Application granted granted Critical
Publication of JP5360893B2 publication Critical patent/JP5360893B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Central Air Conditioning (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desiccant air conditioner with a heat pump system integrated therein, covering all of dehumidifying and cooling independently by itself, and easily and delicately controlling the air conditioning of air supplied into a room. <P>SOLUTION: In the desiccant air conditioner, an evaporator as a pre-cooler is arranged in a preceding stage of a processing side desiccant rotor taking in outside air, and an after-cooler is arranged in a rear stage of the desiccant rotor, thereby conditioning the outside air and supplying it into the room. Moreover, a condenser as a regenerator is arranged in the preceding stage of a regeneration side desiccant rotor taking in indoor return air. The heat pump system is formed by the evaporator and the condenser. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、デシカント空調機に係り、特に、ヒートポンプシステムを組み込んだデシカント空調機に関する。   The present invention relates to a desiccant air conditioner, and more particularly to a desiccant air conditioner incorporating a heat pump system.

従来より、デシカント(吸湿材)を用いて、冷暖房を行う空調方式、例えば、特許文献1が知られており、近時、このデシカント空調システムにヒートポンプを組み込んだデシカント空調機が提案されている。
本来、ヒートポンプシステムを組み込んだデシカント空調機は、対象空気の冷却をヒートポンプで行い、除湿をデシカントで行なおうというものが知られている。
例えば、図1に示すように、外気OAを吸い込み、処理側のデシカントロータaの前段に除湿効率を上げるためのプレクーラとしての蒸発器b1を配置し、後段には冷却を目的とした蒸発器b2を配置して空調空気を室内に給気し、室内還気RAを再生側に吸い込み、両蒸発器の排熱である凝縮器cを処理空気側のデシカントロータaの前段に配置して、凝縮器cでデシカントロータaを乾燥再生して戸外に排気し、これら蒸発器b1、b2と凝縮器cに圧縮機dと膨張弁e1,e2とを組み合わせてヒートポンプを構成することが基本的で理想的な構成である。
2. Description of the Related Art Conventionally, an air conditioning system that performs cooling and heating using a desiccant (hygroscopic material), for example, Patent Document 1, is known, and recently, a desiccant air conditioner in which a heat pump is incorporated in the desiccant air conditioning system has been proposed.
Originally, a desiccant air conditioner incorporating a heat pump system is known to cool a target air with a heat pump and perform dehumidification with a desiccant.
For example, as shown in FIG. 1, an evaporator b1 serving as a precooler for sucking outside air OA and increasing the dehumidifying efficiency is disposed in front of the desiccant rotor a on the processing side, and an evaporator b2 for cooling is disposed in the subsequent stage. Is arranged to supply the conditioned air into the room, suck the indoor return air RA into the regeneration side, and place the condenser c, which is the exhaust heat of both evaporators, in front of the desiccant rotor a on the processing air side. It is fundamental and ideal that the desiccant rotor a is dried and regenerated in the apparatus c and exhausted to the outside, and the evaporators b1 and b2 and the condenser c are combined with the compressor d and the expansion valves e1 and e2 to constitute a heat pump. It is a typical configuration.

しかしながら、一般空調の稼働においては、図1のような構成では、凝縮圧力が高くなりすぎて、ヒートポンプシステムとしての運転が成立しないため、図2の従来例1または図3の従来例2に示すような構成として、ヒートポンプシステムを成立させるのが一般的である。すなわち、ヒートポンプの凝縮熱をデシカントロータの再生熱源とし、蒸発熱(冷熱)を処理側の冷熱源として空調の冷却負荷の一部のみを処理していた。デシカントロータでは無処理の顕熱負荷を別途顕熱処理用の空調機(室内機)で対応することになり、デシカント空調機単独で除湿と冷却のすべてをまかなうことはできなかった。   However, in the operation of general air conditioning, in the configuration as shown in FIG. 1, the condensing pressure becomes too high and the operation as a heat pump system cannot be established. Therefore, the conventional example 1 in FIG. 2 or the conventional example 2 in FIG. It is common to establish a heat pump system as such a configuration. That is, only a part of the cooling load of the air conditioner is processed using the condensation heat of the heat pump as the regeneration heat source of the desiccant rotor and the evaporating heat (cold heat) as the cooling heat source on the processing side. In the desiccant rotor, the untreated sensible heat load was handled by a separate sensible heat treatment air conditioner (indoor unit), and the desiccant air conditioner alone could not cover all of dehumidification and cooling.

このことを、従来例1の図2の構成のデシカント空調機の作動例を図4の空気線図で説明すると、例えば、外気OAが乾球温度33℃、湿度RH50%の点にあったとすると、外気OAが蒸発器bで冷却されて点が左へ移動し24.5℃、RH80%の点へ移動し、この際、蒸発器bでは冷却だけでなくわずかに除湿し、つまり結露の発生も生じるので、真横左より少し下へ下がる。次に、外気OAがデシカントロータaを通過して水分が減少すると空気線図上で右下へ移動し、温度が上昇して35℃、RH32%の出口空気が給気SAとなり、居室等の室内に供給される。
一方、例えば、居室内の還気RAが28℃、RH45%であれば、凝縮器cで加熱され右方へ移動して40℃、RH27%となり、次に、デシカントロータaの通過で水分を受取り左上方へ移動して29℃、RH60%の排気EAとなって室外へ放出される。
このように、冷房時にあっても、デシカント空調機だけでは、出口空気である給気は、35℃、RH32%であり、十分な冷房はできない。
This will be explained with reference to the air line diagram of FIG. 4 as an example of the operation of the desiccant air conditioner having the configuration shown in FIG. 2 of the conventional example 1. For example, if the outside air OA is at a dry bulb temperature of 33 ° C. and a humidity of RH 50%. When the outside air OA is cooled by the evaporator b, the point moves to the left and moves to the point of 24.5 ° C. and RH80%. At this time, the evaporator b not only cools but slightly dehumidifies, that is, the generation of condensation occurs. So go down a little below the left. Next, when the outside air OA passes through the desiccant rotor a and the water content decreases, it moves to the lower right on the air diagram, the temperature rises, and the outlet air of 35 ° C. and RH 32% becomes the supply air SA, which Supplied indoors.
On the other hand, for example, if the return air RA in the living room is 28 ° C. and RH 45%, it is heated by the condenser c and moved to the right to 40 ° C. and RH 27%, and then the moisture passes through the desiccant rotor a. It moves to the upper left of the receiving and becomes exhausted EA at 29 ° C. and RH 60% and discharged outside the room.
Thus, even during cooling, the supply air as the outlet air is 35 ° C. and RH 32% with only the desiccant air conditioner, and sufficient cooling cannot be performed.

