JP2000337720A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP2000337720A
JP2000337720A JP11142798A JP14279899A JP2000337720A JP 2000337720 A JP2000337720 A JP 2000337720A JP 11142798 A JP11142798 A JP 11142798A JP 14279899 A JP14279899 A JP 14279899A JP 2000337720 A JP2000337720 A JP 2000337720A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
liquid separator
compressor
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11142798A
Other languages
Japanese (ja)
Inventor
Masayuki Nonaka
正之 野中
Hiroo Nakamura
啓夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11142798A priority Critical patent/JP2000337720A/en
Publication of JP2000337720A publication Critical patent/JP2000337720A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform refrigerant recovery operation surely by providing a second variable pressure reducing mechanism between a gas/liquid separator and the suction part of a compressor. SOLUTION: The air conditioner comprises a first expansion valve 3 as a pressure reducing mechanism, a gas/liquid separator 4, and a fully closable variable pressure reduction expansion valve 8 as a second pressure reducing mechanism. Gas refrigerant separated by the gas/liquid separator 4 is returned back to a compressor 1 after pressure is reduced by the second expansion valve 8. When the refrigerating capacity is varied in correspondence with variation of thermal load by varying the r.p.m. of the compressor, pressure reduction of the second pressure reducing mechanism 8 is controlled because the operating pressure is varied. Refrigerant can be prevented from bypassing through the gas/liquid separator 4 by fully closing the second or first expansion valve 8, 3. Since refrigerant can be recovered surely from an indoor heat exchanger 6 and connection piping (5, 7), residual refrigerant can be prevented from being discharged the atmosphere and no additional refrigerant is required when an air conditioner is reinstalled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は室内ユニットと室外
ユニットに別れた分離型空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separation type air conditioner having an indoor unit and an outdoor unit.

【0002】[0002]

【従来の技術】従来の圧縮機,室外熱交換器,減圧機構
を有する室外ユニットと、室内熱交換器を有する室内ユ
ニットを順次配管接続し、前記減圧機構と前記室内熱交
換器の間に気液分離器を設置し、気液分離器で分離され
る液冷媒が室内熱交換器,ガス冷媒が圧縮機吸込部に流
入するように接続し、前記気液分離器と圧縮機吸込部間
の流路に第二の減圧機構を有する空気調和装置は例えば
特開平9−145167 号公報に記載されているように、第二
の減圧機構として圧縮機吸込部の間の流路にキャピラリ
ーチューブを設けるものであった。
2. Description of the Related Art A conventional compressor, an outdoor heat exchanger, an outdoor unit having a decompression mechanism, and an indoor unit having an indoor heat exchanger are sequentially connected by piping, and a gas is interposed between the decompression mechanism and the indoor heat exchanger. A liquid separator is installed, the liquid refrigerant separated by the gas-liquid separator is connected so that the indoor heat exchanger and the gas refrigerant flow into the compressor suction part, and between the gas-liquid separator and the compressor suction part An air conditioner having a second pressure reducing mechanism in the flow path is provided with a capillary tube as a second pressure reducing mechanism in the flow path between the compressor suction portions as described in, for example, JP-A-9-145167. Was something.

【0003】[0003]

【発明が解決しようとする課題】気液分離器設置の目的
は、減圧機構から流出する気液二相冷媒を前記減圧機構
の下流側に設けた気液分離器により液とガスに分離し、
体積流量の大きいガス冷媒を圧縮機,体積流量の小さい
液冷媒を室内熱交換器(蒸発器)に流して、室内熱交換
器や接続配管での冷媒圧力損失を低減して圧縮機への電
気入力を低減して冷凍サイクルの効率を向上させること
である。
The object of the gas-liquid separator is to separate the gas-liquid two-phase refrigerant flowing out of the pressure reducing mechanism into a liquid and a gas by a gas-liquid separator provided on the downstream side of the pressure reducing mechanism.
Gas refrigerant with a large volume flow is passed through the compressor, and liquid refrigerant with a small volume flow is passed through the indoor heat exchanger (evaporator) to reduce refrigerant pressure loss in the indoor heat exchanger and connection pipes, thereby reducing electricity to the compressor. The purpose is to reduce the input and improve the efficiency of the refrigeration cycle.

