WO2019198176A1 - Indoor unit for air conditioning device - Google Patents

Indoor unit for air conditioning device Download PDF

Info

Publication number
WO2019198176A1
WO2019198176A1 PCT/JP2018/015226 JP2018015226W WO2019198176A1 WO 2019198176 A1 WO2019198176 A1 WO 2019198176A1 JP 2018015226 W JP2018015226 W JP 2018015226W WO 2019198176 A1 WO2019198176 A1 WO 2019198176A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
refrigerant
air volume
indoor
detection sensor
Prior art date
Application number
PCT/JP2018/015226
Other languages
French (fr)
Japanese (ja)
Inventor
智史 高橋
和樹 渡部
昌彦 高木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020512994A priority Critical patent/JP6847303B2/en
Priority to PCT/JP2018/015226 priority patent/WO2019198176A1/en
Publication of WO2019198176A1 publication Critical patent/WO2019198176A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/52Indication arrangements, e.g. displays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an indoor unit of an air conditioner that performs air conditioning of a target space.
  • an air conditioner using a flammable refrigerant is provided with a refrigerant leakage detection sensor for detecting the leakage of the refrigerant when the refrigerant leaks.
  • Patent Document 1 discloses that in an air conditioner using a flammable refrigerant, a refrigerant leakage detection sensor is provided on the air path of the indoor unit.
  • a refrigerant leakage detection sensor is provided at a position equivalent to, or a position below, the abutting portion that is the lowest vertical portion of the indoor heat exchanger. Is disclosed.
  • the refrigerant leakage detection sensor is installed at the bottom of the indoor unit in which the refrigerant having a specific gravity higher than that of the air stays.
  • refrigerant leakage may not be detected even if a refrigerant leakage detection sensor is installed at the bottom of the indoor unit. In that case, it is necessary to install a plurality of refrigerant leak detection sensors in the indoor unit and to constantly monitor the refrigerant leak with these refrigerant leak detection sensors.
  • the refrigerant leakage detection sensor is energized when the air conditioner is energized to detect the presence or absence of refrigerant leakage. For this reason, the refrigerant leak detection sensor has a change in detection accuracy due to a secular change caused by energization, and the refrigerant leak cannot be accurately detected when used for a long time.
  • This invention is made in view of said subject, Comprising: It aims at providing the indoor unit of the air conditioning apparatus which can detect the leakage of a refrigerant
  • An indoor unit of an air conditioner is an indoor unit of an air conditioner having an air inlet and an air outlet, and an indoor fan arranged on an air path extending from the air inlet to the air outlet, A plurality of refrigerant leakage detection sensors provided on the road for detecting refrigerant leakage, an air volume determination unit for determining an air volume of the air flowing through the air path based on the number of rotations of the indoor fan, and according to the air volume, Leakage determination for determining presence or absence of leakage of the refrigerant based on a sensor selection unit that selects a refrigerant leakage detection sensor to be used among the plurality of refrigerant leakage detection sensors and detection information from the selected refrigerant leakage detection sensor Part.
  • the refrigerant leakage detection sensor to be used is selected according to the air volume based on the rotation speed of the indoor blower, and the detection from the selected refrigerant leakage detection sensor is performed. Since the presence or absence of the refrigerant leakage is determined based on the information, the refrigerant leakage can be detected more reliably.
  • FIG. It is the schematic which shows an example of a structure of the air conditioning apparatus which concerns on Embodiment 1.
  • FIG. It is a functional block diagram which shows an example of a structure of the control apparatus of FIG. It is a perspective view which shows an example of the external appearance of the indoor unit of FIG. It is sectional drawing which shows an example of the internal structure of the indoor unit of FIG. It is a flowchart which shows an example of the flow of the refrigerant
  • FIG. It is sectional drawing which shows an example of the internal structure of the indoor unit of FIG. 5 is a functional block diagram illustrating an example of a configuration of a control device according to Embodiment 2.
  • FIG. It is a flowchart which shows an example of the flow of the refrigerant
  • FIG. 1 is a schematic diagram illustrating an example of the configuration of the air-conditioning apparatus 100 according to Embodiment 1.
  • the air conditioning apparatus 100 includes an outdoor unit 1, an indoor unit 2, and a control device 3.
  • a refrigerant circuit is formed by connecting the outdoor unit 1 and the indoor unit 2 with a refrigerant pipe 4.
  • one indoor unit 2 is connected to the outdoor unit 1.
  • the present invention is not limited to this, and for example, a plurality of indoor units 2 may be connected.
  • the outdoor unit 1 may be plural.
  • the control apparatus 3 is provided in the indoor unit 2, this is not restricted to this example.
  • the control device 3 may be provided in the outdoor unit 1 or may be provided separately from the outdoor unit 1 and the indoor unit 2.
  • the outdoor unit 1 includes a compressor 11, a refrigerant flow switching device 12, an outdoor heat exchanger 13, and an outdoor blower 14.
  • the compressor 11 sucks low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges high-temperature and high-pressure refrigerant.
  • the compressor 11 is composed of, for example, an inverter compressor whose capacity, which is a delivery amount per unit time, is controlled by changing an operation frequency.
  • the refrigerant flow switching device 12 is, for example, a four-way valve, and switches between a cooling operation and a heating operation by switching the direction in which the refrigerant flows.
  • the refrigerant flow switching device 12 is switched to the state shown by the solid line in FIG. 1 during the cooling operation.
  • coolant flow path switching apparatus 12 switches to the state shown with the dotted line of FIG. 1 at the time of heating operation. Switching of the flow path in the refrigerant flow switching device 12 is controlled by the control device 3.
  • the outdoor heat exchanger 13 performs heat exchange between the outdoor air and the refrigerant.
  • the outdoor heat exchanger 13 functions as a condenser that radiates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation.
  • the outdoor heat exchanger 13 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air with the heat of vaporization.
  • the outdoor blower 14 supplies outdoor air to the outdoor heat exchanger 13.
  • the rotational speed of the outdoor blower 14 is controlled by the control device 3. By controlling the number of rotations, the amount of air blown to the outdoor heat exchanger 13 is adjusted.
  • the indoor unit 2 includes an indoor heat exchanger 21, an expansion valve 22, and an indoor blower 23.
  • the expansion valve 22 expands the refrigerant.
  • the expansion valve 22 is configured by a valve capable of controlling the opening degree, such as an electronic expansion valve.
  • the opening degree of the expansion valve 22 is controlled by the control device 3.
  • the indoor heat exchanger 21 performs heat exchange between the air and the refrigerant. Thereby, heating air or cooling air supplied to the air-conditioning target space is generated.
  • the indoor heat exchanger 21 functions as an evaporator during cooling operation, and cools the air in the air-conditioning target space.
  • the indoor heat exchanger 21 functions as a condenser during heating operation, and heats the air in the air-conditioning target space to perform heating.
  • the indoor blower 23 supplies air to the indoor heat exchanger 21.
  • the rotational speed of the indoor blower 23 is controlled by the control device 3. By controlling the number of rotations, the amount of air blown to the indoor heat exchanger 21 is adjusted.
  • the indoor unit 2 includes a first refrigerant leak detection sensor 24A and a second refrigerant leak detection sensor 24B.
  • the first refrigerant leakage detection sensor 24 ⁇ / b> A and the second refrigerant leakage detection sensor 24 ⁇ / b> B are provided for detecting the refrigerant leaked in the indoor unit 2.
  • the first refrigerant leakage detection sensor 24 ⁇ / b> A detects the refrigerant contained in the air taken in by the indoor blower 23.
  • the second refrigerant leakage detection sensor 24B detects the refrigerant staying in the lower part of the indoor unit 2 when the air conditioning apparatus 100 is stopped.
  • the first refrigerant leak detection sensor 24A and the second refrigerant leak detection sensor 24B each detect the refrigerant only when an instruction for refrigerant leak detection is given.
  • Control device 3 Furthermore, the indoor unit 2 is provided with a control device 3.
  • the control device 3 controls the entire air conditioner 100.
  • the control device 3 performs refrigerant leakage detection processing for detecting refrigerant leakage in the indoor unit 2, and controls the operating frequency of the compressor 11 and the rotation speed of the indoor blower 23. To do.
  • FIG. 2 is a functional block diagram showing an example of the configuration of the control device 3 of FIG.
  • the control device 3 is implemented by executing software on an arithmetic device such as a microcomputer, and is configured by hardware such as a circuit device that implements various functions.
  • the control device 3 includes an air volume determination unit 31, a sensor selection unit 32, a leakage determination unit 33, a notification control unit 34, a blower control unit 35, and a compressor control unit 36.
  • the air volume determination unit 31 receives the rotation speed information from the indoor blower 23, and determines the air volume based on the received rotation speed information. In the first embodiment, the air volume determination unit 31 determines the presence or absence of the air volume based on the rotational speed of the indoor blower 23.
  • the sensor selection unit 32 selects a refrigerant leakage detection sensor to be used from the first refrigerant leakage detection sensor 24A and the second refrigerant leakage detection sensor 24B based on the determination result of the air volume determination unit 31.
  • the leakage determination unit 33 determines whether the refrigerant is leaking based on the detection information from the refrigerant leakage detection sensor selected by the sensor selection unit 32.
  • the notification control unit 34 controls the notification unit 5 to notify that a refrigerant leak has occurred when a refrigerant leak has occurred.
  • the notification unit 5 may display information indicating refrigerant leakage using a display unit (not shown) or may output a sound using a voice output unit (not shown).
  • reporting part 5 may alert
  • the notification unit 5 may be provided in the indoor unit 2 or may be provided outside the indoor unit 2.
  • the blower control unit 35 controls the rotation speed of the indoor blower 23. Specifically, the blower control unit 35 increases the rotation speed of the indoor blower 23 when refrigerant leakage occurs.
  • the compressor control unit 36 controls the operating frequency of the compressor 11. Specifically, the compressor control unit 36 sets the operation frequency of the compressor 11 to 0 and stops the compressor 11 when refrigerant leakage occurs.
  • FIG. 3 is a perspective view showing an example of the appearance of the indoor unit 2 of FIG.
  • FIG. 4 is a cross-sectional view showing an example of the internal structure of the indoor unit 2 in FIG.
  • the indoor unit 2 is, for example, a wall-hanging type, and an indoor heat exchanger 21 and an indoor blower 23 are disposed in the main body 20.
  • an expansion valve 22 is also arranged in the main body 20.
  • the main body 20 is formed by a front panel 20a, a side panel 20b, a top panel 20c, a back panel 20d, and a bottom panel 20e.
  • the top panel 20c is formed with a suction port 25 for sucking air around the indoor unit 2 into the interior.
  • the bottom panel 20e is formed with an outlet 26 for blowing out the air sucked into the indoor unit 2 to the outside.
  • An air passage 27 extending from the suction port 25 to the air outlet 26 is formed inside the main body 20.
  • the suction port 25, the filter 28 for preventing foreign matter from entering, the indoor heat exchanger 21, the indoor blower 23, and the air outlet 26 are located from the upstream side in the air flow direction.
  • the first refrigerant leakage detection sensor 24 ⁇ / b> A is provided in the vicinity of the suction port 25 on the air passage 27.
  • the second refrigerant leakage detection sensor 24 ⁇ / b> B is provided below the indoor heat exchanger 21 on the air passage 27.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 via the refrigerant flow switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 13 is condensed while radiating heat by exchanging heat with the outdoor air taken in by the outdoor blower 14, and flows out from the outdoor heat exchanger 13 as high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 13 flows out of the outdoor unit 1 and flows into the indoor unit 2 through the refrigerant pipe 4.
  • the high-pressure liquid refrigerant flowing into the indoor unit 2 is decompressed by the expansion valve 22 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant and flows into the indoor heat exchanger 21.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 21 exchanges heat with the indoor air taken in by the indoor blower 23, absorbs and evaporates, and becomes a low-pressure gas refrigerant from the indoor heat exchanger 21. leak.
  • the low-pressure gas refrigerant that has flowed out of the indoor heat exchanger 21 flows into the outdoor unit 1.
  • the low-pressure gas refrigerant flowing into the outdoor unit 1 passes through the refrigerant flow switching device 12 and is sucked into the compressor 11.
