JP2014085092A - Open showcase - Google Patents

Open showcase Download PDF

Info

Publication number
JP2014085092A
JP2014085092A JP2012236849A JP2012236849A JP2014085092A JP 2014085092 A JP2014085092 A JP 2014085092A JP 2012236849 A JP2012236849 A JP 2012236849A JP 2012236849 A JP2012236849 A JP 2012236849A JP 2014085092 A JP2014085092 A JP 2014085092A
Authority
JP
Japan
Prior art keywords
radiator
stage
refrigerant
heat
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012236849A
Other languages
Japanese (ja)
Other versions
JP5673651B2 (en
Inventor
Tomotaka Ishikawa
智隆 石川
Takesuke Tashiro
雄亮 田代
Mutsumi Kato
睦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Applied Refrigeration Systems Co Ltd
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Applied Refrigeration Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Applied Refrigeration Systems Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2012236849A priority Critical patent/JP5673651B2/en
Publication of JP2014085092A publication Critical patent/JP2014085092A/en
Application granted granted Critical
Publication of JP5673651B2 publication Critical patent/JP5673651B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an open showcase capable of realizing high energy saving performance even when a wind velocity of air curtain is increased.SOLUTION: In an open showcase including a showcase body 101 having an opening face 9 facing an external space on its front face, and having an accommodation space 10 inside thereof, and forming air curtain at the opening face 9 by supplying cold air cooled by an evaporator 6 in a refrigerant circuit from a supply opening 12 formed on an upper edge portion of the opening face 9, and sucking the same from a suction port 13 formed on a lower edge portion of the opening face 9, the refrigerant circuit is constituted by successively connecting a low stage-side compressor 1, an auxiliary radiator 2, a high stage-side compressor 3, a high stage-side radiator 4, a pressure reducing device 5 and the evaporator 6, and a suction opening 16 for the ambient air exchanging heat with the auxiliary radiator 2 and the high stage-side radiator 4, is formed on a region at a vertical lower part with respect to the suction opening 13 of the front face.

Description

本発明は、開放型のオープンショーケースに関し、特にショーケース本体の開放面にエアカーテンを形成するオープンショーケースに関する。   The present invention relates to an open type open showcase, and more particularly to an open showcase in which an air curtain is formed on an open surface of a showcase body.

従来、スーパーやコンビニエンスストア等に設置されて飲料や食品等を貯蔵陳列する開放型のオープンショーケースが知られている。このようなオープンショーケースは、例えば、一面が開放されたショーケース本体の収容空間の内壁に互いに向かい合うように配置された吹出口と吸込口を備えていて、吹出口から吹き出された冷却空気を吸込口に吸い込んで、開放面にエアカーテンを形成している。そして、このエアカーテンにより、オープンショーケースの外部の空気が開放面を通じて収容空間内に流入するのを抑制し、ショーケース本体内の冷却効果の向上を図っている。   2. Description of the Related Art Conventionally, an open-type open showcase that is installed in a supermarket or a convenience store and stores and displays beverages, foods, and the like is known. Such an open showcase has, for example, a blower outlet and a suction opening arranged so as to face each other on the inner wall of the storage space of the showcase body with one side opened, and the cooling air blown out from the blower outlet is supplied. The air curtain is formed on the open surface by sucking into the suction port. The air curtain prevents air outside the open showcase from flowing into the accommodation space through the open surface, thereby improving the cooling effect in the showcase body.

このような開放型のオープンショーケースでは、エアカーテンによって外部の空気の侵入を防ぐことが、省エネ性の向上に大きく寄与する。ところが、例えばスーパーやコンビニエンスストア等においては、オープンショーケースの周囲に設置された空調機からショーケース本体の開放面へ空気が吹き出されるようなことがある。このようなオープンショーケースの周囲の気流があると、開放面のエアカーテンが崩れてしまうことがある。その結果、エアカーテンの循環空気がショーケース外側へ漏れ、ショーケース本体の外側の空気が収容空間内に流入してしまい、このオープンショーケースの省エネ性が損なわれてしまうという問題が生じうる。   In such an open-type open showcase, preventing the entry of outside air by the air curtain greatly contributes to the improvement of energy saving. However, in supermarkets and convenience stores, for example, air may be blown from the air conditioner installed around the open showcase to the open surface of the showcase body. When there is an airflow around such an open showcase, the air curtain on the open surface may collapse. As a result, the circulating air of the air curtain leaks to the outside of the showcase, and the air outside the showcase body flows into the housing space, which may cause a problem that the energy saving performance of the open showcase is impaired.

そこで、エアカーテンが崩れてしまうのを抑制するために、ショーケース本体の収容空間であって開放面の近傍に設けた庫内温度センサによりショーケース本体の収容空間内の温度を検出し、この庫内温度センサが検出した庫内温度が最適庫内温度に近づくように庫内ファンの送風量を変更する技術が提案されている(例えば、特許文献1参照)。   Therefore, in order to prevent the air curtain from collapsing, the temperature in the housing space of the showcase body is detected by an internal temperature sensor provided in the housing space of the showcase body and in the vicinity of the open surface. There has been proposed a technique of changing the air flow rate of the internal fan so that the internal temperature detected by the internal temperature sensor approaches the optimal internal temperature (see, for example, Patent Document 1).

また、従来より低温度の冷却を行うための冷凍装置として、圧縮過程を低段側と高段側の二段階に分割して行う二段サイクル冷凍装置が使用されている。そして、このような二段サイクル冷凍装置には、例えば高段側圧縮機の前段に補助放熱器を設置し、低段側圧縮機から吐出された吐出冷媒を補助放熱器で放熱させて冷却することで運転効率の向上を図っているものがある(例えば、特許文献2参照)。   Further, as a refrigeration apparatus for cooling at a lower temperature than the conventional one, a two-stage cycle refrigeration apparatus that performs a compression process in two stages, a low stage side and a high stage side, is used. In such a two-stage cycle refrigeration apparatus, for example, an auxiliary radiator is installed in front of the high-stage compressor, and the discharged refrigerant discharged from the low-stage compressor is radiated by the auxiliary radiator and cooled. In some cases, the driving efficiency is improved (see, for example, Patent Document 2).

特開2008−164209号公報JP 2008-164209 A 特開2005−326138号公報JP 2005-326138 A

上記特許文献1によれば、検出した庫内温度に基づいて庫内ファンの送風量を増大あるいは減少させている。しかし、エアカーテンの風速が過大であると、エアカーテン自らが開放面の外側の気流を巻き込んでしまい、結果的に外側の空気を収容空間内に流入させ、同時に収容空間内の冷気が外側に流出してしまうこととなる。そうなると、オープンショーケースの冷却負荷(すなわち、外側の空気の侵入量)が増大し、必要とする冷却能力もまた増大するため、収容空間内の冷却の省エネ性が損なわれてしまう。従来は、このようなエアカーテン自身によるオープンショーケース外側の空気の巻き込みについては考慮されていなかった。   According to the said patent document 1, the ventilation volume of the internal fan is increased or decreased based on the detected internal temperature. However, if the wind speed of the air curtain is excessive, the air curtain itself entrains the airflow outside the open surface, and as a result, the outside air flows into the housing space, and at the same time, the cold air inside the housing space moves outward. It will be leaked. As a result, the cooling load of the open showcase (that is, the amount of outside air intrusion) increases and the required cooling capacity also increases, so that the energy-saving performance of cooling in the accommodation space is impaired. Conventionally, the entrainment of air outside the open showcase by the air curtain itself has not been considered.

本発明は、上述のような課題に鑑みてなされたもので、エアカーテン風速を増加させた場合であっても、高い省エネ性を実現可能なオープンショーケースを提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object thereof is to provide an open showcase capable of realizing high energy saving even when the air curtain wind speed is increased.