また、特許文献2に示すように、室内還気の冷却負荷は運転中はほぼ安定しているため、ヒートポンプの容量をこの冷却負荷に合わせて設定することにより、ヒートポンプの凝縮器あるいはガスクーラでデシカントロータの再生空気を加熱し、蒸発器では空調される室内から除湿ロータに再循環させる室内還気を冷却し、ヒートポンプ装置の規模が外気の冷却を行う場合に比べて初期コストが抑制され、運転期間中を通じてヒートポンプがほぼ最大容量で運転でき、安定した省エネルギー効果が得られる除湿空調システムが提案されている。   Further, as shown in Patent Document 2, the cooling load of the indoor return air is almost stable during operation. Therefore, the capacity of the heat pump is set in accordance with the cooling load, so that the desiccant is used with the condenser or gas cooler of the heat pump. The regenerative air of the rotor is heated, and the evaporator cools the indoor return air that is recirculated from the air-conditioned room to the dehumidifying rotor, reducing the initial cost compared to the case where the scale of the heat pump device cools the outside air. A dehumidifying air-conditioning system has been proposed in which the heat pump can be operated at almost maximum capacity throughout the period, and a stable energy saving effect can be obtained.

特開平08−014600号公報Japanese Patent Laid-Open No. 08-014600 特開2007−327693号公報JP 2007-327893 A

ところで、前述先行技術の特許文献2の除湿空調システムは、再生側デシカントロータの前段に再生器としての凝縮器を配置し、処理側デシカントロータの前段にプレクーラとしての蒸発器を配置してヒートポンプシステムを組み込んでいるが、室内に供給する処理側デシカントロータにアフタークーラを配置していないので、直接デシカントロータを通過する空気を室内に供給することになり、精密な空調制御が行えない。
本発明は、このような問題点に鑑みてなされたもので、ヒートポンプシステムを組み込んだデシカント空調機において、デシカント空調機単独で除湿と冷却のすべてをまかなうことができ、室内に供給する空気の空調を、容易にかつ微妙に制御可能なデシカント空調機を提供することにある。
By the way, the dehumidifying air conditioning system of Patent Document 2 of the above-mentioned prior art arranges a condenser as a regenerator in front of the regeneration side desiccant rotor, and arranges an evaporator as a precooler in front of the processing side desiccant rotor. However, since the aftercooler is not disposed in the processing-side desiccant rotor that is supplied into the room, air that directly passes through the desiccant rotor is supplied into the room, and precise air conditioning control cannot be performed.
The present invention has been made in view of such problems, and in a desiccant air conditioner incorporating a heat pump system, the desiccant air conditioner alone can cover all of dehumidification and cooling, and air conditioning of the air supplied to the room Is to provide a desiccant air conditioner that can be easily and delicately controlled.

上記課題を解決するために、請求項1の発明は、デシカント空調機において、外気側デシカントロータの下流側に被空調室内からの還気の一部を導入してデシカントロータを通過して湿度調整した外気と混合させ、合流点の下流側に蒸発器(第1の蒸発器)を配置し、混合空気を温度調整して室内に供給し、再生側デシカントロータの上流側に第1凝縮手段としての再生器を配置し、第2凝縮手段として外部の冷熱源により冷却する水冷凝縮器を空調機内又はその近傍に配置し、前記再生器と前記水冷凝縮器と前記蒸発器とはヒートポンプシステムを形成していることを特徴とする。
請求項2の発明は、前記請求項1のデシカント空調機において、外気側デシカントロータの下流側に配置した蒸発器(第1の蒸発器)とは別に外気側デシカントロータの上流側に第2の蒸発器を配置し、前記蒸発器及び前記第2の蒸発器を直列、又は並列に冷媒接続し、前記の蒸発器、第2の蒸発器、再生器、及び水冷凝縮器とはヒートポンプを形成していることを特徴とする。

In order to solve the above-mentioned problems, the invention of claim 1 is directed to a desiccant air conditioner, wherein a part of the return air from the air-conditioned room is introduced downstream of the outside air-side desiccant rotor and passes through the desiccant rotor to adjust the humidity. The evaporator (first evaporator) is arranged downstream of the confluence, and the mixed air is temperature-adjusted and supplied to the room, and is used as the first condensing means upstream of the regeneration-side desiccant rotor. A water-cooled condenser that cools by an external cold heat source as a second condensing unit is disposed in or near the air conditioner, and the regenerator, the water-cooled condenser, and the evaporator form a heat pump system. It is characterized by that.
According to a second aspect of the present invention, in the desiccant air conditioner according to the first aspect, the second upstream side of the external air side desiccant rotor is separate from the evaporator (first evaporator) disposed on the downstream side of the external air side desiccant rotor. An evaporator is disposed, and the evaporator and the second evaporator are connected in refrigerant in series or in parallel, and the evaporator, the second evaporator, the regenerator, and the water-cooled condenser form a heat pump. It is characterized by.

請求項3の発明は、デシカント空調機において、外気側デシカントロータの上流側にプレクーラとしての蒸発器を配置し、デシカントロータの下流側に冷水コイルを配置し、デシカントロータと冷水コイルの間に被空調室内からの還気を導入してデシカントロータを通過して湿度調整した外気と混合させ、前記冷水コイルで混合空気を温度調整して室内に供給し、再生側デシカントロータの上流側に第1凝縮手段としての再生器を配置し、第2凝縮手段として外部の冷熱源により冷却する水冷凝縮器を空調機内又はその近傍に配置し、前記再生器と前記水冷凝縮器と前記蒸発器とはヒートポンプシステムを形成すると共に、前記冷水コイルと水冷凝縮器へ外部冷熱源より冷水を供給されていることを特徴とする。
請求項4の発明は、前記請求項3のデシカント空調機において、冷水コイルと水冷凝縮器とを直列に冷水接続し、冷水コイルで昇温した冷水を水冷凝縮器で再使用することを特徴とする。
According to a third aspect of the present invention, in the desiccant air conditioner, an evaporator as a precooler is disposed on the upstream side of the outside air-side desiccant rotor, a cold water coil is disposed on the downstream side of the desiccant rotor, and a cover is provided between the desiccant rotor and the cold water coil. The return air from the air-conditioned room is introduced and mixed with the outside air whose humidity has been adjusted by passing through the desiccant rotor, the temperature of the mixed air is adjusted by the cold water coil and supplied to the room, and the first is placed upstream of the regeneration-side desiccant rotor. A regenerator as a condensing unit is disposed, and a water-cooled condenser that is cooled by an external cold heat source as a second condensing unit is disposed in or near the air conditioner. The regenerator, the water-cooled condenser, and the evaporator are heat pumps. A system is formed, and cold water is supplied to the cold water coil and the water-cooled condenser from an external cold heat source.
The invention of claim 4 is the desiccant air conditioner of claim 3, wherein the cold water coil and the water cooled condenser are connected in cold water in series, and the cold water heated by the cold water coil is reused in the water cooled condenser. To do.