  • Heating operation During the heating operation, the refrigerant flow switching device 12 is switched so that the discharge side of the compressor 11 and the indoor unit 2 side are connected, as indicated by a broken line in FIG.
  • the low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out of the outdoor unit 1 through the refrigerant flow switching device 12 and flows into the indoor unit 2.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 2 flows into the indoor heat exchanger 21.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the indoor heat exchanger 21 is condensed while radiating heat by exchanging heat with the indoor air taken in by the indoor blower 23, and flows out from the indoor heat exchanger 21 as a high-pressure liquid refrigerant. .
  • the high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 21 is decompressed by the expansion valve 22 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant and flows out of the indoor unit 2.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the indoor unit 2 flows into the outdoor unit 1.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor unit 1 flows into the outdoor heat exchanger 13.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 13 exchanges heat with the outdoor air taken in by the outdoor blower 14, absorbs heat and evaporates, and becomes a low-pressure gas refrigerant from the outdoor heat exchanger 13. leak.
  • the low-pressure gas refrigerant that has flowed out of the outdoor heat exchanger 13 passes through the refrigerant flow switching device 12 and is sucked into the compressor 11.
  • the refrigerant leakage detection sensor to be used is selected based on the air volume, and it is determined whether or not the refrigerant is leaking based on the detection information of the selected refrigerant leakage detection sensor.
  • FIG. 5 is a flowchart showing an example of the flow of refrigerant leakage detection processing by the control device 3 of FIG.
  • the air volume determination unit 31 determines whether there is an air volume based on the rotational speed information received from the indoor blower 23 in step S2.
  • the determination as to whether or not there is an air volume is made based on whether or not the rotational speed of the indoor blower 23 is zero.
  • “the rotational speed of the indoor blower 23 is 0” includes a rotational speed that can be considered that the indoor blower 23 is not rotating.
  • step S2 When it is determined that there is an air volume (step S2; Yes), the sensor selection unit 32 detects the refrigerant leakage in step S3 as the first refrigerant leakage detection sensor 24A and the second refrigerant leakage detection. Both sensors 24B are selected.
  • step S2 when it is determined that there is no air volume (step S2; No), the indoor blower 23 is not rotating and air is not taken into the indoor unit 2, and therefore has a higher specific gravity than air. The refrigerant stays in the lower part of the indoor unit 2. Therefore, the sensor selection unit 32 selects the second refrigerant leakage detection sensor 24B as a sensor for detecting refrigerant leakage in step S4.
  • step S5 the leakage determination unit 33 determines whether or not refrigerant leakage has occurred based on the detection information from the refrigerant leakage detection sensor selected in step S3 or S4.
  • step S6 the notification control unit 34 controls the notification unit 5 so as to notify that refrigerant leakage has occurred.
  • the air blower control unit 35 increases the rotation speed of the indoor air blower 23 so that the leaked refrigerant is diffused into the air-conditioning target space.
  • the compressor control unit 36 controls the operating frequency of the compressor 11 to stop the compressor 11.
  • step S5 if it is determined that no refrigerant leakage has occurred (step S5; No), the process returns to step S1, and monitoring of the refrigerant leakage is continued.
  • coolant leak detection sensor used according to an air volume since the refrigerant
  • FIG. 6 is a perspective view showing an example of the appearance of the indoor unit 2 according to the modification of the first embodiment.
  • FIG. 7 is a cross-sectional view showing an example of the internal structure of the indoor unit 2 of FIG.
  • the indoor unit 2 is a four-way ceiling cassette type, and an indoor heat exchanger 21 and an indoor blower 23 are arranged in the main body 20.
  • an expansion valve 22 is also arranged in the main body 20.
  • the main body 20 is formed with an inlet 25 and an outlet 26.
  • An air passage 27 extending from the suction port 25 to the blowout port 26 is formed inside the main body 20.
  • the suction port 25, the filter 28, the indoor blower 23, the indoor heat exchanger 21, and the air outlet 26 are located from the upstream side in the air flow direction.
  • the first refrigerant leakage detection sensor 24 ⁇ / b> A is provided in the vicinity of the suction port 25 on the air passage 27.
  • the second refrigerant leakage detection sensor 24 ⁇ / b> B is provided below the indoor heat exchanger 21 on the air passage 27.
  • the indoor unit 2 can be applied to a four-way ceiling cassette type. And the indoor unit 2 by a modification can acquire the effect similar to the wall-hanging type indoor unit 2 by this Embodiment 1.
  • FIG. 1 A block diagram illustrating an exemplary computing environment in accordance with the present disclosure.
  • the first refrigerant leakage detection sensor 24A and the first refrigerant leakage detection sensor 24A and the Either or both of the two refrigerant leakage detection sensors 24B are selected. Then, based on detection information from the selected refrigerant leakage detection sensor, the presence or absence of refrigerant leakage is determined. As a result, the leakage of the refrigerant can be reliably detected, and the detection accuracy of the refrigerant leakage detection sensor can be maintained for a longer period.
  • the indoor unit 2 when the indoor blower 23 is not rotating, it is determined that there is no air volume, and the second refrigerant leakage detection sensor 24B is selected.
  • the indoor blower 23 When the indoor blower 23 is rotating, it is determined that the air volume is present, and the first refrigerant leakage detection sensor 24A and the second refrigerant leakage detection sensor 24B are selected.
  • coolant leak detection sensor is selected according to the presence or absence of an air volume, it can be detected correctly whether the refrigerant
  • the indoor unit 2 when the refrigerant leakage is detected, a notification indicating that the refrigerant is leaking is performed. Therefore, when the refrigerant is leaking, it is possible to promptly notify the worker of the refrigerant leak. Furthermore, in the indoor unit 2, when the refrigerant leakage is detected, the rotational speed of the indoor blower 23 is increased. Therefore, the leaked refrigerant can be diffused to prevent dangers such as ignition.
  • Embodiment 2 FIG. Next, a second embodiment of the present invention will be described.
  • the second embodiment is different from the first embodiment in that a refrigerant leakage detection sensor to be used is selected according to the air volume.
  • the refrigerant leakage detection sensor to be used is selected according to the presence or absence of the air volume, but the leaked refrigerant may not diffuse or stay depending on the air volume. For example, when the air volume is relatively small, the leaked refrigerant stays without being diffused. Further, when the air volume is relatively large, the leaked refrigerant diffuses without staying. Therefore, in the second embodiment, a threshold is set for the magnitude of the air volume, and the refrigerant leakage detection sensor to be used is selected according to the relationship between the air volume and the threshold.
  • the indoor unit 2 of the air-conditioning apparatus 100 according to Embodiment 2 includes a control device 103 instead of the control device 3 shown in FIG.
  • the same reference numerals are given to portions common to the first embodiment, and detailed description is omitted.
  • FIG. 8 is a functional block diagram showing an example of the configuration of the control device 103 according to the second embodiment.
  • the control device 103 includes an air volume determination unit 31, a sensor selection unit 32, a leakage determination unit 33, a notification control unit 34, a blower control unit 35, a compressor control unit 36, and a storage unit 37. .
  • the air volume determination unit 31 receives the rotation speed information from the indoor blower 23, and based on the received rotation speed information and a threshold value for the rotation speed stored in the storage unit 37 in advance, the magnitude of the air volume. Determine.
  • the storage unit 37 stores various types of information used when processing is performed by each unit of the control device 103. Various types of information stored in the storage unit 37 are read in response to requests from each unit. In the second embodiment, the storage unit 37 stores a threshold value set in advance with respect to the rotational speed of the indoor blower 23.
  • Threshold value is for determining the air volume step by step, and a plurality of threshold values are set.
  • a first threshold value and a second threshold value larger than the first threshold value are set as the plurality of threshold values.
  • the first threshold is for determining whether or not the air volume is equal to or less than the slight air volume.
  • the second threshold is for determining whether or not the air volume is a high air volume.
  • the air volume is compared with the first threshold value when determining whether or not the air volume is equal to or smaller than the slight air volume, that is, whether or not the air volume is a slight air volume or no air volume. Further, when determining whether or not the air volume is a high air volume, the air volume is compared with a second threshold value. Furthermore, when determining whether or not the air volume is an intermediate air volume that is intermediate between the fine air volume and the high air volume, the air volume is compared with the first threshold value and the second threshold value.
  • refrigerant leak detection processing A refrigerant leakage detection process in the air-conditioning apparatus 100 according to Embodiment 2 will be described.
  • the refrigerant leakage detection sensor to be used is selected based on the air volume, and it is determined whether or not the refrigerant is leaking based on the detection information of the selected refrigerant leakage detection sensor.
  • FIG. 9 is a flowchart showing an example of the flow of refrigerant leakage detection processing by the control device 103 of FIG.
  • symbol shall be attached
  • FIG. S1 when the air conditioner 100 is energized, the air volume determination unit 31 receives the rotation speed information received from the indoor blower 23 in step S11, the first threshold value and the second threshold value stored in the storage unit 37. Based on the threshold value, the magnitude of the air volume is determined.
  • the air volume determination unit 31 determines that the air volume is equal to or less than the slight air volume. And the sensor selection part 32 selects the 2nd refrigerant
  • the air volume determination unit 31 determines that the air volume is an intermediate air volume.
  • the sensor selection unit 32 selects both the first refrigerant leakage detection sensor 24A and the second refrigerant leakage detection sensor 24B as sensors for detecting refrigerant leakage.
  • the air volume determination unit 31 determines that the air volume is a high air volume.
  • the sensor selection unit 32 selects the first refrigerant leakage detection sensor 24A as a sensor for detecting refrigerant leakage.
  • step S5 the leakage determination unit 33 determines whether or not refrigerant leakage has occurred based on detection information from the refrigerant leakage detection sensor selected in steps S12 to S14.
  • step S6 the notification control unit 34 controls the notification unit 5 so as to notify that refrigerant leakage has occurred.
  • the air blower control unit 35 increases the rotation speed of the indoor air blower 23 so that the leaked refrigerant is diffused into the air-conditioning target space.
  • the compressor control unit 36 controls the operating frequency of the compressor 11 to stop the compressor 11.
  • step S5 if it is determined that no refrigerant leakage has occurred (step S5; No), the process returns to step S1, and monitoring of the refrigerant leakage is continued.
  • the second refrigerant leak detection sensor 24B when the rotational speed is equal to or less than the first set threshold value, it is determined that the air volume is equal to or less than the slight air volume, and the second refrigerant leak detection sensor 24B is selected.
  • the rotational speed is greater than the first set threshold and less than or equal to the second set threshold, it is determined that the air volume is the intermediate air volume, and the first refrigerant leak detection sensor 24A and the second refrigerant leak detection Sensor 24B is selected.
  • the rotational speed is larger than the second set threshold, it is determined that the air volume is a high air volume, and the first refrigerant leakage detection sensor 24A is selected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This indoor unit for air conditioning devices has a suction port, a blow port, and an indoor blower arranged in an air path extending from the suction port to the blow port. The indoor unit is provided with: a plurality of refrigerant leak detection sensors that are arranged in the air path and detect refrigerant leaks; an air amount determination unit that determines the amount of air flowing through the air passage on the basis of the rotational speed of the indoor blower; a sensor selection unit that selects the refrigerant leak detection sensor to be used from among the plurality of refrigerant leak detection sensors according to the amount of air; and a leak determination unit that determines the presence of a refrigerant leak on the basis of detection information from the selected refrigerant leak detection sensor.