本発明に係るオープンショーケースは、前面に外部空間への開放面を有し、その内部を収容空間としたショーケース本体と、開放面の下縁部に設けられた冷気吸込口と、開放面の上縁部に設けられた冷気吹出口と、冷気吸込口から冷気吹出口に至る循環通路と、循環通路内の空気を送風する冷却用送風機と、循環通路内の空気を冷却する冷却装置と、を備え、冷却用送風機を駆動することにより冷気吹出口から吹き出した冷気を冷気吸込口から吸い込んで開放面にエアカーテンを形成するオープンショーケースにおいて、冷却装置は、冷媒を圧縮して吐出する低段側圧縮機と、低段側圧縮機から吐出された冷媒と周囲空気との間で熱交換を行う補助放熱器と、補助放熱器で熱交換を行った冷媒を圧縮して吐出する高段側圧縮機と、高段側圧縮機から吐出された冷媒と周囲空気との間で熱交換を行う高段側放熱器と、高段側放熱器で熱交換を行った冷媒を減圧する減圧装置と、減圧装置で減圧された冷媒を蒸発させる冷却器と、を備え、補助放熱器及び高段側放熱器と熱交換させる周囲空気の吸込口を、前面における冷気吸込口よりも鉛直下方の領域に設けたものである。   An open showcase according to the present invention includes a showcase body having an open space to the external space on the front surface and the inside as an accommodating space, a cold air inlet provided at a lower edge of the open surface, and an open surface A cold air outlet provided at the upper edge of the air passage, a circulation passage from the cold air inlet to the cold air outlet, a cooling fan for blowing air in the circulation passage, and a cooling device for cooling the air in the circulation passage The cooling device compresses and discharges the refrigerant in an open showcase in which the air blown from the cold air outlet is sucked from the cold air inlet by forming the air curtain by driving the cooling fan. A low-stage compressor, an auxiliary radiator that exchanges heat between the refrigerant discharged from the low-stage compressor and ambient air, and a high-pressure that compresses and discharges the refrigerant that exchanged heat with the auxiliary radiator Stage side compressor and high stage side compression A high-stage radiator that exchanges heat between the refrigerant discharged from the ambient air and the ambient air, a decompressor that decompresses the refrigerant that has exchanged heat with the high-stage radiator, and a refrigerant decompressed by the decompressor And a cooler that evaporates, and a suction port for ambient air that exchanges heat with the auxiliary radiator and the high-stage radiator is provided in a region vertically below the cool air suction port on the front surface.

本発明は、エアカーテン風速を増加させた場合であっても、高い省エネ性を実現可能なオープンショーケースを提供することが可能となる。   The present invention can provide an open showcase capable of realizing high energy saving even when the air curtain wind speed is increased.

本発明の実施の形態1に係るオープンショーケースの構成を示す概略図である。It is the schematic which shows the structure of the open showcase which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るオープンショーケースの冷媒回路図である。It is a refrigerant circuit figure of the open showcase which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るオープンショーケースの一体型放熱器の構成を示す概略図である。It is the schematic which shows the structure of the integrated radiator of the open showcase which concerns on Embodiment 1 of this invention. オープンショーケースにおけるエンタルピと圧力との関係を示す図である。It is a figure which shows the relationship between enthalpy and pressure in an open showcase. 中間圧力と圧縮機入力との関係を示す図である。It is a figure which shows the relationship between an intermediate pressure and a compressor input. 低段側凝縮温度が周囲温度よりも低い場合と高い場合の放熱量をモリエル線図で説明した図である。It is the figure explaining the heat dissipation when a low stage side condensation temperature is lower than ambient temperature, and when it is high with the Mollier diagram. 補助放熱器の放熱量とCOPとの関係の説明図である。It is explanatory drawing of the relationship between the heat dissipation of an auxiliary radiator and COP. 放熱量に対する十分な熱処理能力の説明図である。It is explanatory drawing of sufficient heat processing capability with respect to the emitted heat amount.

以下、本発明に係るオープンショーケースの好適な実施の形態について図面を参照して説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of an open showcase according to the invention will be described with reference to the drawings.

実施の形態1.
実施の形態1に係るオープンショーケースは、スーパーやコンビニエンスストア等に設置されて飲料や食品等を貯蔵陳列する開放型のオープンショーケースである。このオープンショーケースは、蒸気圧縮式の冷凍サイクルを行う冷凍装置を実現している。
Embodiment 1 FIG.
The open showcase according to Embodiment 1 is an open-type open showcase that is installed in a supermarket or a convenience store and stores and displays beverages, foods, and the like. This open showcase realizes a refrigeration apparatus that performs a vapor compression refrigeration cycle.

図1は、実施の形態1に係るオープンショーケースの主要部を示す概略図である。図1に示すように、オープンショーケース100は、上方部にショーケース本体101と、下方部に機械室102とを備えている。ショーケース本体101内には冷却器としての蒸発器6が収容されるとともに、機械室102には圧縮機1,3および放熱器2,4が収容されている。これらの機器が接続されることで後述する冷媒回路が構成され、この冷媒回路の内部に充填された冷媒が循環することで、蒸気圧縮式の冷凍サイクルが実現される。   FIG. 1 is a schematic diagram showing a main part of an open showcase according to Embodiment 1. FIG. As shown in FIG. 1, the open showcase 100 includes a showcase body 101 in the upper part and a machine room 102 in the lower part. The showcase body 101 accommodates an evaporator 6 as a cooler, and the machine room 102 accommodates compressors 1 and 3 and radiators 2 and 4. A refrigerant circuit, which will be described later, is configured by connecting these devices, and a refrigerant filled in the refrigerant circuit circulates to realize a vapor compression refrigeration cycle.

ショーケース本体101は、全体として箱状に構成されており、その一面には開放面9が形成されている。本実施の形態では、開放面9はショーケース本体101の前面側に設けられている。ショーケース本体101の内部には冷却対象となる飲料や生鮮食品等を収納可能な収容空間10が形成されている。この収容空間10には、生鮮食品等を陳列するための複数の陳列棚11が、上下方向に配列されて取り付けられている。また、ショーケース本体101の開放面9の上側周縁に沿って開口する吹出口12が形成され、開放面9の下側周縁に沿って開口する吸込口13が形成されている。吹出口12は、収容空間10に臨むようにして、下側に向かって開口している。吸込口13は、収容空間10に臨むようにして、上側に向かって開口している。つまり、吹出口12と吸込口13は、開放面9の内側において、互いに向かい合うように形成されている。   The showcase body 101 has a box shape as a whole, and an open surface 9 is formed on one surface thereof. In the present embodiment, the open surface 9 is provided on the front side of the showcase body 101. Inside the showcase body 101, a storage space 10 is formed that can store beverages to be cooled, fresh food, and the like. A plurality of display shelves 11 for displaying fresh food and the like are arranged and attached in the storage space 10 in the vertical direction. Moreover, the blower outlet 12 opened along the upper periphery of the open surface 9 of the showcase main body 101 is formed, and the suction inlet 13 opened along the lower periphery of the open surface 9 is formed. The blower outlet 12 is opened toward the lower side so as to face the accommodation space 10. The suction port 13 is opened toward the upper side so as to face the accommodation space 10. That is, the blower outlet 12 and the suction inlet 13 are formed inside the open surface 9 so as to face each other.

ショーケース本体101には、吸込口13から吹出口12至る循環通路14が設けられている。循環通路14は、収容空間10とは区画された通路である。本実施の形態1では、循環通路14は、収容空間10を囲む下側壁面、後側壁面、及び上側壁面に沿うようにして設けられていて、その縦断面が「コ」字状となっている。循環通路14には、蒸発器6と庫内ファン15が設けられている。庫内ファン15が駆動されると、蒸発器6を通過した冷気が吹出口12から下方に吹き出されて開口面9に沿って降下した後に、吸込口13から吸い込まれる。これにより、ショーケース本体101の開放面9には、冷気のエアカーテンが形成される。   The showcase body 101 is provided with a circulation passage 14 extending from the inlet 13 to the outlet 12. The circulation passage 14 is a passage partitioned from the accommodation space 10. In the first embodiment, the circulation passage 14 is provided along the lower wall surface, the rear wall surface, and the upper wall surface that surround the housing space 10, and the longitudinal section thereof is a “U” shape. Yes. The circulation passage 14 is provided with an evaporator 6 and an internal fan 15. When the internal fan 15 is driven, the cold air that has passed through the evaporator 6 is blown downward from the air outlet 12 and descends along the opening surface 9, and is then sucked from the air inlet 13. As a result, a cold air curtain is formed on the open surface 9 of the showcase body 101.