【0004】また分離型空気調和装置を室外ユニットと
室内ユニットに分離する場合、分離前に室内熱交換器や
接続配管内の冷媒を室外熱交換器に貯えるための冷媒回
収運転を行う必要がある。これは室内熱交換器の上流側
の流路を閉じ、圧縮機吸入圧力低下させて室内熱交換器
と接続配管内の冷媒を室外ユニットに回収するものであ
る。
When the separation type air conditioner is separated into an outdoor unit and an indoor unit, it is necessary to perform a refrigerant recovery operation for storing the refrigerant in the indoor heat exchanger and the connection pipe in the outdoor heat exchanger before separation. . This is to close the flow path on the upstream side of the indoor heat exchanger, reduce the suction pressure of the compressor, and recover the refrigerant in the indoor heat exchanger and the connection pipe to the outdoor unit.

【0005】しかし、前記気液分離器を設置すると、室
内熱交換器上流側の流路を閉じても、気液分離器と圧縮
機吸込部間のバイパスを介して冷媒が圧縮機吸込部に流
入してしまうため圧縮機吸込圧力が低下せず、冷媒回収
が行えず、室内外ユニット分離時に室内熱交換器から回
収されなかった冷媒が大気に放出され、再接続時に冷媒
を追加封入する必要があり問題であった。また冷媒の大
気への放出そのものも、オゾン層破壊や地球温暖化の要
因であるため問題であった。
However, when the gas-liquid separator is installed, even if the flow path on the upstream side of the indoor heat exchanger is closed, the refrigerant flows into the compressor suction portion via the bypass between the gas-liquid separator and the compressor suction portion. Since the refrigerant flows into the compressor, the suction pressure of the compressor does not decrease, refrigerant cannot be recovered, and the refrigerant not recovered from the indoor heat exchanger when the indoor / outdoor unit is separated is released to the atmosphere. There was a problem. In addition, the release of the refrigerant itself to the atmosphere is also a problem because it is a factor of depletion of the ozone layer and global warming.

【0006】また圧縮機前後に冷媒の流れ方向を切り替
えられる四方弁を設けることにより暖房運転が可能な空
気調和装置の場合、室外熱交換器に着霜を生じた場合、
その霜を溶かすために四方弁を切り替えて室外熱交換器
に高温の冷媒を流す方法があるが、この場合室内熱交換
器に低温の冷媒が流入するので室内室温が低下するとい
う問題があった。
In the case of an air conditioner capable of performing a heating operation by providing a four-way valve for switching the flow direction of refrigerant before and after the compressor, when an outdoor heat exchanger is frosted,
In order to melt the frost, there is a method of switching the four-way valve to flow a high-temperature refrigerant to the outdoor heat exchanger. .

【0007】本発明の目的は、分離型空気調和装置にお
いて気液分離器を用いても、冷媒回収運転が確実に行
う。あるいは除霜運転時の室内室温が低下するのを防止
することにある。
[0007] An object of the present invention is to reliably perform a refrigerant recovery operation even when a gas-liquid separator is used in a separation type air conditioner. Another object is to prevent the room temperature during the defrosting operation from lowering.

【0008】[0008]

【課題を解決するための手段】本発明の空気調和装置は
少なくとも圧縮機,室外熱交換器,第一の減圧機構を有
する室外ユニットと、室内熱交換器を有する室内ユニッ
トを順次配管接続し、前記第一の減圧機構と前記室内熱
交換器の間に気液分離器を設置し、気液分離器で分離さ
れる液冷媒が室内熱交換器、ガス冷媒が圧縮機吸込部に
流入するように接続し、室内外ユニットが分離可能な分
離型空気調和装置において、前記気液分離器と前記圧縮
機吸込部の間に減圧量可変型の第二の減圧機構を有する
ことを特徴とする。
An air conditioner according to the present invention comprises a pipe, an outdoor unit having at least a compressor, an outdoor heat exchanger, a first pressure reducing mechanism, and an indoor unit having an indoor heat exchanger. A gas-liquid separator is installed between the first pressure reducing mechanism and the indoor heat exchanger, so that the liquid refrigerant separated by the gas-liquid separator flows into the indoor heat exchanger and the gas refrigerant flows into the compressor suction section. And a separation type air conditioner capable of separating the indoor / outdoor unit, wherein a variable pressure reduction type second pressure reduction mechanism is provided between the gas-liquid separator and the compressor suction section.

