JP6072901B2 - Heat pump device and air conditioning system - Google Patents

Heat pump device and air conditioning system Download PDF

Info

Publication number
JP6072901B2
JP6072901B2 JP2015512243A JP2015512243A JP6072901B2 JP 6072901 B2 JP6072901 B2 JP 6072901B2 JP 2015512243 A JP2015512243 A JP 2015512243A JP 2015512243 A JP2015512243 A JP 2015512243A JP 6072901 B2 JP6072901 B2 JP 6072901B2
Authority
JP
Japan
Prior art keywords
temperature
difference
evaporator
average
corrected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015512243A
Other languages
Japanese (ja)
Other versions
JPWO2014170982A1 (en
Inventor
守 濱田
守 濱田
畝崎 史武
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Application granted granted Critical
Publication of JP6072901B2 publication Critical patent/JP6072901B2/en
Publication of JPWO2014170982A1 publication Critical patent/JPWO2014170982A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2347/00Details for preventing or removing deposits or corrosion
    • F25B2347/02Details of defrosting cycles
    • F25B2347/023Set point defrosting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21163Temperatures of a condenser of the refrigerant at the outlet of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

この発明は、除霜運転が可能なヒートポンプ装置に関するものである。特に除霜運転開始判定に係るものである。   The present invention relates to a heat pump device capable of defrosting operation. In particular, it relates to the determination to start the defrosting operation.

通常、ヒートポンプ装置における蒸発器では、蒸発温度が0℃以下で、かつ、空気の露点温度以下の場合、蒸発器表面に霜が成長する着霜現象が起きる。このような着霜現象が起きると、蒸発器における通風抵抗の増加及び熱抵抗の増加を招くことになり、蒸発器での運転効率が低下してしまうことになる。そこで、ヒートポンプ装置では、圧縮機からの吐出冷媒を蒸発器に導き、蒸発器表面に成長した霜を取り除く除霜運転(デフロスト運転)が必要となってくる。   Usually, in an evaporator in a heat pump apparatus, when the evaporation temperature is 0 ° C. or lower and the dew point temperature of air or lower, a frosting phenomenon occurs in which frost grows on the evaporator surface. When such a frosting phenomenon occurs, an increase in ventilation resistance and an increase in thermal resistance in the evaporator are caused, and the operation efficiency in the evaporator is reduced. Therefore, in the heat pump device, it is necessary to perform a defrosting operation (defrosting operation) that guides refrigerant discharged from the compressor to the evaporator and removes frost that has grown on the surface of the evaporator.

従来から、蒸発器に付着した霜を溶解させる除霜運転を実行できるヒートポンプ装置が存在する。そのような装置として、「暖房運転開始から除霜運転終了までの1サイクル平均COP(成績係数、運転効率)が最大となるように、デフロスト運転の開始タイミングを定めているヒートポンプ装置」が提案されている(たとえば、特許文献1参照)。このヒートポンプ装置は、冷媒凝縮温度と冷媒蒸発温度とに基づいて、現在のCOPと1サイクルCOPとを算出する。そして、現在のCOPが1サイクルCOPよりも小さくなったものと判断すると除霜運転の開始を指令するものである。   Conventionally, there is a heat pump device capable of performing a defrosting operation for melting frost attached to an evaporator. As such a device, “a heat pump device in which the start timing of the defrost operation is determined so that the one-cycle average COP (performance coefficient, operation efficiency) from the start of the heating operation to the end of the defrost operation is maximized” has been proposed. (For example, refer to Patent Document 1). The heat pump device calculates a current COP and a one-cycle COP based on the refrigerant condensation temperature and the refrigerant evaporation temperature. When it is determined that the current COP is smaller than one cycle COP, the start of the defrosting operation is commanded.

特開2010−060150号公報JP 2010-060150 A

特許文献1に記載のヒートポンプ装置においては、冷媒凝縮温度、冷媒蒸発温度を用いてCOPを推定演算している。しかし、たとえば圧縮機周波数、空気温度などが変化した場合には、冷媒の凝縮温度及び蒸発温度の少なくとも一方が変化し、それに伴いCOPも変化してしまう。このため、たとえば、蒸発器に着霜していないのに、算出したCOPが低下すると、除霜運転の開始タイミングであると判定してしまうことがあった。   In the heat pump device described in Patent Document 1, the COP is estimated and calculated using the refrigerant condensation temperature and the refrigerant evaporation temperature. However, for example, when the compressor frequency, the air temperature, or the like changes, at least one of the refrigerant condensing temperature and the evaporation temperature changes, and the COP also changes accordingly. For this reason, for example, when the calculated COP decreases even though the evaporator is not frosted, it may be determined that it is the start timing of the defrosting operation.

この発明は、上記課題を解決するためになされたもので、除霜開始をより正確に判定することができるヒートポンプ装置を提供することを目的とする。   This invention was made in order to solve the said subject, and it aims at providing the heat pump apparatus which can determine the defrost start more correctly.

上述した課題を解決するため、この発明に係るヒートポンプ装置は、圧縮機、凝縮器、膨張装置及び蒸発器を配管接続して冷媒回路を構成し、凝縮器の飽和温度を凝縮温度として検出する凝縮温度検出手段と、蒸発器の飽和温度を蒸発温度として検出する蒸発温度検出手段と、圧縮機の回転周波数を圧縮機周波数として検出する圧縮機周波数検出手段と、圧縮機周波数並びに凝縮温度及び蒸発温度に基づいて補正凝縮温度と補正蒸発温度とを演算し、補正凝縮温度に基づく能力を補正凝縮温度と補正蒸発温度との差から演算した消費電力で除して現時点での運転効率を演算し、現時点で除霜を行ったとしたときの運転開始から除霜終了までの平均運転効率を少なくとも演算し、運転効率が平均運転効率以下になったものと判定すると、蒸発器の除霜の開始を判断する処理を行う制御装置とを備える。 In order to solve the above-described problems, a heat pump device according to the present invention includes a compressor, a condenser, an expansion device, and an evaporator connected to form a refrigerant circuit, and a condenser that detects a saturation temperature of the condenser as a condensation temperature. Temperature detection means, evaporation temperature detection means for detecting the saturation temperature of the evaporator as the evaporation temperature, compressor frequency detection means for detecting the rotation frequency of the compressor as the compressor frequency, compressor frequency, condensation temperature and evaporation temperature Calculate the corrected condensing temperature and the corrected evaporating temperature based on the above, calculate the current operating efficiency by dividing the ability based on the corrected condensing temperature by the power consumption calculated from the difference between the corrected condensing temperature and the corrected evaporating temperature, at least it calculates the average operating efficiency until defrosting completion from start of operation when the at was defrosting time, when judged that the operation efficiency is equal to or less than the average operating efficiency evaporator And a control unit that performs processing for determining the start of defrosting.

この発明によれば、凝縮温度及び蒸発温度を補正し、補正凝縮温度及び補正蒸発温度に基づいて運転効率などの演算をすることにより、たとえば圧縮機周波数や空気温度が変化した場合でも、除霜開始を正確に判定することが可能となる。   According to this invention, the condensation temperature and the evaporation temperature are corrected, and the operation efficiency and the like are calculated based on the corrected condensation temperature and the corrected evaporation temperature. It is possible to accurately determine the start.

この発明の実施の形態1に係わるヒートポンプ装置100の概略構成を示す図である。It is a figure which shows schematic structure of the heat pump apparatus 100 concerning Embodiment 1 of this invention. この発明の実施の形態1に係わるヒートポンプ装置100の制御系における信号の入出力関係の概略を示すブロック図である。It is a block diagram which shows the outline of the input-output relationship of the signal in the control system of the heat pump apparatus 100 concerning Embodiment 1 of this invention. この発明の実施の形態1における時間とCOPとの関係のグラフを示す図である。It is a figure which shows the graph of the relationship between time and COP in Embodiment 1 of this invention. この発明の実施の形態1における1サイクルにおける時間とCOPとの関係のグラフを示す図である。It is a figure which shows the graph of the relationship between the time in 1 cycle in Embodiment 1 of this invention, and COP. ヒートポンプ装置100の除霜開始判定制御に関する処理の流れの一例のフローチャートを示す図である。It is a figure which shows the flowchart of an example of the flow of the process regarding the defrost start determination control of the heat pump apparatus. この発明の実施の形態1における瞬間COPと平均COPとの関係のグラフを示す図である。It is a figure which shows the graph of the relationship between the instantaneous COP and average COP in Embodiment 1 of this invention. この発明の実施の形態1における瞬間COPと1サイクル平均COPとの関係のグラフを示す図である。It is a figure which shows the graph of the relationship between the instantaneous COP and 1 cycle average COP in Embodiment 1 of this invention. この発明の実施の形態1における瞬間COPと平均COPとの関係のグラフを示す図である。It is a figure which shows the graph of the relationship between the instantaneous COP and average COP in Embodiment 1 of this invention. この発明の実施の形態1における圧縮機周波数F、蒸発温度Te及び凝縮温度Tcの関係を示す図である。It is a figure which shows the relationship between the compressor frequency F in Embodiment 1 of this invention, evaporation temperature Te, and the condensation temperature Tc. この発明の実施の形態1における蒸発器吸込空気温度Taeと蒸発温度Teとの関係を示す図である。It is a figure which shows the relationship between the evaporator intake air temperature Tae and the evaporation temperature Te in Embodiment 1 of this invention. この発明の実施の形態1における凝縮器吸込空気温度Tacと凝縮温度Tcとの関係を示す図である。It is a figure which shows the relationship between the condenser intake air temperature Tac and the condensation temperature Tc in Embodiment 1 of this invention. この発明の実施の形態1に係わるヒートポンプ装置100の除霜開始判定制御に関する処理の流れの一例のフローチャートを示す図である。It is a figure which shows the flowchart of an example of the flow of a process regarding the defrost start determination control of the heat pump apparatus 100 concerning Embodiment 1 of this invention. この発明の実施の形態2における瞬間暖房能力と1サイクル平均暖房能力との関係を示す図である。It is a figure which shows the relationship between the instantaneous heating capability and 1 cycle average heating capability in Embodiment 2 of this invention. この発明の実施の形態2における瞬間COPと暖房能力の時間変化を示す図である。It is a figure which shows the time change of the instantaneous COP and heating capability in Embodiment 2 of this invention. この発明の実施の形態2における凝縮器吸込空気温度Tacが変化した場合の瞬間COPと暖房能力の変化を示す図である。It is a figure which shows the change of the instantaneous COP and heating capability when the condenser intake air temperature Tac in Embodiment 2 of this invention changes. この発明の実施の形態2における蒸発器吸込空気温度Taeが変化した場合の瞬間COPと暖房能力の変化を示す図である。It is a figure which shows the change of the instantaneous COP and the heating capability when the evaporator intake air temperature Tae in Embodiment 2 of this invention changes. この発明の実施の形態2に係わるヒートポンプ装置100の除霜開始判定制御に関する処理の流れの一例のフローチャートを示す図である。It is a figure which shows the flowchart of an example of the flow of the process regarding the defrost start determination control of the heat pump apparatus 100 concerning Embodiment 2 of this invention. この発明の実施の形態3における瞬間COPと暖房能力の時間変化を示した図である。It is the figure which showed the time change of the instantaneous COP and heating capability in Embodiment 3 of this invention. この発明の実施の形態3における瞬間COPと暖房能力の時間変化を示した図である。It is the figure which showed the time change of the instantaneous COP and heating capability in Embodiment 3 of this invention.