本発明によれば、ヒートポンプシステムを組み込んだデシカント空調機において、凝縮器と蒸発器の能力の不均衡を水冷凝縮器を制御することにより解消可能であり、アフタークーラである蒸発器あるいは冷水コイルの出口空気温度を所望の温度に精密に独立して制御でき、他方、デシカントロータにおける再生温度を凝縮器において所望の温熱に独立して制御でき、給気SA温度と再生温度を自由に精密に制御可能となる。
更に、従来のデシカント空調機は湿度調整を行う外調機であり、温度調整を行う内調機が別に必要であったが、第1凝縮器(再生器)とは別の第2の(水冷)凝縮器を含めたヒートポンプシステムを用いたので、外調機と内調機とを一体として一台のデシカント空調機とすることが可能となり、空調機全体の小型化も可能になる。
According to the present invention, in a desiccant air conditioner incorporating a heat pump system, it is possible to eliminate the imbalance between the capacities of the condenser and the evaporator by controlling the water-cooled condenser, and the evaporator or the chilled water coil that is the aftercooler. The outlet air temperature can be precisely and independently controlled to the desired temperature, while the regeneration temperature in the desiccant rotor can be independently controlled to the desired temperature in the condenser, and the supply SA temperature and regeneration temperature can be controlled precisely and freely. It becomes possible.
Furthermore, the conventional desiccant air conditioner is an external air conditioner for adjusting the humidity, and an internal air conditioner for adjusting the temperature is required separately. However, the second (water-cooled) is different from the first condenser (regenerator). ) Since a heat pump system including a condenser is used, the external air conditioner and the internal air conditioner can be integrated into a single desiccant air conditioner, and the entire air conditioner can be downsized.

ヒートポンプを組み込んだデシカント空調機の概念とした系統図、System diagram of the concept of a desiccant air conditioner incorporating a heat pump, 従来例1のヒートポンプを組み込んだデシカント空調機の系統図、System diagram of desiccant air conditioner incorporating the heat pump of Conventional Example 1, 従来例1のヒートポンプを組み込んだデシカント空調機の系統図、System diagram of desiccant air conditioner incorporating the heat pump of Conventional Example 1, 従来例1の空気線図、Air line diagram of Conventional Example 1, 本発明の実施例1のデシカント空調機の系統図、System diagram of the desiccant air conditioner of Example 1 of the present invention, 実施例1の空気線図、Air line diagram of Example 1, 本発明の実施例2のデシカント空調機の系統図である。It is a systematic diagram of the desiccant air conditioner of Example 2 of the present invention.

本発明は、凝縮器と蒸発器の能力の不均衡を解消可能であり、アフタークーラである蒸発器あるいは冷水コイルの出口空気温度を所望の温度に精密に独立して制御でき、他方、デシカントロータにおける再生温度を凝縮器において所望の温熱に独立して制御でき、給気SA温度と再生温度を自由に精密に制御可能となる。外調機と内調機とを一体として、一台のデシカント空調機とすること、及び、空調機全体の小型化が実現できた。
以下、本発明の好適な実施例を図面に沿って説明する。
The present invention can eliminate the imbalance between the condenser and the evaporator capacity, and can accurately control the outlet air temperature of the evaporator or the chilled water coil, which is an aftercooler, precisely to a desired temperature, while the desiccant rotor. In the condenser, the regeneration temperature can be controlled independently of the desired temperature, and the supply SA temperature and the regeneration temperature can be freely and precisely controlled. The external air conditioner and the internal air conditioner were integrated into a single desiccant air conditioner, and the overall size of the air conditioner could be reduced.
Preferred embodiments of the present invention will be described below with reference to the drawings.

先ず、実施例1を説明するが、図5は、実施例1のデシカント空調機1の系統図であって、デシカント空調システム2を構成するデシカントロータ21と、ヒートポンプシステム3から構成されている。
デシカントロータ21の片側(図では下側)211は、処理対象空気である外気OAを取り込んで処理(除湿)し空調された供給空気SAを室内に供給する処理側1Aを構成し、デシカントロータ21の他方の片側(図では上側)212は、再生側の対象空気である対象室内還気RAを取込んでデシカントロータ21で乾燥させ戸外等に排気EAする再生側1Bを構成している。
First, although Example 1 is demonstrated, FIG. 5 is a systematic diagram of the desiccant air conditioner 1 of Example 1, Comprising: The desiccant rotor 21 which comprises the desiccant air conditioning system 2, and the heat pump system 3 are comprised.
One side (lower side in the figure) 211 of the desiccant rotor 21 constitutes the processing side 1A that takes in the outside air OA that is the processing target air, processes (dehumidifies) the air, and supplies the air-conditioned supply air SA to the room. The other one side (the upper side in the figure) 212 constitutes a regeneration side 1B that takes in the target indoor return air RA, which is the target air on the regeneration side, and dries it in the desiccant rotor 21 and exhausts it EA to the outdoors.