次に、オープンショーケース100の冷媒回路について詳細に説明する。図2は、発明の実施の形態1に係るオープンショーケースの冷媒回路図である。図2に示すように、冷媒回路は、低段側圧縮機1、補助放熱器2、高段側圧縮機3、高段側放熱器4、減圧装置としての膨張弁5、冷却器としての蒸発器6が順次接続されることにより構成されている。低段側圧縮機1は、冷媒を圧縮して吐出する。補助放熱器2は、低段側圧縮機1から吐出された冷媒と周囲空気とを熱交換させ、冷媒を放熱させる。高段側圧縮機3は、補助放熱器2で放熱された冷媒を圧縮して吐出する。高段側放熱器4は、高段側圧縮機3から吐出された冷媒と周囲空気とを熱交換させ、冷媒を放熱(凝縮)させる。膨張弁5は、高段側放熱器4で放熱された冷媒を減圧する。蒸発器6は、膨張弁5で減圧された冷媒を蒸発させる。   Next, the refrigerant circuit of the open showcase 100 will be described in detail. FIG. 2 is a refrigerant circuit diagram of the open showcase according to Embodiment 1 of the invention. As shown in FIG. 2, the refrigerant circuit includes a low-stage compressor 1, an auxiliary radiator 2, a high-stage compressor 3, a high-stage radiator 4, an expansion valve 5 as a decompression device, and an evaporation as a cooler. The apparatus 6 is configured by sequentially connecting. The low-stage compressor 1 compresses and discharges the refrigerant. The auxiliary radiator 2 exchanges heat between the refrigerant discharged from the low-stage compressor 1 and the ambient air, and radiates the refrigerant. The high stage compressor 3 compresses and discharges the refrigerant radiated by the auxiliary radiator 2. The high stage side radiator 4 exchanges heat between the refrigerant discharged from the high stage side compressor 3 and the ambient air, and radiates (condenses) the refrigerant. The expansion valve 5 depressurizes the refrigerant radiated by the high stage side radiator 4. The evaporator 6 evaporates the refrigerant decompressed by the expansion valve 5.

高段側放熱器4及び補助放熱器2は、一体型放熱器7として構成されている。尚、一体型放熱器7については、その詳細な構造を後述する。一体型放熱器7には放熱器ファン8が設けられている。放熱器ファン8は、一体型放熱器7に周囲空気を通過させ、一体型放熱器7の伝熱管を通過する冷媒と熱交換させた後、熱交換後の空気を一体型放熱器7外に排気させる。   The high stage side radiator 4 and the auxiliary radiator 2 are configured as an integrated radiator 7. The detailed structure of the integrated radiator 7 will be described later. The integrated radiator 7 is provided with a radiator fan 8. The radiator fan 8 allows ambient air to pass through the integrated radiator 7, exchanges heat with the refrigerant passing through the heat transfer tube of the integrated radiator 7, and then transfers the air after heat exchange to the outside of the integrated radiator 7. Exhaust.

ここで、本実施の形態1に係るオープンショーケースでは、放熱器ファン8による周囲空気の吸込口16が、エアカーテンが形成される開放面9と同じ側面(前面)における開放面9の鉛直下側の領域(すなわち吸込口13よりも鉛直下方の領域)に形成されている。このような配置によれば、エアカーテンから漏れた冷気を周囲空気の吸込口16から吸込むことが可能となるので省エネ性が向上する。   Here, in the open showcase according to the first embodiment, the ambient air suction port 16 by the radiator fan 8 is vertically below the open surface 9 on the same side surface (front surface) as the open surface 9 on which the air curtain is formed. It is formed in a side region (that is, a region vertically below the suction port 13). According to such an arrangement, it is possible to suck in cool air leaking from the air curtain from the ambient air suction port 16, so that energy saving is improved.

次に、一体型放熱器7の構造について更に詳細に説明する。図3は、本発明の実施の形態1に係る冷凍装置の一体型放熱器の構成を示す概略図である。図3において、一体型放熱器7は、平板状の伝熱フィン71に伝熱管72を貫通してなるプレートフィンチューブ型熱交換器である。尚、高段側放熱器4及び補助放熱器2は、伝熱フィン71を共有することによって一体化されていてもよいし、伝熱フィン71部分が分割されていてもよい。一体化されていれば、熱交換器の構造上、製造が容易となる。また、高温となる補助放熱器2と高段側放熱器4との間で伝熱フィン71を分割した構成とした場合には熱絶縁効果が大きくなるため、補助放熱器2及び高段側放熱器4の双方がより効率よく放熱可能となる。   Next, the structure of the integrated radiator 7 will be described in more detail. FIG. 3 is a schematic diagram showing the configuration of the integrated radiator of the refrigeration apparatus according to Embodiment 1 of the present invention. In FIG. 3, the integrated radiator 7 is a plate fin tube type heat exchanger formed by passing a heat transfer tube 72 through a flat heat transfer fin 71. In addition, the high stage side heat radiator 4 and the auxiliary | assistant heat radiator 2 may be integrated by sharing the heat-transfer fin 71, and the heat-transfer fin 71 part may be divided | segmented. If integrated, the structure of the heat exchanger makes it easy to manufacture. In addition, when the heat transfer fins 71 are divided between the auxiliary radiator 2 and the high-stage side radiator 4 that are at a high temperature, the thermal insulation effect is increased, so that the auxiliary radiator 2 and the high-stage side heat dissipation are increased. Both units 4 can dissipate heat more efficiently.

また、本実施の形態1に係る一体型放熱器7では、低段側圧縮機1の吐出ガスを冷却する補助放熱器2が、高段側放熱器4より周囲空気の吸込口16の近傍に配置されている。これにより、周囲空気より温度の低いエアカーテンから漏れた冷気を積極的に補助放熱器2で利用することができ、補助放熱器2の放熱量の増加が可能となる。後述するが、補助放熱器2の放熱量を増加させるほど高段側圧縮機3の入力が低減できるため、大きな省エネ効果を得られる。   In the integrated radiator 7 according to the first embodiment, the auxiliary radiator 2 that cools the discharge gas of the low-stage compressor 1 is closer to the ambient air inlet 16 than the high-stage radiator 4. Has been placed. Thereby, the cool air leaked from the air curtain having a temperature lower than that of the ambient air can be positively utilized by the auxiliary radiator 2, and the amount of heat released from the auxiliary radiator 2 can be increased. Although mentioned later, since the input of the high stage side compressor 3 can be reduced, so that the heat radiation amount of the auxiliary radiator 2 is increased, a large energy saving effect can be obtained.

また、本実施の形態の一体型放熱器7では、高温となる低段側圧縮機1の吐出ガスを冷却する補助放熱器2を熱交換器の上方部(鉛直上側)に配置し、高段側放熱器4を下方部(鉛直下側)に配置する。これにより、補助放熱器2の放熱が高段側放熱器4側に干渉することがなく、すなわち補助放熱器2で暖められた被熱伝達流体が高段側放熱器4側に移動することがなく、補助放熱器2及び高段側放熱器4の双方が効率よく放熱可能となる。   Moreover, in the integrated radiator 7 of this Embodiment, the auxiliary radiator 2 which cools the discharge gas of the low stage compressor 1 which becomes high temperature is arrange | positioned in the upper part (vertical upper side) of a heat exchanger, and high stage The side radiator 4 is disposed in the lower part (vertically below). Thereby, the heat radiation of the auxiliary radiator 2 does not interfere with the high-stage radiator 4 side, that is, the heat transfer fluid warmed by the auxiliary radiator 2 moves to the high-stage radiator 4 side. In addition, both the auxiliary radiator 2 and the high-stage radiator 4 can efficiently dissipate heat.

補助放熱器2の放熱量を増加させるほど高段側圧縮機3の入力が低減できるが、補助放熱器2の放熱量増加手段として、補助放熱器2への散水を行うこととしてもよい。散水した水の気化熱により湿球温度までの冷却が可能となり、補助放熱器2の放熱量を増加することができる。水の確保は蒸発器6に生じるドレン水を利用すれば補給の必要がなく、更にドレンの排水作業も不要となる利点が付くため、製品力向上となる。   As the heat radiation amount of the auxiliary radiator 2 is increased, the input of the higher stage compressor 3 can be reduced. However, as a means for increasing the heat radiation amount of the auxiliary radiator 2, water spraying to the auxiliary radiator 2 may be performed. Cooling to the wet bulb temperature is possible by the vaporization heat of the sprinkled water, and the heat radiation amount of the auxiliary radiator 2 can be increased. For securing water, if drain water generated in the evaporator 6 is used, there is no need for replenishment, and further, drainage work of drain is unnecessary, which improves the product power.