実施の形態1.
図1は、この発明の実施の形態1に係わるヒートポンプ装置100の概略構成を示す図である。図1に基づいて、ヒートポンプ装置100の冷媒回路構成及び動作について説明する。このヒートポンプ装置100は、冷媒を循環させることで、対象空間、対象物などを冷却運転を行う冷凍装置、空調対象空間を冷房する冷房運転又は暖房する暖房運転を実行する空気調和システムなどの装置である。ここでは、代表して空気調和システムであるものとして説明する。ここで、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定されるものではない。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a schematic configuration of a heat pump apparatus 100 according to Embodiment 1 of the present invention. The refrigerant circuit configuration and operation of the heat pump apparatus 100 will be described with reference to FIG. The heat pump apparatus 100 is an apparatus such as a refrigeration apparatus that performs a cooling operation on a target space or an object by circulating a refrigerant, an air conditioning system that performs a cooling operation or a heating operation that heats an air-conditioning target space. is there. Here, it demonstrates as what is an air conditioning system as a representative. Here, in the following drawings including FIG. 1, the size relationship of each component may be different from the actual one. In addition, in the following drawings including FIG. 1, the same reference numerals denote the same or equivalent parts, and this is common to the whole text of the embodiments described below. . And the form of the component represented by the whole text of specification is an illustration to the last, Comprising: It is not limited to the form described in the specification.

図1に示すように、ヒートポンプ装置100は、圧縮機1、凝縮器2、膨張装置3及び蒸発器4を冷媒配管で順次直列に接続してヒートポンプ回路を構成している。また、凝縮器2の近傍には凝縮器用ファン5及び凝縮温度検出手段11を設けている。蒸発器4の近傍には蒸発器用ファン6及び蒸発温度検出手段12を設けている。凝縮温度検出手段11及び蒸発温度検出手段12は、それぞれ温度を検出し、検出した温度の値(検出値)を含む信号を、ヒートポンプ装置100の全体を統括制御する制御装置50に送る。   As shown in FIG. 1, the heat pump device 100 includes a compressor 1, a condenser 2, an expansion device 3, and an evaporator 4 that are sequentially connected in series by a refrigerant pipe to form a heat pump circuit. Further, a condenser fan 5 and condensation temperature detection means 11 are provided in the vicinity of the condenser 2. An evaporator fan 6 and an evaporation temperature detecting means 12 are provided in the vicinity of the evaporator 4. The condensing temperature detecting means 11 and the evaporating temperature detecting means 12 detect the temperature, respectively, and send a signal including the detected temperature value (detected value) to the control device 50 for overall control of the heat pump device 100.

圧縮機1は、冷媒配管を流れる冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態で吐出するものである。凝縮器2は、冷媒と流体との間で熱交換を行い、冷媒を凝縮させものである。本実施の形態では流体を空気とする。膨張装置3は、冷媒配管を通過する冷媒を減圧して膨張させるものである。膨張装置3としては、たとえば電子膨張弁などの絞り装置で構成するとよい。蒸発器4は、冷媒と空気との間で熱交換を行い、その冷媒を蒸発させるものである。凝縮器用ファン5は、凝縮器2に空気を供給するものである。また、蒸発器用ファン6は、蒸発器4に空気を供給するものである。   The compressor 1 sucks refrigerant flowing through the refrigerant pipe, compresses the refrigerant, and discharges the refrigerant in a high temperature / high pressure state. The condenser 2 performs heat exchange between the refrigerant and the fluid to condense the refrigerant. In this embodiment, the fluid is air. The expansion device 3 decompresses and expands the refrigerant passing through the refrigerant pipe. The expansion device 3 may be constituted by a throttle device such as an electronic expansion valve. The evaporator 4 performs heat exchange between the refrigerant and air, and evaporates the refrigerant. The condenser fan 5 supplies air to the condenser 2. The evaporator fan 6 supplies air to the evaporator 4.

凝縮温度検出手段11は、凝縮器2の飽和温度(凝縮温度)を検出する温度センサなどの検出装置である。蒸発温度検出手段12は、蒸発器4の飽和温度(蒸発温度)を検出する温度センサなどの検出装置である。また、蒸発器吸込温度検出手段となる蒸発器吸込空気温度検出手段13は、蒸発器4に流入する空気の温度(蒸発器吸込空気温度)を検出する温度センサなどの検出装置である。そして、凝縮器吸込温度検出手段となる凝縮器吸込空気温度検出手段14は、凝縮器2に流入する流体(空気)の温度(凝縮器吸込空気温度)を検出する温度センサなどの検出装置である。圧縮機周波数検出手段15は、圧縮機の回転周波数(以下、圧縮機周波数という)を検出する装置である。   The condensation temperature detection means 11 is a detection device such as a temperature sensor that detects the saturation temperature (condensation temperature) of the condenser 2. The evaporation temperature detection means 12 is a detection device such as a temperature sensor that detects the saturation temperature (evaporation temperature) of the evaporator 4. The evaporator suction air temperature detection means 13 serving as the evaporator suction temperature detection means is a detection device such as a temperature sensor that detects the temperature of the air flowing into the evaporator 4 (evaporator suction air temperature). The condenser suction air temperature detection means 14 serving as the condenser suction temperature detection means is a detection device such as a temperature sensor that detects the temperature of the fluid (air) flowing into the condenser 2 (condenser suction air temperature). . The compressor frequency detection means 15 is a device that detects the rotation frequency of the compressor (hereinafter referred to as the compressor frequency).

制御装置50は、たとえばマイクロコンピュータなどで構成されている。たとえば上述した各検出手段からの検出値(凝縮温度検出手段11が検出した凝縮温度、蒸発温度検出手段12が検出した蒸発温度など)に基づいて圧縮機1の回転周波数、凝縮器用ファン5及び蒸発器用ファン6の回転数を決定して制御を行う。また、たとえば膨張装置3の開度を制御する。また、空気調和システムなどのように、運転によって冷媒の流路を変更などをする場合には、冷媒の流路切替装置である四方弁(図示省略)の切替を制御する機能を有している。本実施の形態の制御装置50の動作などについては、図2に基づいて後で詳細に説明する。   The control device 50 is composed of, for example, a microcomputer. For example, the rotational frequency of the compressor 1, the condenser fan 5 and the evaporation based on the detection values (condensation temperature detected by the condensation temperature detection means 11, evaporation temperature detected by the evaporation temperature detection means 12, etc.) from each detection means described above. Control is performed by determining the rotational speed of the fan 6 for equipment. For example, the opening degree of the expansion device 3 is controlled. Moreover, when changing the flow path of a refrigerant | coolant by driving | operating like an air conditioning system etc., it has the function to control switching of the four-way valve (illustration omitted) which is a flow path switching apparatus of a refrigerant | coolant. . The operation of the control device 50 according to the present embodiment will be described in detail later with reference to FIG.

ここで、ヒートポンプ装置100の動作について、冷媒の流れに基づいて簡単に説明する。ヒートポンプ装置100が運転を開始すると、まず圧縮機1を駆動する。圧縮機1で圧縮された高温・高圧のガス冷媒は、圧縮機1から吐出され凝縮器2に流入する。凝縮器2では、流入したガス冷媒が、熱交換対象となる流体に放熱しながら凝縮し、低温・高圧の冷媒となる。この冷媒は、凝縮器2から流出し、膨張装置3で減圧され、気液二相冷媒となる。この気液二相冷媒は、蒸発器4に流入する。蒸発器4に流入した冷媒は、空気から吸熱することで、蒸発ガス化する。この冷媒は、蒸発器4から流出し、圧縮機1に再度吸入される。ここで、ヒートポンプ装置100の運転中は、凝縮温度検出手段11及び蒸発温度検出手段12がそれぞれ温度を検出し、検出値に係る信号を制御装置50に送っている。   Here, operation | movement of the heat pump apparatus 100 is demonstrated easily based on the flow of a refrigerant | coolant. When the heat pump device 100 starts operation, the compressor 1 is first driven. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 and flows into the condenser 2. In the condenser 2, the gas refrigerant that has flowed in is condensed while dissipating heat to the fluid to be heat exchanged, and becomes a low-temperature and high-pressure refrigerant. This refrigerant flows out of the condenser 2, is decompressed by the expansion device 3, and becomes a gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant flows into the evaporator 4. The refrigerant that has flowed into the evaporator 4 absorbs heat from the air, thereby evaporating. This refrigerant flows out of the evaporator 4 and is sucked into the compressor 1 again. Here, during the operation of the heat pump device 100, the condensation temperature detection means 11 and the evaporation temperature detection means 12 each detect the temperature and send a signal related to the detection value to the control device 50.