ヒートポンプシステム3は、冷却時の冷媒の流れは矢印X1のように、圧縮機31より冷媒が凝縮器32に送られ、凝縮器32で冷媒が凝縮し、凝縮熱により換気RAの温度が上昇して再生器を構成するが、この凝縮器32は次工程の蒸発工程には温度が高すぎるので水冷凝縮器4のコイル43によりコイル44内の冷媒温度が下げられ、続いて、若干冷やされた冷媒は、第2の膨張弁332とこれに接続する第2の蒸発器342、及び、第1の膨張弁331とこれに接続する第1の蒸発器341に送られて、冷媒は循環してヒートポンプを形成する。
ここで、第1の蒸発器341と第2の蒸発器342の冷媒の流路は並列に配置されるが、第2の蒸発器342はプレクーラとしてデシカントロータ21の上流側である前段に配置され、第1の蒸発器341はアフタークーラとしてデシカントロータ21の下流側である後段に配置される。尤も、本実施例では第1の蒸発器341の冷媒の流路と第2の蒸発器342の冷媒流路とを並列にしたが、直列にしても良い。
また、凝縮器32は再生側1Bに配置され、デシカントロータ21の片側(図では上側)212の上流側である前段に配置され、凝縮器32によりデシカントロータ21を乾燥して再生させている。
In the heat pump system 3, the refrigerant flow during cooling is sent from the compressor 31 to the condenser 32 as indicated by the arrow X1, and the refrigerant is condensed in the condenser 32, and the temperature of the ventilation RA increases due to the condensation heat. The condenser 32 has a temperature that is too high for the evaporation process of the next process, so the temperature of the refrigerant in the coil 44 is lowered by the coil 43 of the water-cooled condenser 4, and then it is cooled slightly. The refrigerant is sent to the second expansion valve 332, the second evaporator 342 connected thereto, and the first expansion valve 331 and the first evaporator 341 connected thereto, and the refrigerant circulates. Form a heat pump.
Here, the flow paths of the refrigerant of the first evaporator 341 and the second evaporator 342 are arranged in parallel, but the second evaporator 342 is arranged as a precooler in a preceding stage upstream of the desiccant rotor 21. The first evaporator 341 is disposed in the rear stage downstream of the desiccant rotor 21 as an aftercooler. However, although the refrigerant flow path of the first evaporator 341 and the refrigerant flow path of the second evaporator 342 are arranged in parallel in this embodiment, they may be arranged in series.
Further, the condenser 32 is disposed on the regeneration side 1B, and is disposed on the upstream side of one side (upper side in the drawing) 212 of the desiccant rotor 21, and the desiccant rotor 21 is dried and regenerated by the condenser 32.

上述したように、水冷凝縮器4はデシカント空調機1が冷房稼働時に熱交換器であるコイル44で冷却するが、このコイル44に対向するコイル43にはポンプ42により冷却塔41に貯留槽413に貯留された冷水が矢印X2の方向に供給され、コイル43でコイル44を冷却した水は冷却塔41の天井のノズル411からシャワー状に貯留槽413に戻され、この際、ファン412等で戸外の空気で冷却される。
この水冷凝縮器4は、上述したように、通常のデシカントシステムとヒートポンプシステムを組み合わせた空調機の冷房稼働時では、冷却負荷が大きくなると凝縮圧力が上昇してしまうが、外部から水冷凝縮器4によって冷やすことで凝縮圧力を低く抑えることができる。このことにより、ヒートポンプシステムとしての運転が成立すことができる。言い換えれば、蒸発器341,342と凝縮器32との能力が不均衡であっても水冷凝縮器4を制御することによって均衡させることができる。
これにより、アフタークーラである第1の蒸発器341においては給気SA温度を所望の温度に精密に独立して制御し、他方、デシカントロータ212における再生温度として凝縮器32において所望の温熱に独立して制御し、その際の両者の能力の不均衡を水冷凝縮器4で調整すればよく、給気SA温度と再生温度を自由に精密に制御可能となる。
As described above, the water-cooled condenser 4 is cooled by the coil 44 that is a heat exchanger when the desiccant air conditioner 1 is operated for cooling. The coil 43 that faces the coil 44 is supplied to the cooling tower 41 by the pump 42. The cold water stored in the water is supplied in the direction of arrow X2, and the water after cooling the coil 44 by the coil 43 is returned to the storage tank 413 from the nozzle 411 on the ceiling of the cooling tower 41 to the storage tank 413. Cooled by outdoor air.
As described above, in the water-cooled condenser 4, during the cooling operation of an air conditioner that combines a normal desiccant system and a heat pump system, the condensation pressure increases as the cooling load increases. The condensation pressure can be kept low by cooling with. Thereby, the operation as a heat pump system can be established. In other words, even if the capacities of the evaporators 341 and 342 and the condenser 32 are imbalanced, they can be balanced by controlling the water-cooled condenser 4.
As a result, in the first evaporator 341 that is an aftercooler, the supply SA temperature is controlled precisely and independently to a desired temperature, and on the other hand, the regeneration temperature in the desiccant rotor 212 is independent of the desired heat in the condenser 32. In this case, it is sufficient to adjust the imbalance between the capacities of the two with the water-cooled condenser 4, and the supply SA temperature and the regeneration temperature can be freely and precisely controlled.

また、本実施例では、この水冷凝縮器4の構成に加えて、通常、外気OAに比べて低温である被空調室内の室内還気RAの一部をアフタークーラである第1の蒸発器341の上流に戻すことにより、外気OAと室内還気RAの一部(ダンパ等の手段により75%を第1の蒸発器341に導入)との混合空気の温度を下げることができるので、結果として第1の蒸発器341の負荷を緩和している。
このことは、例えば、本実施例1では、室内還気RAの空気量を100%とした場合、返還路1Cから外気OAに混合する室内還気RAの一部の空気量を75%としたので、外気OA及び排気EAは25%となり、両蒸発器341、342の負荷を低減することができ、運転効率のよいデシカント空調機としている。
本実施例1では、被空調室内の室内還気RAの一部は、空調機内の返還路1Cを介して処理側1Aの第1の蒸発器341の上流に戻しているが、更に、両蒸発器341、342に戻して外気OAの温度を下げて、これらのクーラとしての蒸発器の負荷を低減するようにしてもよい。
Further, in this embodiment, in addition to the configuration of the water-cooled condenser 4, a part of the indoor return air RA in the air-conditioned room, which is usually at a lower temperature than the outside air OA, is used as the first evaporator 341 as an aftercooler. As a result, the temperature of the mixed air between the outside air OA and a part of the indoor return air RA (75% is introduced into the first evaporator 341 by a damper or the like) can be lowered. The load on the first evaporator 341 is reduced.
For example, in the first embodiment, when the air amount of the indoor return air RA is set to 100%, the partial air amount of the indoor return air RA mixed from the return path 1C to the outside air OA is set to 75%. Therefore, the outside air OA and the exhaust gas EA are 25%, the load on both the evaporators 341 and 342 can be reduced, and the desiccant air conditioner with high operation efficiency is obtained.
In the first embodiment, a part of the indoor return air RA in the air-conditioned room is returned to the upstream side of the first evaporator 341 on the processing side 1A via the return path 1C in the air conditioner. The temperature of the outside air OA may be lowered by returning to the containers 341 and 342, and the load on the evaporator as these coolers may be reduced.

