JPH05264089A - Defrosting controller for freezer - Google Patents

Defrosting controller for freezer

Info

Publication number
JPH05264089A
JPH05264089A JP4060114A JP6011492A JPH05264089A JP H05264089 A JPH05264089 A JP H05264089A JP 4060114 A JP4060114 A JP 4060114A JP 6011492 A JP6011492 A JP 6011492A JP H05264089 A JPH05264089 A JP H05264089A
Authority
JP
Japan
Prior art keywords
heating capacity
temperature difference
outlet
calculated
inlet temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4060114A
Other languages
Japanese (ja)
Other versions
JP2909941B2 (en
Inventor
Seiji Sakai
誠治 酒井
Hirotaka Nakajima
洋登 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4060114A priority Critical patent/JP2909941B2/en
Publication of JPH05264089A publication Critical patent/JPH05264089A/en
Application granted granted Critical
Publication of JP2909941B2 publication Critical patent/JP2909941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To eliminate an error of a judging timing due to a variation in a frequency of an inverter in a defrosting controller for judging a defrosting starting timing of a freezer at a decreasing time point of mean room heating capacity. CONSTITUTION:A compressor 1 with an inverter is disposed in a freezer, and a temperature difference DELTATn between an outlet temperature To and an inlet temperature Ti of a user side heat exchanger 6 is calculated at each predetermined period. With a predetermined frequency for giving a temperature difference corresponding to room heating capacity as a reference, a correction coefficient XD5 for converting the difference DELTAT into a value at the predetermined frequency is used as a function of the frequency, and stored in a correction formula memory means 12 at each type of the compressor. The difference DELTATn is corrected with the coefficient XD5 to obtain a temperature difference DELTATnh to become an accurate index of the room heating capacity. Integrated room heating capacity Sn and mean room heating capacity Qn are calculated based on the corrected difference DELTATnh, and a defrost command is output by defrosting command output means 55 when the mean room heating capacity Qn is lowered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷凍装置の除霜運転制
御装置に係り、特に平均暖房能力の変化に基づき除霜運
転を開始するようにしたものの改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a defrosting operation control device for a refrigeration system, and more particularly to an improvement of a defrosting operation control device which starts defrosting operation based on a change in average heating capacity.

【0002】[0002]

【従来の技術】従来より、冷凍装置の除霜運転制御装置
として、例えば特開昭64−41748号公報に開示さ
れるように、運転周波数がインバータで可変に調節され
る圧縮機を備えた冷凍装置において、利用側熱交換器の
被加熱媒体の出口−入口温度差を周期的に演算し、この
温度差がインバータ周波数が低くなるほど大きくインバ
ータ周波数が高くなるほど小さく変動することを根拠と
して予め算出してなる周波数に対する補正係数の関係を
関数情報として記憶しておくとともに、除霜終了直後の
暖房運転開始時点からの積算暖房能力を、出口−入口温
度差とそのときの周波数に対応する補正係数とを乗じた
値に基づいて、周期的に算出して記憶し、この積算道棒
能力を、暖房運転開始時点から現在に至る暖房運転時間
と設定した予測除霜運転時間との和で除算して平均暖房
能力を算出して、この平均暖房能力の今回の値と前回の
値とを比較して今回の値が小さいときに除霜信号を出力
するようにしたものは公知の技術である。
2. Description of the Related Art Conventionally, as a defrosting operation control device for a refrigerating machine, a refrigerating machine having a compressor whose operating frequency is variably adjusted by an inverter, as disclosed in, for example, JP-A-64-41748. In the equipment, the outlet-inlet temperature difference of the medium to be heated of the utilization side heat exchanger is periodically calculated, and it is calculated in advance on the basis that this temperature difference fluctuates as the inverter frequency decreases and decreases as the inverter frequency increases. The relationship of the correction coefficient with respect to the frequency is stored as function information, and the cumulative heating capacity from the heating operation start time immediately after defrosting is set as the correction coefficient corresponding to the outlet-inlet temperature difference and the frequency at that time. It is calculated and stored periodically based on the value obtained by multiplying by, and this cumulative rod capacity is set as the estimated heating time from the heating operation start time to the present time. The average heating capacity is calculated by dividing by the sum of the operating time, the current value of this average heating capacity is compared with the previous value, and the defrost signal is output when this value is small. Those are known techniques.

