JPS59208363A - Heat accumulation type air conditioner - Google Patents

Heat accumulation type air conditioner

Info

Publication number
JPS59208363A
JPS59208363A JP8443383A JP8443383A JPS59208363A JP S59208363 A JPS59208363 A JP S59208363A JP 8443383 A JP8443383 A JP 8443383A JP 8443383 A JP8443383 A JP 8443383A JP S59208363 A JPS59208363 A JP S59208363A
Authority
JP
Japan
Prior art keywords
bypass circuit
heat
storage tank
refrigeration cycle
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8443383A
Other languages
Japanese (ja)
Inventor
酒井 邦武
下河 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8443383A priority Critical patent/JPS59208363A/en
Publication of JPS59208363A publication Critical patent/JPS59208363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業−4二の利用分野 本発明は、冷凍サイクル中に蓄熱槽を有するピー1−ポ
ンプ式空気調和機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Application of Industry-42 The present invention relates to a P1-pump type air conditioner having a heat storage tank in the refrigeration cycle.

従来例の構成とその問題点 従来、ピー1−ポンプ式空気調和機の運転時に、除霜運
転を行なう場合は、冷凍サイクルを冷房運転に切換え、
圧縮機あるいは室内側の熱によって室外側熱交換器に着
霜した霜を解かしCいたため、除霜運11云時は、室内
側の温度が低下し、暖房効果が悪くなるという欠点を有
していた。
Conventional configuration and its problems Conventionally, when operating a P1-pump type air conditioner, when defrosting operation is performed, the refrigeration cycle is switched to cooling operation,
Since the frost that has formed on the outdoor heat exchanger is thawed by the heat from the compressor or the indoor side, the defrosting operation has the disadvantage that the indoor temperature decreases and the heating effect deteriorates. was.

発明の目的 本発明は、上記従来の欠点全解消するためのもので除霜
運転中にも暖房運転全継続してコールド、ドラフトを生
じさせない効果的な暖房を行なうことを目1゛自とする
Purpose of the Invention The present invention is intended to eliminate all of the above-mentioned drawbacks of the conventional technology, and its primary purpose is to provide effective heating without causing cold or draft by continuing the entire heating operation even during defrosting operation. .

発明の構成 本発明の蓄熱式空気調和機は、圧縮機、四方切換−7F
 、室内側熱父換諸、減圧機構、室外側熱交換器2m熱
槽を具備し、暖房運転時、前記蓄熱槽−へ冷凍サイクル
中の熱を蓄熱するための第1のバイパスII回路、この
第1のバイパス回路への冷媒の流れ全制御する電磁方、
逆中−1F、減圧機構と前記蓄熱槽に蓄えられた蓄熱を
冷凍→ノ“イクル中(で回収するため前記減圧機構を側
路するだめの第2のバイパス回路、第2のバイパス回路
への冷媒の流れ全制御する電磁弁及び減圧機構、逆1ト
弁を設けた第3のバイパス回路16、第3のバイパス回
路への冷媒の流れを制御する電磁弁をそれぞれ罪結して
冷凍サイクルを構成し、冷凍サイクル中に蓄熱槽を有す
る蓄熱式空気調和機の暖房ヒートポンプ1i15転時、
負荷の小さい間に冷凍サイクル内の余力の熱を蓄熱槽に
蓄え、負荷が大きく室外側熱交換2gに着霜し暖房能力
が低下した時なとに蓄熱槽に蓄えられた蓄熱を利用して
除霜を行う冷凍サイクルの除霜制御に関するもので、背
に室内側あるいは室外側の負荷全検知し蓄熱槽を利用し
た蓄熱運転ト除’1M運転を11い、ラン二ングニ7ス
I−の低下や除霜運転中にも暖房σ■転を継続してコー
ルドトラフ1−を生しさぜない効果的な暖のを行う6、
実施例の説明 以下、本発明をその一実施例を示す添イτJ図面全参考
に説明する。
Composition of the Invention The regenerative air conditioner of the present invention includes a compressor, a four-way switching -7F
, an indoor heat exchanger, a pressure reduction mechanism, an outdoor heat exchanger, a 2 m heat tank, and a first bypass II circuit for storing heat during the refrigeration cycle into the heat storage tank during heating operation. an electromagnetic means for fully controlling the flow of refrigerant to the first bypass circuit;
Reverse medium-1F, the decompression mechanism and the heat stored in the heat storage tank are recovered by freezing and then in the fuel tank, and the depressurization mechanism is bypassed to the second bypass circuit. A refrigeration cycle is constructed by connecting a solenoid valve and a pressure reducing mechanism that completely control the flow of refrigerant, a third bypass circuit 16 equipped with a reversing valve, and a solenoid valve that controls the flow of refrigerant to the third bypass circuit. When a heating heat pump 1i15 of a regenerative air conditioner is configured and has a heat storage tank in the refrigeration cycle,
When the load is small, the surplus heat in the refrigeration cycle is stored in the heat storage tank, and when the load is large and frost forms on the outdoor heat exchanger 2g and the heating capacity decreases, the heat stored in the heat storage tank is used. This is related to the defrosting control of the refrigeration cycle that performs defrosting, and it detects all the loads on the indoor or outdoor side and performs heat storage operation using a heat storage tank. Continuing the heating σ■ rotation even during cooling or defrosting operation to provide effective heating without creating a cold trough 6.
DESCRIPTION OF EMBODIMENTS The present invention will be described below with reference to the accompanying drawings illustrating one embodiment thereof.