図2は、この発明の実施の形態1に係わるヒートポンプ装置100の制御系における信号の入出力関係の概略を示すブロック図である。図2に基づいて、制御装置50の機能について詳細に説明する。図2に示すように、制御装置50は、記憶装置となるメモリ51と検出値に基づく演算処理などを行う演算部52とを有している。メモリ51は、たとえば凝縮温度検出手段11、蒸発温度検出手段12、蒸発器吸込空気温度検出手段13、凝縮器吸込空気温度検出手段14、圧縮機周波数検出手段15が検出した検出値をデータとして格納(記憶)する。そして、メモリ51が格納した検出値に基づいて演算部52が演算処理を行う。以上のようにして、制御装置50は、演算部52での演算結果に基づき、圧縮機1、四方弁(図示省略)、膨張装置3、凝縮器用ファン5、蒸発器用ファン6の各機器に信号を送って制御を行う。   FIG. 2 is a block diagram schematically showing the input / output relationship of signals in the control system of the heat pump apparatus 100 according to Embodiment 1 of the present invention. Based on FIG. 2, the function of the control apparatus 50 is demonstrated in detail. As illustrated in FIG. 2, the control device 50 includes a memory 51 serving as a storage device and a calculation unit 52 that performs calculation processing based on the detection value. The memory 51 stores, for example, detection values detected by the condensation temperature detection means 11, the evaporation temperature detection means 12, the evaporator intake air temperature detection means 13, the condenser intake air temperature detection means 14, and the compressor frequency detection means 15 as data. (Remember. Then, the calculation unit 52 performs calculation processing based on the detection value stored in the memory 51. As described above, the control device 50 sends signals to the compressor 1, the four-way valve (not shown), the expansion device 3, the condenser fan 5, and the evaporator fan 6 based on the calculation result in the calculation unit 52. To control.

たとえば、制御装置50がヒートポンプ装置100の暖房運転を制御する際、現時点における運転効率を表す瞬間COP(=COP)を、凝縮温度Tcと蒸発温度Teとに基づいて、式(1)から推定演算(以下、演算とする)する。ここで、式(1)は、カルノー効率の定義式である。また、消費電力は凝縮温度Tc−蒸発温度Teで演算したものである。   For example, when the control device 50 controls the heating operation of the heat pump device 100, the instantaneous COP (= COP) representing the current operation efficiency is estimated from the equation (1) based on the condensation temperature Tc and the evaporation temperature Te. (Hereinafter referred to as computation). Here, Formula (1) is a definition formula of Carnot efficiency. The power consumption is calculated by the condensation temperature Tc−evaporation temperature Te.

[数1]
COP=(Tc+273.15)/(Tc―Te) …(1)
[Equation 1]
COP = (Tc + 273.15) / (Tc−Te) (1)

図3は、この発明の実施の形態1における時間とCOPとの関係のグラフを示す図である。図3に基づいて、ヒートポンプ装置100の時間と瞬間COPとの関係について説明する。図3では、横軸が時間を、縦軸がCOPをそれぞれ表している。蒸発器4での冷媒と空気との熱交換においては、冷媒の温度が0℃以下で、空気の露点温度以下である場合は、空気中に含まれる水分が蒸発器4へ付着し、霜へと成長する着霜現象が発生する。蒸発器4での着霜現象が進むと、通風抵抗の増加及び熱抵抗の増加により、蒸発器4における熱交換量が減少し、図3に示すように瞬間COPが低下する。そこで、除霜が必要となってくる。ここでは高温の冷媒を蒸発器4に通過させて除霜する除霜運転について説明するが、たとえばヒータなどで過熱するなど、除霜方法については限定するものではない。   FIG. 3 is a graph showing a relationship between time and COP in the first embodiment of the present invention. Based on FIG. 3, the relationship between the time of the heat pump apparatus 100 and the instantaneous COP will be described. In FIG. 3, the horizontal axis represents time, and the vertical axis represents COP. In the heat exchange between the refrigerant and the air in the evaporator 4, when the temperature of the refrigerant is 0 ° C. or less and the air dew point temperature or less, moisture contained in the air adheres to the evaporator 4 and turns into frost. A growing frosting phenomenon occurs. When the frosting phenomenon in the evaporator 4 proceeds, the amount of heat exchange in the evaporator 4 decreases due to an increase in ventilation resistance and an increase in thermal resistance, and the instantaneous COP decreases as shown in FIG. Therefore, defrosting is necessary. Here, a defrosting operation in which a high-temperature refrigerant is passed through the evaporator 4 for defrosting will be described, but the defrosting method is not limited, for example, overheating with a heater or the like.

式(1)に示した瞬間COP(=COP)は、着霜とともに凝縮温度Tcよりも蒸発温度Teの低下が大きく、着霜による瞬間COPの低下を正確に捉えることができる。たとえば、凝縮温度Tcについては、運転開始時にTc=49℃であったものが除霜開始直前にはTc=47℃となり、約2℃低下することになる。それに対し、蒸発温度Teは、運転開始時にTe=−2℃であったものが除霜開始直前にはTe=−6℃となり、約4℃低下し、着霜とともに瞬間COPが低下することになる。   In the instantaneous COP (= COP) shown in the equation (1), the decrease in the evaporation temperature Te is larger than the condensation temperature Tc together with the frost formation, and the decrease in the instantaneous COP due to the frost formation can be accurately captured. For example, the condensation temperature Tc, which was Tc = 49 ° C. at the start of operation, becomes Tc = 47 ° C. immediately before the start of defrosting, and is reduced by about 2 ° C. On the other hand, the evaporation temperature Te is Te = −2 ° C. at the start of operation, but immediately before the start of defrosting, becomes Te = −6 ° C., decreases by about 4 ° C., and instantaneous COP decreases with frost formation. Become.

図4は、この発明の実施の形態1における1サイクルにおける時間とCOPとの関係のグラフを示す図である。図4に基づいて、ヒートポンプ装置100の1サイクル平均COPについて説明する。除霜運転を伴う運転の場合の運転効率は、図4に示すように通常運転開始から除霜運転終了までを1サイクルとしたとき、その1サイクル平均COPにより評価される。ここで、除霜運転は運転には寄与しないため、瞬間COPは0となる。したがって、1サイクル平均COPが最も高くなるようなタイミングで除霜運転を開始すれば省エネルギを効果的に実現できるため、開始タイミングが重要となることになる。   FIG. 4 is a graph showing a relationship between time and COP in one cycle in Embodiment 1 of the present invention. The one-cycle average COP of the heat pump apparatus 100 will be described based on FIG. The operation efficiency in the case of the operation accompanied by the defrosting operation is evaluated by the one-cycle average COP when the cycle from the start of the normal operation to the end of the defrosting operation is defined as one cycle as shown in FIG. Here, since the defrosting operation does not contribute to the operation, the instantaneous COP becomes zero. Therefore, if the defrosting operation is started at a timing at which the one-cycle average COP becomes the highest, energy saving can be effectively realized, and therefore the start timing becomes important.

図5は、ヒートポンプ装置100の除霜開始判定制御に関する処理の流れの一例のフローチャートを示す図である。また、図6は、この発明の実施の形態1における瞬間COPと平均COPとの関係のグラフを示す図である。図7は、この発明の実施の形態1における瞬間COPと1サイクル平均COPとの関係のグラフを示す図である。図8は、この発明の実施の形態1における瞬間COPと平均COPとの関係のグラフを示す図である。図5〜図8に基づいて、ヒートポンプ装置100の除霜開始判定制御に関する処理の流れについて説明する。ここで、図6〜図8では、横軸が時間を表し、縦軸がCOPを表している。   FIG. 5 is a diagram illustrating a flowchart of an example of a process flow relating to the defrosting start determination control of the heat pump apparatus 100. FIG. 6 is a graph showing a relationship between the instantaneous COP and the average COP in the first embodiment of the present invention. FIG. 7 is a graph showing a relationship between the instantaneous COP and the one-cycle average COP in the first embodiment of the present invention. FIG. 8 is a graph showing a relationship between the instantaneous COP and the average COP in Embodiment 1 of the present invention. Based on FIGS. 5-8, the flow of the process regarding the defrost start determination control of the heat pump apparatus 100 is demonstrated. Here, in FIGS. 6 to 8, the horizontal axis represents time, and the vertical axis represents COP.

図5に基づいて、制御装置50が行う除霜開始に関する処理について説明する。ヒートポンプ装置100が運転を開始すると、制御装置50は、凝縮温度検出手段11で検出された検出値である凝縮温度Tc及び蒸発温度検出手段12で検出された検出値である蒸発温度Teをメモリ51に格納する(ステップS101)。そして、演算部52は、上記式(1)で表される瞬間COP(=COP)の演算を行う(ステップS102)。その後、図6に示すように、通常運転(暖房運転)開始から現時点までの平均COP(=COP_AVE)を演算する(ステップS103)。   Based on FIG. 5, the process regarding the defrost start which the control apparatus 50 performs is demonstrated. When the heat pump device 100 starts operation, the control device 50 stores the condensation temperature Tc, which is a detection value detected by the condensation temperature detection unit 11, and the evaporation temperature Te, which is a detection value detected by the evaporation temperature detection unit 12, in the memory 51. (Step S101). And the calculating part 52 calculates the instantaneous COP (= COP) represented by the said Formula (1) (step S102). Thereafter, as shown in FIG. 6, an average COP (= COP_AVE) from the start of normal operation (heating operation) to the present time is calculated (step S103).

図7に示すように、1サイクルCOP(=COP_CYCLE)が最も高くなる除霜開始タイミングは、瞬間COP(=COP)が着霜により1サイクル平均COP(=COP_CYCLE)まで低下したときである。   As shown in FIG. 7, the defrosting start timing at which the one-cycle COP (= COP_CYCLE) becomes the highest is when the instantaneous COP (= COP) decreases to the one-cycle average COP (= COP_CYCLE) due to frost formation.

現時点で除霜運転を開始したときの1サイクル平均COP(=COP_CYCLE)は、通常運転開始から現時点までの平均COP(=COP_AVE)を用いて、下記式(2)のように表わされる。   The one-cycle average COP (= COP_CYCLE) when the defrosting operation is started at the present time is expressed by the following equation (2) using the average COP (= COP_AVE) from the start of the normal operation to the current time.

[数2]
COP_CYCLE=C1×COP_AVE …(2)
[Equation 2]
COP_CYCLE = C1 × COP_AVE (2)

ここで、上記式(2)の右辺におけるC1は、図7に示すように、除霜運転による平均COPの低下を考慮したものである。このC1については、予め設定した定数であってもよい。たとえば、除霜運転により1サイクル平均COPが暖房運転時の平均COP(=COP_AVE)の96%となる場合は、C1=0.96となる。また、C1については、除霜方式、機器のスペックなどにより最適値は異なるため、定数とはしないで、その都度、最適値となる値を設定しても良い。   Here, as shown in FIG. 7, C1 on the right side of the formula (2) takes into account the decrease in average COP due to the defrosting operation. This C1 may be a preset constant. For example, when the 1-cycle average COP is 96% of the average COP (= COP_AVE) during the heating operation due to the defrosting operation, C1 = 0.96. Moreover, about C1, since the optimal value changes with a defrost system, the specification of an apparatus, etc., you may set the value used as an optimal value each time without setting it as a constant.