【0009】[0009]

【発明の実施の形態】本発明の第一実施例を図1を用い
て説明する。図1において1は圧縮機、2は室外熱交換
器、3は減圧機構としての第一の膨張弁、4は気液分離
器、5は第一の接続配管、6は室内熱交換器、7は第二
の接続配管、8は第二の減圧機構としての全閉可能な減
圧量可変型膨張弁、9は室外送風ファン、10は室内送
風ファンである。11は第一の開閉弁、12は第二の開
閉弁、13〜16は第一〜第四のコネクタである。これ
らは圧縮機1,室外熱交換器2等から構成される室外ユ
ニット17と、室内熱交換器6等から構成される室内ユ
ニット18に分離され、第一の接続配管5と第二の接続
配管7により接続され空気調和装置が構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. In FIG. 1, 1 is a compressor, 2 is an outdoor heat exchanger, 3 is a first expansion valve as a pressure reducing mechanism, 4 is a gas-liquid separator, 5 is a first connection pipe, 6 is an indoor heat exchanger, 7 Denotes a second connection pipe, 8 denotes a fully-closable variable pressure reduction type expansion valve as a second pressure reducing mechanism, 9 denotes an outdoor blower fan, and 10 denotes an indoor blower fan. 11 is a first on-off valve, 12 is a second on-off valve, and 13 to 16 are first to fourth connectors. These are separated into an outdoor unit 17 composed of the compressor 1, the outdoor heat exchanger 2 and the like, and an indoor unit 18 composed of the indoor heat exchanger 6 and the like, the first connection pipe 5 and the second connection pipe. 7 to form an air conditioner.

【0010】以上の空気調和装置の冷房運転時の動作に
ついて説明する。圧縮機1で圧縮された高温高圧のガス
冷媒は室外熱交換器2で室外ファン9から送風される空
気に放熱して凝縮し、第一の膨張弁3で低温低圧に減圧
され気液二相冷媒になり、気液分離器4に流入する。気
液分離器4では密度差により下方に液冷媒、上方にガス
冷媒が滞留し、液冷媒は気液分離器下方から流出して第
一の接続配管5を室内熱交換器6で室内送風ファン10
から送風される空気から吸熱して蒸発し、再び圧縮機1
へ戻る。この時気液分離器4で分離されたガス冷媒は、
第二の膨張弁8で減圧され再び圧縮機1へ戻る。
The operation of the above air conditioner during the cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 releases heat to the air blown from the outdoor fan 9 in the outdoor heat exchanger 2 and condenses. It becomes a refrigerant and flows into the gas-liquid separator 4. In the gas-liquid separator 4, the liquid refrigerant stays downward and the gas refrigerant stays upward due to the density difference, and the liquid refrigerant flows out from below the gas-liquid separator and passes through the first connection pipe 5 through the indoor heat exchanger 6 to use 10
Absorbs heat from the air blown from the evaporator and evaporates.
Return to At this time, the gas refrigerant separated by the gas-liquid separator 4 is
The pressure is reduced by the second expansion valve 8 and returns to the compressor 1 again.

【0011】以上のように室内熱交換器6へは密度の高
い液冷媒が流入するので、室内熱交換器6や第二の接続
配管7での冷媒の圧力損失が低減し、圧縮機1の吸込圧
力も上昇するので、圧縮機1の仕事量が低減されて冷凍
サイクル効率は向上する。
As described above, since the liquid refrigerant having a high density flows into the indoor heat exchanger 6, the pressure loss of the refrigerant in the indoor heat exchanger 6 and the second connection pipe 7 is reduced, and the compressor 1 Since the suction pressure also increases, the work amount of the compressor 1 is reduced, and the refrigeration cycle efficiency is improved.

【0012】また熱負荷の変化に対応して冷房能力を変
化させる場合、圧縮機回転数を変化させて行うが、この
場合運転圧力が変化するので第二の減圧機構8の減圧量
を制御する必要がある。図3は圧縮機回転数と弁開度の
関係を示すものである。圧縮機回転数は実際の室温と設
定温度の差により決定する。これにより必要能力が変化
しても第二の膨張弁開度を最適の状態にできるので、幅
広い範囲で気液分離器による空気調和装置の効率向上が
行える。
When the cooling capacity is changed in response to the change in the heat load, the cooling speed is changed. However, in this case, since the operating pressure changes, the pressure reduction amount of the second pressure reducing mechanism 8 is controlled. There is a need. FIG. 3 shows the relationship between the compressor speed and the valve opening. The rotation speed of the compressor is determined by the difference between the actual room temperature and the set temperature. As a result, even if the required capacity changes, the opening degree of the second expansion valve can be set to the optimum state, so that the efficiency of the air conditioner using the gas-liquid separator can be improved in a wide range.