Description

空気調和装置の室内機Air conditioner indoor unit
 本発明は、対象空間の空気調和を行う空気調和装置の室内機に関するものである。 The present invention relates to an indoor unit of an air conditioner that performs air conditioning of a target space.
 従来、可燃性冷媒を用いた空気調和装置には、冷媒が漏洩した際に冷媒の漏洩を検知するための冷媒漏洩検知センサが設けられている。例えば、特許文献1には、可燃性冷媒を用いた空気調和装置において、冷媒漏洩検知センサが室内機の風路上に設けられることが開示されている。 Conventionally, an air conditioner using a flammable refrigerant is provided with a refrigerant leakage detection sensor for detecting the leakage of the refrigerant when the refrigerant leaks. For example, Patent Document 1 discloses that in an air conditioner using a flammable refrigerant, a refrigerant leakage detection sensor is provided on the air path of the indoor unit.
 また、特許文献2には、空気調和装置の室内機において、室内熱交換器の鉛直最下部となる当接部と同等の位置、あるいは、その下部となる位置に冷媒漏洩検知センサが設けられることが開示されている。このように、従来の空気調和装置の室内機では、空気よりも比重の重い冷媒が滞留する室内機の底部に、冷媒漏洩検知センサが設置される。 Further, in Patent Document 2, in an indoor unit of an air conditioner, a refrigerant leakage detection sensor is provided at a position equivalent to, or a position below, the abutting portion that is the lowest vertical portion of the indoor heat exchanger. Is disclosed. Thus, in the indoor unit of the conventional air conditioning apparatus, the refrigerant leakage detection sensor is installed at the bottom of the indoor unit in which the refrigerant having a specific gravity higher than that of the air stays.
特開平6-180166号公報JP-A-6-180166 特開2014-224612号公報JP 2014-224612 A
 しかしながら、室内機の構造、および、送風機の風量等の運転状態によっては、室内機の底部に冷媒漏洩検知センサを設置しても、冷媒漏洩を検知できない場合がある。その場合は、室内機に複数の冷媒漏洩検知センサを設置し、これらの冷媒漏洩検知センサで冷媒の漏洩を常に監視する必要がある。 However, depending on the structure of the indoor unit and the operating state such as the air volume of the blower, refrigerant leakage may not be detected even if a refrigerant leakage detection sensor is installed at the bottom of the indoor unit. In that case, it is necessary to install a plurality of refrigerant leak detection sensors in the indoor unit and to constantly monitor the refrigerant leak with these refrigerant leak detection sensors.
 また、通常、冷媒漏洩検知センサは、空気調和装置が通電されるとともに通電され、冷媒漏洩の有無を検知している。そのため、冷媒漏洩検知センサは、通電による経年変化で検知精度が変化し、長期間使用することによって冷媒の漏洩を正確に検知することができなくなる。 In general, the refrigerant leakage detection sensor is energized when the air conditioner is energized to detect the presence or absence of refrigerant leakage. For this reason, the refrigerant leak detection sensor has a change in detection accuracy due to a secular change caused by energization, and the refrigerant leak cannot be accurately detected when used for a long time.
 本発明は、上記の課題に鑑みてなされたものであって、冷媒の漏洩をより確実に検知することができる空気調和装置の室内機を提供することを目的とする。 This invention is made in view of said subject, Comprising: It aims at providing the indoor unit of the air conditioning apparatus which can detect the leakage of a refrigerant | coolant more reliably.
 本発明の空気調和装置の室内機は、吸込口および吹出口と、前記吸込口から前記吹出口に至る風路上に配置された室内送風機とを有する空気調和装置の室内機であって、前記風路上に設けられ、冷媒の漏洩を検知する複数の冷媒漏洩検知センサと、前記室内送風機の回転数に基づき、前記風路を流れる空気の風量を判定する風量判定部と、前記風量に応じて、複数の前記冷媒漏洩検知センサのうち、使用する冷媒漏洩検知センサを選択するセンサ選択部と、選択された前記冷媒漏洩検知センサからの検知情報に基づき、前記冷媒の漏洩の有無を判定する漏洩判定部とを備えるものである。 An indoor unit of an air conditioner according to the present invention is an indoor unit of an air conditioner having an air inlet and an air outlet, and an indoor fan arranged on an air path extending from the air inlet to the air outlet, A plurality of refrigerant leakage detection sensors provided on the road for detecting refrigerant leakage, an air volume determination unit for determining an air volume of the air flowing through the air path based on the number of rotations of the indoor fan, and according to the air volume, Leakage determination for determining presence or absence of leakage of the refrigerant based on a sensor selection unit that selects a refrigerant leakage detection sensor to be used among the plurality of refrigerant leakage detection sensors and detection information from the selected refrigerant leakage detection sensor Part.
 以上のように、本発明の空気調和装置の室内機によれば、室内送風機の回転数に基づく風量に応じて、使用する冷媒漏洩検知センサを選択し、選択された冷媒漏洩検知センサからの検知情報に基づいて冷媒漏洩の有無を判定するため、冷媒の漏洩をより確実に検知することができる。 As described above, according to the indoor unit of the air conditioner of the present invention, the refrigerant leakage detection sensor to be used is selected according to the air volume based on the rotation speed of the indoor blower, and the detection from the selected refrigerant leakage detection sensor is performed. Since the presence or absence of the refrigerant leakage is determined based on the information, the refrigerant leakage can be detected more reliably.
実施の形態1に係る空気調和装置の構成の一例を示す概略図である。It is the schematic which shows an example of a structure of the air conditioning apparatus which concerns on Embodiment 1. FIG. 図1の制御装置の構成の一例を示す機能ブロック図である。It is a functional block diagram which shows an example of a structure of the control apparatus of FIG. 図1の室内機の外観の一例を示す斜視図である。It is a perspective view which shows an example of the external appearance of the indoor unit of FIG. 図1の室内機の内部構造の一例を示す断面図である。It is sectional drawing which shows an example of the internal structure of the indoor unit of FIG. 図1の制御装置による冷媒漏洩検知処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the refrigerant | coolant leak detection process by the control apparatus of FIG. 実施の形態1の変形例に係る室内機の外観の一例を示す斜視図である。It is a perspective view which shows an example of the external appearance of the indoor unit which concerns on the modification of Embodiment 1. FIG. 図6の室内機の内部構造の一例を示す断面図である。It is sectional drawing which shows an example of the internal structure of the indoor unit of FIG. 実施の形態2に係る制御装置の構成の一例を示す機能ブロック図である。5 is a functional block diagram illustrating an example of a configuration of a control device according to Embodiment 2. FIG. 図8の制御装置による冷媒漏洩検知処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of the refrigerant | coolant leak detection process by the control apparatus of FIG.
実施の形態1.
 以下、本発明の実施の形態1に係る空気調和装置について説明する。図1は、本実施の形態1に係る空気調和装置100の構成の一例を示す概略図である。図1に示すように、空気調和装置100は、室外機1、室内機2および制御装置3で構成されている。室外機1と室内機2とが冷媒配管4で接続されることにより、冷媒回路が形成されている。
Embodiment 1 FIG.
Hereinafter, the air-conditioning apparatus according to Embodiment 1 of the present invention will be described. FIG. 1 is a schematic diagram illustrating an example of the configuration of the air-conditioning apparatus 100 according to Embodiment 1. In FIG. As shown in FIG. 1, the air conditioning apparatus 100 includes an outdoor unit 1, an indoor unit 2, and a control device 3. A refrigerant circuit is formed by connecting the outdoor unit 1 and the indoor unit 2 with a refrigerant pipe 4.
 なお、図1に示す例では、室外機1に対して1台の室内機2が接続されているが、これに限られず、例えば複数の室内機2が接続されてもよい。また、室外機1は、複数であってもよい。また、この例において、制御装置3は、室内機2に設けられているが、これはこの例に限られない。例えば、制御装置3は、室外機1に設けられてもよいし、室外機1および室内機2とは別体で設けられてもよい。 In the example shown in FIG. 1, one indoor unit 2 is connected to the outdoor unit 1. However, the present invention is not limited to this, and for example, a plurality of indoor units 2 may be connected. Moreover, the outdoor unit 1 may be plural. Moreover, in this example, although the control apparatus 3 is provided in the indoor unit 2, this is not restricted to this example. For example, the control device 3 may be provided in the outdoor unit 1 or may be provided separately from the outdoor unit 1 and the indoor unit 2.
[空気調和装置100の構成]
(室外機1)
 室外機1は、圧縮機11、冷媒流路切替装置12、室外熱交換器13および室外送風機14を備えている。圧縮機11は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機11は、例えば、運転周波数を変化させることにより、単位時間あたりの送出量である容量が制御されるインバータ圧縮機等からなる。
[Configuration of Air Conditioner 100]
(Outdoor unit 1)
The outdoor unit 1 includes a compressor 11, a refrigerant flow switching device 12, an outdoor heat exchanger 13, and an outdoor blower 14. The compressor 11 sucks low-temperature and low-pressure refrigerant, compresses the sucked refrigerant, and discharges high-temperature and high-pressure refrigerant. The compressor 11 is composed of, for example, an inverter compressor whose capacity, which is a delivery amount per unit time, is controlled by changing an operation frequency.
 冷媒流路切替装置12は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転および暖房運転の切り替えを行う。冷媒流路切替装置12は、冷房運転時に、図1の実線で示す状態に切り替わる。また、冷媒流路切替装置12は、暖房運転時に、図1の点線で示す状態に切り替わる。冷媒流路切替装置12における流路の切替は、制御装置3によって制御される。 The refrigerant flow switching device 12 is, for example, a four-way valve, and switches between a cooling operation and a heating operation by switching the direction in which the refrigerant flows. The refrigerant flow switching device 12 is switched to the state shown by the solid line in FIG. 1 during the cooling operation. Moreover, the refrigerant | coolant flow path switching apparatus 12 switches to the state shown with the dotted line of FIG. 1 at the time of heating operation. Switching of the flow path in the refrigerant flow switching device 12 is controlled by the control device 3.
 室外熱交換器13は、室外空気と冷媒との間で熱交換を行う。室外熱交換器13は、冷房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。また、室外熱交換器13は、暖房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。 The outdoor heat exchanger 13 performs heat exchange between the outdoor air and the refrigerant. The outdoor heat exchanger 13 functions as a condenser that radiates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation. The outdoor heat exchanger 13 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air with the heat of vaporization.
 室外送風機14は、室外熱交換器13に対して室外空気を供給する。室外送風機14の回転数は、制御装置3によって制御される。回転数が制御されることにより、室外熱交換器13に対する送風量が調整される。 The outdoor blower 14 supplies outdoor air to the outdoor heat exchanger 13. The rotational speed of the outdoor blower 14 is controlled by the control device 3. By controlling the number of rotations, the amount of air blown to the outdoor heat exchanger 13 is adjusted.
(室内機2)
 室内機2は、室内熱交換器21、膨張弁22および室内送風機23を備えている。膨張弁22は、冷媒を膨張させる。膨張弁22は、例えば、電子式膨張弁等の開度の制御が可能な弁で構成される。膨張弁22の開度は、制御装置3によって制御される。
(Indoor unit 2)
The indoor unit 2 includes an indoor heat exchanger 21, an expansion valve 22, and an indoor blower 23. The expansion valve 22 expands the refrigerant. The expansion valve 22 is configured by a valve capable of controlling the opening degree, such as an electronic expansion valve. The opening degree of the expansion valve 22 is controlled by the control device 3.
 室内熱交換器21は、空気と冷媒との間で熱交換を行う。これにより、空調対象空間に供給される暖房用空気または冷房用空気が生成される。室内熱交換器21は、冷房運転の際に蒸発器として機能し、空調対象空間の空気を冷却して冷房を行う。また、室内熱交換器21は、暖房運転の際に凝縮器として機能し、空調対象空間の空気を加熱して暖房を行う。 The indoor heat exchanger 21 performs heat exchange between the air and the refrigerant. Thereby, heating air or cooling air supplied to the air-conditioning target space is generated. The indoor heat exchanger 21 functions as an evaporator during cooling operation, and cools the air in the air-conditioning target space. The indoor heat exchanger 21 functions as a condenser during heating operation, and heats the air in the air-conditioning target space to perform heating.