現時点で除霜運転を開始した場合の1サイクル平均COPを、上記式(2)から演算し、現時点の瞬間COP(=COP)と比較する(ステップS104)。比較した結果、下記式(3)に示すような関係が成立したものと判定すると(ステップS104;YES)、除霜運転を開始する(ステップS105)。一方、下記式(3)が成立していないと判定すると(ステップS104;NO)、ステップS101に戻り、処理工程を繰り返す。   The one-cycle average COP when the defrosting operation is started at the current time is calculated from the above equation (2) and compared with the current instantaneous COP (= COP) (step S104). If it is determined as a result of the comparison that the relationship shown in the following formula (3) is established (step S104; YES), the defrosting operation is started (step S105). On the other hand, if it is determined that the following expression (3) is not established (step S104; NO), the process returns to step S101 and the processing steps are repeated.

[数3]
COP≦COP_CYCLE …(3)
[Equation 3]
COP ≦ COP_CYCLE (3)

ただし、上記の説明は、圧縮機1の周波数が一定、蒸発器4に流入する空気の温度(蒸発器吸込温度)が一定、及び凝縮器2に流入する空気の温度(凝縮器吸込温度)が一定である場合について成り立つ。実際は、時間とともに圧縮機1の周波数、蒸発器4の吸込空気の温度及び凝縮器2の吸込空気の温度は変化する場合が多い。   However, in the above explanation, the frequency of the compressor 1 is constant, the temperature of the air flowing into the evaporator 4 (evaporator suction temperature) is constant, and the temperature of the air flowing into the condenser 2 (condenser suction temperature) is It holds for the case where it is constant. In practice, the frequency of the compressor 1, the temperature of the intake air of the evaporator 4 and the temperature of the intake air of the condenser 2 often change with time.

圧縮機1の周波数、蒸発器4の吸込空気の温度及び凝縮器2の吸込空気の温度が変化すると、凝縮温度Tc及び蒸発温度Teが変化する。たとえば、圧縮機1の周波数が高くなると、凝縮温度Tcと蒸発温度Teとの差が大きくなり、式(1)の瞬間COPは低下する。また、凝縮器2の吸込空気の温度が上昇すると凝縮温度Tcが上昇し、式(1)の瞬間COPは低下する。また、蒸発器4の吸込空気の温度が低下すると蒸発温度Teが低下し、式(1)の瞬間COPは低下する。   When the frequency of the compressor 1, the temperature of the intake air of the evaporator 4 and the temperature of the intake air of the condenser 2 change, the condensation temperature Tc and the evaporation temperature Te change. For example, when the frequency of the compressor 1 increases, the difference between the condensation temperature Tc and the evaporation temperature Te increases, and the instantaneous COP in the equation (1) decreases. Further, when the temperature of the intake air of the condenser 2 rises, the condensation temperature Tc rises and the instantaneous COP of the equation (1) falls. Moreover, if the temperature of the suction air of the evaporator 4 falls, the evaporation temperature Te will fall and the instantaneous COP of Formula (1) will fall.

このように、圧縮機1の周波数、蒸発器4の吸込空気の温度又は凝縮器2の吸込空気の温度が変化して、瞬間COPが低下し、上記の式(3)を満たすと、着霜していないにも係わらず、誤判定して除霜運転を開始してしまうことになる。   In this way, when the frequency of the compressor 1, the temperature of the intake air of the evaporator 4 or the temperature of the intake air of the condenser 2 is changed, the instantaneous COP is reduced, and when the above formula (3) is satisfied, frost formation occurs. In spite of not doing, it will make a misjudgment and will start defrosting operation.

そこで、誤判定を回避するため、本実施の形態では、次のように補正を行った蒸発温度と凝縮温度とを演算する。まず、予め決められている基準圧縮機周波数F0、基準蒸発器吸込空気温度Tae0、基準凝縮器吸込空気温度Tac0で運転したときの蒸発温度と凝縮温度とを、基準蒸発温度Te0、基準凝縮温度Tc0とする。   Therefore, in order to avoid erroneous determination, in this embodiment, the corrected evaporation temperature and condensation temperature are calculated as follows. First, an evaporation temperature and a condensation temperature when operating at a predetermined reference compressor frequency F0, a reference evaporator suction air temperature Tae0, and a reference condenser suction air temperature Tac0 are set as a reference evaporation temperature Te0 and a reference condensation temperature Tc0. And

次に、圧縮機周波数検出手段15が実際の圧縮機周波数Fを検出する。また、蒸発器吸込空気温度検出手段13が実際の蒸発器吸込空気温度Taeを検出する。凝縮器吸込空気温度検出手段14が実際の凝縮器吸込空気温度Tacを検出する。蒸発温度検出手段12が実際の蒸発温度Teを検出する。凝縮温度検出手段11が実際の凝縮温度Tcを検出する。そして、以上の検出値に基づいて、現在の着霜状態で、基準圧縮機周波数F0、基準蒸発器吸込空気温度Tae0、基準凝縮器吸込空気温度Tac0で運転(暖房運転)したときの蒸発温度(補正蒸発温度Te_mod)、凝縮温度(補正凝縮温度Tc_mod)に補正する。   Next, the compressor frequency detection means 15 detects the actual compressor frequency F. Further, the evaporator intake air temperature detecting means 13 detects the actual evaporator intake air temperature Tae. The condenser intake air temperature detection means 14 detects the actual condenser intake air temperature Tac. The evaporating temperature detecting means 12 detects the actual evaporating temperature Te. The condensation temperature detection means 11 detects the actual condensation temperature Tc. Based on the above detection values, the evaporating temperature when operating (heating operation) at the reference compressor frequency F0, the reference evaporator suction air temperature Tae0, and the reference condenser suction air temperature Tac0 in the current frosting state ( Correction evaporating temperature Te_mod) and condensing temperature (correcting condensing temperature Tc_mod).

図9は、この発明の実施の形態1における圧縮機周波数F、蒸発温度Te及び凝縮温度Tcの関係を示す図である。具体的には、実際の圧縮機周波数Fと基準圧縮機周波数F0との差ΔFに応じて蒸発温度Te、凝縮温度Tcを補正する。図9に示すように、ΔFが正の場合、ΔFの絶対値に応じて凝縮温度Tcを下げ、蒸発温度Teを上げる方向に補正する。逆にΔFが負の場合、ΔFの絶対値に応じて凝縮温度Tcを上げ、蒸発温度Teを下げる方向に補正する。このようにすることで、現時点において圧縮機周波数Fで駆動している圧縮機1を、基準圧縮機周波数F0で駆動させたとした場合の補正蒸発温度Te_mod及び補正凝縮温度Tc_modが演算可能となる。ここで、圧縮機周波数Fが変化しても凝縮温度Tcが変化しないように制御するような場合は凝縮温度Tcと補正凝縮温度Tc_modとが同じになる。また、圧縮機周波数Fが変化しても蒸発温度Teが変化しないように制御するような場合は蒸発温度Teと補正蒸発温度Te_modとが同じになる。このため、特に補正を行う必要がないが、ここでは補正を行って凝縮温度Tc=補正凝縮温度Tc_mod、蒸発温度Te=補正蒸発温度Te_modとなった場合と同等であるものとして説明する(以下においても同じ)。   FIG. 9 is a diagram showing a relationship among the compressor frequency F, the evaporation temperature Te, and the condensation temperature Tc in the first embodiment of the present invention. Specifically, the evaporation temperature Te and the condensation temperature Tc are corrected according to the difference ΔF between the actual compressor frequency F and the reference compressor frequency F0. As shown in FIG. 9, when ΔF is positive, the condensation temperature Tc is decreased according to the absolute value of ΔF, and the evaporation temperature Te is corrected to be increased. On the contrary, when ΔF is negative, the condensation temperature Tc is increased according to the absolute value of ΔF, and the evaporation temperature Te is corrected to decrease. By doing so, it is possible to calculate the corrected evaporation temperature Te_mod and the corrected condensation temperature Tc_mod when the compressor 1 currently driven at the compressor frequency F is driven at the reference compressor frequency F0. Here, when control is performed so that the condensation temperature Tc does not change even if the compressor frequency F changes, the condensation temperature Tc and the corrected condensation temperature Tc_mod are the same. Further, when control is performed so that the evaporation temperature Te does not change even when the compressor frequency F changes, the evaporation temperature Te and the corrected evaporation temperature Te_mod are the same. For this reason, there is no need to perform correction, but here it is assumed that the correction is equivalent to the case where condensation temperature Tc = correction condensation temperature Tc_mod and evaporation temperature Te = correction evaporation temperature Te_mod (hereinafter, referred to as “condensation temperature Tc = correction condensation temperature T_mod” The same).

図10は、この発明の実施の形態1における蒸発器吸込空気温度Taeと蒸発温度Teとの関係を示す図である。また、実際の蒸発器吸込空気温度Taeと基準蒸発器吸込空気温度Tae0との差ΔTaeに応じて蒸発温度Teを補正する。図10に示すように、ΔTaeが正の場合、ΔTaeの絶対値に応じて蒸発温度Teを下げる方向に補正する。逆にΔTaeが負の場合、ΔTaeの絶対値に応じて蒸発温度Teを上げる方向に補正する。このようにすることで、現時点において蒸発器吸込空気温度Taeが基準蒸発器吸込空気温度Tae0であった場合の補正蒸発温度Te_modが演算可能となる。   FIG. 10 is a diagram showing the relationship between the evaporator intake air temperature Tae and the evaporation temperature Te in Embodiment 1 of the present invention. Further, the evaporation temperature Te is corrected according to the difference ΔTae between the actual evaporator intake air temperature Tae and the reference evaporator intake air temperature Tae0. As shown in FIG. 10, when ΔTae is positive, correction is made in a direction to lower the evaporation temperature Te according to the absolute value of ΔTae. On the other hand, when ΔTae is negative, correction is made to increase the evaporation temperature Te according to the absolute value of ΔTae. By doing in this way, correction | amendment evaporation temperature Te_mod when the evaporator suction air temperature Tae is the reference | standard evaporator suction air temperature Tae0 at the present time becomes computable.