【0013】空気調和装置を室内ユニットと室外ユニッ
トに分離する場合は、第二の膨張弁8を全閉にして圧縮
機1を運転する。これにより冷媒が気液分離器4から圧
縮機低圧側へバイパスしないので圧縮機吸込圧力は低下
し、第一の接続配管5と室内熱交換器6と第二の接続配
管7に存在していた冷媒は室外ユニットに吸引される。
冷媒が吸引された後、第二の開閉弁12を閉じて圧縮機
1を停止する。そしてコネクタ13〜16を分離して室
内ユニット18と室外ユニット17を分離する。また全
閉する膨張弁を第二の膨張弁8でなく、室外熱交換器2
と気液分離器4間の第一の膨張弁3としてもよい。この
場合圧縮機1により低圧になり冷媒が回収される部分
は、気液分離器4,接続配管(5及び7),室内熱交換
器6である。
When the air conditioner is separated into an indoor unit and an outdoor unit, the compressor 1 is operated with the second expansion valve 8 fully closed. As a result, the refrigerant does not bypass from the gas-liquid separator 4 to the compressor low-pressure side, so that the compressor suction pressure decreases, and the refrigerant is present in the first connection pipe 5, the indoor heat exchanger 6, and the second connection pipe 7. The refrigerant is drawn into the outdoor unit.
After the refrigerant is sucked, the second on-off valve 12 is closed and the compressor 1 is stopped. Then, the connectors 13 to 16 are separated to separate the indoor unit 18 and the outdoor unit 17. The expansion valve to be fully closed is not the second expansion valve 8 but the outdoor heat exchanger 2.
The first expansion valve 3 between the gas and liquid separator 4 may be used. In this case, the parts where the pressure is reduced by the compressor 1 and the refrigerant is recovered are the gas-liquid separator 4, the connection pipes (5 and 7), and the indoor heat exchanger 6.

【0014】以上のように第二の膨張弁8あるいは第一
の膨張弁3を全閉にすることにより、気液分離器4を介
した冷媒のバイパスを防止できるので、確実に室内熱交
換器6と接続配管(5及び6)の冷媒回収が行え、大気
への残存冷媒の放出や、再設置時の冷媒追加を防止する
ことができる。
By completely closing the second expansion valve 8 or the first expansion valve 3 as described above, the bypass of the refrigerant through the gas-liquid separator 4 can be prevented, so that the indoor heat exchanger can be surely provided. The refrigerant can be recovered from the connection pipe 6 and the connection pipes (5 and 6), and the discharge of the remaining refrigerant to the atmosphere and the addition of the refrigerant at the time of re-installation can be prevented.

【0015】また本実施例の空気調和装置は、環境条件
に関わらず気液分離器4と圧縮機1間の第二の減圧機構
8を全閉として運転するモードを持たせても良い。この
モードで運転することにより、通常では空気調和装置が
動作しない環境条件でも、前述のように気液分離器4と
圧縮機吸入部間の流路を閉鎖して圧縮機吸入圧力を下げ
られるので確実に冷媒回収が行える。
The air conditioner of this embodiment may have a mode in which the second pressure reducing mechanism 8 between the gas-liquid separator 4 and the compressor 1 is fully closed regardless of the environmental conditions. By operating in this mode, the compressor suction pressure can be reduced by closing the flow path between the gas-liquid separator 4 and the compressor suction part as described above even under environmental conditions in which the air conditioner does not normally operate. Refrigerant recovery can be performed reliably.

【0016】本発明の第二実施例を図2を用いて説明す
る。図2において19は冷媒流路切り替え手段としての
四方弁である。その外は第一実施例の図1と同様で、冷
房運転時の動作についても同様なので省略し、暖房運転
時の動作についてのみ説明する。暖房運転時は第二の膨
張弁8は通常の暖房運転では全閉となっている。
A second embodiment of the present invention will be described with reference to FIG. In FIG. 2, reference numeral 19 denotes a four-way valve as a refrigerant flow switching means. The other parts are the same as those in FIG. 1 of the first embodiment, and the same applies to the operation during the cooling operation. Therefore, the description is omitted, and only the operation during the heating operation will be described. During the heating operation, the second expansion valve 8 is fully closed in the normal heating operation.