尚、このように構成されたオープンショーケース100に用いる冷媒は、本実施の形態ではCOとする。本実施の形態のオープンショーケース100は、冷媒回路が開放されることがないため、冷媒漏れ量も小さい。このため、従来の地球温暖化係数の高いHFC系冷媒でも問題ないが、地球温暖化に対する影響が小さい冷媒、即ちCO、HFO系冷媒、HC系冷媒、アンモニア、水などが望ましい。 Note that the refrigerant used in the open showcase 100 configured as described above is CO 2 in this embodiment. In the open showcase 100 according to the present embodiment, the refrigerant circuit is never opened, and thus the amount of refrigerant leakage is small. Therefore, a conventional HFC refrigerant having a high global warming potential is not a problem, but a refrigerant having a small influence on global warming, that is, CO 2 , HFO refrigerant, HC refrigerant, ammonia, water or the like is desirable.

次に、本実施の形態のオープンショーケース100の特徴的動作について説明する。低段側圧縮機1で圧縮されて吐出されたCO冷媒は、一体型放熱器7内の補助放熱器2で冷却された後、高段側圧縮機3に吸入されて更に圧縮される。高段側圧縮機3で圧縮されて吐出されたCO冷媒は、一体型放熱器7内の高段側放熱器4で放熱、凝縮された後、膨張弁5で減圧されて蒸発器6に流入する。蒸発器6に流入したCO冷媒は蒸発し、低段側圧縮機1へ還流する。 Next, a characteristic operation of the open showcase 100 of the present embodiment will be described. The CO 2 refrigerant compressed and discharged by the low-stage compressor 1 is cooled by the auxiliary radiator 2 in the integrated radiator 7 and then sucked into the high-stage compressor 3 and further compressed. The CO 2 refrigerant compressed and discharged by the high-stage compressor 3 is radiated and condensed by the high-stage radiator 4 in the integrated radiator 7 and then decompressed by the expansion valve 5 to the evaporator 6. Inflow. The CO 2 refrigerant flowing into the evaporator 6 evaporates and returns to the low stage compressor 1.

ここで、本実施の形態の冷凍装置では、低段側圧縮機1と高段側圧縮機3の容量比により低段側高圧(すなわち、低段側圧縮機1と高段側圧縮機3との間の中間圧力)を調節する。尚、本実施の形態では、圧縮機を駆動させるモータの回転数を制御できる運転容量可変式とするが、低段側圧縮機1と高段側圧縮機3の排除容積比により低段側高圧を調節してもよい。   Here, in the refrigeration apparatus of the present embodiment, the low stage side high pressure (that is, the low stage side compressor 1 and the high stage side compressor 3 are determined by the capacity ratio of the low stage side compressor 1 and the high stage side compressor 3. Adjust the intermediate pressure between). In this embodiment, the operating capacity is variable so that the number of revolutions of the motor for driving the compressor can be controlled. However, the low-stage high pressure is determined by the excluded volume ratio of the low-stage compressor 1 and the high-stage compressor 3. May be adjusted.

図4は、オープンショーケースにおけるエンタルピと冷媒圧力との関係を示す図である。本実施の形態のオープンショーケース100では、周囲空気温度やエアカーテン風速に応じて変化する冷却負荷に対して冷凍能力ΔH(蒸発器6の熱交換量)を決定しており、その決定した冷凍能力を出力するように低段側圧縮機1により冷媒流量Grを制御している。このため、ある運転状態から高段側圧縮機3の運転回転数を上げて高段側圧縮機3の容量を増大させると、高段側吸入圧力が低下し、低段側高圧も低下するという関係がある。逆に、高段側圧縮機3の容量を低減すれば低段側高圧が上昇する。   FIG. 4 is a diagram showing the relationship between enthalpy and refrigerant pressure in an open showcase. In the open showcase 100 of the present embodiment, the refrigeration capacity ΔH (heat exchange amount of the evaporator 6) is determined for the cooling load that changes according to the ambient air temperature and the air curtain wind speed, and the determined refrigeration The refrigerant flow rate Gr is controlled by the low-stage compressor 1 so as to output the capacity. Therefore, if the operating speed of the high-stage compressor 3 is increased from a certain operating state to increase the capacity of the high-stage compressor 3, the high-stage suction pressure decreases and the low-stage high pressure also decreases. There is a relationship. Conversely, if the capacity of the high-stage compressor 3 is reduced, the low-stage high pressure increases.

また、図4から明らかなように、高段側圧縮機3の運転回転数を上げて低段側高圧が低下すると、高段側圧縮機3の入力は大きくなる(WH1<WH2)のに対し、低段側圧縮機1の入力は小さくなる(WL1>WL2)。   Further, as is apparent from FIG. 4, when the operating speed of the high stage side compressor 3 is increased and the low stage side high pressure is reduced, the input of the high stage side compressor 3 increases (WH1 <WH2). The input of the low-stage compressor 1 becomes small (WL1> WL2).

そこで、横軸を低段側高圧(中間圧力)とし、縦軸を二段サイクルショーケース全体の合計入力として、高段側圧縮機3の入力(エンタルピ差)と低段側圧縮機1の入力(エンタルピ差)とそれらの合計入力のそれぞれのグラフを作成すると、図5に示すようになる。図5に示すように、高段側と低段側のそれぞれの圧縮機入力が略同じになるとき合計入力が最も小さくなり、COP(=冷凍能力/(高段側圧縮機入力+低段側圧縮機入力))が最大となることがわかる。   Therefore, the horizontal axis is the low-stage high pressure (intermediate pressure) and the vertical axis is the total input for the entire two-stage cycle showcase, with the input of the high-stage compressor 3 (enthalpy difference) and the input of the low-stage compressor 1 When respective graphs of (enthalpy difference) and their total input are created, the graph is as shown in FIG. As shown in FIG. 5, when the compressor inputs on the high stage side and the low stage side are substantially the same, the total input becomes the smallest, COP (= refrigeration capacity / (high stage compressor input + low stage side). It can be seen that the compressor input)) is maximized.

このように、低段側圧縮機1と高段側圧縮機3の圧縮比が略同等となるときに、合計入力(高段側圧縮機3の入力+低段側圧縮機1の入力)が最小となり、二段サイクル全体の運転効率が最適となる。そこで、本実施の形態のオープンショーケースでは、高段側と低段側の圧縮比を略同じとする低段側高圧(以下、最適中間圧という)を目標として高段側圧縮機3の容量制御を行うこととしている。これにより、二段サイクルショーケースのCOPが最大となる効果を得る。なお、本実施の形態では、高段側圧縮機3の容量制御を行う場合を説明するが、本発明はこれに限らず、低段側圧縮機1の圧縮比と高段側圧縮機3の圧縮比とが同等となるように、低段側圧縮機1の容量と高段側圧縮機3の容量との容量比を調節すればよい。   Thus, when the compression ratios of the low-stage compressor 1 and the high-stage compressor 3 are substantially equal, the total input (input of the high-stage compressor 3 + input of the low-stage compressor 1) is The operation efficiency of the entire two-stage cycle is optimized. Therefore, in the open showcase of the present embodiment, the capacity of the high-stage compressor 3 is set so as to target a low-stage high pressure (hereinafter referred to as optimum intermediate pressure) in which the compression ratios of the high-stage side and the low-stage side are substantially the same. Control is going to be done. Thereby, the effect that the COP of the two-stage cycle showcase is maximized is obtained. In the present embodiment, the case where the capacity control of the high-stage compressor 3 is performed will be described. However, the present invention is not limited to this, and the compression ratio of the low-stage compressor 1 and the high-stage compressor 3 What is necessary is just to adjust the capacity | capacitance ratio of the capacity | capacitance of the low stage side compressor 1 and the capacity | capacitance of the high stage side compressor 3 so that a compression ratio may become equivalent.