図11は、この発明の実施の形態1における凝縮器吸込空気温度Tacと凝縮温度Tcとの関係を示す図である。また、実際の凝縮器吸込空気温度Tacと基準凝縮器吸込空気温度Tac0との差ΔTacに応じて凝縮温度Tcを補正する。図11に示すように、ΔTacが正の場合、ΔTacの絶対値に応じて凝縮温度Tcを下げる方向に補正する。逆にΔTacが負の場合、ΔTacの絶対値に応じて凝縮温度Tcを上げる方向に補正する。このようにすることで、現時点において凝縮器吸込空気温度Tacが基準凝縮器吸込空気温度Tac0であった場合の補正凝縮温度Tc_modが演算可能となる。   FIG. 11 is a diagram showing the relationship between the condenser intake air temperature Tac and the condensation temperature Tc in the first embodiment of the present invention. Further, the condensation temperature Tc is corrected according to the difference ΔTac between the actual condenser intake air temperature Tac and the reference condenser intake air temperature Tac0. As shown in FIG. 11, when ΔTac is positive, correction is made in the direction of decreasing the condensation temperature Tc according to the absolute value of ΔTac. On the contrary, when ΔTac is negative, the condensation temperature Tc is corrected in accordance with the absolute value of ΔTac. By doing so, the corrected condensing temperature Tc_mod when the condenser intake air temperature Tac is the reference condenser intake air temperature Tac0 at the present time can be calculated.

以上のように、圧縮機周波数F、蒸発器吸込空気温度Tae、凝縮器吸込空気温度Tacに基づいて実際の凝縮温度Tc、蒸発温度Teを補正する。ここで、凝縮温度Tcは、圧縮機周波数Fに基づく補正と凝縮器吸込空気温度Tacに基づく補正とを行うことができるが、本実施の形態では、圧縮機周波数F及び凝縮器吸込空気温度Tacの両方を反映した補正を行う。このとき、圧縮機周波数Fに基づく補正を行った後に凝縮器吸込空気温度Tacに基づく補正をしてもよいし、その逆の順に補正を行ってもよい。また、同様に、蒸発温度Teについて、圧縮機周波数Fに基づく補正と蒸発器吸込空気温度Taeに基づく補正とを行うことができるが、本実施の形態では、圧縮機周波数F及び蒸発器吸込空気温度Taeの両方を反映した補正を行う。このとき、圧縮機周波数Fに基づく補正を行った後に蒸発器吸込空気温度Taeに基づく補正をしてもよいし、その逆の順に補正を行ってもよい。補正を行うことで、現在の着霜状態において、基準圧縮機周波数F0、基準蒸発器吸込空気温度Tae0、基準凝縮器吸込空気温度Tac0で運転したときの瞬間COPを式(4)に基づいて演算することができる。   As described above, the actual condensing temperature Tc and the evaporation temperature Te are corrected based on the compressor frequency F, the evaporator intake air temperature Tae, and the condenser intake air temperature Tac. Here, the condensation temperature Tc can be corrected based on the compressor frequency F and corrected based on the condenser intake air temperature Tac. In this embodiment, the compressor frequency F and the condenser intake air temperature Tac are used. Make corrections that reflect both. At this time, after performing correction based on the compressor frequency F, correction based on the condenser intake air temperature Tac may be performed, or correction may be performed in the reverse order. Similarly, the evaporation temperature Te can be corrected based on the compressor frequency F and corrected based on the evaporator intake air temperature Tae. In the present embodiment, the compressor frequency F and the evaporator intake air are corrected. Correction that reflects both of the temperatures Tae is performed. At this time, after performing correction based on the compressor frequency F, correction based on the evaporator intake air temperature Tae may be performed, or correction may be performed in the reverse order. By performing the correction, the instantaneous COP when operating at the reference compressor frequency F0, the reference evaporator intake air temperature Tae0, and the reference condenser intake air temperature Tac0 in the current frosting state is calculated based on the equation (4). can do.

[数4]
瞬間COP=(Tc_mod+273.15)
/(Tc_mod−Te_mod) …(4)
[Equation 4]
Instant COP = (Tc_mod + 273.15)
/ (Tc_mod−Te_mod) (4)

図12は、この発明の実施の形態1に係わるヒートポンプ装置100の除霜開始判定制御に関する処理の流れの一例のフローチャートを示す図である。ここでは、 式(4)を用いた除霜開始判定の制御に関する処理について説明する。   FIG. 12 is a view illustrating a flowchart of an example of a flow of processing relating to defrosting start determination control of the heat pump apparatus 100 according to Embodiment 1 of the present invention. Here, the process regarding control of the defrost start determination using Formula (4) is demonstrated.

ヒートポンプ装置100が運転を開始すると、制御装置50は、凝縮温度検出手段11で凝縮温度Tc、蒸発温度検出手段12で蒸発温度Te、蒸発器吸込空気温度検出手段13でTae、凝縮器吸込空気温度検出手段14でTacを検出する(ステップS301)。そして、各検出値に基づいて、補正蒸発温度Te_mod及び補正凝縮温度Tc_modを演算する(ステップS302)。さらに補正蒸発温度Te_mod及び補正凝縮温度Tc_modに基づいて、上記式(4)で表される瞬間COP(=COP)の演算を行う(ステップS303)。さらに、図6に示すように通常運転開始から現時点までの平均COP(=COP_AVE)を計算する(ステップS304)。   When the heat pump device 100 starts operation, the control device 50 uses the condensation temperature detection means 11 to condense temperature Tc, the evaporation temperature detection means 12 to evaporate temperature Te, the evaporator intake air temperature detection means 13 to Tae, and the condenser intake air temperature. Tac is detected by the detection means 14 (step S301). Then, based on each detected value, a corrected evaporation temperature Te_mod and a corrected condensing temperature Tc_mod are calculated (step S302). Further, based on the corrected evaporation temperature Te_mod and the corrected condensing temperature Tc_mod, the instantaneous COP (= COP) represented by the above equation (4) is calculated (step S303). Further, as shown in FIG. 6, an average COP (= COP_AVE) from the start of normal operation to the present time is calculated (step S304).

図7に示すように、1サイクルCOP(=COP_CYCLE)が最も高くなる除霜開始タイミングは、着霜により、瞬間COP(=COP)が1サイクル平均COP(=COP_CYCLE)まで低下したときである。そこで、上記式(2)に基づいて1サイクル平均COPを演算し、現時点の瞬間COP(=COP)と比較する(ステップS305)。比較した結果、式(3)に示すような関係が成立したものと判定すると(ステップ305;YES)除霜運転を開始する(ステップ306)。一方、式(3)に示す関係が成立していないと判断すると(ステップS305;NO)、ステップS301に戻り、処理工程を繰り返す。   As shown in FIG. 7, the defrosting start timing at which the one-cycle COP (= COP_CYCLE) becomes the highest is when the instantaneous COP (= COP) decreases to the one-cycle average COP (= COP_CYCLE) due to frost formation. Therefore, the one-cycle average COP is calculated based on the above equation (2) and compared with the current instantaneous COP (= COP) (step S305). As a result of the comparison, if it is determined that the relationship shown in Expression (3) is established (step 305; YES), the defrosting operation is started (step 306). On the other hand, if it is determined that the relationship shown in Expression (3) is not established (step S305; NO), the process returns to step S301 and the processing steps are repeated.

式(4)に示す瞬間COPは、圧縮機周波数F、蒸発器吸込空気温度Tae、凝縮器吸込空気温度Tacによって変化せず、着霜によってのみ低下するので、式(2)〜式(4)に基づいて演算した値から除霜開始のタイミングを判定するようにしたので、誤判定することなく、最適なタイミングで除霜運転開始が可能となる。このため、1サイクル平均COPが高くなり、省エネルギにつなげることができる。   The instantaneous COP shown in the equation (4) does not change depending on the compressor frequency F, the evaporator intake air temperature Tae, and the condenser intake air temperature Tac, and decreases only by frost formation. Therefore, the equations (2) to (4) Since the defrosting start timing is determined from the value calculated based on the above, the defrosting operation can be started at the optimum timing without erroneous determination. For this reason, 1-cycle average COP becomes high and can be connected to energy saving.

実施の形態2.
上述した実施の形態1では、除霜運転の開始タイミングについて、誤判定を回避するために、蒸発温度Te又は凝縮温度Tcに対して補正を行った。本実施の形態では、蒸発温度Te又は凝縮温度Tcの補正を行わずに誤判定を回避するものである。
Embodiment 2. FIG.
In Embodiment 1 mentioned above, in order to avoid a misjudgment about the start timing of a defrost operation, it corrected with respect to the evaporation temperature Te or the condensation temperature Tc. In this embodiment, misjudgment is avoided without correcting the evaporation temperature Te or the condensation temperature Tc.

このため、本実施の形態では、式(1)から式(3)に基づき、制御装置50が除霜開始判定処理を行うとともに、圧縮機周波数F及び凝縮温度Tcから下記式(5)で表される瞬間暖房能力(瞬間能力)Qhに基づく判定も行う。   For this reason, in this Embodiment, while the control apparatus 50 performs a defrost start determination process based on Formula (1) to Formula (3), it represents with following formula (5) from the compressor frequency F and the condensation temperature Tc. The determination based on the instantaneous heating capability (instant capability) Qh to be performed is also performed.

[数5]
Qh=(Tc+273.15)×F …(5)
[Equation 5]
Qh = (Tc + 273.15) × F (5)

図13は、この発明の実施の形態2における瞬間暖房能力と1サイクル平均暖房能力との関係のグラフを示す図である。図13に基づいて、ヒートポンプ装置100の時間と能力(暖房能力)との関係について説明する。図13では、横軸が時間を、縦軸が能力をそれぞれ表している。蒸発器4での着霜現象が進むと、通風抵抗の増加及び熱抵抗の増加により、蒸発器4における熱交換量が減少し、図13に示すように瞬間暖房能力Qhが低下する。この瞬間暖房能力Qhの低下を除霜開始判定条件に加えることで、圧縮機周波数F、蒸発器吸込空気温度Tae及び凝縮器吸込空気温度Tacが変化しても誤判定を回避することが可能となる。   FIG. 13 is a graph showing a relationship between the instantaneous heating capacity and the one-cycle average heating capacity in the second embodiment of the present invention. Based on FIG. 13, the relationship between the time and the capability (heating capability) of the heat pump apparatus 100 will be described. In FIG. 13, the horizontal axis represents time, and the vertical axis represents ability. When the frosting phenomenon in the evaporator 4 proceeds, the amount of heat exchange in the evaporator 4 decreases due to an increase in ventilation resistance and an increase in thermal resistance, and the instantaneous heating capacity Qh decreases as shown in FIG. By adding this decrease in the instantaneous heating capacity Qh to the defrosting start determination condition, it is possible to avoid erroneous determination even if the compressor frequency F, the evaporator intake air temperature Tae, and the condenser intake air temperature Tac change. Become.