 室内送風機23は、室内熱交換器21に対して空気を供給する。室内送風機23の回転数は、制御装置3によって制御される。回転数が制御されることにより、室内熱交換器21に対する送風量が調整される。 The indoor blower 23 supplies air to the indoor heat exchanger 21. The rotational speed of the indoor blower 23 is controlled by the control device 3. By controlling the number of rotations, the amount of air blown to the indoor heat exchanger 21 is adjusted.
 また、室内機2は、第1の冷媒漏洩検知センサ24Aおよび第2の冷媒漏洩検知センサ24Bを備えている。第1の冷媒漏洩検知センサ24Aおよび第2の冷媒漏洩検知センサ24Bは、室内機2内で漏洩した冷媒を検知するために設けられている。 The indoor unit 2 includes a first refrigerant leak detection sensor 24A and a second refrigerant leak detection sensor 24B. The first refrigerant leakage detection sensor 24 </ b> A and the second refrigerant leakage detection sensor 24 </ b> B are provided for detecting the refrigerant leaked in the indoor unit 2.
 第1の冷媒漏洩検知センサ24Aは、室内送風機23によって取り込まれる空気に含まれる冷媒を検知する。第2の冷媒漏洩検知センサ24Bは、空気調和装置100が停止している場合などに室内機2の下部に滞留する冷媒を検知する。第1の冷媒漏洩検知センサ24Aおよび第2の冷媒漏洩検知センサ24Bは、それぞれ、冷媒漏洩検知の指示がなされた場合にのみ、冷媒の検知を行う。 The first refrigerant leakage detection sensor 24 </ b> A detects the refrigerant contained in the air taken in by the indoor blower 23. The second refrigerant leakage detection sensor 24B detects the refrigerant staying in the lower part of the indoor unit 2 when the air conditioning apparatus 100 is stopped. The first refrigerant leak detection sensor 24A and the second refrigerant leak detection sensor 24B each detect the refrigerant only when an instruction for refrigerant leak detection is given.
(制御装置3)
 さらに、室内機2には、制御装置3が設けられている。制御装置3は、空気調和装置100全体を制御する。特に、本実施の形態1において、制御装置3は、室内機2内での冷媒の漏洩を検知するための冷媒漏洩検知処理を行い、圧縮機11の運転周波数および室内送風機23の回転数を制御する。
(Control device 3)
Furthermore, the indoor unit 2 is provided with a control device 3. The control device 3 controls the entire air conditioner 100. In particular, in the first embodiment, the control device 3 performs refrigerant leakage detection processing for detecting refrigerant leakage in the indoor unit 2, and controls the operating frequency of the compressor 11 and the rotation speed of the indoor blower 23. To do.
 図2は、図1の制御装置3の構成の一例を示す機能ブロック図である。制御装置3は、マイクロコンピュータなどの演算装置上でソフトウェアを実行することにより各種機能が実現され、もしくは各種機能を実現する回路デバイスなどのハードウェア等で構成されている。図2に示すように、制御装置3は、風量判定部31、センサ選択部32、漏洩判定部33、報知制御部34、送風機制御部35および圧縮機制御部36を備えている。 FIG. 2 is a functional block diagram showing an example of the configuration of the control device 3 of FIG. The control device 3 is implemented by executing software on an arithmetic device such as a microcomputer, and is configured by hardware such as a circuit device that implements various functions. As shown in FIG. 2, the control device 3 includes an air volume determination unit 31, a sensor selection unit 32, a leakage determination unit 33, a notification control unit 34, a blower control unit 35, and a compressor control unit 36.
 風量判定部31は、室内送風機23から回転数情報を受け取り、受け取った回転数情報に基づき、風量を判定する。本実施の形態1において、風量判定部31は、室内送風機23の回転数に基づき、風量の有無を判定する。 The air volume determination unit 31 receives the rotation speed information from the indoor blower 23, and determines the air volume based on the received rotation speed information. In the first embodiment, the air volume determination unit 31 determines the presence or absence of the air volume based on the rotational speed of the indoor blower 23.
 センサ選択部32は、風量判定部31の判定結果に基づき、第1の冷媒漏洩検知センサ24Aおよび第2の冷媒漏洩検知センサ24Bのうち、使用する冷媒漏洩検知センサを選択する。漏洩判定部33は、センサ選択部32で選択された冷媒漏洩検知センサからの検知情報に基づき、冷媒が漏洩しているか否かを判定する。 The sensor selection unit 32 selects a refrigerant leakage detection sensor to be used from the first refrigerant leakage detection sensor 24A and the second refrigerant leakage detection sensor 24B based on the determination result of the air volume determination unit 31. The leakage determination unit 33 determines whether the refrigerant is leaking based on the detection information from the refrigerant leakage detection sensor selected by the sensor selection unit 32.
 報知制御部34は、冷媒漏洩が発生した場合に、冷媒漏洩が発生していることを報知するように、報知部5を制御する。報知部5は、例えば、図示しない表示手段を用いて冷媒漏洩を示す情報を表示してもよいし、図示しない音声出力手段を用いて音声を出力してもよい。また、報知部5は、通信手段等を用いて、遠隔地に存在する管理者等に報知してもよい。報知部5は、例えば室内機2に設けられてもよいし、室内機2の外部に設けられてもよい。 The notification control unit 34 controls the notification unit 5 to notify that a refrigerant leak has occurred when a refrigerant leak has occurred. For example, the notification unit 5 may display information indicating refrigerant leakage using a display unit (not shown) or may output a sound using a voice output unit (not shown). Moreover, the alerting | reporting part 5 may alert | report the administrator etc. which exist in a remote place using a communication means etc. For example, the notification unit 5 may be provided in the indoor unit 2 or may be provided outside the indoor unit 2.
 送風機制御部35は、室内送風機23の回転数を制御する。具体的は、送風機制御部35は、冷媒漏洩が発生した場合に、室内送風機23の回転数を増大させる。圧縮機制御部36は、圧縮機11の運転周波数を制御する。具体的には、圧縮機制御部36は、冷媒漏洩が発生した場合に、圧縮機11の運転周波数を0として、圧縮機11を停止させる。 The blower control unit 35 controls the rotation speed of the indoor blower 23. Specifically, the blower control unit 35 increases the rotation speed of the indoor blower 23 when refrigerant leakage occurs. The compressor control unit 36 controls the operating frequency of the compressor 11. Specifically, the compressor control unit 36 sets the operation frequency of the compressor 11 to 0 and stops the compressor 11 when refrigerant leakage occurs.
[室内機2の構造]
 室内機2の構造について説明する。図3は、図1の室内機2の外観の一例を示す斜視図である。図4は、図1の室内機2の内部構造の一例を示す断面図である。図3および図4に示すように、室内機2は、例えば壁掛型であり、本体20内に室内熱交換器21および室内送風機23が配置されている。なお、ここでは図示しないが、本体20内には、膨張弁22も配置されている。
[Structure of indoor unit 2]
The structure of the indoor unit 2 will be described. FIG. 3 is a perspective view showing an example of the appearance of the indoor unit 2 of FIG. FIG. 4 is a cross-sectional view showing an example of the internal structure of the indoor unit 2 in FIG. As shown in FIGS. 3 and 4, the indoor unit 2 is, for example, a wall-hanging type, and an indoor heat exchanger 21 and an indoor blower 23 are disposed in the main body 20. Although not shown here, an expansion valve 22 is also arranged in the main body 20.
 本体20は、前面パネル20a、側面パネル20b、天面パネル20c、背面パネル20dおよび底面パネル20eによって形成されている。天面パネル20cには、室内機2の周囲の空気を内部に吸い込むための吸込口25が形成されている。底面パネル20eには、室内機2の内部に吸い込んだ空気を外部に吹き出すための吹出口26が形成されている。 The main body 20 is formed by a front panel 20a, a side panel 20b, a top panel 20c, a back panel 20d, and a bottom panel 20e. The top panel 20c is formed with a suction port 25 for sucking air around the indoor unit 2 into the interior. The bottom panel 20e is formed with an outlet 26 for blowing out the air sucked into the indoor unit 2 to the outside.
 本体20の内部には、吸込口25から吹出口26に至る風路27が形成されている。風路27上には、空気流れ方向の上流側から、吸込口25、異物の混入を防ぐためのフィルタ28、室内熱交換器21、室内送風機23および吹出口26が位置している。 An air passage 27 extending from the suction port 25 to the air outlet 26 is formed inside the main body 20. On the air path 27, the suction port 25, the filter 28 for preventing foreign matter from entering, the indoor heat exchanger 21, the indoor blower 23, and the air outlet 26 are located from the upstream side in the air flow direction.
 第1の冷媒漏洩検知センサ24Aは、風路27上の吸込口25近傍に設けられている。第2の冷媒漏洩検知センサ24Bは、風路27上の室内熱交換器21の下部に設けられている。 The first refrigerant leakage detection sensor 24 </ b> A is provided in the vicinity of the suction port 25 on the air passage 27. The second refrigerant leakage detection sensor 24 </ b> B is provided below the indoor heat exchanger 21 on the air passage 27.
[空気調和装置100の動作]
(冷媒の流れについて)
 上記構成を有する空気調和装置100における冷媒の動作について、図1を参照しながら説明する。
[Operation of Air Conditioner 100]
(About refrigerant flow)
The operation of the refrigerant in the air conditioning apparatus 100 having the above configuration will be described with reference to FIG.
(冷房運転)
 冷房運転時、冷媒流路切替装置12は、図1の実線で示すように、圧縮機11の吐出側と室外熱交換器13とが接続されるように切り替えられる。そして、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。
(Cooling operation)
During the cooling operation, the refrigerant flow switching device 12 is switched so that the discharge side of the compressor 11 and the outdoor heat exchanger 13 are connected as shown by the solid line in FIG. The low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant.
 圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して室外熱交換器13に流入する。室外熱交換器13に流入した高温高圧のガス冷媒は、室外送風機14によって取り込まれた室外空気と熱交換して放熱しながら凝縮し、高圧の液冷媒となって室外熱交換器13から流出する。室外熱交換器13から流出した高圧の液冷媒は、室外機1から流出し、冷媒配管4を介して室内機2に流入する。 The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 via the refrigerant flow switching device 12. The high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 13 is condensed while radiating heat by exchanging heat with the outdoor air taken in by the outdoor blower 14, and flows out from the outdoor heat exchanger 13 as high-pressure liquid refrigerant. . The high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 13 flows out of the outdoor unit 1 and flows into the indoor unit 2 through the refrigerant pipe 4.
 室内機2に流入した高圧の液冷媒は、膨張弁22によって減圧されて低温低圧の気液二相冷媒となり、室内熱交換器21に流入する。室内熱交換器21に流入した低温低圧の気液二相冷媒は、室内送風機23によって取り込まれた室内空気と熱交換して吸熱および蒸発し、低圧のガス冷媒となって室内熱交換器21から流出する。 The high-pressure liquid refrigerant flowing into the indoor unit 2 is decompressed by the expansion valve 22 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant and flows into the indoor heat exchanger 21. The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 21 exchanges heat with the indoor air taken in by the indoor blower 23, absorbs and evaporates, and becomes a low-pressure gas refrigerant from the indoor heat exchanger 21. leak.
 室内熱交換器21から流出した低圧のガス冷媒は、室外機1に流入する。室外機1に流入した低圧のガス冷媒は、冷媒流路切替装置12を通過して、圧縮機11へ吸入される。 The low-pressure gas refrigerant that has flowed out of the indoor heat exchanger 21 flows into the outdoor unit 1. The low-pressure gas refrigerant flowing into the outdoor unit 1 passes through the refrigerant flow switching device 12 and is sucked into the compressor 11.
(暖房運転)
 暖房運転時、冷媒流路切替装置12は、図1の破線で示すように、圧縮機11の吐出側と室内機2側とが接続されるように切り替えられる。そして、低温低圧の冷媒が圧縮機11によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して室外機1から流出し、室内機2に流入する。
(Heating operation)
During the heating operation, the refrigerant flow switching device 12 is switched so that the discharge side of the compressor 11 and the indoor unit 2 side are connected, as indicated by a broken line in FIG. The low-temperature and low-pressure refrigerant is compressed by the compressor 11 and discharged as a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows out of the outdoor unit 1 through the refrigerant flow switching device 12 and flows into the indoor unit 2.