図5に示した実施例1のデシカント空調機の作動例を、図6の空気線図で説明すると、例えば、外気OAが乾球温度33℃、湿度RH50%の点にあったとすると、外気OAが第2の蒸発器342で冷却され点が左へ移動し24.5℃、RH80%の点へ移動し、この際、第2の蒸発器342では冷却されるが、結露の発生も生じるのでわずかに除湿して真横左より少し下へ下がる。
次に、外気OAがデシカントロータ21を通過して水分が減少すると空気線図上で右下へ移動し、温度が上昇して35℃、RH32%の点へ移動し、更に、第1の蒸発器341で冷却されて、この点が左へ移動し22℃、RH65%の点へ移動し、この際、第2の蒸発器342と同様に結露が生じるので、わずかに除湿するので、真横左より少し下へ下がるが、この空調空気が出口空気が給気SAとなり、居室等の室内に供給される。
一方、例えば、居室内の還気RAが28℃、RH45%であれば、凝縮器32で加熱され右方へ移動して40℃、RH27%となり、次に、デシカントロータ21の通過で水分を受取り左上方へ移動して29℃、RH60%の排気EAとなって室外へ放出される。
このように、実施例1の冷房時において温度と湿度は、デシカント空調機だけで、22℃、RH65%となり、十分に温度と湿度が維持できる。
The operation example of the desiccant air conditioner of the first embodiment shown in FIG. 5 will be described with reference to the air diagram of FIG. 6. For example, if the outside air OA is at a point where the dry bulb temperature is 33 ° C. and the humidity is RH 50%, the outside air OA Is cooled by the second evaporator 342 and the point moves to the left and moves to the point of 24.5 ° C and RH80%. At this time, it is cooled by the second evaporator 342, but condensation is also generated and slightly Dehumidify and go down slightly from the left side.
Next, when the outside air OA passes through the desiccant rotor 21 and the water content decreases, it moves to the lower right on the air diagram, the temperature rises and moves to a point of 35 ° C. and RH 32%, and further the first evaporation This point is moved to the left and moved to a point of 22 ° C. and RH 65%. In this case, condensation is generated as in the case of the second evaporator 342. Although the air is lowered slightly, the conditioned air is supplied to the room such as a living room by using the outlet air as the supply air SA.
On the other hand, for example, if the return air RA in the room is 28 ° C. and RH 45%, it is heated by the condenser 32 and moved to the right to 40 ° C. and RH 27%, and then the moisture passes through the desiccant rotor 21. It moves to the upper left of the receiving and becomes exhausted EA at 29 ° C. and RH 60% and discharged outside the room.
Thus, the temperature and humidity during cooling in Example 1 are 22 ° C. and RH 65% with only the desiccant air conditioner, and the temperature and humidity can be sufficiently maintained.

実施例1は、以上のような構成であるので、ヒートポンプシステムとしての運転を成立させるとともに、室内への空気SAの空調制御の最終調整はアフタークーラである蒸発器341を制御すればよいので、精密な空調調整が容易にできる。このように、室内還気RAの一部(75%)を返還路1Cを通してアフタークーラとしての第1の蒸発器341の上流に戻せば、アフタークーラである蒸発器341においては給気SA温度を所望の温度に精密に独立して制御し、他方、デシカントロータ21における再生温度として凝縮器32において所望の温熱に独立して制御し、その際の両者の能力の不均衡を水冷凝縮器4を制御すればよく、給気SA温度と再生温度を独立して自由に精密に制御可能となり、ヒートポンプシステムとしての運転が成立する。また、ヒートポンプを組み込んだデシカント空調機として、ヒートポンプ装置の規模が外気の冷却を行う場合に比べて、水冷凝縮器4の能力分だけ両341,342の能力は小さくてよく、必要以上に蒸発器を大型にすることもなく、運転期間中を通じてヒートポンプがほぼ定格能力で適正に運転でき、安定した省エネルギー効果が得られる。更に、従来のデシカント空調システムでは外調機と内調機とは別であったが、ヒートポンプシステムを用いて、第2の凝縮器(水冷)を配置することによって、除湿の外調機と冷却の内調機とを一体として一台のデシカント空調機とすることが可能となり、空調機全体の小型化も可能となる。   Since the first embodiment is configured as described above, the operation as the heat pump system is established, and the final adjustment of the air conditioning control of the air SA to the room may be performed by controlling the evaporator 341 that is an aftercooler. Precise air conditioning can be easily adjusted. In this way, if a part (75%) of the indoor return air RA is returned to the upstream side of the first evaporator 341 as the aftercooler through the return path 1C, the supply SA temperature is increased in the evaporator 341 as the aftercooler. The temperature is controlled independently and precisely to the desired temperature, and on the other hand, the regeneration temperature in the desiccant rotor 21 is independently controlled to the desired temperature in the condenser 32, and the imbalance between the capacities at that time is controlled by the water-cooled condenser 4. The supply SA temperature and the regeneration temperature can be controlled independently and precisely, and operation as a heat pump system is established. In addition, as a desiccant air conditioner with a built-in heat pump, the capacity of both 341 and 342 may be smaller by the capacity of the water-cooled condenser 4 than the case where the scale of the heat pump device cools outside air, and the evaporator is larger than necessary. Therefore, the heat pump can be properly operated at almost the rated capacity throughout the operation period, and a stable energy saving effect can be obtained. Furthermore, in the conventional desiccant air conditioning system, the external air conditioner and the internal air conditioner were separated, but by using a heat pump system, a second condenser (water cooling) was placed to cool the external air conditioner for dehumidification and cooling. The desiccant air conditioner can be integrated with the internal air conditioner, and the entire air conditioner can be downsized.