判定については、現時点で除霜運転を開始したときの1サイクル平均暖房能力(平均能力)Qh_CYCLEと瞬間暖房能力Qhの比較に基づいて行う。ここで、1サイクル平均暖房能力Qh_CYCLEは、通常運転開始から現時点までの平均暖房能力Qh_AVEを用いて式(6)のように表される。   The determination is made based on a comparison between the one-cycle average heating capacity (average capacity) Qh_CYCLE and the instantaneous heating capacity Qh when the defrosting operation is started at the present time. Here, the one-cycle average heating capacity Qh_CYCLE is expressed as in Expression (6) using the average heating capacity Qh_AVE from the start of normal operation to the present time.

[数6]
Qh_CYCLE=C2×Qh_AVE …(6)
[Equation 6]
Qh_CYCLE = C2 × Qh_AVE (6)

上記式(6)の右辺におけるC2は、図13に示すように除霜運転による平均暖房能力Qh_AVEの低下を考慮したものである。このC2については、予め設定した定数であってもよい。たとえば、除霜により1サイクル平均暖房能力Qh_CYCLEが暖房運転時の平均暖房能力Qh_AVEの96%になる場合は、C2=0.96となる。また、C2については、除霜方式、機器のスペックにより最適値は異なるため、定数とはしないで、その都度、最適値となる値に設定しても良い。   C2 on the right side of the above equation (6) takes into account the decrease in the average heating capacity Qh_AVE due to the defrosting operation as shown in FIG. This C2 may be a preset constant. For example, when the 1-cycle average heating capacity Qh_CYCLE becomes 96% of the average heating capacity Qh_AVE during the heating operation due to defrosting, C2 = 0.96. Moreover, about C2, since an optimal value changes with a defrosting system and the specification of an apparatus, you may set to the value used as an optimal value each time without setting it as a constant.

図14は、この発明の実施の形態2における瞬間COPと暖房能力の時間変化を示す図である。図14では、横軸が時間を、縦軸がCOPと能力とを表している。蒸発器4での着霜現象が進むと、通風抵抗の増加及び熱抵抗の増加により、瞬間COP、瞬間暖房能力ともに低下する。このとき、圧縮機周波数Fが上昇した場合は、凝縮温度Tcが上昇し、蒸発温度Teが低下するため、式(1)で表される瞬間COPは低下するが、凝縮温度Tc及び圧縮機周波数Fがともに上がるので、式(5)で表される瞬間暖房能力Qhは上昇する。   FIG. 14 is a diagram showing temporal changes in instantaneous COP and heating capacity in the second embodiment of the present invention. In FIG. 14, the horizontal axis represents time, and the vertical axis represents COP and capability. When the frosting phenomenon in the evaporator 4 progresses, both the instantaneous COP and the instantaneous heating capacity decrease due to an increase in ventilation resistance and an increase in thermal resistance. At this time, when the compressor frequency F is increased, the condensation temperature Tc is increased and the evaporation temperature Te is decreased. Therefore, the instantaneous COP represented by the equation (1) is decreased, but the condensation temperature Tc and the compressor frequency are decreased. Since F increases together, the instantaneous heating capacity Qh expressed by the equation (5) increases.

図15は、この発明の実施の形態2における凝縮器吸込空気温度Tacが変化した場合の瞬間COPと暖房能力の変化を示す図である。図15は、横軸が時間を、縦軸がCOPと能力とを表している。蒸発器4での着霜現象が進むと、通風抵抗の増加及び熱抵抗の増加により、瞬間COP及び瞬間暖房能力Qhがともに低下する。このとき、凝縮器吸込空気温度Tacが上昇した場合は、凝縮温度Tcが上昇し、式(1)で表される瞬間COPにおいて、分子の増加量よりも、分母の増加分が大きくなり、低下する。一方、凝縮温度Tcが上昇することにより式(5)で表される瞬間暖房能力Qhは上昇する。   FIG. 15 is a diagram showing changes in instantaneous COP and heating capacity when the condenser intake air temperature Tac in the second embodiment of the present invention changes. In FIG. 15, the horizontal axis represents time, and the vertical axis represents COP and capability. When the frosting phenomenon in the evaporator 4 proceeds, both the instantaneous COP and the instantaneous heating capacity Qh are reduced due to the increase in the ventilation resistance and the increase in the thermal resistance. At this time, when the condenser intake air temperature Tac rises, the condensation temperature Tc rises, and in the instantaneous COP expressed by the formula (1), the denominator increase becomes larger than the numerator increase, and the decrease. To do. On the other hand, as the condensing temperature Tc increases, the instantaneous heating capacity Qh expressed by the equation (5) increases.

図16は、この発明の実施の形態2における蒸発器吸込空気温度Taeが変化した場合の瞬間COPと暖房能力の変化を示す図である。図16は、横軸が時間を、縦軸がCOPと能力とを表している。蒸発器4での着霜現象が進むと、通風抵抗の増加及び熱抵抗の増加により、瞬間COP、瞬間暖房能力ともに低下する。このとき、蒸発器吸込空気温度Taeが低下した場合は、蒸発温度Teが下降するため、式(1)で表される瞬間COPは、分母が大きくなり、瞬間COPは低下する。一方、蒸発温度Teを含まない式(4)で表される瞬間暖房能力Qhは変化しない。   FIG. 16 is a diagram showing changes in instantaneous COP and heating capacity when the evaporator intake air temperature Tae in the second embodiment of the present invention changes. In FIG. 16, the horizontal axis represents time, and the vertical axis represents COP and capability. When the frosting phenomenon in the evaporator 4 progresses, both the instantaneous COP and the instantaneous heating capacity decrease due to an increase in ventilation resistance and an increase in thermal resistance. At this time, when the evaporator intake air temperature Tae is decreased, the evaporation temperature Te is decreased. Therefore, the instantaneous COP represented by the equation (1) has a large denominator, and the instantaneous COP is decreased. On the other hand, the instantaneous heating capacity Qh represented by the equation (4) that does not include the evaporation temperature Te does not change.

このように、圧縮機周波数変化、蒸発器吸込空気温度変化、凝縮器吸込空気温度変化時に、式(1)で表される瞬間COPが式(3)のように平均COPを下回った場合でも、瞬間暖房能力Qhは1サイクル平均暖房能力Qh_CYCLEを下回らない。このため、除霜によるCOP低下ではなく、圧縮機周波数変化、蒸発器吸込空気温度変化又は凝縮器吸込空気温度変化によるCOP低下であるということがわかる。   Thus, even when the instantaneous COP expressed by the equation (1) falls below the average COP as in the equation (3) at the time of the compressor frequency change, the evaporator intake air temperature change, and the condenser intake air temperature change, The instantaneous heating capacity Qh does not fall below the one-cycle average heating capacity Qh_CYCLE. For this reason, it turns out that it is not a COP fall by defrosting but a COP fall by a compressor frequency change, an evaporator intake air temperature change, or a condenser intake air temperature change.

逆に、瞬間COP(=COP)、瞬間暖房能力Qhが同時に低下する場合は、着霜によるものであるという判断ができるので、制御装置50は、式(3)と下式(7)がともに成立したものと判断すると、除霜運転を開始するものとする。   On the contrary, when the instantaneous COP (= COP) and the instantaneous heating capacity Qh decrease at the same time, it can be determined that it is due to frost formation. Therefore, the control device 50 determines that both the expression (3) and the following expression (7) When it is determined that it has been established, the defrosting operation is started.

[数7]
Qh≦Qh_CYCLE …(7)
[Equation 7]
Qh ≦ Qh_CYCLE (7)

図17は、この発明の実施の形態2に係わるヒートポンプ装置100の除霜開始判定制御に関する処理の流れの一例のフローチャートを示す図である。ヒートポンプ装置100が運転を開始すると、制御装置50は、圧縮機周波数検出手段15で検出された圧縮機周波数F、凝縮温度検出手段11で検出された凝縮温度Tc及び蒸発温度検出手段12で検出された蒸発温度Teの各値をメモリ51に格納する(ステップS401)。そして、演算部52は、上記式(1)で表される瞬間COP(=COP)及び式(5)で表される瞬間暖房能力Qhの演算を行う(ステップS402)。   FIG. 17 is a view showing a flowchart of an example of a flow of processing relating to defrosting start determination control of the heat pump apparatus 100 according to Embodiment 2 of the present invention. When the heat pump device 100 starts operation, the control device 50 is detected by the compressor frequency F detected by the compressor frequency detection means 15, the condensation temperature Tc detected by the condensation temperature detection means 11, and the evaporation temperature detection means 12. Each value of the evaporation temperature Te is stored in the memory 51 (step S401). And the calculating part 52 calculates the instantaneous heating capability Qh represented by the instantaneous COP (= COP) represented by the said Formula (1) and Formula (5) (step S402).

その後、図6に示すように通常運転開始から現時点までの平均COP(=COP_AVE)と平均暖房能力Qh_AVEを計算する(ステップS403)。   Thereafter, as shown in FIG. 6, an average COP (= COP_AVE) and an average heating capacity Qh_AVE from the start of normal operation to the present time are calculated (step S403).

次に、現時点で除霜運転を開始した場合の1サイクル平均COPを上記式(2)から、1サイクル平均暖房能力を上記式(6)から演算し、それぞれ現時点の瞬間COP(=COP)と、瞬間暖房能力(=Qh)と比較する(ステップS404)。比較した結果、上記式(3)及び式(7)の関係が成立したものと判定すると(ステップS404;YES)、除霜運転を開始する(ステップS405)。一方、上記式(3)及び上記式(7)のどちらかの関係が成立してないと判定すると(ステップS403;NO)、ステップS401に戻り、処理工程を繰り返す。   Next, the one-cycle average COP when the defrosting operation is started at the present time is calculated from the above equation (2), and the one-cycle average heating capacity is calculated from the above equation (6), and the current instantaneous COP (= COP) and The instantaneous heating capacity (= Qh) is compared (step S404). As a result of the comparison, if it is determined that the relationship of the above formulas (3) and (7) is established (step S404; YES), the defrosting operation is started (step S405). On the other hand, if it is determined that either of the above formulas (3) and (7) is not established (step S403; NO), the process returns to step S401, and the processing steps are repeated.