ここで、高段側放熱器4と熱交換する周囲空気温度により、高段側高圧が変化する。周囲温度が上昇すれば高段側高圧が上昇し、最適中間圧も上昇する。一方、周囲温度が低下すれば同様に最適中間圧が低下する。このように、周囲温度に伴って最適中間圧が変化する。   Here, the high pressure on the high stage side varies depending on the ambient air temperature for heat exchange with the high stage radiator 4. If the ambient temperature rises, the high stage side high pressure rises and the optimum intermediate pressure also rises. On the other hand, if the ambient temperature decreases, the optimum intermediate pressure similarly decreases. Thus, the optimum intermediate pressure changes with the ambient temperature.

上述したとおり、本実施の形態では、高段側と低段側の圧縮比を略同じとする最適中間圧を目標として高段側圧縮機3の容量制御を行うため、最適中間圧における冷媒の飽和温度は周囲温度よりも低くなる。具体的には庫内温度を5℃とした場合、周囲温度が27℃のとき、最適中間圧の飽和温度が約15℃となる。上述したように、最適中間圧は周囲温度に伴って変化するため、周囲温度よりも低い温度領域内に最適中間圧の飽和温度が位置することになる。   As described above, in the present embodiment, the capacity control of the high-stage compressor 3 is performed with the optimal intermediate pressure at which the compression ratios of the high-stage side and the low-stage side are substantially the same as the target. The saturation temperature will be lower than the ambient temperature. Specifically, when the internal temperature is 5 ° C, the saturation temperature of the optimum intermediate pressure is about 15 ° C when the ambient temperature is 27 ° C. As described above, since the optimum intermediate pressure changes with the ambient temperature, the saturation temperature of the optimum intermediate pressure is located in a temperature region lower than the ambient temperature.

しかし、本実施の形態では補助放熱器2にてエアカーテンから漏れた冷気を利用できる。最適中間圧の飽和温度15℃でも冷気温度(庫内温度)5℃の方が低いため、補助放熱器2において冷媒を凝縮することが可能となり、放熱量を大幅に増加して省エネ効果を得られる。   However, in this embodiment, the cold air leaking from the air curtain by the auxiliary radiator 2 can be used. Even at the optimum intermediate pressure saturation temperature of 15 ° C, the cold air temperature (inside temperature) of 5 ° C is lower, so it is possible to condense the refrigerant in the auxiliary radiator 2, greatly increasing the heat dissipation and obtaining an energy saving effect. It is done.

特に本実施の形態の冷媒COは比熱比が大きく、吐出温度が高くなるため、補助放熱器2による放熱は有効であり、省エネ効果が大きい。さらに、高段側圧縮機の吐出温度が過上昇する可能性があるが、補助放熱器2の放熱により、吐出温度低下が可能なため、高信頼性を得ることができる。 In particular, since the refrigerant CO 2 of the present embodiment has a large specific heat ratio and a high discharge temperature, the heat radiation by the auxiliary radiator 2 is effective and the energy saving effect is large. Furthermore, although there is a possibility that the discharge temperature of the high stage compressor will rise excessively, since the discharge temperature can be lowered by the heat radiation of the auxiliary radiator 2, high reliability can be obtained.

(低段側凝縮温度が補助放熱器2の吸込み空気温度よりも低い場合と高い場合の補助放熱器2の放熱量の違いについて)
次に、補助放熱器2の放熱量について考察する。最適中間圧を目標として高段側圧縮機3の容量制御を行い、エアカーテンから漏れた冷気を利用できない場合、最適中間圧の飽和温度は吸込み空気温度よりも低くなる。補助放熱器2は周囲に熱を放熱する放熱器であるため、低段側圧縮機1から吐出された冷媒は補助放熱器2で周囲空気と熱交換しても、最大でも周囲温度までしか下がらない。また、低段側凝縮温度が周囲温度よりも低い場合と高い場合とでは吐出温度の冷媒を補助放熱器2で同じ周囲温度まで下げるにあたっても、その放熱量は異なったものとなる。
(Difference in heat dissipation of auxiliary radiator 2 when low-stage condensation temperature is lower and higher than intake air temperature of auxiliary radiator 2)
Next, the heat radiation amount of the auxiliary radiator 2 will be considered. When the capacity of the high-stage compressor 3 is controlled with the optimum intermediate pressure as a target, and the cold air leaking from the air curtain cannot be used, the saturation temperature of the optimum intermediate pressure becomes lower than the intake air temperature. Since the auxiliary radiator 2 is a radiator that radiates heat to the surroundings, even if the refrigerant discharged from the low-stage compressor 1 exchanges heat with the ambient air in the auxiliary radiator 2, the refrigerant is only lowered to the ambient temperature. Absent. Also, when the low-stage condensation temperature is lower than the ambient temperature and when it is higher than the ambient temperature, even when the refrigerant at the discharge temperature is lowered to the same ambient temperature by the auxiliary radiator 2, the heat radiation amount is different.

図6は、低段側凝縮温度が周囲温度よりも低い場合と高い場合の放熱量をモリエル線図で説明した図である。図6(1)は、凝縮温度が周囲温度よりも高い場合の放熱エンタルピ差、図6(2)は、凝縮温度が周囲温度よりも低い場合の放熱エンタルピ差を示している。   FIG. 6 is a diagram illustrating the amount of heat released when the low-stage condensation temperature is lower and higher than the ambient temperature using the Mollier diagram. FIG. 6 (1) shows the heat dissipation enthalpy difference when the condensation temperature is higher than the ambient temperature, and FIG. 6 (2) shows the heat dissipation enthalpy difference when the condensation temperature is lower than the ambient temperature.

(1)低段側凝縮温度が周囲温度よりも高い場合
圧縮機の吐出冷媒の温度(a点の温度)が例えば80℃〜90℃であり、周囲温度が20℃で凝縮温度が25℃の場合について考える。放熱器は周囲に熱を放熱する放熱器であるため、図6(1)に示すように、80℃〜90℃の冷媒(点a)が放熱器での周囲との熱交換により、先ず、ガス状態のまま凝縮温度である25℃(点b)まで下がる。そして、25℃を保ちながら凝縮して液状態となる(c点)。周囲温度は20℃であるため冷媒は更に放熱可能であり、液状態で20℃(点d)まで下がる。このように凝縮温度が周囲温度よりも高い場合は凝縮するため、相変化を伴う冷却を行うことができ、相変化を伴わない冷却を行う場合に比べて放熱量を大きくすることができる。
(1) When the low-stage condensation temperature is higher than the ambient temperature The temperature of the refrigerant discharged from the compressor (temperature at point a) is, for example, 80 ° C to 90 ° C, the ambient temperature is 20 ° C, and the condensation temperature is 25 ° C. Think about the case. Since the radiator is a radiator that dissipates heat to the surroundings, as shown in FIG. 6 (1), the refrigerant (point a) at 80 ° C. to 90 ° C. is exchanged with the surroundings in the radiator, It falls to 25 degreeC (point b) which is a condensation temperature with a gas state. And it is condensed and liquid state is maintained while maintaining 25 ° C. (point c). Since the ambient temperature is 20 ° C., the refrigerant can further dissipate heat and drop to 20 ° C. (point d) in the liquid state. Thus, since condensation is performed when the condensation temperature is higher than the ambient temperature, it is possible to perform cooling with a phase change, and it is possible to increase the heat radiation amount as compared with the case of performing cooling without a phase change.

(2)低段側凝縮温度が周囲温度よりも低い場合
低段側圧縮機1の吐出冷媒の温度(a点の温度)が例えば80℃〜90℃であり、周囲温度が20℃で低段側凝縮温度が10℃の場合について考える。補助放熱器2は外気に熱を放熱する放熱器であるため、上述したように80℃〜90℃の冷媒は、補助放熱器2での外気との熱交換により最大でも周囲温度の20℃までしか下がらない。つまり、図6(2)に示すように、80℃〜90℃の冷媒(点a)は、補助放熱器2でガス状態のまま20℃(点b)となる。つまり、低段側凝縮温度が周囲温度より低い場合は、補助放熱器2では相変化を伴う冷却を行えず、相変化を伴わないガス冷却を行うことになる。つまり、補助放熱器2はガス冷却域で使用されることになる。
(2) When the low-stage condensation temperature is lower than the ambient temperature The temperature of the refrigerant discharged from the low-stage compressor 1 (the temperature at point a) is, for example, 80 ° C to 90 ° C, and the ambient temperature is 20 ° C and the low stage Consider the case where the side condensation temperature is 10 ° C. Since the auxiliary radiator 2 is a radiator that dissipates heat to the outside air, as described above, the refrigerant of 80 ° C. to 90 ° C. can reach a maximum ambient temperature of 20 ° C. by heat exchange with the outside air in the auxiliary radiator 2. It only goes down. That is, as shown in FIG. 6 (2), the refrigerant (point a) at 80 ° C. to 90 ° C. becomes 20 ° C. (point b) in the gas state in the auxiliary radiator 2. That is, when the lower stage condensation temperature is lower than the ambient temperature, the auxiliary radiator 2 cannot perform cooling with phase change, and performs gas cooling without phase change. That is, the auxiliary radiator 2 is used in the gas cooling region.