次に、実施例2を説明する。実施例2は実施例1同様に、処理側のデシカントロータの前段にプレクーラを配置し、室内還気を取り込む再生側デシカントロータ前段に再生器としての凝縮器を配置してヒートポンプシステムを形成する点で同じであるが、処理側のデシカントロータの後段に配置するアフタークーラの構成が異なる。ここでは、主に、この異なる構成を説明し、実施例1と共通する構成の説明は一部省略する。
図7は、実施例2のデシカント空調機1の系統図であって、デシカント空調システム2を構成するデシカントロータ21と、ヒートポンプシステム3から構成され、デシカントロータ21の片側(図では下側)211は、処理対象空気である外気OAを取り込んで処理(除湿)し空調された供給空気SAを室内に供給する処理側1Aを構成し、デシカントロータ21の他方の片側(図では上側)212は、再生側の対象空気である対象室内還気RAを取込んでデシカントロータ21を凝縮器32により乾燥させ戸外等に排気EAする再生側1Bを構成している。
Next, Example 2 will be described. In the second embodiment, as in the first embodiment, a precooler is disposed in front of the processing-side desiccant rotor, and a condenser as a regenerator is disposed in front of the regeneration-side desiccant rotor that takes in the indoor return air to form a heat pump system. However, the configuration of the aftercooler arranged in the subsequent stage of the desiccant rotor on the processing side is different. Here, this different configuration will be mainly described, and a part of the description of the configuration common to the first embodiment will be omitted.
FIG. 7 is a system diagram of the desiccant air conditioner 1 according to the second embodiment, which includes a desiccant rotor 21 constituting the desiccant air conditioning system 2 and a heat pump system 3, and one side (lower side in the figure) 211 of the desiccant rotor 21. Constitutes the processing side 1A that takes in the outside air OA that is the processing target air, processes it (dehumidifies), and supplies the conditioned supply air SA to the room, and the other one side (upper side in the figure) 212 of the desiccant rotor 21 is: The regeneration side 1B is configured to take in the target indoor return air RA that is the target air on the regeneration side, dry the desiccant rotor 21 by the condenser 32, and exhaust EA to the outdoors or the like.

ヒートポンプシステム3は、冷却時の冷媒の流れは矢印X1のように、圧縮機31より凝縮器32に送られ、凝縮器32で冷媒が凝縮されて還気RAの温度が上昇して再生器を構成し、この凝縮器32は次工程の蒸発工程には温度が高すぎるので水冷凝縮器4のコイル44によって温度を下げられ、続いて、若干冷やされた冷媒は、膨張弁35とこれに接続する蒸発器36に送られて、冷媒は循環してヒートポンプを形成する。
また、凝縮器32は再生側1Bに配置され、デシカントロータ21の上側212の上流側である前段に配置され、デシカントロータ21を凝縮器32により乾燥させて再生させ、プレクーラである蒸発器36は処理側1Aのデシカントロータ21の下側211の上流側である前段に配置されている。
そして、処理側1Aのデシカントロータ21の下側211の下流側である後段には、アフタークーラである水冷コイル5が配置されている。
In the heat pump system 3, the refrigerant flow during cooling is sent from the compressor 31 to the condenser 32 as indicated by the arrow X1, and the refrigerant is condensed in the condenser 32, and the temperature of the return air RA rises, and the regenerator is The condenser 32 has a temperature that is too high for the evaporation process of the next process, so the temperature is lowered by the coil 44 of the water-cooled condenser 4, and then the refrigerant that has been slightly cooled is connected to the expansion valve 35 and the expansion valve 35. The refrigerant is sent to the evaporator 36 and circulates to form a heat pump.
Further, the condenser 32 is disposed on the regeneration side 1B, and is disposed in a front stage upstream of the upper side 212 of the desiccant rotor 21, and the desiccant rotor 21 is dried and regenerated by the condenser 32, and the evaporator 36 serving as a precooler is It arrange | positions in the front | former stage which is the upstream of the lower side 211 of the desiccant rotor 21 of the process side 1A.
And the water cooling coil 5 which is an aftercooler is arrange | positioned in the back | latter stage which is the downstream of the lower side 211 of the desiccant rotor 21 of the process side 1A.

ここで、実施例2での水冷凝縮器4、及び、アフタークーラである水冷コイル5について説明する。
実施例2での水冷凝縮器4、及び、アフタークーラである水冷コイル5は、冷熱源施設の冷熱源の往路51から冷水が供給され、還路52から冷熱源施設に戻される。冷熱源施設としては、実施例1のような冷却塔でもよいが、夜間電力を用いた空冷チラーと蓄熱槽による冷熱源施設、産業廃液、地域冷暖房システム等のDHCの冷熱源施設等がある。
先ず、往路51から、例えば、上記の冷熱源施設等の12℃程度の冷水がポンプ53によって、アフタークーラの冷水コイル5に供給され、外気空気OAを冷却して、12℃程度の冷水が、熱交換により例えば17℃に上昇し、一部は三方弁54を還路52側に開き冷熱源施設に戻す。ここで、水冷凝縮器4を稼働させるには、三方弁54の戻り側を制御して水冷凝縮器4側に開通させ、熱交換器であるコイル43によりコイル44を冷却してから、還路52側の冷熱源施設に戻せばよい。この場合、凝縮器32の出口冷媒は十分に高温であるので、冷水が17℃程度でも十分に冷却するのに役立ち、この例では、熱交換して20℃程度に上昇して還路52に還水する。
この実施例2でも、室内還気RAの一部を返還路1Cを介して処理側1Aの水冷コイル5の上流に戻す。
Here, the water-cooled condenser 4 and the water-cooled coil 5 which is an aftercooler in Example 2 are demonstrated.
The water-cooled condenser 4 and the water-cooled coil 5 that is an aftercooler in the second embodiment are supplied with cold water from the forward path 51 of the cold heat source of the cold heat source facility, and are returned from the return path 52 to the cold heat source facility. The cooling heat source facility may be a cooling tower as in the first embodiment, but there are a cooling heat source facility using an air cooling chiller and a heat storage tank using nighttime power, an industrial waste liquid, a DHC cooling heat source facility such as a district cooling and heating system, and the like.
First, from the forward path 51, for example, chilled water of about 12 ° C. in the above-described cold heat source facility or the like is supplied to the chilled water coil 5 of the aftercooler by the pump 53, cools the outside air OA, and chilled water of about 12 ° C. The temperature rises to, for example, 17 ° C. by heat exchange, and partly opens the three-way valve 54 toward the return path 52 and returns to the cold heat source facility. Here, in order to operate the water-cooled condenser 4, the return side of the three-way valve 54 is controlled to open to the water-cooled condenser 4 side, the coil 44 that is a heat exchanger is cooled, and the return path is then returned. Return to the cold source facility on the 52 side. In this case, since the outlet refrigerant of the condenser 32 is sufficiently hot, it is useful for cooling sufficiently even when the chilled water is about 17 ° C. In this example, the heat is exchanged to rise to about 20 ° C. Return water.
Also in the second embodiment, a part of the indoor return air RA is returned to the upstream side of the water cooling coil 5 on the processing side 1A through the return path 1C.