 室内機2に流入した高温高圧のガス冷媒は、室内熱交換器21に流入する。室内熱交換器21に流入した高温高圧のガス冷媒は、室内送風機23によって取り込まれた室内空気と熱交換して放熱しながら凝縮し、高圧の液冷媒となって室内熱交換器21から流出する。室内熱交換器21から流出した高圧の液冷媒は、膨張弁22によって減圧されて低温低圧の気液二相冷媒となり、室内機2から流出する。 The high-temperature and high-pressure gas refrigerant that has flowed into the indoor unit 2 flows into the indoor heat exchanger 21. The high-temperature and high-pressure gas refrigerant that has flowed into the indoor heat exchanger 21 is condensed while radiating heat by exchanging heat with the indoor air taken in by the indoor blower 23, and flows out from the indoor heat exchanger 21 as a high-pressure liquid refrigerant. . The high-pressure liquid refrigerant that has flowed out of the indoor heat exchanger 21 is decompressed by the expansion valve 22 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant and flows out of the indoor unit 2.
 室内機2から流出した低温低圧の気液二相冷媒は、室外機1に流入する。室外機1に流入した低温低圧の気液二相冷媒は、室外熱交換器13に流入する。室外熱交換器13に流入した低温低圧の気液二相冷媒は、室外送風機14によって取り込まれた室外空気と熱交換して吸熱および蒸発し、低圧のガス冷媒となって室外熱交換器13から流出する。室外熱交換器13から流出した低圧のガス冷媒は、冷媒流路切替装置12を通過して、圧縮機11へ吸入される。 The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed out of the indoor unit 2 flows into the outdoor unit 1. The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor unit 1 flows into the outdoor heat exchanger 13. The low-temperature and low-pressure gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 13 exchanges heat with the outdoor air taken in by the outdoor blower 14, absorbs heat and evaporates, and becomes a low-pressure gas refrigerant from the outdoor heat exchanger 13. leak. The low-pressure gas refrigerant that has flowed out of the outdoor heat exchanger 13 passes through the refrigerant flow switching device 12 and is sucked into the compressor 11.
(冷媒漏洩検知処理)
 空気調和装置100における冷媒漏洩検知処理について説明する。本実施の形態1では、風量に基づいて使用する冷媒漏洩検知センサが選択され、選択された冷媒漏洩検知センサの検知情報に基づいて冷媒が漏洩しているか否かが判定される。
(Refrigerant leak detection processing)
The refrigerant leakage detection process in the air conditioning apparatus 100 will be described. In the first embodiment, the refrigerant leakage detection sensor to be used is selected based on the air volume, and it is determined whether or not the refrigerant is leaking based on the detection information of the selected refrigerant leakage detection sensor.
 図5は、図1の制御装置3による冷媒漏洩検知処理の流れの一例を示すフローチャートである。ステップS1において、空気調和装置100が通電されると、風量判定部31は、ステップS2において、室内送風機23から受け取った回転数情報に基づき、風量があるか否かを判定する。ここで、風量があるか否かの判定は、室内送風機23の回転数が0であるか否かによって行われる。なお、この例において「室内送風機23の回転数が0である」とは、室内送風機23が回転していないと見なすことができる程度の回転数を含むものとする。 FIG. 5 is a flowchart showing an example of the flow of refrigerant leakage detection processing by the control device 3 of FIG. In step S1, when the air conditioning apparatus 100 is energized, the air volume determination unit 31 determines whether there is an air volume based on the rotational speed information received from the indoor blower 23 in step S2. Here, the determination as to whether or not there is an air volume is made based on whether or not the rotational speed of the indoor blower 23 is zero. In this example, “the rotational speed of the indoor blower 23 is 0” includes a rotational speed that can be considered that the indoor blower 23 is not rotating.
 風量があると判定された場合(ステップS2;Yes)、センサ選択部32は、ステップS3において、冷媒漏洩を検知するためのセンサとして、第1の冷媒漏洩検知センサ24Aおよび第2の冷媒漏洩検知センサ24Bの両方を選択する。一方、風量がないと判定された場合(ステップS2;No)には、室内送風機23が回転しておらず、室内機2に空気が取り込まれていない状態であるので、空気よりも比重の重い冷媒が室内機2の下部に滞留する。そのため、センサ選択部32は、ステップS4において、冷媒漏洩を検知するためのセンサとして、第2の冷媒漏洩検知センサ24Bを選択する。 When it is determined that there is an air volume (step S2; Yes), the sensor selection unit 32 detects the refrigerant leakage in step S3 as the first refrigerant leakage detection sensor 24A and the second refrigerant leakage detection. Both sensors 24B are selected. On the other hand, when it is determined that there is no air volume (step S2; No), the indoor blower 23 is not rotating and air is not taken into the indoor unit 2, and therefore has a higher specific gravity than air. The refrigerant stays in the lower part of the indoor unit 2. Therefore, the sensor selection unit 32 selects the second refrigerant leakage detection sensor 24B as a sensor for detecting refrigerant leakage in step S4.
 ステップS5において、漏洩判定部33は、ステップS3またはS4で選択された冷媒漏洩検知センサからの検知情報に基づき、冷媒漏洩が発生しているか否かを判定する。冷媒漏洩が発生していると判定された場合(ステップS5;Yes)、ステップS6において、報知制御部34は、冷媒漏洩が発生していることを報知するように、報知部5を制御する。また、送風機制御部35は、漏洩した冷媒を空調対象空間に拡散させるように、室内送風機23の回転数を増大させる。さらに、圧縮機制御部36は、圧縮機11の運転周波数を制御して圧縮機11を停止させる。 In step S5, the leakage determination unit 33 determines whether or not refrigerant leakage has occurred based on the detection information from the refrigerant leakage detection sensor selected in step S3 or S4. When it is determined that refrigerant leakage has occurred (step S5; Yes), in step S6, the notification control unit 34 controls the notification unit 5 so as to notify that refrigerant leakage has occurred. Moreover, the air blower control unit 35 increases the rotation speed of the indoor air blower 23 so that the leaked refrigerant is diffused into the air-conditioning target space. Further, the compressor control unit 36 controls the operating frequency of the compressor 11 to stop the compressor 11.
 一方、冷媒漏洩が発生していないと判定された場合(ステップS5;No)には、処理がステップS1に戻り、冷媒漏洩の監視が継続される。 On the other hand, if it is determined that no refrigerant leakage has occurred (step S5; No), the process returns to step S1, and monitoring of the refrigerant leakage is continued.
 このように、本実施の形態1では、風量に応じて使用する冷媒漏洩検知センサが選択されるため、運転状態に応じた冷媒漏洩の検知を行うことができる。また、選択された冷媒漏洩検知センサのみが冷媒の検知を行う。そのため、冷媒漏洩を確実に検知することができる。また、使用しない冷媒漏洩検知センサの経年劣化が抑制されるため、冷媒漏洩検知センサは、より長期間、冷媒漏洩を正確に検知することができる。さらに、選択された冷媒漏洩検知センサのみを用いて冷媒漏洩の検知が行われるため、空気調和装置100全体としての消費電力を抑制することができる。 Thus, in this Embodiment 1, since the refrigerant | coolant leak detection sensor used according to an air volume is selected, the detection of the refrigerant | coolant leak according to a driving | running state can be performed. Only the selected refrigerant leakage detection sensor detects the refrigerant. Therefore, refrigerant leakage can be detected reliably. Moreover, since the aging deterioration of the refrigerant leakage detection sensor that is not used is suppressed, the refrigerant leakage detection sensor can accurately detect the refrigerant leakage for a longer period. Furthermore, since the refrigerant leakage is detected using only the selected refrigerant leakage detection sensor, the power consumption of the air conditioning apparatus 100 as a whole can be suppressed.
(室内機2の変形例)
 室内機2の変形例について説明する。この変形例は、室内機2を4方向天井カセット形に適用したものである。図6は、本実施の形態1の変形例に係る室内機2の外観の一例を示す斜視図である。図7は、図6の室内機2の内部構造の一例を示す断面図である。図6および図7に示すように、室内機2は、4方向天井カセット形であり、本体20内に室内熱交換器21および室内送風機23が配置されている。なお、ここでは図示しないが、本体20内には、膨張弁22も配置されている。
(Modification of indoor unit 2)
A modification of the indoor unit 2 will be described. In this modification, the indoor unit 2 is applied to a four-way ceiling cassette type. FIG. 6 is a perspective view showing an example of the appearance of the indoor unit 2 according to the modification of the first embodiment. FIG. 7 is a cross-sectional view showing an example of the internal structure of the indoor unit 2 of FIG. As shown in FIGS. 6 and 7, the indoor unit 2 is a four-way ceiling cassette type, and an indoor heat exchanger 21 and an indoor blower 23 are arranged in the main body 20. Although not shown here, an expansion valve 22 is also arranged in the main body 20.
 本体20には、吸込口25および吹出口26が形成されている。本体20の内部には、吸込口25から吹出口26に至る風路27が形成されている。風路27上には、空気流れ方向の上流側から、吸込口25、フィルタ28、室内送風機23、室内熱交換器21および吹出口26が位置している。第1の冷媒漏洩検知センサ24Aは、風路27上の吸込口25近傍に設けられている。第2の冷媒漏洩検知センサ24Bは、風路27上の室内熱交換器21の下部に設けられている。 The main body 20 is formed with an inlet 25 and an outlet 26. An air passage 27 extending from the suction port 25 to the blowout port 26 is formed inside the main body 20. On the air path 27, the suction port 25, the filter 28, the indoor blower 23, the indoor heat exchanger 21, and the air outlet 26 are located from the upstream side in the air flow direction. The first refrigerant leakage detection sensor 24 </ b> A is provided in the vicinity of the suction port 25 on the air passage 27. The second refrigerant leakage detection sensor 24 </ b> B is provided below the indoor heat exchanger 21 on the air passage 27.
 このように、室内機2は、4方向天井カセット形にも適用することができる。そして、変形例による室内機2は、本実施の形態1による壁掛型の室内機2と同様の効果を得ることができる。 Thus, the indoor unit 2 can be applied to a four-way ceiling cassette type. And the indoor unit 2 by a modification can acquire the effect similar to the wall-hanging type indoor unit 2 by this Embodiment 1. FIG.
 以上のように、本実施の形態1に係る空気調和装置100の室内機2では、室内送風機23の回転数に基づき判定された風量の有無に応じて、第1の冷媒漏洩検知センサ24Aおよび第2の冷媒漏洩検知センサ24Bの何れかまたは両方が選択される。そして、選択された冷媒漏洩検知センサからの検知情報に基づき、冷媒の漏洩の有無が判定される。これにより、冷媒の漏洩を確実に検出することができるとともに、冷媒漏洩検知センサの検知精度を、より長期間、維持することができる。 As described above, in the indoor unit 2 of the air-conditioning apparatus 100 according to Embodiment 1, the first refrigerant leakage detection sensor 24A and the first refrigerant leakage detection sensor 24A and the Either or both of the two refrigerant leakage detection sensors 24B are selected. Then, based on detection information from the selected refrigerant leakage detection sensor, the presence or absence of refrigerant leakage is determined. As a result, the leakage of the refrigerant can be reliably detected, and the detection accuracy of the refrigerant leakage detection sensor can be maintained for a longer period.
 また、室内機2では、室内送風機23が回転していない場合に、風量がないと判定され、第2の冷媒漏洩検知センサ24Bが選択される。室内送風機23が回転している場合には、前記風量があると判定され、第1の冷媒漏洩検知センサ24Aおよび第2の冷媒漏洩検知センサ24Bが選択される。これにより、風量の有無に応じて適切な冷媒漏洩検知センサが選択されるため、冷媒が漏洩しているか否かを正確に検知することができる。 Also, in the indoor unit 2, when the indoor blower 23 is not rotating, it is determined that there is no air volume, and the second refrigerant leakage detection sensor 24B is selected. When the indoor blower 23 is rotating, it is determined that the air volume is present, and the first refrigerant leakage detection sensor 24A and the second refrigerant leakage detection sensor 24B are selected. Thereby, since a suitable refrigerant | coolant leak detection sensor is selected according to the presence or absence of an air volume, it can be detected correctly whether the refrigerant | coolant is leaking.
 さらに、室内機2では、冷媒漏洩が検知された場合に、冷媒が漏洩していることを示す報知が行われる。そのため、冷媒が漏洩している場合に、作業者に対して冷媒漏洩を迅速に報知することができる。さらにまた、室内機2では、冷媒漏洩が検知された場合に、室内送風機23の回転数を増大させるため、漏洩した冷媒を拡散させて発火等の危険を防ぐことができる。 Furthermore, in the indoor unit 2, when the refrigerant leakage is detected, a notification indicating that the refrigerant is leaking is performed. Therefore, when the refrigerant is leaking, it is possible to promptly notify the worker of the refrigerant leak. Furthermore, in the indoor unit 2, when the refrigerant leakage is detected, the rotational speed of the indoor blower 23 is increased. Therefore, the leaked refrigerant can be diffused to prevent dangers such as ignition.
実施の形態2.
 次に、本発明の実施の形態2について説明する。本実施の形態2は、風量の大きさに応じて使用する冷媒漏洩検知センサを選択する点で、実施の形態1と相違する。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described. The second embodiment is different from the first embodiment in that a refrigerant leakage detection sensor to be used is selected according to the air volume.