ここで、図6(2)の点aから点bまでの放熱はガス状態での放熱であるため、同じ周囲温度20℃まで温度を下げるにしても、凝縮させて20℃まで下げる上記(1)の場合に比べて補助放熱器2での放熱量を大きくすることができない。したがって、低段側凝縮温度が周囲温度よりも低い場合は、補助放熱器2の放熱器ファン8の風量を増量したり、補助放熱器2として伝熱面積の大きな放熱器を採用したとしても、補助放熱器2の放熱量を増やすことはできず、最大でも吐出冷媒がガス状態のまま外気温度に低下するまでに放熱する放熱量となる。   Here, since the heat radiation from the point a to the point b in FIG. 6 (2) is a heat radiation in a gas state, even if the temperature is lowered to the same ambient temperature 20 ° C., the heat is condensed and lowered to 20 ° C. (1 ) Cannot increase the amount of heat released by the auxiliary radiator 2. Therefore, if the low-stage condensation temperature is lower than the ambient temperature, even if the air volume of the radiator fan 8 of the auxiliary radiator 2 is increased or a radiator with a large heat transfer area is adopted as the auxiliary radiator 2, The amount of heat released from the auxiliary radiator 2 cannot be increased, and at most, the amount of heat dissipated before the discharged refrigerant is reduced to the outside temperature while being in a gas state.

以上の内容を整理すると、本実施の形態では補助放熱器2にてエアカーテンから漏れた冷気を利用でき、最適中間圧の飽和温度より冷気温度の方が低いため、補助放熱器2において冷媒を凝縮することが可能である。よって、放熱量を大幅に増加して省エネ効果を得られる。   In summary, in the present embodiment, the cold air leaking from the air curtain can be used in the auxiliary radiator 2 and the cold air temperature is lower than the saturation temperature of the optimum intermediate pressure. It is possible to condense. Therefore, the heat dissipation amount can be greatly increased to obtain an energy saving effect.

(補助放熱器2の放熱量とCOPとの関係)
図7は、補助放熱器の放熱量とCOPとの関係の説明図である。図7においては、二段サイクルのモリエル線図を示している。二段サイクルを構成するにあたり、補助放熱器2での放熱量をQsub1にした場合とQsub2にした場合とを比較する(Qsub1<Qsub2)。図7に示すように、冷凍能力ΔHが一定とすると、θh1<θh2となるため、Qsub1とした場合に比べQsub2にした方が高段側圧縮機3の入力(エンタルピ差)を少なくすることができる(WH1>WH2)。すなわち、高段側圧縮機3の吸入温度が低ければ同じ昇圧量でも圧縮機動力は少なくなる。よって、補助放熱器2の放熱量をQsub1とした場合に比べてQsub2にした方が高段側圧縮機3の入力を小さくすることができる。
(Relationship between heat dissipation of auxiliary radiator 2 and COP)
FIG. 7 is an explanatory diagram of the relationship between the heat dissipation amount of the auxiliary radiator and the COP. FIG. 7 shows a Mollier diagram of a two-stage cycle. In configuring the two-stage cycle, the case where the heat dissipation amount in the auxiliary radiator 2 is Qsub1 is compared with the case where Qsub2 is set (Qsub1 <Qsub2). As shown in FIG. 7, when the refrigeration capacity ΔH is constant, θh1 <θh2 is satisfied. Therefore, the input (enthalpy difference) of the high-stage compressor 3 can be reduced when Qsub2 is used compared to the case where Qsub1 is set. Yes (WH1> WH2). That is, if the suction temperature of the high-stage compressor 3 is low, the compressor power is reduced even with the same boost amount. Therefore, the input of the high stage side compressor 3 can be made smaller when Qsub2 is used compared to the case where the heat dissipation amount of the auxiliary radiator 2 is Qsub1.

本実施の形態のオープンショーケース100では、COP=冷凍能力/(高段側圧縮機3の入力+低段側圧縮機1の入力)であるため、高段側圧縮機3の入力を小さくすることによりCOPを大きくすることができる。   In the open showcase 100 of the present embodiment, since COP = refrigeration capacity / (input of the high-stage compressor 3 + input of the low-stage compressor 1), the input of the high-stage compressor 3 is reduced. As a result, the COP can be increased.

以上の内容を整理すると、高段側圧縮機3の圧縮比と低段側圧縮機1の圧縮比とを略同じとする運転制御によりCOPを最大とすることができ、また、補助放熱器2の放熱量を多くするほど、COPの値を大きくすることができることになる。   By arranging the above contents, the COP can be maximized by the operation control in which the compression ratio of the high-stage compressor 3 and the compression ratio of the low-stage compressor 1 are substantially the same, and the auxiliary radiator 2 As the amount of heat released increases, the value of COP can be increased.

次に、放熱量に対する所要な熱処理能力について説明する。本実施の形態の一体型放熱器7において、補助放熱器2の放熱量を大きくすれば省エネ効果が得られるが、全放熱量に対して高段側放熱器4で所要な熱処理能力を保持させる必要がある。高段側放熱器4が十分な熱処理能力を有していない場合は、高段側高圧が高いため、補助放熱器2の割合を減らして高段側放熱器4に割り当てた方が、省エネ効果が大きくなる。また、高段側高圧が過上昇する場合は、信頼性を確保するため補助放熱器2を高段側放熱器4に割り当てざるを得ない。   Next, the required heat treatment capacity with respect to the heat radiation amount will be described. In the integrated radiator 7 of the present embodiment, if the heat radiation amount of the auxiliary radiator 2 is increased, an energy saving effect can be obtained, but the required heat treatment capacity is maintained by the high-stage heat radiator 4 with respect to the total heat radiation amount. There is a need. If the high-stage radiator 4 does not have sufficient heat treatment capacity, the high-stage high pressure is high, so it is better to reduce the proportion of the auxiliary radiator 2 and assign it to the high-stage radiator 4 to save energy. Becomes larger. Further, when the high stage side high pressure is excessively increased, the auxiliary radiator 2 must be assigned to the high stage side radiator 4 in order to ensure reliability.

そこで、一体型放熱器7のうち、所要な熱処理能力となる割合だけ高段側放熱器4が占め、残り全てを補助放熱器2に割り当てれば、二段サイクルにおける補助放熱器2の効果を最大限に生かすことができる。   Therefore, if the high-stage side radiator 4 occupies the proportion of the integral heat radiator 7 that achieves the required heat treatment capacity and all the rest is assigned to the auxiliary radiator 2, the effect of the auxiliary radiator 2 in the two-stage cycle can be obtained. You can make the most of it.

図8は、放熱量に対する十分な熱処理能力の説明図である。図8に示すように、放熱量は、冷却器の熱交換量(冷凍能力)+圧縮機入力となる。例えば、COP=2の単段サイクルのショーケースの場合、圧縮機入力が「1」に対して冷凍能力が「2」となるため、放熱量は「3」となる。よって、一般的に放熱器の熱処理能力は冷却器の1.5倍程度で設計される。   FIG. 8 is an explanatory diagram of a sufficient heat treatment capacity with respect to the heat radiation amount. As shown in FIG. 8, the heat radiation amount is the heat exchange amount (refrigeration capacity) of the cooler + the compressor input. For example, in the case of a single-stage cycle showcase with COP = 2, since the refrigeration capacity is “2” with respect to the compressor input “1”, the heat release amount is “3”. Therefore, the heat treatment capacity of the radiator is generally designed to be about 1.5 times that of the cooler.