実施例2のデシカント空調機の作動例も、図6の空気線図とほぼ同じであり、デシカント空調機だけで、十分に温度と湿度が維持でき、ヒートポンプシステムとしての運転が成立するとともに、室内への空気SAの空調制御の最終調整はアフタークーラである冷水コイル5を制御すればよいので、精密な空調調整が容易にできる。すなわち、アフタークーラである冷水コイル5においては給気SA温度をポンプ53及び三方弁54によって所望の温度に精密に独立して制御し、他方、デシカントロータ212における再生温度として凝縮器32において所望の温熱に独立して制御し、その際の両者の能力の不均衡を水冷凝縮器4で調整すればよく、実施例1と同様に給気SA温度と再生温度を自由に精密に制御可能となる。
この結果、水冷凝縮器4の能力分だけ凝縮器32の能力は小さくてよく、ヒートポンプ装置の規模が小型になり初期コストが抑制され、運転期間中を通じてヒートポンプがほぼ最大容量で運転でき、安定した省エネルギー効果が得られる。特に、デシカント空調機単独で除湿と冷却のすべてをまかなうことができる。その上に、アフタークーラとして外部の冷熱源施設を利用するので、設計の自由度が増し、蒸発器36を小型にでき従来のヒートポンプを組み込んだデシカント空調機をより小型にすることができる。更に、従来のデシカント空調システムでは外調機と内調機とは別であったが、第2の凝縮器(水冷凝縮器)を配置することによって、除湿の外調機と冷却の内調機とを一体として一台のデシカント空調機とすることが可能となり、空調機全体の小型化も可能となる。
なお、本発明の特徴を損なうものでなければ、上記の各実施例に限定されるものでないことは勿論である。
The operation example of the desiccant air conditioner of the second embodiment is also substantially the same as the air diagram of FIG. 6, and only the desiccant air conditioner can sufficiently maintain the temperature and humidity, and the operation as a heat pump system is established. Since the final adjustment of the air-conditioning control of the air SA may be performed by controlling the cold water coil 5 that is an aftercooler, precise air-conditioning adjustment can be easily performed. That is, in the chilled water coil 5 that is an aftercooler, the supply air SA temperature is precisely and independently controlled to a desired temperature by the pump 53 and the three-way valve 54, and on the other hand, a desired regeneration temperature in the desiccant rotor 212 is obtained in the condenser 32. It is possible to control independently of the heat and adjust the imbalance between the capacities of the two with the water-cooled condenser 4, and the supply SA temperature and the regeneration temperature can be freely and precisely controlled as in the first embodiment. .
As a result, the capacity of the condenser 32 may be as small as the capacity of the water-cooled condenser 4, the scale of the heat pump device is reduced, the initial cost is suppressed, and the heat pump can be operated at almost the maximum capacity throughout the operation period and is stable. Energy saving effect is obtained. In particular, the desiccant air conditioner alone can cover all of dehumidification and cooling. In addition, since an external cold source facility is used as an aftercooler, the degree of freedom in design is increased, the evaporator 36 can be made smaller, and a desiccant air conditioner incorporating a conventional heat pump can be made smaller. Furthermore, in the conventional desiccant air conditioning system, the external air conditioner and the internal air conditioner were separate, but by placing a second condenser (water-cooled condenser), the dehumidifying external air conditioner and cooling internal air conditioner Can be integrated into one desiccant air conditioner, and the entire air conditioner can be downsized.
Of course, the present invention is not limited to the above-described embodiments as long as the features of the present invention are not impaired.

1…デシカント空調機、1A…処理側、1B…再生側、1C…返還路、
2…デシカント空調システム、21…デシカントロータ、
211…デシカントロータの下側、212…デシカントロータの上側、
3…ヒートポンプシステム、31…圧縮機、32…凝縮器、
331…第1の膨張弁、332…第2の膨張弁、
3322…温度センサー、3321…弁制御装置、
341…第1の蒸発器、342…第2の蒸発器、
35…膨張弁、36…蒸発器、
4…水冷凝縮器、41…冷却塔、411…ノズル、412…ファン、
413…貯留槽、42…ポンプ、43,44…コイル
5…冷水コイル、51…往路、52…還路、53…ポンプ、54…三方弁
DESCRIPTION OF SYMBOLS 1 ... Desiccant air conditioner, 1A ... processing side, 1B ... reproduction | regeneration side, 1C ... return path,
2 ... Desiccant air conditioning system, 21 ... Desiccant rotor,
211 ... Lower side of the desiccant rotor, 212 ... Upper side of the desiccant rotor,
3 ... heat pump system, 31 ... compressor, 32 ... condenser,
331 ... first expansion valve, 332 ... second expansion valve,
3322 ... Temperature sensor, 3321 ... Valve control device,
341 ... first evaporator, 342 ... second evaporator,
35 ... expansion valve, 36 ... evaporator,
4 ... Water-cooled condenser, 41 ... Cooling tower, 411 ... Nozzle, 412 ... Fan,
413 ... Reservoir, 42 ... Pump, 43, 44 ... Coil 5 ... Cold water coil, 51 ... Outward path, 52 ... Return path, 53 ... Pump, 54 ... Three-way valve

Claims (4)