1は圧縮機、2は四方切換−jr、3は室内側熱交換’
<w、4は減圧機構、5は室外側熱交換器、6d:冷凍
サイクル中の余分の熱を蓄熱するだめの蓄熱槽で内71
Sには、」二記冷凍ザイクルに連Jfjする冷媒配管が
配設され、蓄熱材6bが満たされている1゜7.8.9
)」、電磁弁で、これらのツfを11+[]御すること
により冷凍サイクル中の冷媒の流れ全制御している。1
4は第1のバイパス回路、161は第2のバイパス回路
、16は第3のバイパス回路で前記蓄熱槽6へ熱を蓄熱
したりあるいは熱全回+1y 1.たりするだめのバイ
パス回路であり、それぞハのバイパス回路にd:、減圧
機構10.11およ0・逆11−プ↑12,13が配設
され、これらを同図に示すごとく環状にE小結すること
により周知の冷凍サイクル全構成する。なお、図中、A
は室内側ユニyト、Bけ室外側ユニットを示している。
1 is a compressor, 2 is a four-way switching-JR, and 3 is an indoor heat exchanger.
<w, 4 is a pressure reduction mechanism, 5 is an outdoor heat exchanger, 6d is a heat storage tank for storing excess heat during the refrigeration cycle;
In S, a refrigerant pipe connected to the refrigeration cycle Jfj is arranged, and the heat storage material 6b is filled.1°7.8.9
)", and the flow of refrigerant in the refrigeration cycle is fully controlled by controlling these 11+[] with solenoid valves. 1
4 is a first bypass circuit, 161 is a second bypass circuit, and 16 is a third bypass circuit for storing heat in the heat storage tank 6 or for heating all times +1y 1. Each of the bypass circuits C is equipped with a pressure reducing mechanism 10, 11 and a 0/inverse 11-pu ↑12, 13, which are arranged in an annular manner as shown in the figure. The entire well-known refrigeration cycle is constructed by connecting E. In addition, in the figure, A
indicates the indoor unit, and B indicates the outdoor unit.

上記構成において、冷房運転時は、圧縮機1から吐出さ
れた冷媒は、四方切換−JF2.電磁J↑9゜室外側熱
交換に5+減圧機構4.室内側熱交換器3、四方ψノ換
ノr2をJmり圧縮機1へ戻る冷凍サイクルを構成する
、。
In the above configuration, during cooling operation, the refrigerant discharged from the compressor 1 is switched between four-way switching - JF2. Electromagnetic J↑9゜ 5+ pressure reduction mechanism for outdoor heat exchange 4. The indoor heat exchanger 3 constitutes a refrigeration cycle that returns to the compressor 1 through the four-way ψ exchanger r2.