【0017】圧縮機1で圧縮された高温高圧の冷媒ガス
は、四方弁19,第二の接続配管7を通り、室内熱交換
器6で室内送風ファン10により送風される空気に放熱
して凝縮し、第一の接続配管5を通り、気液分離器4に
流入するが第二の膨張弁8は全閉となっているため、全
て第一の膨張弁に流入し、低温低圧の二相冷媒となり、
室外熱交換器2で室外ファン9により送風される空気か
ら吸熱して蒸発し、四方弁19を通り、再び圧縮機1へ
戻る。除霜運転時は四方弁2を切り替えて、第二の膨張
弁8を全開にする。
The high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 19 and the second connection pipe 7 and radiates heat to the air blown by the indoor blower fan 10 by the indoor heat exchanger 6 to be condensed. Then, it flows into the gas-liquid separator 4 through the first connection pipe 5, but since the second expansion valve 8 is fully closed, it all flows into the first expansion valve, and the low-temperature low-pressure two-phase Becomes a refrigerant,
In the outdoor heat exchanger 2, heat is absorbed from air blown by the outdoor fan 9 to evaporate, and the air returns to the compressor 1 through the four-way valve 19 again. During the defrosting operation, the four-way valve 2 is switched, and the second expansion valve 8 is fully opened.

【0018】これにより圧縮機1で圧縮された高温高圧
の冷媒ガスは四方弁19を通り、室外熱交換器2で室外
熱交換器2についている霜に放熱して霜を溶かし、温度
の低い液冷媒となり第一の膨張弁3を通り、気液分離器
4に流入する。気液分離器4からは、第二の膨張弁8が
全開となっているので室内熱交換器6より流路抵抗の小
さい気液分離器4と圧縮機吸込部のバイパス路にほとん
どの冷媒が流れ、四方弁19を通り再び圧縮機1へ戻
る。
Thus, the high-temperature and high-pressure refrigerant gas compressed by the compressor 1 passes through the four-way valve 19 and radiates heat to the frost attached to the outdoor heat exchanger 2 by the outdoor heat exchanger 2 to melt the frost, thereby reducing the temperature of the liquid. It becomes a refrigerant and flows into the gas-liquid separator 4 through the first expansion valve 3. Since the second expansion valve 8 is fully opened from the gas-liquid separator 4, most of the refrigerant flows into the gas-liquid separator 4 having a smaller flow path resistance than the indoor heat exchanger 6 and the bypass passage of the compressor suction section. The flow passes through the four-way valve 19 and returns to the compressor 1 again.

【0019】以上のように室内熱交換器6へは温度の低
い液冷媒がわずかしか流れないので、室内に冷風がなが
れて室温を低下させることがない。
As described above, since only a small amount of liquid refrigerant having a low temperature flows into the indoor heat exchanger 6, cold air does not flow into the room and the room temperature does not decrease.

【0020】本発明の第三実施例を図4及び図5を用い
て説明する。図4は前実施例とは、気液分離器4と第二
の膨張弁8間の流路(図中22と23)と、気液分離器
4と室内熱交換器間の流路(図中24と25)を同時に
開閉できるバルブ21を有し、第一の開閉弁11がない
点が異なる。冷房運転時にバルブ21は図4に示す位置
となり、流路22と23、及び流路24と25はそれぞ
れ連通して、第一の膨張弁3の下流側の気液二相冷媒の
うちガス冷媒を圧縮機1へ戻し、液冷媒を室内熱交換器
へ流入させるモードとなる。
A third embodiment of the present invention will be described with reference to FIGS. FIG. 4 is different from the previous embodiment in the flow path between the gas-liquid separator 4 and the second expansion valve 8 (22 and 23 in the figure) and the flow path between the gas-liquid separator 4 and the indoor heat exchanger (FIG. It has a valve 21 that can simultaneously open and close the middle 24 and 25), and differs in that the first on-off valve 11 is not provided. During the cooling operation, the valve 21 is in the position shown in FIG. 4, and the flow paths 22 and 23 and the flow paths 24 and 25 communicate with each other, so that the gas refrigerant among the gas-liquid two-phase refrigerant on the downstream side of the first expansion valve 3 Is returned to the compressor 1 and the liquid refrigerant flows into the indoor heat exchanger.