 実施の形態1では、風量の有無に応じて使用する冷媒漏洩検知センサを選択しているが、風量の大きさによっては、漏洩した冷媒が拡散しなかったり、滞留しなかったりする場合がある。例えば、風量が比較的小さい場合、漏洩した冷媒は、拡散せずに滞留する。また、風量が比較的大きい場合、漏洩した冷媒は、滞留せずに拡散する。そこで、本実施の形態2では、風量の大きさに対して閾値を設定し、風量と閾値との関係に応じて使用する冷媒漏洩検知センサを選択する。 In Embodiment 1, the refrigerant leakage detection sensor to be used is selected according to the presence or absence of the air volume, but the leaked refrigerant may not diffuse or stay depending on the air volume. For example, when the air volume is relatively small, the leaked refrigerant stays without being diffused. Further, when the air volume is relatively large, the leaked refrigerant diffuses without staying. Therefore, in the second embodiment, a threshold is set for the magnitude of the air volume, and the refrigerant leakage detection sensor to be used is selected according to the relationship between the air volume and the threshold.
[制御装置103の構成]
 本実施の形態2に係る空気調和装置100の室内機2は、図1に示す制御装置3に代えて、制御装置103を備えている。なお、以下の説明において、実施の形態1と共通する部分には同一の符号を付し、詳細な説明を省略する。
[Configuration of Control Device 103]
The indoor unit 2 of the air-conditioning apparatus 100 according to Embodiment 2 includes a control device 103 instead of the control device 3 shown in FIG. In the following description, the same reference numerals are given to portions common to the first embodiment, and detailed description is omitted.
 図8は、本実施の形態2に係る制御装置103の構成の一例を示す機能ブロック図である。図8に示すように、制御装置103は、風量判定部31、センサ選択部32、漏洩判定部33、報知制御部34、送風機制御部35、圧縮機制御部36および記憶部37を備えている。 FIG. 8 is a functional block diagram showing an example of the configuration of the control device 103 according to the second embodiment. As shown in FIG. 8, the control device 103 includes an air volume determination unit 31, a sensor selection unit 32, a leakage determination unit 33, a notification control unit 34, a blower control unit 35, a compressor control unit 36, and a storage unit 37. .
 本実施の形態2において、風量判定部31は、室内送風機23から回転数情報を受け取り、受け取った回転数情報と、記憶部37に予め記憶された回転数に対する閾値とに基づき、風量の大きさを判定する。 In the second embodiment, the air volume determination unit 31 receives the rotation speed information from the indoor blower 23, and based on the received rotation speed information and a threshold value for the rotation speed stored in the storage unit 37 in advance, the magnitude of the air volume. Determine.
 記憶部37は、制御装置103の各部で処理を行う際に用いられる各種の情報を記憶する。記憶部37に記憶された各種の情報は、各部からの要求に応じて読み出される。本実施の形態2において、記憶部37は、室内送風機23の回転数に対して予め設定された閾値を記憶する。 The storage unit 37 stores various types of information used when processing is performed by each unit of the control device 103. Various types of information stored in the storage unit 37 are read in response to requests from each unit. In the second embodiment, the storage unit 37 stores a threshold value set in advance with respect to the rotational speed of the indoor blower 23.
 閾値は、風量を段階的に決定するためのものであり、複数設定される。この例では、複数の閾値として、第1の閾値と第1の閾値よりも大きい第2の閾値とが設定されている。第1の閾値は、風量が微風量以下であるか否かを判定するためのものである。第2の閾値は、風量が高風量であるか否かを判定するためのものである。 Threshold value is for determining the air volume step by step, and a plurality of threshold values are set. In this example, a first threshold value and a second threshold value larger than the first threshold value are set as the plurality of threshold values. The first threshold is for determining whether or not the air volume is equal to or less than the slight air volume. The second threshold is for determining whether or not the air volume is a high air volume.
 具体的には、風量が微風量以下であるか否か、すなわち微風量または無風量であるか否かを判定する際に、風量が第1の閾値と比較される。また、風量が高風量であるか否かを判定する際に、風量が第2の閾値と比較される。さらに、風量が微風量と高風量との中間である中間風量であるか否かを判定する際には、風量が第1の閾値および第2の閾値と比較される。 Specifically, the air volume is compared with the first threshold value when determining whether or not the air volume is equal to or smaller than the slight air volume, that is, whether or not the air volume is a slight air volume or no air volume. Further, when determining whether or not the air volume is a high air volume, the air volume is compared with a second threshold value. Furthermore, when determining whether or not the air volume is an intermediate air volume that is intermediate between the fine air volume and the high air volume, the air volume is compared with the first threshold value and the second threshold value.
(冷媒漏洩検知処理)
 本実施の形態2に係る空気調和装置100における冷媒漏洩検知処理について説明する。本実施の形態2では、風量の大きさに基づいて使用する冷媒漏洩検知センサが選択され、選択された冷媒漏洩検知センサの検知情報に基づいて冷媒が漏洩しているか否かが判定される。
(Refrigerant leak detection processing)
A refrigerant leakage detection process in the air-conditioning apparatus 100 according to Embodiment 2 will be described. In the second embodiment, the refrigerant leakage detection sensor to be used is selected based on the air volume, and it is determined whether or not the refrigerant is leaking based on the detection information of the selected refrigerant leakage detection sensor.
 図9は、図8の制御装置103による冷媒漏洩検知処理の流れの一例を示すフローチャートである。なお、実施の形態1と同様の処理には、同一の符号を付すものとする。ステップS1において、空気調和装置100が通電されると、風量判定部31は、ステップS11において、室内送風機23から受け取った回転数情報と、記憶部37に記憶された第1の閾値および第2の閾値とに基づき、風量の大きさを判定する。 FIG. 9 is a flowchart showing an example of the flow of refrigerant leakage detection processing by the control device 103 of FIG. In addition, the same code | symbol shall be attached | subjected to the process similar to Embodiment 1. FIG. In step S1, when the air conditioner 100 is energized, the air volume determination unit 31 receives the rotation speed information received from the indoor blower 23 in step S11, the first threshold value and the second threshold value stored in the storage unit 37. Based on the threshold value, the magnitude of the air volume is determined.
 室内送風機23の回転数が第1の閾値以下である場合、風量判定部31は、風量が微風量以下であると判定する。そして、センサ選択部32は、ステップS12において、冷媒漏洩を検知するためのセンサとして、第2の冷媒漏洩検知センサ24Bを選択する。 When the rotation speed of the indoor blower 23 is equal to or less than the first threshold, the air volume determination unit 31 determines that the air volume is equal to or less than the slight air volume. And the sensor selection part 32 selects the 2nd refrigerant | coolant leak detection sensor 24B as a sensor for detecting a refrigerant | coolant leak in step S12.
 室内送風機23の回転数が第1の閾値より大きく、かつ第2の閾値以下である場合、風量判定部31は、風量が中間風量であると判定する。そして、センサ選択部32は、ステップS13において、冷媒漏洩を検知するためのセンサとして、第1の冷媒漏洩検知センサ24Aおよび第2の冷媒漏洩検知センサ24Bの両方を選択する。 When the rotation speed of the indoor blower 23 is greater than the first threshold value and less than or equal to the second threshold value, the air volume determination unit 31 determines that the air volume is an intermediate air volume. In step S13, the sensor selection unit 32 selects both the first refrigerant leakage detection sensor 24A and the second refrigerant leakage detection sensor 24B as sensors for detecting refrigerant leakage.
 室内送風機23の回転数が第2の閾値より大きい場合、風量判定部31は、風量が高風量であると判定する。そして、センサ選択部32は、ステップS14において、冷媒漏洩を検知するためのセンサとして、第1の冷媒漏洩検知センサ24Aを選択する。 When the rotation speed of the indoor blower 23 is greater than the second threshold, the air volume determination unit 31 determines that the air volume is a high air volume. In step S14, the sensor selection unit 32 selects the first refrigerant leakage detection sensor 24A as a sensor for detecting refrigerant leakage.
 ステップS5において、漏洩判定部33は、ステップS12~ステップS14で選択された冷媒漏洩検知センサからの検知情報に基づき、冷媒漏洩が発生しているか否かを判定する。冷媒漏洩が発生していると判定された場合(ステップS5;Yes)、ステップS6において、報知制御部34は、冷媒漏洩が発生していることを報知するように、報知部5を制御する。また、送風機制御部35は、漏洩した冷媒を空調対象空間に拡散させるように、室内送風機23の回転数を増大させる。さらに、圧縮機制御部36は、圧縮機11の運転周波数を制御して圧縮機11を停止させる。 In step S5, the leakage determination unit 33 determines whether or not refrigerant leakage has occurred based on detection information from the refrigerant leakage detection sensor selected in steps S12 to S14. When it is determined that refrigerant leakage has occurred (step S5; Yes), in step S6, the notification control unit 34 controls the notification unit 5 so as to notify that refrigerant leakage has occurred. Moreover, the air blower control unit 35 increases the rotation speed of the indoor air blower 23 so that the leaked refrigerant is diffused into the air-conditioning target space. Further, the compressor control unit 36 controls the operating frequency of the compressor 11 to stop the compressor 11.
 一方、冷媒漏洩が発生していないと判定された場合(ステップS5;No)には、処理がステップS1に戻り、冷媒漏洩の監視が継続される。 On the other hand, if it is determined that no refrigerant leakage has occurred (step S5; No), the process returns to step S1, and monitoring of the refrigerant leakage is continued.
 以上のように、本実施の形態2に係る空気調和装置100では、回転数が第1の設定閾値以下である場合に、風量が微風量以下であると判定され、第2の冷媒漏洩検知センサ24Bが選択される。また、回転数が第1の設定閾値より大きく、かつ第2の設定閾値以下である場合に、風量が中間風量であると判定され、第1の冷媒漏洩検知センサ24Aおよび第2の冷媒漏洩検知センサ24Bが選択される。さらに、回転数が第2の設定閾値より大きい場合に、風量が高風量であると判定され、第1の冷媒漏洩検知センサ24Aが選択される。これにより、風量の大きさに応じてより適切な冷媒漏洩検知センサが選択されるため、冷媒が漏洩しているか否かを正確に検知することができる。 As described above, in the air conditioning apparatus 100 according to Embodiment 2, when the rotational speed is equal to or less than the first set threshold value, it is determined that the air volume is equal to or less than the slight air volume, and the second refrigerant leak detection sensor 24B is selected. In addition, when the rotational speed is greater than the first set threshold and less than or equal to the second set threshold, it is determined that the air volume is the intermediate air volume, and the first refrigerant leak detection sensor 24A and the second refrigerant leak detection Sensor 24B is selected. Further, when the rotational speed is larger than the second set threshold, it is determined that the air volume is a high air volume, and the first refrigerant leakage detection sensor 24A is selected. Thereby, since a more suitable refrigerant | coolant leak detection sensor is selected according to the magnitude | size of an air volume, it can be detected correctly whether the refrigerant | coolant is leaking.
 1 室外機、2 室内機、3 制御装置、4 冷媒配管、5 報知部、11 圧縮機、12 冷媒流路切替装置、13 室外熱交換器、14 室外送風機、20 本体、20a 前面パネル、20b 側面パネル、20c 天面パネル、20d 背面パネル、20e 底面パネル、21 室内熱交換器、22 膨張弁、23 室内送風機、24A 第1の冷媒漏洩検知センサ、24B 第2の冷媒漏洩検知センサ、25 吸込口、26 吹出口、27 風路、28 フィルタ、31 風量判定部、32 センサ選択部、33 漏洩判定部、34 報知制御部、35 送風機制御部、36 圧縮機制御部、37 記憶部、100 空気調和装置、103 制御装置。 1 outdoor unit, 2 indoor unit, 3 control device, 4 refrigerant piping, 5 notification unit, 11 compressor, 12 refrigerant flow switching device, 13 outdoor heat exchanger, 14 outdoor blower, 20 main body, 20a front panel, 20b side surface Panel, 20c top panel, 20d back panel, 20e bottom panel, 21 indoor heat exchanger, 22 expansion valve, 23 indoor blower, 24A first refrigerant leak detection sensor, 24B second refrigerant leak detection sensor, 25 inlet , 26 outlet, 27 air path, 28 filter, 31 air volume determination unit, 32 sensor selection unit, 33 leakage determination unit, 34 notification control unit, 35 blower control unit, 36 compressor control unit, 37 storage unit, 100 air conditioning Device, 103 control device.