上記した式(3)及び式(7)の両方の関係が同時に成立する要因は、着霜現象しかない。そこで、本実施の形態のヒートポンプ装置100によれば、上記式(3)と式(7)とを除霜開始判定に用いることにより、圧縮機周波数F、蒸発器吸込空気温度Tae又は凝縮器吸込空気温度Tacが変化した場合でも誤判定することなく、最適なタイミングで除霜運転開始が可能となり、省エネルギをはかることができる。   The frosting phenomenon is the only factor that satisfies the relations of both the equations (3) and (7). Therefore, according to the heat pump device 100 of the present embodiment, the compressor frequency F, the evaporator suction air temperature Tae or the condenser suction is obtained by using the above formulas (3) and (7) for the defrosting start determination. Even when the air temperature Tac changes, the defrosting operation can be started at an optimal timing without erroneous determination, and energy saving can be achieved.

実施の形態3.
上記の実施の形態1及び実施の形態2において、前回の除霜運転に応じて、C1、C2を変化させる補正を行うようにしてもよい。たとえば基準除霜運転時間を予め決定しておき、前回の除霜運転時間が基準除霜運転時間よりも長い場合は、式(2)のC1又は式(6)のC2を大きくする方向に補正する。逆に、前回の除霜運転時間が基準除霜運転時間よりも短い場合は、式(2)のC1又は式(6)のC2を小さくする方向に補正する。
Embodiment 3 FIG.
In said Embodiment 1 and Embodiment 2, you may make it perform the correction which changes C1 and C2 according to the last defrost driving | operation. For example, the reference defrosting operation time is determined in advance, and when the previous defrosting operation time is longer than the reference defrosting operation time, the correction is performed so that C1 in Expression (2) or C2 in Expression (6) is increased. To do. On the other hand, when the last defrosting operation time is shorter than the reference defrosting operation time, C1 in Expression (2) or C2 in Expression (6) is corrected to be reduced.

図18は、この発明の実施の形態3における瞬間COPと暖房能力の時間変化を示した図である。図18に示すように、除霜時間が長いということは、除霜運転によるCOP、能力の低下が大きすぎて、暖房運転時間が長すぎたということになるので、式(2)におけるC1又は式(6)におけるC2を大きくするとよい。   FIG. 18 is a diagram showing temporal changes in instantaneous COP and heating capacity in the third embodiment of the present invention. As shown in FIG. 18, the long defrosting time means that the COP and capacity reduction due to the defrosting operation is too large, and the heating operation time is too long. C2 in equation (6) should be increased.

図19は、この発明の実施の形態3における瞬間COPと暖房能力の時間変化を示した図である。図19に示すように、除霜時間が短いということは、除霜運転によるCOP、能力の低下が小さすぎて、暖房運転時間が短すぎたということになるので、式(2)におけるC1又は式(6)におけるC2を小さくするとよい。   FIG. 19 is a diagram showing temporal changes in instantaneous COP and heating capacity according to Embodiment 3 of the present invention. As shown in FIG. 19, the short defrosting time means that the decrease in COP and capacity due to the defrosting operation is too small and the heating operation time is too short. C2 in Formula (6) is good to make small.

以上のように式(2)におけるC1又は式(6)におけるC2を補正することにより、1サイクル平均COP、1サイクル平均暖房能力の演算精度を向上させることができる。このため、より最適なタイミングで除霜運転開始が可能となり、省エネルギにつながる。   As described above, by correcting C1 in formula (2) or C2 in formula (6), the calculation accuracy of the one-cycle average COP and the one-cycle average heating capacity can be improved. For this reason, the defrosting operation can be started at a more optimal timing, which leads to energy saving.

実施の形態4.
上記の実施の形態1及び実施の形態2において、蒸発器吸込空気温度Taeは、蒸発器吸込空気湿球温度を用いるようにしてもよい。
Embodiment 4 FIG.
In the first embodiment and the second embodiment described above, the evaporator suction air temperature Tae may be the evaporator suction air wet bulb temperature.

また、上記の実施の形態1及び実施の形態2において、凝縮器2は、空気と冷媒の熱交換を行うものであったが、たとえば水などと冷媒の熱交換を行うものでもよい。この場合は、凝縮器吸込空気温度Tacは凝縮器流入水温度となる。   In the first embodiment and the second embodiment, the condenser 2 exchanges heat between air and the refrigerant. However, the condenser 2 may exchange heat between the refrigerant and water, for example. In this case, the condenser intake air temperature Tac becomes the condenser inflow water temperature.

上記の実施の形態1では、蒸発器吸込空気温度検出手段13、凝縮器吸込空気温度検出手段14及び圧縮機周波数検出手段15のすべての検出値に基づいて、凝縮温度及び蒸発温度の補正を行ったが、これに限定するものではない。上記の検出手段のうち、いずれかを用いた場合でもこの発明を実現することができる。   In the first embodiment, the condensing temperature and the evaporating temperature are corrected based on all the detected values of the evaporator intake air temperature detecting means 13, the condenser intake air temperature detecting means 14, and the compressor frequency detecting means 15. However, the present invention is not limited to this. The present invention can be realized even when any of the above detection means is used.

さらに、上記の実施の形態2では、凝縮温度及び蒸発温度の補正を行わなかったが、実施の形態1のように、補正凝縮温度又は補正蒸発温度を演算し、補正凝縮温度又は補正蒸発温度に基づいて瞬間暖房能力Qhなどの演算を行うようにしてもよい。   Further, in the second embodiment, the condensation temperature and the evaporation temperature are not corrected. However, as in the first embodiment, the corrected condensation temperature or the corrected evaporation temperature is calculated, and the corrected condensation temperature or the corrected evaporation temperature is obtained. Based on this, the instantaneous heating capacity Qh and the like may be calculated.

1 圧縮機、2 凝縮器、3 膨張装置、4 蒸発器、5 凝縮器用ファン、6 蒸発器用ファン、11 凝縮温度検出手段、12 蒸発温度検出手段、13 蒸発器吸込空気温度検出手段、14 凝縮器吸込空気温度検出手段、15 圧縮機周波数検出手段、50 制御装置、51 メモリ、52 演算部、100 ヒートポンプ装置。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condenser, 3 Expansion device, 4 Evaporator, 5 Condenser fan, 6 Evaporator fan, 11 Condensation temperature detection means, 12 Evaporation temperature detection means, 13 Evaporator suction air temperature detection means, 14 Condenser Intake air temperature detection means, 15 compressor frequency detection means, 50 control device, 51 memory, 52 arithmetic unit, 100 heat pump device.

Claims (11)