【0021】空気調和装置を分離する場合は、バルブ1
9を図5に示す位置に切り替えて、流路22から23、
及び流路24から25への冷媒が流れないようにする。
When separating the air conditioner, the valve 1
9 is switched to the position shown in FIG.
And the flow of the refrigerant from the flow passages 24 to 25 is prevented.

【0022】これにより室内熱交換器への冷媒流入と、
気液分離器4から圧縮機吸込部へ冷媒バイパスがなくな
るので、圧縮機吸込圧力が低下して第一の接続配管5と
室内熱交換器6と第二の接続配管7に存在していた冷媒
は室外ユニットに吸引される。冷媒が吸引された後、第
二の開閉弁12を閉じて圧縮機1を停止する。そしてコ
ネクタ13〜16を分離して室内熱交換器と室外熱交換
器を分離する。
Thus, the refrigerant flows into the indoor heat exchanger,
Since there is no refrigerant bypass from the gas-liquid separator 4 to the compressor suction section, the compressor suction pressure is reduced and the refrigerant existing in the first connection pipe 5, the indoor heat exchanger 6, and the second connection pipe 7 Is sucked into the outdoor unit. After the refrigerant is sucked, the second on-off valve 12 is closed and the compressor 1 is stopped. Then, the connectors 13 to 16 are separated to separate the indoor heat exchanger and the outdoor heat exchanger.

【0023】図6は本発明の第四実施例である、前実施
例とは前実施例のバルブ21と第二の開閉弁16の機能
(図中流路27と28間のバルブ)を、第3の開閉弁2
6に統合した点が異なる。すなわちバルブのモードには
3パターンあり、流路22と23,流路24と25,流
路27と28の全てを連通させる第一のモード,流路2
2と23,流路24と25を連通させる第二のモード,
全流路を閉じる第三のモードである。作用は前実施例と
ほぼ同様で、図6は気液分離を行う通常冷房運転、図7
は冷媒回収運転時の、図8はユニット分離時のものであ
る。本実施例では通常冷房運転から冷媒回収,ユニット
分離まで一つのバルブの操作だけで行えるので、作業の
簡略化が図れる。
FIG. 6 shows a fourth embodiment of the present invention. The functions of the valve 21 and the second on-off valve 16 (the valve between the flow paths 27 and 28 in the figure) of the previous embodiment are different from those of the previous embodiment. On-off valve 2 for 3
6 is different. That is, there are three patterns in the valve mode, the first mode in which all of the flow paths 22 and 23, the flow paths 24 and 25, and the flow paths 27 and 28 are communicated, and the flow path 2
2 and 23, the second mode for connecting the flow paths 24 and 25,
This is a third mode in which all channels are closed. The operation is almost the same as in the previous embodiment. FIG. 6 shows a normal cooling operation for performing gas-liquid separation, and FIG.
8 shows a state during the refrigerant recovery operation, and FIG. 8 shows a state when the unit is separated. In this embodiment, since the operation from the normal cooling operation to the refrigerant recovery and the unit separation can be performed by operating only one valve, the operation can be simplified.

【0024】[0024]