暖房ピー1運転時プ庫転時は、電磁弁7,8が閉電磁ブ
t9が開となり、圧縮機1から吐出された冷媒は、四方
り換弁2.室内側熱交換器3.減圧機構4.室外側熱交
換k 5+電磁方9.四方切換弁2を通り圧縮機1に戻
る冷凍サイクルを構成する。
During the heating P1 operation, the solenoid valves 7 and 8 are closed and the solenoid valve t9 is opened, and the refrigerant discharged from the compressor 1 is transferred to the four-way switching valve 2. Indoor heat exchanger 3. Decompression mechanism 4. Outdoor heat exchange k 5 + electromagnetic side 9. A refrigeration cycle is configured in which the refrigeration cycle passes through the four-way switching valve 2 and returns to the compressor 1.

前記蓄熱槽6を用いた蓄熱犀転時は、電磁ブ↑7を閉、
電磁ノ「8全開、電磁弁9を開とし、圧縮機1から吐出
された冷媒は、四方切換ブ↑2.室内側熱交換藷3を通
り、第1のバイパス回路14に入り電磁弁8を通り蓄熱
槽6に入る。冷媒は、冷媒配管を涌して蓄熱槽6aと熱
交換して凝縮し、冷媒の持っていた熱は、蓄熱槽6に蓄
えられる。蓄熱槽6を出た冷媒は、逆仕ブT12を通り
減圧機構10で減圧され室外側熱交換’taで蒸発し外
気から熱′ff:冷凍→カイクル中に取り入れ、電磁弁
9.四方切換ノ↑2を1由り圧縮機1へ戻る冷凍サイク
ル全構成する。
When performing heat storage using the heat storage tank 6, close the electromagnetic valve ↑7,
When the solenoid valve 8 is fully opened and the solenoid valve 9 is opened, the refrigerant discharged from the compressor 1 passes through the four-way switching valve ↑2. The refrigerant flows through the refrigerant piping, exchanges heat with the heat storage tank 6a, and condenses, and the heat held by the refrigerant is stored in the heat storage tank 6.The refrigerant that leaves the heat storage tank 6 is , the pressure is reduced by the pressure reduction mechanism 10 through the reverse tube T12, evaporated by the outdoor heat exchange 'ta, and the heat 'ff from the outside air is taken in from the outside air. Return to step 1. Configure the entire refrigeration cycle.

次に前記蓄熱槽6に蓄熱されている熱を用いて室外側熱
交換器6に着霜した謂を解かず除霜運転時は、電磁弁7
全開、電磁−Jf8を閉、電磁弁9を閉と(7、圧縮機
1から吐出された冷媒は、四方切換弁2.室内側熱交換
器3全通り第2のバイパス回路15へ入り、電磁弁7全
通って室外側熱交換器5′\入り、ここで冷凍サイクル
中の熱で室外側熱交換器6上の霜を解かし熱交換[ッて
凝縮する。。
Next, during defrosting operation without removing the frost on the outdoor heat exchanger 6 using the heat stored in the heat storage tank 6, the solenoid valve 7
Fully open, solenoid-Jf8 closed, solenoid valve 9 closed (7, the refrigerant discharged from the compressor 1 enters the second bypass circuit 15 through the four-way switching valve 2, indoor heat exchanger 3, and the solenoid It passes through all the valves 7 and enters the outdoor heat exchanger 5', where the heat in the refrigeration cycle melts the frost on the outdoor heat exchanger 6 and condenses through heat exchange.

室外側熱交換器6を出だ冷媒は、第3のバイパス回路1
6へ入り、減圧機構11で減圧し前記蓄熱槽6に入る。
The refrigerant leaving the outdoor heat exchanger 6 is transferred to the third bypass circuit 1.
6, the pressure is reduced by the pressure reducing mechanism 11, and the heat storage tank 6 is entered.

ここで蓄熱槽6内に蓄えられた熱を冷媒配管を通じて蓄
熱月6aから冷凍サイクル内に回収し冷媒は蒸発して吸
熱した後逆1ドブr13゜四方切換弁2を通り圧縮機1
へ戻る冷凍サイクルを構成する。
Here, the heat stored in the heat storage tank 6 is recovered from the heat storage tank 6a through the refrigerant piping into the refrigeration cycle, and after the refrigerant evaporates and absorbs heat, it passes through the reverse 1 door r13° four-way switching valve 2 and the compressor 1.
Configure the refrigeration cycle to return to.