また、冷却器において、冷媒温度(蒸発温度)と被冷却媒体(庫内空気)との温度差を所望の温度(例えば10℃)とするため、放熱器の冷媒温度(凝縮温度)と周囲温度との温度差がその所望の温度(例えば10℃)となれば所要な熱処理能力を有する。言い換えれば、本実施の形態の二段サイクルショーケースの一体型放熱器7において冷媒温度(凝縮温度)と周囲温度との温度差を、冷却器の冷媒温度(蒸発温度)と庫内空気温度との温度差以下(例えば10℃以下)とすれば、補助放熱器2の効果を含めて確実に単段サイクルより高いCOPが得られる。   Further, in the cooler, the refrigerant temperature (condensation temperature) and the ambient temperature of the radiator are used in order to set the temperature difference between the refrigerant temperature (evaporation temperature) and the medium to be cooled (internal air) to a desired temperature (for example, 10 ° C.). If the temperature difference between the two becomes the desired temperature (for example, 10 ° C.), the necessary heat treatment capability is obtained. In other words, in the integrated radiator 7 of the two-stage cycle showcase of the present embodiment, the temperature difference between the refrigerant temperature (condensation temperature) and the ambient temperature is expressed as the refrigerant temperature (evaporation temperature) of the cooler and the internal air temperature. If the temperature difference is less than (for example, 10 ° C. or less), a COP higher than that of the single stage cycle can be reliably obtained including the effect of the auxiliary radiator 2.

尚、熱処理能力とは、熱交換器の伝熱面積と熱通過率の積で表され、熱通過率は主に、冷媒側の熱伝達率と空気側の熱伝達率で決まる。低温機器用の冷却器は着霜耐力向上の観点から、伝熱管やフィンのピッチが大きく、放熱器より熱通過率が小さいため、冷却器の伝熱面積は放熱器と比較して大きい。   The heat treatment capacity is represented by the product of the heat transfer area and the heat transfer rate of the heat exchanger, and the heat transfer rate is mainly determined by the heat transfer rate on the refrigerant side and the heat transfer rate on the air side. The cooler for low temperature equipment has a large pitch between the heat transfer tubes and fins and a smaller heat passage rate than the radiator from the viewpoint of improving the frost resistance, and therefore the heat transfer area of the cooler is larger than that of the radiator.

本実施の形態の冷凍装置は、冷媒のノンフロン化やフロン冷媒の削減、機器の省エネルギー化が要求されるショーケースや業務用冷凍冷蔵庫、自動販売機等の冷蔵あるいは冷凍機器にも広く適用できる。   The refrigeration apparatus of this embodiment can be widely applied to refrigeration or refrigeration equipment such as showcases, commercial refrigeration refrigerators, and vending machines that require non-fluorocarbons, reduction of chlorofluorocarbons, and energy saving of equipment.

1 低段側圧縮機、 2 補助放熱器、 3 高段側圧縮機、 4 高段側放熱器、 5 膨張弁、 6 蒸発器、 7 一体型放熱器、 8 放熱器ファン、 9 開放面、 10 収容空間、 11 陳列棚、 12 吹出口、 13 吸込口、 14 循環通路、 15 庫内ファン、 16 吸込口、 71 伝熱フィン、 72 伝熱管、 100 オープンショーケース、 101 ショーケース本体、 102 機械室   DESCRIPTION OF SYMBOLS 1 Low stage side compressor, 2 Auxiliary radiator, 3 High stage side compressor, 4 High stage side radiator, 5 Expansion valve, 6 Evaporator, 7 Integrated radiator, 8 Radiator fan, 9 Open surface, 10 Housing space, 11 display shelf, 12 air outlet, 13 suction port, 14 circulation passage, 15 internal fan, 16 suction port, 71 heat transfer fin, 72 heat transfer tube, 100 open showcase, 101 showcase body, 102 machine room

本発明に係るオープンショーケースは、前面に外部空間への開放面を有し、その内部を収容空間としたショーケース本体と、開放面の下縁部に設けられた冷気吸込口と、開放面の上縁部に設けられた冷気吹出口と、冷気吸込口から冷気吹出口に至る循環通路と、循環通路内の空気を送風する冷却用送風機と、循環通路内の空気を冷却する冷却装置と、を備え、冷却用送風機を駆動することにより冷気吹出口から吹き出した冷気を冷気吸込口から吸い込んで開放面にエアカーテンを形成するオープンショーケースにおいて、冷却装置は、冷媒を圧縮して吐出する低段側圧縮機と、低段側圧縮機から吐出された冷媒と周囲空気との間で熱交換を行う補助放熱器と、補助放熱器で熱交換を行った冷媒を圧縮して吐出する高段側圧縮機と、高段側圧縮機から吐出された冷媒と周囲空気との間で熱交換を行う高段側放熱器と、高段側放熱器で熱交換を行った冷媒を減圧する減圧装置と、減圧装置で減圧された冷媒を蒸発させる冷却器と、を備え、補助放熱器及び高段側放熱器と熱交換させる周囲空気の吸込口を、前面における冷気吸込口よりも鉛直下方の領域に設け、補助放熱器は、高段側放熱器よりも鉛直上方の領域に配置されているものである。 An open showcase according to the present invention includes a showcase body having an open space to the external space on the front surface and the inside as an accommodating space, a cold air inlet provided at a lower edge of the open surface, and an open surface A cold air outlet provided at the upper edge of the air passage, a circulation passage from the cold air inlet to the cold air outlet, a cooling fan for blowing air in the circulation passage, and a cooling device for cooling the air in the circulation passage The cooling device compresses and discharges the refrigerant in an open showcase in which the air blown from the cold air outlet is sucked from the cold air inlet by forming the air curtain by driving the cooling fan. A low-stage compressor, an auxiliary radiator that exchanges heat between the refrigerant discharged from the low-stage compressor and ambient air, and a high-pressure that compresses and discharges the refrigerant that exchanged heat with the auxiliary radiator Stage side compressor and high stage side compression A high-stage radiator that exchanges heat between the refrigerant discharged from the ambient air and the ambient air, a decompressor that decompresses the refrigerant that has exchanged heat with the high-stage radiator, and a refrigerant decompressed by the decompressor and a condenser for evaporating, an auxiliary radiator and high-stage radiator and inlet of ambient air to the heat exchanger, vertically below the areas than cold air suction port in the front, the auxiliary radiator, high-stage It is arranged in a region vertically above the side radiator .

Claims (7)