Claims (6)

  1.  吸込口および吹出口と、前記吸込口から前記吹出口に至る風路上に配置された室内送風機とを有する空気調和装置の室内機であって、
     前記風路上に設けられ、冷媒の漏洩を検知する複数の冷媒漏洩検知センサと、
     前記室内送風機の回転数に基づき、前記風路を流れる空気の風量を判定する風量判定部と、
     前記風量に応じて、複数の前記冷媒漏洩検知センサのうち、使用する冷媒漏洩検知センサを選択するセンサ選択部と、
     選択された前記冷媒漏洩検知センサからの検知情報に基づき、前記冷媒の漏洩の有無を判定する漏洩判定部と
    を備える空気調和装置の室内機。
    An indoor unit of an air conditioner having an air inlet and an air outlet, and an indoor fan arranged on an air path extending from the air inlet to the air outlet,
    A plurality of refrigerant leakage detection sensors provided on the air passage to detect refrigerant leakage;
    An air volume determination unit that determines an air volume of air flowing through the air path based on the number of rotations of the indoor fan;
    A sensor selection unit that selects a refrigerant leakage detection sensor to be used among the plurality of refrigerant leakage detection sensors according to the air volume,
    An indoor unit of an air conditioner, comprising: a leak determination unit that determines whether or not the refrigerant leaks based on detection information from the selected refrigerant leak detection sensor.
  2.  前記風路上に設けられ、空調対象空間の空気と前記冷媒との間で熱交換を行う室内熱交換器をさらに備え、
     複数の前記冷媒漏洩検知センサは、
     前記吸込口の近傍に設けられた第1の冷媒漏洩検知センサと、
     前記室内熱交換器の下部に設けられた第2の冷媒漏洩検知センサと
    を含む
    請求項1に記載の空気調和装置の室内機。
    An indoor heat exchanger that is provided on the air path and performs heat exchange between the air in the air-conditioning target space and the refrigerant;
    The plurality of refrigerant leak detection sensors
    A first refrigerant leakage detection sensor provided in the vicinity of the suction port;
    The indoor unit of the air conditioning apparatus according to claim 1, further comprising a second refrigerant leakage detection sensor provided at a lower portion of the indoor heat exchanger.
  3.  前記風量判定部は、
     前記室内送風機が回転していない場合に、前記風量がないと判定し、
     前記室内送風機が回転している場合に、前記風量があると判定し、
     前記センサ選択部は、
     前記風量がないと判定された場合に、前記第2の冷媒漏洩検知センサを選択し、
     前記風量があると判定された場合に、前記第1の冷媒漏洩検知センサおよび前記第2の冷媒漏洩検知センサを選択する
    請求項2に記載の空気調和装置の室内機。
    The air volume determination unit
    When the indoor fan is not rotating, it is determined that there is no air volume,
    When the indoor blower is rotating, it is determined that there is the air volume,
    The sensor selector is
    When it is determined that there is no air volume, the second refrigerant leakage detection sensor is selected,
    The indoor unit of the air conditioner according to claim 2, wherein when it is determined that the air volume is present, the first refrigerant leak detection sensor and the second refrigerant leak detection sensor are selected.
  4.  前記回転数に対する第1の設定閾値と、前記第1の設定閾値より値が大きい第2の設定閾値とを記憶する記憶部をさらに備え、
     前記風量判定部は、
     前記回転数が前記第1の設定閾値以下である場合に、前記風量が微風量以下であると判定し、
     前記回転数が前記第1の設定閾値より大きく、かつ前記第2の設定閾値以下である場合に、前記風量が中間風量であると判定し、
     前記回転数が前記第2の設定閾値より大きい場合に、前記風量が高風量であると判定し、
     前記センサ選択部は、
     前記風量が微風量以下であると判定された場合に、前記第2の冷媒漏洩検知センサを選択し、
     前記風量が中間風量であると判定された場合に、前記第1の冷媒漏洩検知センサおよび前記第2の冷媒漏洩検知センサを選択し、
     前記風量が高風量であると判定された場合に、前記第1の冷媒漏洩検知センサを選択する
    請求項2に記載の空気調和装置の室内機。
    A storage unit that stores a first setting threshold value for the rotation speed and a second setting threshold value that is larger than the first setting threshold value;
    The air volume determination unit
    When the rotational speed is less than or equal to the first set threshold, it is determined that the air volume is less than or equal to a slight air volume;
    When the rotational speed is greater than the first set threshold and less than or equal to the second set threshold, the air volume is determined to be an intermediate air volume;
    When the rotational speed is greater than the second set threshold, it is determined that the air volume is a high air volume,
    The sensor selector is
    When it is determined that the air volume is less than or equal to the slight air volume, the second refrigerant leakage detection sensor is selected,
    When it is determined that the air volume is an intermediate air volume, the first refrigerant leak detection sensor and the second refrigerant leak detection sensor are selected,
    The indoor unit of the air conditioning apparatus according to claim 2, wherein the first refrigerant leakage detection sensor is selected when it is determined that the air volume is a high air volume.
  5.  前記漏洩判定部により冷媒漏洩が検知された場合に、前記冷媒が漏洩していることを示す報知を行う報知部をさらに備える
    請求項1~4のいずれか一項に記載の空気調和装置の室内機。
    The room of the air conditioning apparatus according to any one of claims 1 to 4, further comprising a notification unit that performs notification indicating that the refrigerant is leaked when refrigerant leakage is detected by the leakage determination unit. Machine.
  6.  前記漏洩判定部により冷媒漏洩が検知された場合に、前記室内送風機の前記回転数を増大させる送風機制御部をさらに備える
    請求項1~5のいずれか一項に記載の空気調和装置の室内機。
    The indoor unit of an air conditioner according to any one of claims 1 to 5, further comprising a blower control unit that increases the number of rotations of the indoor blower when refrigerant leakage is detected by the leakage determination unit.
PCT/JP2018/015226 2018-04-11 2018-04-11 Indoor unit for air conditioning device WO2019198176A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020512994A JP6847303B2 (en) 2018-04-11 2018-04-11 Indoor unit of air conditioner
PCT/JP2018/015226 WO2019198176A1 (en) 2018-04-11 2018-04-11 Indoor unit for air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/015226 WO2019198176A1 (en) 2018-04-11 2018-04-11 Indoor unit for air conditioning device