【発明の効果】少なくとも圧縮機,室外熱交換器,第一
の減圧機構を有する室外ユニットと、室内熱交換器を有
する室内ユニットを順次配管接続し、前記第一の減圧機
構と前記室内熱交換器の間に気液分離器を設置し、気液
分離器で分離される液冷媒が室内熱交換器、ガス冷媒が
圧縮機吸込部に流入するように接続し、室内外ユニット
が分離可能な分離型空気調和装置において、前記気液分
離器と前記圧縮機の間に減圧量可変型の第二の減圧機構
を設けて、冷媒回収時は前記第一、あるいは第二の膨張
弁を全閉にするので、確実に冷媒回収作業を行うことが
できる。あるいは四方弁を切り替えて、第二の膨張弁を
全開にして除霜運転を行うので、室内熱交換器に流入す
る低温の冷媒流量を大幅に低減できるので、室温低下を
抑えることができる。
According to the present invention, at least a compressor, an outdoor heat exchanger, an outdoor unit having a first pressure reducing mechanism, and an indoor unit having an indoor heat exchanger are sequentially connected by piping, and the first pressure reducing mechanism and the indoor heat exchange are connected. A gas-liquid separator is installed between the devices, and the liquid refrigerant separated by the gas-liquid separator is connected so that the indoor heat exchanger and the gas refrigerant flow into the compressor suction part, and the indoor and outdoor units can be separated. In the separation type air conditioner, a variable pressure reduction type second pressure reducing mechanism is provided between the gas-liquid separator and the compressor, and the first or second expansion valve is fully closed during refrigerant recovery. Therefore, the refrigerant recovery operation can be reliably performed. Alternatively, the defrosting operation is performed by switching the four-way valve to fully open the second expansion valve, so that the flow rate of the low-temperature refrigerant flowing into the indoor heat exchanger can be significantly reduced, so that a decrease in the room temperature can be suppressed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一実施例に関わる空気調和装置の説
明図。
FIG. 1 is an explanatory diagram of an air conditioner according to a first embodiment of the present invention.

【図2】本発明の第二実施例に関わる空気調和装置の説
明図。
FIG. 2 is an explanatory view of an air conditioner according to a second embodiment of the present invention.

【図3】本発明の第一実施例に関わる膨張弁開度を説明
する特性図。
FIG. 3 is a characteristic diagram illustrating an expansion valve opening degree according to the first embodiment of the present invention.

【図4】本発明の第三実施例に関わる冷房運転時の空気
調和装置の説明図。
FIG. 4 is an explanatory diagram of an air conditioner during a cooling operation according to a third embodiment of the present invention.

【図5】本発明の第三実施例に関わる冷媒回収運転時の
空気調和装置の説明図。
FIG. 5 is an explanatory diagram of an air conditioner during a refrigerant recovery operation according to a third embodiment of the present invention.

【図6】本発明の第四実施例に関わる冷房運転時の空気
調和装置の説明図。
FIG. 6 is an explanatory diagram of an air conditioner during a cooling operation according to a fourth embodiment of the present invention.

【図7】本発明の第四実施例に関わる冷媒回収運転時の
空気調和装置の説明図。
FIG. 7 is an explanatory diagram of an air conditioner during a refrigerant recovery operation according to a fourth embodiment of the present invention.

【図8】本発明の第五実施例に関わる分離時の空気調和
装置の説明図。
FIG. 8 is an explanatory view of an air conditioner at the time of separation according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…室外熱交換器、3…第一の膨張弁、4
…気液分離器、5…第一の接続配管、6…室内熱交換
器、7…第二の接続配管、8…第二の膨張弁、9…室外
送風ファン、10…室内送風ファン、11…第一の開閉
弁、12…第二の開閉弁、13…第一のコネクタ、14
…第二のコネクタ、15…第三のコネクタ、16…第四
のコネクタ、17…室外ユニット、18…室内ユニッ
ト、19…四方弁、21…四方バルブ、22…気液分離
器と六方弁間の流路、23…六方弁と第二の膨張弁間の
流路、24…気液分離器と六方弁からの流路、25…六
方弁と第一の開閉弁間の流路、26…六方弁、27…第
二の開閉弁と六方弁間の流路、28…六方弁と圧縮機吸
込部間の流路。
DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Outdoor heat exchanger, 3 ... First expansion valve, 4
... gas-liquid separator, 5 ... first connection pipe, 6 ... indoor heat exchanger, 7 ... second connection pipe, 8 ... second expansion valve, 9 ... outdoor blower fan, 10 ... indoor blower fan, 11 ... first on-off valve, 12 ... second on-off valve, 13 ... first connector, 14
... second connector, 15 ... third connector, 16 ... fourth connector, 17 ... outdoor unit, 18 ... indoor unit, 19 ... four-way valve, 21 ... four-way valve, 22 ... between gas-liquid separator and six-way valve 23, a flow path between the six-way valve and the second expansion valve, 24, a flow path from the gas-liquid separator and the six-way valve, 25, a flow path between the six-way valve and the first on-off valve, 26,. 6-way valve, 27: flow path between the second on-off valve and the 6-way valve, 28 ... flow path between the 6-way valve and the compressor suction section.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】少なくとも圧縮機,室外熱交換器,第一の
減圧機構を有する室外ユニットと、室内熱交換器を有す
る室内ユニットを順次配管接続し、前記第一の減圧機構
と前記室内熱交換器の間に気液分離器を設置し、気液分
離器で分離される液冷媒が室内熱交換器、ガス冷媒が圧
縮機吸込部に流入するように接続し、室内外ユニットが
分離可能な分離型空気調和装置において、前記気液分離
器と前記圧縮機吸込部の間に減圧量可変型の第二の減圧
機構を有することを特徴とする空気調和装置。
An indoor unit having at least a compressor, an outdoor heat exchanger, an outdoor unit having a first pressure reducing mechanism, and an indoor unit having an indoor heat exchanger are sequentially connected by piping. A gas-liquid separator is installed between the devices, and the liquid refrigerant separated by the gas-liquid separator is connected so that the indoor heat exchanger and the gas refrigerant flow into the compressor suction part, and the indoor and outdoor units can be separated. The air conditioner according to claim 1, further comprising a variable pressure reducing type second pressure reducing mechanism between the gas-liquid separator and the compressor suction unit.
JP11142798A 1999-05-24 1999-05-24 Air conditioner Pending JP2000337720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11142798A JP2000337720A (en) 1999-05-24 1999-05-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11142798A JP2000337720A (en) 1999-05-24 1999-05-24 Air conditioner