以上の構成において、暖房ピー1−ポンプ荘E転時室内
側の負荷が小さいつ寸り暖房能力が余り必要でない場合
は、蓄熱槽を凝縮に?rとして用い、冷凍サイクル中の
余分の熱d[、蓄熱槽内に蓄熱し、室外側の気温が低く
なったりあるい(d:室内側の負荷が大きく室外側熱交
換器F−に霜が着い/ζ場合、室外側熱交換器を凝縮器
として用い、冷凍サイクル中の冷媒が凝縮する時の熱で
着霜した霜を解かし液化した冷媒は、蓄熱槽に蓄えられ
た熱を利用して蒸発し、蓄熱槽(は、蒸発器として利用
されるように制御することにより無駄の無い省エネルギ
運転を継続することができる。
In the above configuration, if the load on the indoor side is small and the heating capacity is not very necessary, the heat storage tank can be used for condensing. The excess heat d during the refrigeration cycle is stored in the heat storage tank, and the temperature outside becomes low (d: The load on the indoor side is large and frost forms on the outdoor heat exchanger F-). In this case, the outdoor heat exchanger is used as a condenser, and the heat from the condensation of the refrigerant in the refrigeration cycle thaws the frost and liquefies the refrigerant, using the heat stored in the heat storage tank. By controlling the heat storage tank to be used as an evaporator, energy-saving operation can be continued without waste.

発明の効果 上記実施例から明らかなように、本発明の蓄熱式空気調
和機は、冷凍サイクル中の余分な熱を蓄熱し、除1■運
転時にその熱を使用することにより、暖房運転を継続し
た捷まで除霜ができるとともに人体に冷風感を与える暖
房能力の減少によるコールドドラフト 利点を有するものである。
Effects of the Invention As is clear from the above embodiments, the regenerative air conditioner of the present invention stores excess heat during the refrigeration cycle and uses that heat during operation to continue heating operation. In addition to being able to defrost even the coldest air, it also has the advantage of cold draft due to the reduction in heating capacity, which gives a feeling of cold air to the human body.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の一実施例を示す蓄熱式空気調和機の冷
凍ザイクル図である.。 1 ・・・圧縮機、5・・・・室外側熱交換器、6・・
・・・蓄熱槽、7,8.9・・・・電磁弁、14・・・
・第1のバイパス回路、16・・・・・・第2のバイパ
ス回路、16・・・・第3のバイパス回路。
The drawing is a refrigeration cycle diagram of a regenerative air conditioner showing an embodiment of the present invention. . 1...Compressor, 5...Outdoor heat exchanger, 6...
...Heat storage tank, 7,8.9...Solenoid valve, 14...
- First bypass circuit, 16... second bypass circuit, 16... third bypass circuit.

Claims (1)

【特許請求の範囲】 圧縮機、四方切換力、室内側熱交換藷、減圧機構、室外
側熱交換器、蓄熱槽を具備し、暖房運転時、前記蓄熱槽
へ冷凍サイクル中の熱全蓄熱するだめの第1のバイパス
回路、この第1のバイパス回路への冷媒の流れ全制御す
る電磁弁、逆1ヒツ↑。 減圧機構と前記蓄熱槽に蓄えられた蓄熱を冷凍サイクル
中に回収するため前記減圧機構を側路するだめの第2の
バイパス回路、この第2のバイパス回路への冷媒の流れ
を制御する電磁弁及び減圧機構、逆上り↑を設けた第3
のバイパス回路、この第3のバイパス回路への冷媒の流
れを制御する電磁弁をそれぞれ連結して冷凍サイクルを
構成し、暖房ヒートポンプ運転時、前記蓄熱槽、第2の
バイパス回路、第3のバイパス111路を用いて、低外
気温時に室外側熱交換器に着霜した霜を暖房運転を停止
せずに除霜する蓄熱式空気調和機。
[Scope of Claims] A compressor, a four-way switching power, an indoor heat exchange tube, a pressure reducing mechanism, an outdoor heat exchanger, and a heat storage tank are provided, and during heating operation, all of the heat from the refrigeration cycle is stored in the heat storage tank. The first bypass circuit, the solenoid valve that completely controls the flow of refrigerant to this first bypass circuit, is reverse ↑. A pressure reducing mechanism, a second bypass circuit bypassing the pressure reducing mechanism in order to recover the heat stored in the heat storage tank during the refrigeration cycle, and a solenoid valve controlling the flow of refrigerant to the second bypass circuit. and the third with a decompression mechanism and reverse upward ↑
A refrigeration cycle is constructed by connecting electromagnetic valves that control the flow of refrigerant to the bypass circuit and the third bypass circuit, and when the heating heat pump is operated, the heat storage tank, the second bypass circuit, and the third bypass circuit are connected. A regenerative air conditioner that defrosts frost that has formed on an outdoor heat exchanger during low outside temperatures without stopping heating operation, using a 111-way air conditioner.
JP8443383A 1983-05-13 1983-05-13 Heat accumulation type air conditioner Pending JPS59208363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8443383A JPS59208363A (en) 1983-05-13 1983-05-13 Heat accumulation type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8443383A JPS59208363A (en) 1983-05-13 1983-05-13 Heat accumulation type air conditioner