圧縮機、凝縮器、膨張装置及び蒸発器を配管接続して冷媒回路を構成し、
前記凝縮器の飽和温度を凝縮温度として検出する凝縮温度検出手段と、
前記蒸発器の飽和温度を蒸発温度として検出する蒸発温度検出手段と、
前記圧縮機の回転周波数を圧縮機周波数として検出する圧縮機周波数検出手段と、
前記圧縮機周波数並びに前記凝縮温度及び前記蒸発温度に基づいて補正凝縮温度と補正蒸発温度とを演算し、前記補正凝縮温度に基づく能力を前記補正凝縮温度と前記補正蒸発温度との差から演算した消費電力で除して現時点での運転効率を演算し、現時点で除霜を行ったとしたときの運転開始から除霜終了までの平均運転効率を少なくとも演算し、前記運転効率が前記平均運転効率以下になったものと判定すると、前記蒸発器の除霜の開始を判断する処理を行う制御装置と
を備えるヒートポンプ装置。
A compressor, a condenser, an expansion device and an evaporator are connected by piping to form a refrigerant circuit,
Condensation temperature detection means for detecting the saturation temperature of the condenser as a condensation temperature;
Evaporating temperature detecting means for detecting the saturation temperature of the evaporator as an evaporating temperature;
Compressor frequency detection means for detecting a rotation frequency of the compressor as a compressor frequency;
A corrected condensing temperature and a corrected evaporating temperature are calculated based on the compressor frequency and the condensing temperature and the evaporating temperature, and an ability based on the corrected condensing temperature is calculated from a difference between the corrected condensing temperature and the corrected evaporating temperature. Calculate the current operating efficiency divided by power consumption, calculate at least the average operating efficiency from the start of operation to the end of defrosting when defrosting is performed at the current time, and the operating efficiency is less than the average operating efficiency A heat pump device comprising: a control device that performs a process of determining the start of defrosting of the evaporator when it is determined that the defrosting has occurred .
前記制御装置は、
転開始から現時点までの前記運転効率の平均に基づいて前記平均運転効率を演算する請求項1に記載のヒートポンプ装置。
The controller is
Based on the average of the operating efficiency of the OPERATION start to the current point, the heat pump apparatus according to claim 1 for calculating the average operating efficiency.
前記制御装置は、前記圧縮機周波数の値と予め定めた基準圧縮機周波数の値との差を演算し、
前記差が正の場合は、前記差の絶対値に応じて、前記蒸発温度を上げ、前記凝縮温度を下げるような前記補正蒸発温度と前記補正凝縮温度とを演算し、
前記差が負の場合は、前記差の絶対値に応じて、前記蒸発温度を下げ、前記凝縮温度を上げるような前記補正蒸発温度と前記補正凝縮温度とを演算する請求項2に記載のヒートポンプ装置。
The control device calculates a difference between the compressor frequency value and a predetermined reference compressor frequency value,
When the difference is positive, according to the absolute value of the difference, calculate the corrected evaporation temperature and the corrected condensation temperature to increase the evaporation temperature and decrease the condensation temperature,
3. The heat pump according to claim 2, wherein when the difference is negative, the corrected evaporation temperature and the corrected condensation temperature that lower the evaporation temperature and increase the condensation temperature are calculated according to an absolute value of the difference. apparatus.
空気が前記蒸発器に流入する温度を蒸発器吸込温度として検出する蒸発器吸込温度検出手段をさらに備え、
前記制御装置は、前記蒸発器吸込温度の値と予め定めた基準蒸発器吸込温度の値との差を演算し、
前記差が正の場合は、前記差の絶対値に応じて、前記蒸発温度を上げるような前記補正蒸発温度を演算し、
前記差が負の場合は、前記差の絶対値に応じて、前記蒸発温度を下げるような前記補正蒸発温度を演算する請求項2又は3に記載のヒートポンプ装置。
Further comprising an evaporator suction temperature detection means for detecting a temperature at which air flows into the evaporator as an evaporator suction temperature;
The control device calculates a difference between the value of the evaporator suction temperature and a value of a predetermined reference evaporator suction temperature,
If the difference is positive, according to the absolute value of the difference, calculate the corrected evaporation temperature to raise the evaporation temperature,
4. The heat pump device according to claim 2, wherein, when the difference is negative, the correction evaporation temperature that lowers the evaporation temperature is calculated according to an absolute value of the difference.
流体が前記凝縮器に流入する温度を凝縮器吸込温度として検出する凝縮器吸込温度検出手段をさらに備え、
前記制御装置は、前記凝縮器吸込温度の値と予め定めた基準凝縮器吸込温度の値との差を演算し、
前記差が正の場合は、前記差の絶対値に応じて、前記凝縮温度を下げるような前記補正凝縮温度を演算し、
前記差が負の場合は、前記差の絶対値に応じて、前記凝縮温度を上げるような前記補正凝縮温度を演算する請求項2〜4のいずれか一項に記載のヒートポンプ装置。
A condenser suction temperature detecting means for detecting a temperature at which the fluid flows into the condenser as a condenser suction temperature;
The control device calculates a difference between the value of the condenser suction temperature and a predetermined reference condenser suction temperature,
If the difference is positive, according to the absolute value of the difference, calculate the corrected condensing temperature to lower the condensing temperature,
The heat pump device according to any one of claims 2 to 4, wherein when the difference is negative, the corrected condensing temperature is calculated so as to increase the condensing temperature according to an absolute value of the difference.
圧縮機、凝縮器、膨張装置及び蒸発器を配管接続して冷媒回路を構成し、
前記凝縮器の飽和温度を凝縮温度として検出する凝縮温度検出手段と、
前記蒸発器の飽和温度を蒸発温度として検出する蒸発温度検出手段と、
前記圧縮機の回転周波数を圧縮機周波数として検出する圧縮機周波数検出手段と、
前記凝縮温度及び前記蒸発温度に基づいて、現時点で除霜を行ったとしたときの運転開始から除霜終了までの平均運転効率を少なくとも演算し、演算した前記平均運転効率に基づいて前記蒸発器の除霜の開始を判断する処理を行う制御装置とを備え、
前記制御装置は、
前記凝縮温度に基づく能力を前記凝縮温度と前記蒸発温度との差から演算した消費電力で除して現時点での運転効率を演算し、また、前記凝縮温度と前記圧縮機周波数から前記凝縮器における現時点での能力を演算し、運転開始から現時点までの前記運転効率の平均及び前記能力の平均に基づいて、現時点で除霜を行ったとしたときの運転開始から除霜終了までの前記平均運転効率及び平均能力を演算し、前記運転効率が前記平均運転効率以下かつ前記能力が前記平均能力以下になったものと判定すると、前記蒸発器の除霜を開始する処理を行ヒートポンプ装置。
A compressor, a condenser, an expansion device and an evaporator are connected by piping to form a refrigerant circuit,
Condensation temperature detection means for detecting the saturation temperature of the condenser as a condensation temperature;
Evaporating temperature detecting means for detecting the saturation temperature of the evaporator as an evaporating temperature;
Compressor frequency detection means for detecting a rotation frequency of the compressor as a compressor frequency;
Based on the condensation temperature and the evaporation temperature, at least the average operation efficiency from the start of operation to the end of the defrost when defrosting is performed at the present time, and based on the calculated average operation efficiency of the evaporator A control device that performs processing for determining the start of defrosting,
The controller is
Dividing the capacity based on the condensing temperature by the power consumption calculated from the difference between the condensing temperature and the evaporating temperature to calculate the current operating efficiency, and from the condensing temperature and the compressor frequency in the condenser The average operating efficiency from the start of operation to the end of defrosting is calculated based on the average of the operating efficiency from the start of operation to the current time and the average of the capacity, when defrosting is performed at the current time. and calculates the average power, the operation when efficiency is determined that the average operating efficiency or less and the capacity is below the average capacity, the evaporator line cormorants heat pump apparatus a process of starting the defrosting of.
前記制御装置は、
前回行った除霜運転時間と予め設定した基準除霜運転時間との差に基づいて、前記平均能力を補正する請求項6に記載のヒートポンプ装置。
The controller is
The heat pump device according to claim 6, wherein the average capacity is corrected based on a difference between a defrosting operation time performed last time and a preset reference defrosting operation time.
前記制御装置は、
前記前回行った除霜運転時間と前記基準除霜運転時間との差を演算し、
前記差が正の場合は、前記差の絶対値に応じて、前記平均能力が高くなるような補正を行い、
前記差がの場合は、前記差の絶対値に応じて、前記平均能力が低くなるような補正を行う請求項7に記載のヒートポンプ装置。
The controller is
Calculate the difference between the previous defrost operation time and the reference defrost operation time,
When the difference is positive, according to the absolute value of the difference, perform correction to increase the average ability,
The heat pump apparatus according to claim 7, wherein when the difference is negative , correction is performed so that the average ability is lowered according to an absolute value of the difference.
前記制御装置は、
前回行った除霜運転時間と予め設定した基準除霜運転時間との差に基づいて、前記平均運転効率を補正する請求項1〜8のいずれか一項に記載のヒートポンプ装置。
The controller is
The heat pump apparatus as described in any one of Claims 1-8 which correct | amends the said average operation efficiency based on the difference of the defrost operation time performed last time and the reference | standard defrost operation time set beforehand.
前記制御装置は、
前記前回行った除霜運転時間と前記基準除霜運転時間との差を演算し、
前記差が正の場合は、前記差の絶対値に応じて、前記平均運転効率が高くなるような補正を行い、
前記差がの場合は、前記差の絶対値に応じて、前記平均運転効率が低くなるような補正を行う請求項9に記載のヒートポンプ装置。
The controller is
Calculate the difference between the previous defrost operation time and the reference defrost operation time,
When the difference is positive, according to the absolute value of the difference, perform a correction that increases the average operating efficiency,
The heat pump apparatus according to claim 9, wherein when the difference is negative , correction is performed so that the average operation efficiency is lowered according to an absolute value of the difference.
請求項1〜10のいずれか一項に記載のヒートポンプ装置を用いて対象空間の空気調和を行う空気調和システム。   The air conditioning system which performs air conditioning of object space using the heat pump apparatus as described in any one of Claims 1-10.
JP2015512243A 2013-04-18 2013-04-18 Heat pump device and air conditioning system Active JP6072901B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/061467 WO2014170982A1 (en) 2013-04-18 2013-04-18 Heat pump device and air-conditioning system

Publications (2)

Publication Number Publication Date
JP6072901B2 true JP6072901B2 (en) 2017-02-01
JPWO2014170982A1 JPWO2014170982A1 (en) 2017-02-16

Family

ID=51730953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015512243A Active JP6072901B2 (en) 2013-04-18 2013-04-18 Heat pump device and air conditioning system

Country Status (3)

Country Link
JP (1) JP6072901B2 (en)
GB (1) GB2528213B (en)
WO (1) WO2014170982A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413534A (en) * 2022-01-11 2022-04-29 珠海格力电器股份有限公司 Defrosting control method, device, equipment, computer equipment and electronic equipment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3222939B1 (en) * 2016-03-23 2020-08-19 Honeywell spol s.r.o. Frost management of an evaporator
US10458688B2 (en) 2017-03-22 2019-10-29 Honeywell International Inc. Frost management of an evaporator
JP7011766B2 (en) * 2018-03-19 2022-01-27 三菱電機冷熱プラント株式会社 Cooling device and its control method and control program
WO2020145281A1 (en) * 2019-01-08 2020-07-16 三菱電機株式会社 Refrigeration system
JP7433040B2 (en) * 2019-01-08 2024-02-19 三菱電機株式会社 refrigeration system
US11131497B2 (en) * 2019-06-18 2021-09-28 Honeywell International Inc. Method and system for controlling the defrost cycle of a vapor compression system for increased energy efficiency
US11709004B2 (en) 2020-12-16 2023-07-25 Lennox Industries Inc. Method and a system for preventing a freeze event using refrigerant temperature

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264089A (en) * 1992-03-17 1993-10-12 Daikin Ind Ltd Defrosting controller for freezer
JPH10111050A (en) * 1996-10-08 1998-04-28 Daikin Ind Ltd Air conditioner
JP2010060150A (en) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp Heat pump device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05264089A (en) * 1992-03-17 1993-10-12 Daikin Ind Ltd Defrosting controller for freezer
JPH10111050A (en) * 1996-10-08 1998-04-28 Daikin Ind Ltd Air conditioner
JP2010060150A (en) * 2008-09-01 2010-03-18 Mitsubishi Electric Corp Heat pump device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114413534A (en) * 2022-01-11 2022-04-29 珠海格力电器股份有限公司 Defrosting control method, device, equipment, computer equipment and electronic equipment
CN114413534B (en) * 2022-01-11 2023-05-02 珠海格力电器股份有限公司 Defrosting control method, device, equipment, computer equipment and electronic equipment

Also Published As

Publication number Publication date
GB2528213A (en) 2016-01-13
GB2528213B (en) 2020-01-15
JPWO2014170982A1 (en) 2017-02-16
WO2014170982A1 (en) 2014-10-23
GB201519215D0 (en) 2015-12-16

Similar Documents

Publication Publication Date Title
JP6072901B2 (en) Heat pump device and air conditioning system
JP4642100B2 (en) Heat pump equipment
US7856836B2 (en) Refrigerating air conditioning system
JP6843227B2 (en) Dehumidifier
JP6071648B2 (en) Air conditioner
CN103884140A (en) Method and system for controlling discharge superheat degree of air conditioning compressor
JP5511761B2 (en) Air conditioner
JP6591074B2 (en) Air conditioner
JP2019163869A (en) Cooling device and control method therefor,and control program
JP6007965B2 (en) Air conditioner
JP2003028517A (en) Air conditioner
JP2019163873A (en) Heat pump cycle device
JP2018159520A (en) Air conditioner
JPWO2018189830A1 (en) Refrigeration cycle equipment
JP3849468B2 (en) Air conditioner
JP5989534B2 (en) Refrigeration system apparatus and air conditioner
JP2011149611A (en) Air-conditioning apparatus
JP2019163874A (en) Heat pump cycle device
JPH1038398A (en) Controller of electric expansion valve
JP2016065699A (en) Refrigeration cycle device
JP2003294295A (en) Air conditioner
JP2019020093A (en) Air conditioner
JP2008249240A (en) Condensing unit and refrigerating device comprising the same
JP2009115385A (en) Refrigerating device
JP6271011B2 (en) Refrigeration air conditioner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161228

R150 Certificate of patent or registration of utility model

Ref document number: 6072901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250