Publications (1)

Publication Number Publication Date
WO2019198176A1 true WO2019198176A1 (en) 2019-10-17

Family

ID=68164242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015226 WO2019198176A1 (en) 2018-04-11 2018-04-11 Indoor unit for air conditioning device

Country Status (2)

Country Link
JP (1) JP6847303B2 (en)
WO (1) WO2019198176A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061020B (en) * 2021-11-17 2023-03-21 苏州浪潮智能科技有限公司 Refrigerant leakage detection method and system for two-phase cold plate liquid cooling system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038704A1 (en) * 2011-09-16 2013-03-21 パナソニック株式会社 Air conditioner
WO2015194596A1 (en) * 2014-06-19 2015-12-23 三菱電機株式会社 Indoor unit for air-conditioning device, and air-conditioning device provided with said indoor unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038704A1 (en) * 2011-09-16 2013-03-21 パナソニック株式会社 Air conditioner
WO2015194596A1 (en) * 2014-06-19 2015-12-23 三菱電機株式会社 Indoor unit for air-conditioning device, and air-conditioning device provided with said indoor unit

Also Published As

Publication number Publication date
JP6847303B2 (en) 2021-03-24
JPWO2019198176A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
CN108369022B (en) Air conditioner
JP6143977B1 (en) Refrigeration cycle apparatus and refrigeration cycle system
JP6375639B2 (en) Air conditioner
JP6289757B2 (en) Refrigeration cycle apparatus and refrigeration cycle system
JP6785883B2 (en) Air conditioner
WO2019215877A1 (en) Refrigerant leak determination device, air conditioner, and refrigerant leak determination method
JP6582496B2 (en) Air conditioning indoor unit
JP5892199B2 (en) Air conditioning indoor unit
JP6157789B1 (en) Refrigeration cycle apparatus and refrigerant leakage detection method
JP6498289B2 (en) Refrigeration cycle system
JP2008202908A (en) Air conditioner
JP6808065B2 (en) Air conditioner
JP2006207932A (en) Air conditioner
WO2019198176A1 (en) Indoor unit for air conditioning device
WO2019234902A1 (en) Air-conditioning-device indoor unit and air conditioning device
WO2021171448A1 (en) Refrigeration cycle device
KR100677282B1 (en) Out door unit control method and control apparatus for air conditioner
JP2004053207A (en) Air conditioner and frost preventing method for indoor heat exchanger of air conditioner
JP2021139601A (en) Air conditioner
KR20090103416A (en) Air conditioning system
KR102304814B1 (en) Controll-method and apparatus for Airconditioner
KR20060025626A (en) Method and apparatus for controlling (a) pipe air leakage of (a) multi type air conditioner
KR20050019330A (en) Air conditioner
JPH08128753A (en) Heating method for air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18914809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512994

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18914809

Country of ref document: EP

Kind code of ref document: A1