Publications (1)

Publication Number Publication Date
JPS59208363A true JPS59208363A (en) 1984-11-26

Family

ID=13830448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8443383A Pending JPS59208363A (en) 1983-05-13 1983-05-13 Heat accumulation type air conditioner

Country Status (1)

Country Link
JP (1) JPS59208363A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314061A (en) * 1986-07-02 1988-01-21 三洋電機株式会社 Air conditioner
JPS63217169A (en) * 1987-03-03 1988-09-09 三洋電機株式会社 Air conditioner
JPS6475868A (en) * 1987-09-17 1989-03-22 Daikin Ind Ltd Refrigerant circuit
JPH01127871A (en) * 1987-11-11 1989-05-19 Mitsubishi Electric Corp Heat pump device
US4869074A (en) * 1987-10-13 1989-09-26 Kabushiki Kaisha Toshiba Regenerative refrigeration cycle apparatus and control method therefor
US5165250A (en) * 1990-03-30 1992-11-24 Mitsubishi Denki Kabushiki Kaisha Air conditioning system with thermal storage cycle control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710060A (en) * 1980-06-20 1982-01-19 Toyo Seisakusho Kk Refrigerating plant

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710060A (en) * 1980-06-20 1982-01-19 Toyo Seisakusho Kk Refrigerating plant

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314061A (en) * 1986-07-02 1988-01-21 三洋電機株式会社 Air conditioner
JPS63217169A (en) * 1987-03-03 1988-09-09 三洋電機株式会社 Air conditioner
JPS6475868A (en) * 1987-09-17 1989-03-22 Daikin Ind Ltd Refrigerant circuit
US4869074A (en) * 1987-10-13 1989-09-26 Kabushiki Kaisha Toshiba Regenerative refrigeration cycle apparatus and control method therefor
JPH01127871A (en) * 1987-11-11 1989-05-19 Mitsubishi Electric Corp Heat pump device
US5165250A (en) * 1990-03-30 1992-11-24 Mitsubishi Denki Kabushiki Kaisha Air conditioning system with thermal storage cycle control

Similar Documents

Publication Publication Date Title
JPH03117866A (en) Heat pump type refrigerating cycle
JPS59208363A (en) Heat accumulation type air conditioner
JPH01118080A (en) Heat pump type air conditioner
JP2667741B2 (en) Air conditioner
JP2001263848A (en) Air conditioner
JP2000304397A (en) Cold and warm storage cabinet
JP3304866B2 (en) Thermal storage type air conditioner
JPH04203776A (en) Heat pump type air conditioner
JPH0794927B2 (en) Air conditioner
JPS5852460Y2 (en) Refrigeration equipment
JPH10205932A (en) Air conditioner
JPS59119156A (en) Heat accumulation type air conditioner
JPS6032533Y2 (en) Heat recovery air conditioner
JP2001033126A (en) Air conditioner
JPS6018895B2 (en) Solar heat pump air conditioner
JPH0623886Y2 (en) Heat pump air conditioner
JPH07190533A (en) Heat storage type air conditioning equipment
JP2800573B2 (en) Air conditioner
JPS60178262A (en) Heat accumulation type air conditioner
JPS6117873A (en) Air-conditioning hot-water supply device
JPH0429345Y2 (en)
JPS6321462A (en) Air conditioner
JP2000230758A (en) Air conditioner
JPH0788987B2 (en) Heat storage type air conditioner
JPH10170086A (en) Air conditioner