Publications (1)

Publication Number Publication Date
JP2000337720A true JP2000337720A (en) 2000-12-08

Family

ID=15323882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11142798A Pending JP2000337720A (en) 1999-05-24 1999-05-24 Air conditioner

Country Status (1)

Country Link
JP (1) JP2000337720A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271011A (en) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp Air conditioner
CN105318606A (en) * 2014-07-29 2016-02-10 青岛海信日立空调系统有限公司 Indoor unit and outdoor unit of air conditioner as well as air conditioner
CN105588354A (en) * 2015-04-23 2016-05-18 海信(山东)空调有限公司 Air conditioner and refrigerating method thereof
WO2017185514A1 (en) * 2016-04-29 2017-11-02 广东美的制冷设备有限公司 Cooling and heating air conditioner, cooling-only air conditioner, and control method for air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271011A (en) * 2009-05-25 2010-12-02 Mitsubishi Electric Corp Air conditioner
CN105318606A (en) * 2014-07-29 2016-02-10 青岛海信日立空调系统有限公司 Indoor unit and outdoor unit of air conditioner as well as air conditioner
CN105588354A (en) * 2015-04-23 2016-05-18 海信(山东)空调有限公司 Air conditioner and refrigerating method thereof
CN105588354B (en) * 2015-04-23 2018-11-09 海信(山东)空调有限公司 A kind of air-conditioning and its refrigerating method
WO2017185514A1 (en) * 2016-04-29 2017-11-02 广东美的制冷设备有限公司 Cooling and heating air conditioner, cooling-only air conditioner, and control method for air conditioner

Similar Documents

Publication Publication Date Title
KR100447203B1 (en) Multi-type air conditioner for cooling/heating the same time and method for controlling the same
WO2006013834A1 (en) Freezing apparatus
JP6880204B2 (en) Air conditioner
JP2006132797A (en) Air conditioner
JP2007232265A (en) Refrigeration unit
JP4622901B2 (en) Air conditioner
JP2002188873A (en) Refrigerating equipment of air conditioner
CN111059732A (en) Air conditioner and control method thereof
JP2006090683A (en) Multiple room type air conditioner
JP2000337720A (en) Air conditioner
JPH08159621A (en) Air conditioner
WO2021208584A1 (en) Air-cooled heat pump air conditioning system for efficient heat production
KR100821729B1 (en) Air conditioning system
CN110207417B (en) Air conditioning system
JPH09119754A (en) Air conditioner
JP2002340436A (en) Multi-chamber air conditioner
CN111578450A (en) Air conditioning system and defrosting method thereof
JP2002213839A (en) Multichamber air conditioner
KR100591323B1 (en) Heat pump type air conditioner
JP2000055482A (en) Air conditioner
CN220506910U (en) Air conditioning system and air conditioner
JPH02223778A (en) Defrosting device for air-conditioning machine
JP4090238B2 (en) Air conditioner and outdoor heat exchanger switching control method of air conditioner
JP2007163011A (en) Refrigeration unit
JPH07117323B2 (en) Air conditioner