外気側デシカントロータの下流側に被空調室内からの還気の一部を導入してデシカントロータを通過して湿度調整した外気と混合させ、合流点の下流側に蒸発器を配置し、混合空気を温度調整して室内に供給し、
再生側デシカントロータの上流側に第1凝縮手段としての再生器を配置し、第2凝縮手段として外部の冷熱源により冷却する水冷凝縮器を空調機内又はその近傍に配置し、前記再生器と前記水冷凝縮器と前記蒸発器とはヒートポンプシステムを形成していることを特徴とするデシカント空調機。
A part of the return air from the air-conditioned room is introduced to the downstream side of the outside air desiccant rotor and mixed with the outside air whose humidity has been adjusted through the desiccant rotor. Adjust the temperature and supply it indoors.
A regenerator as the first condensing means is arranged upstream of the regeneration-side desiccant rotor, and a water-cooled condenser cooled by an external cold heat source is arranged as the second condensing means in or near the air conditioner, and the regenerator and the The desiccant air conditioner characterized in that the water-cooled condenser and the evaporator form a heat pump system.
前記請求項1において、外気側デシカントロータの下流側に配置した前記蒸発器とは別に外気側デシカントロータの上流側に第2の蒸発器を配置し、前記蒸発器及び前記第2の蒸発器を直列、又は並列に冷媒接続し、前記の蒸発器、第2の蒸発器、再生器、及び水冷凝縮器とはヒートポンプを形成していることを特徴とする請求項1のデシカント空調機。 In Claim 1, in addition to the evaporator disposed downstream of the outside air desiccant rotor, a second evaporator is disposed upstream of the outside air desiccant rotor, and the evaporator and the second evaporator are disposed. The desiccant air conditioner according to claim 1, wherein a refrigerant is connected in series or in parallel, and the evaporator, the second evaporator, the regenerator, and the water-cooled condenser form a heat pump. 外気側デシカントロータの上流側にプレクーラとしての蒸発器を配置し、デシカントロータの下流側に冷水コイルを配置し、デシカントロータと冷水コイルの間に被空調室内からの還気を導入してデシカントロータを通過して湿度調整した外気と混合させ、前記冷水コイルで混合空気を温度調整して室内に供給し、
再生側デシカントロータの上流側に第1凝縮手段としての再生器を配置し、第2凝縮手段として外部の冷熱源により冷却する水冷凝縮器を空調機内又はその近傍に配置し、前記再生器と前記水冷凝縮器と前記蒸発器とはヒートポンプシステムを形成すると共に、前記冷水コイルと水冷凝縮器へ外部冷熱源より冷水を供給されていることを特徴とするデシカント空調機。
An evaporator as a precooler is arranged on the upstream side of the outside air desiccant rotor, a cold water coil is arranged on the downstream side of the desiccant rotor, and the return air from the air-conditioned room is introduced between the desiccant rotor and the cold water coil. Is mixed with the outside air whose humidity has been adjusted, and the temperature of the mixed air is adjusted with the cold water coil and supplied to the room,
A regenerator as the first condensing means is arranged upstream of the regeneration-side desiccant rotor, and a water-cooled condenser cooled by an external cold heat source is arranged as the second condensing means in or near the air conditioner , and the regenerator and the The desiccant air conditioner is characterized in that the water-cooled condenser and the evaporator form a heat pump system, and cold water is supplied to the cold-water coil and the water-cooled condenser from an external cold heat source.
前記請求項3において、冷水コイルと水冷凝縮器とを直列に冷水接続し、冷水コイルで昇温した冷水を水冷凝縮器で再使用することを特徴とする請求項3のデシカント空調機。   4. The desiccant air conditioner according to claim 3, wherein the cold water coil and the water cooled condenser are connected in cold water in series, and the cold water heated by the cold water coil is reused in the water cooled condenser.
JP2009131623A 2009-05-29 2009-05-29 Desiccant air conditioner Active JP5360893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009131623A JP5360893B2 (en) 2009-05-29 2009-05-29 Desiccant air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009131623A JP5360893B2 (en) 2009-05-29 2009-05-29 Desiccant air conditioner

Publications (2)

Publication Number Publication Date
JP2010276317A JP2010276317A (en) 2010-12-09
JP5360893B2 true JP5360893B2 (en) 2013-12-04

Family

ID=43423433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009131623A Active JP5360893B2 (en) 2009-05-29 2009-05-29 Desiccant air conditioner

Country Status (1)

Country Link
JP (1) JP5360893B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5611079B2 (en) * 2011-02-21 2014-10-22 高砂熱学工業株式会社 Outside air treatment equipment using desiccant rotor
JP6320777B2 (en) * 2014-02-04 2018-05-09 ダイダン株式会社 Dehumidification system
JP5890873B2 (en) * 2014-08-04 2016-03-22 高砂熱学工業株式会社 Outside air treatment equipment using desiccant rotor
KR101632494B1 (en) * 2014-09-27 2016-06-21 (주)귀뚜라미 Hybrid dehumidification system using supplying water of Indirect-Evaporation device in heat pump
JP6622631B2 (en) * 2016-03-11 2019-12-18 東プレ株式会社 Outside air treatment device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4341358B2 (en) * 2003-09-30 2009-10-07 ダイキン工業株式会社 Air conditioner
JP2006292300A (en) * 2005-04-12 2006-10-26 Hiromi Komine Outside air introduction type air conditioner, and air-conditioning system
JP4591355B2 (en) * 2006-01-13 2010-12-01 株式会社日立プラントテクノロジー Dehumidification air conditioning system
JP2007315734A (en) * 2006-05-29 2007-12-06 Fuji Electric Retail Systems Co Ltd Air conditioning system
JP4296187B2 (en) * 2006-06-07 2009-07-15 木村工機株式会社 Desiccant air conditioner

Also Published As

Publication number Publication date
JP2010276317A (en) 2010-12-09

Similar Documents

Publication Publication Date Title
JP5068235B2 (en) Refrigeration air conditioner
JP5695752B2 (en) Dehumidification system
JP6494765B2 (en) Air conditioning system
US20100300123A1 (en) Hybrid desiccant dehumidifying apparatus and control method thereof
JP4582243B2 (en) Dehumidification system
JP2012026700A (en) Desiccant air-conditioning system
JP2009275955A (en) Desiccant air-conditioning device
CN201672615U (en) Solar liquid dehumidification dew-point evaporation cooling air conditioning system
JP5611079B2 (en) Outside air treatment equipment using desiccant rotor
JP5336133B2 (en) Air conditioning system
KR20100108361A (en) Humidity control device
JP2010151376A (en) Air conditioner and air conditioning system
JP5360893B2 (en) Desiccant air conditioner
JP5890873B2 (en) Outside air treatment equipment using desiccant rotor
JP2005195285A (en) Air conditioner
JP5537832B2 (en) External air conditioner and external air conditioning system
JP2010112633A (en) Desiccant air conditioner
WO2007080979A1 (en) Dehumidifying air conditioning system
JP2007327693A (en) Dehumidifying air-conditioning system
US9951963B2 (en) Hybrid heat pump apparatus
JP4505486B2 (en) Heat pump air conditioner
JP3168497U (en) Dehumidifying and reheating device using heat pump
JP2010243005A (en) Dehumidification system
JP2010255973A (en) Air conditioner
JP2008020139A (en) Air conditioning system without refrigerating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130829

R150 Certificate of patent or registration of utility model

Ref document number: 5360893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250