前面に外部空間への開放面を有し、その内部を収容空間としたショーケース本体と、前記開放面の下縁部に設けられた冷気吸込口と、前記開放面の上縁部に設けられた冷気吹出口と、前記冷気吸込口から前記冷気吹出口に至る循環通路と、前記循環通路内の空気を送風する冷却用送風機と、前記循環通路内の空気を冷却する冷却装置と、を備え、前記冷却用送風機を駆動することにより前記冷気吹出口から吹き出した冷気を前記冷気吸込口から吸い込んで前記開放面にエアカーテンを形成するオープンショーケースにおいて、
前記冷却装置は、
冷媒を圧縮して吐出する低段側圧縮機と、
前記低段側圧縮機から吐出された冷媒と周囲空気との間で熱交換を行う補助放熱器と、
前記補助放熱器で熱交換を行った冷媒を圧縮して吐出する高段側圧縮機と、
前記高段側圧縮機から吐出された冷媒と周囲空気との間で熱交換を行う高段側放熱器と、
前記高段側放熱器で熱交換を行った冷媒を減圧する減圧装置と、
前記減圧装置で減圧された前記冷媒を蒸発させる冷却器と、を備え、
前記補助放熱器及び前記高段側放熱器と熱交換させる周囲空気の吸込口を、前記前面における前記冷気吸込口よりも鉛直下方の領域に設けたオープンショーケース。
A showcase body having an open surface to the external space on the front surface and having the inside as a storage space, a cold air inlet provided at a lower edge portion of the open surface, and an upper edge portion of the open surface A cold air outlet, a circulation passage extending from the cold air inlet to the cold air outlet, a cooling fan for blowing air in the circulation passage, and a cooling device for cooling the air in the circulation passage. In an open showcase that drives the cooling fan to suck in the cold air blown out from the cold air outlet through the cold air inlet and forms an air curtain on the open surface.
The cooling device is
A low-stage compressor that compresses and discharges the refrigerant;
An auxiliary radiator that exchanges heat between the refrigerant discharged from the low-stage compressor and the ambient air;
A high-stage compressor that compresses and discharges the refrigerant that has exchanged heat with the auxiliary radiator;
A high-stage radiator that exchanges heat between the refrigerant discharged from the high-stage compressor and the ambient air;
A decompression device that decompresses the refrigerant that has exchanged heat with the high-stage radiator;
A cooler for evaporating the refrigerant decompressed by the decompression device,
An open showcase in which a suction port for ambient air for heat exchange with the auxiliary radiator and the high-stage radiator is provided in a region vertically below the cold air suction port on the front surface.
前記高段側放熱器及び前記補助放熱器は、伝熱フィンが一体化された一体型放熱器として構成され、
前記一体型放熱器に周囲空気を通過させる放熱用送風機を備える請求項1に記載のオープンショーケース。
The high-stage radiator and the auxiliary radiator are configured as an integrated radiator in which heat transfer fins are integrated,
The open showcase according to claim 1, further comprising a blower for heat dissipation that allows ambient air to pass through the integrated radiator.
前記補助放熱器は、前記高段側放熱器よりも前記周囲空気の吸込口の近傍に配置される請求項1または2に記載のオープンショーケース。   The open showcase according to claim 1, wherein the auxiliary radiator is disposed closer to the ambient air inlet than the high-stage radiator. 前記補助放熱器は、前記高段側放熱器よりも鉛直上方の領域に配置されている請求項1乃至3の何れか1項に記載のオープンショーケース。   The open showcase according to any one of claims 1 to 3, wherein the auxiliary radiator is disposed in a region vertically above the high-stage radiator. 前記低段側圧縮機の圧縮比と前記高段側圧縮機の圧縮比とが同等となるように、前記低段側圧縮機の容量と前記高段側圧縮機の容量との容量比が調節されている請求項1乃至4の何れか1項に記載のオープンショーケース。   The capacity ratio between the capacity of the low stage compressor and the capacity of the high stage compressor is adjusted so that the compression ratio of the low stage compressor and the compression ratio of the high stage compressor are equal. The open showcase according to any one of claims 1 to 4, wherein: 前記高段側放熱器は、当該高段側放熱器を流れる冷媒と前記周囲空気との温度差が、前記冷却器を流れる冷媒と、前記冷却器が熱交換する被冷却媒体との温度差以下となる熱処理能力を有する請求項1乃至5の何れか1項に記載のオープンショーケース。   In the high stage side radiator, the temperature difference between the refrigerant flowing through the high stage side radiator and the ambient air is equal to or less than the temperature difference between the refrigerant flowing through the cooler and the medium to be cooled by the cooler. The open showcase according to claim 1, which has a heat treatment ability to be 前記冷媒をCOとする請求項1乃至6の何れか1項に記載のオープンショーケース。 The open showcase according to claim 1, wherein the refrigerant is CO 2 .
JP2012236849A 2012-10-26 2012-10-26 Open showcase Active JP5673651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012236849A JP5673651B2 (en) 2012-10-26 2012-10-26 Open showcase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012236849A JP5673651B2 (en) 2012-10-26 2012-10-26 Open showcase

Publications (2)

Publication Number Publication Date
JP2014085092A true JP2014085092A (en) 2014-05-12
JP5673651B2 JP5673651B2 (en) 2015-02-18

Family

ID=50788312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012236849A Active JP5673651B2 (en) 2012-10-26 2012-10-26 Open showcase

Country Status (1)

Country Link
JP (1) JP5673651B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129623A (en) * 2014-01-09 2015-07-16 福島工業株式会社 Cooling device

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108672A (en) * 1983-11-17 1985-06-14 三洋電機株式会社 Open showcase
JPH02115679A (en) * 1988-10-20 1990-04-27 Sanyo Electric Co Ltd Low temperature display case
JPH02106567U (en) * 1989-02-10 1990-08-24
JPH0743060A (en) * 1993-07-30 1995-02-10 Sanyo Electric Co Ltd Refrigerated showcase
JPH11223451A (en) * 1998-02-09 1999-08-17 Sharp Corp Refrigerator and cooling mechanism
JPH11270954A (en) * 1998-03-24 1999-10-05 Sanyo Electric Co Ltd Show case
JP2000097544A (en) * 1998-09-21 2000-04-04 Sanden Corp Show case
JP2004360998A (en) * 2003-06-04 2004-12-24 Sanyo Electric Co Ltd Cooling device and refrigerant filling amount setting method for the same
JP2005034605A (en) * 2003-06-25 2005-02-10 Sanden Corp Open showcase
JP2005226911A (en) * 2004-02-12 2005-08-25 Sanyo Electric Co Ltd Heating/cooling system
JP2007192464A (en) * 2006-01-19 2007-08-02 Mayekawa Mfg Co Ltd Lumber artificial drying method and system
JP2009168268A (en) * 2008-01-11 2009-07-30 Fuji Electric Retail Systems Co Ltd Cooling apparatus
WO2009133868A1 (en) * 2008-05-02 2009-11-05 ダイキン工業株式会社 Refrigeration unit
JP2010127548A (en) * 2008-11-28 2010-06-10 Daikin Ind Ltd Refrigeration system
JP2011012828A (en) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd Refrigerating device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60108672A (en) * 1983-11-17 1985-06-14 三洋電機株式会社 Open showcase
JPH02115679A (en) * 1988-10-20 1990-04-27 Sanyo Electric Co Ltd Low temperature display case
JPH02106567U (en) * 1989-02-10 1990-08-24
JPH0743060A (en) * 1993-07-30 1995-02-10 Sanyo Electric Co Ltd Refrigerated showcase
JPH11223451A (en) * 1998-02-09 1999-08-17 Sharp Corp Refrigerator and cooling mechanism
JPH11270954A (en) * 1998-03-24 1999-10-05 Sanyo Electric Co Ltd Show case
JP2000097544A (en) * 1998-09-21 2000-04-04 Sanden Corp Show case
JP2004360998A (en) * 2003-06-04 2004-12-24 Sanyo Electric Co Ltd Cooling device and refrigerant filling amount setting method for the same
JP2005034605A (en) * 2003-06-25 2005-02-10 Sanden Corp Open showcase
JP2005226911A (en) * 2004-02-12 2005-08-25 Sanyo Electric Co Ltd Heating/cooling system
JP2007192464A (en) * 2006-01-19 2007-08-02 Mayekawa Mfg Co Ltd Lumber artificial drying method and system
JP2009168268A (en) * 2008-01-11 2009-07-30 Fuji Electric Retail Systems Co Ltd Cooling apparatus
WO2009133868A1 (en) * 2008-05-02 2009-11-05 ダイキン工業株式会社 Refrigeration unit
JP2010127548A (en) * 2008-11-28 2010-06-10 Daikin Ind Ltd Refrigeration system
JP2011012828A (en) * 2009-06-30 2011-01-20 Sanyo Electric Co Ltd Refrigerating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015129623A (en) * 2014-01-09 2015-07-16 福島工業株式会社 Cooling device

Also Published As

Publication number Publication date
JP5673651B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
US11940162B2 (en) Integrated air conditioner
JP6125000B2 (en) Dual refrigeration equipment
JP6888102B2 (en) Heat exchanger unit and refrigeration cycle equipment
JP5430604B2 (en) Dual refrigeration equipment
KR20080020818A (en) Air conditioning system for communication equipment and controlling method thereof
KR20110071167A (en) Refrigerator
CN112944770B (en) Refrigerator and refrigerating system thereof
US20160178245A1 (en) Refrigerator
US8978410B2 (en) Refrigerating system having two evaporators performing heat exchange
US20070214826A1 (en) Refrigerator
JP5673651B2 (en) Open showcase
KR200443435Y1 (en) Showcase with a colling room
JP2013257115A (en) Refrigerator-freezer
JP2005257149A (en) Refrigerator
JP6091567B2 (en) Refrigerator and refrigeration equipment
JP5474140B2 (en) Refrigeration equipment
JP5796588B2 (en) Open showcase
JP2013185762A (en) Refrigerant cycle device
JP5165358B2 (en) Refrigeration equipment
JP2003194425A (en) Cooling device
JP2012237494A (en) Refrigerating device
JP2008241112A (en) Refrigerator-freezer
KR20050077605A (en) Multi type refrigerator
JP2014088974A (en) Refrigerator and refrigeration device
Gardner Introduction to Industrial Refrigeration

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140909

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5673651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250