【0003】[0003]

【発明が解決しようとする課題】上記従来の公報に開示
される冷凍装置の除霜運転制御装置は、暖房能力の低下
から利用側熱交換器の着霜状態を検知することにより、
最適の除霜開始のタイミングを設定しようとするもので
ある。すなわち、図7に示すように、被加熱媒体の出口
−入口温度差ΔTn を計測し、周期Δt間の暖房能力Q
mを求めると、 Qm=Δt・ΔTn となり、除霜運転終了後、暖房運転開始時点から時間t
f が経過するまでの積算暖房能力Sn は、下記式 Sn =ΣQm で表される(図8の斜線部参照)。したがって、暖房運
転時間tf と予測除霜運転時間tdyとの間の平均暖房能
力Qn は、下記式 Qn =Sn /(tf+tdy) で表されることになる(ただし、図では、前回の除霜運
転時間を予測除霜運転時間tdyとしている)。
DISCLOSURE OF THE INVENTION The defrosting operation control device for a refrigerating apparatus disclosed in the above-mentioned conventional publication detects the frosted state of the utilization side heat exchanger due to a decrease in heating capacity,
It is intended to set the optimum defrosting start timing. That is, as shown in FIG. 7, the outlet-inlet temperature difference ΔTn of the medium to be heated is measured, and the heating capacity Q during the period Δt is measured.
When m is calculated, it becomes Qm = Δt · ΔTn, which is the time t from the start of heating operation after the defrosting operation is completed.
The cumulative heating capacity Sn until the elapse of f is expressed by the following formula Sn = ΣQm (see the shaded area in FIG. 8). Therefore, the average heating capacity Qn between the heating operation time tf and the predicted defrosting operation time tdy is represented by the following formula Qn = Sn / (tf + tdy) (However, in the figure, the previous defrosting operation is performed. The time is defined as the predicted defrosting operation time tdy).

【0004】そして、図9に示すように、暖房運転中に
それまでの平均暖房能力Qn を周期的に求め、その変化
をプロットすると、暖房運転の進行に伴い平均暖房能力
Qnが増大していくが、熱源側熱交換器に着霜を生じる
と、それに応じて暖房能力が低減するため、平均暖房能
力Qn が低下する時点が生じる(図9の点Qe参照)。
この時点で、除霜指令を出力することで、除霜運転への
突入時期を精度よく定めることができるのである。
Then, as shown in FIG. 9, when the average heating capacity Qn up to that time is periodically obtained during the heating operation and its change is plotted, the average heating capacity Qn increases as the heating operation progresses. However, when frost is formed on the heat source side heat exchanger, the heating capacity is reduced accordingly, so that the average heating capacity Qn is lowered (see point Qe in FIG. 9).
At this point, by outputting the defrosting command, it is possible to accurately determine the rush time to the defrosting operation.

【0005】特に、上記従来のものは、インバータ周波
数つまり圧縮機の運転容量によって、被加熱媒体の出口
−入口温度差ΔTn が複雑に変化し、見掛上積算暖房能
力Sn がその影響で増減変化することに鑑み、インバー
タ周波数による出口−入口温度差の補正を行うことで、
除霜制御精度の向上ひいてはEERの向上を図ろうとす
るものである。
Particularly, in the above-mentioned conventional one, the outlet-inlet temperature difference ΔTn of the medium to be heated is complicatedly changed depending on the inverter frequency, that is, the operating capacity of the compressor, and the apparent cumulative heating capacity Sn is increased / decreased due to the influence. In consideration of this, by correcting the outlet-inlet temperature difference by the inverter frequency,
It is intended to improve the defrosting control accuracy and eventually the EER.

【0006】その場合、インバータ周波数と補正係数と
の関係は、冷凍装置の実験によって得られた出口−入口
温度差のインバータ周波数に対する変化特性を基礎とし
ていたが、実際に種々の冷凍装置については特性が異な
るので、そのまま適用するには不便であるという問題が
あった。
In this case, the relation between the inverter frequency and the correction coefficient was based on the change characteristic of the outlet-inlet temperature difference with respect to the inverter frequency obtained by the experiment of the refrigerating apparatus, but actually, the characteristic of various refrigerating apparatuses is changed. However, there is a problem that it is inconvenient to apply it as it is.

【0007】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、利用側熱交換器の被加熱媒体の出口
温度は利用側熱交換器の凝縮温度に応じて変化するの
で、利用側熱交換器の出口−入口温度差が冷媒の凝縮温
度に応じて変化し、しかも凝縮温度はインバータ周波数
に応じて変化するとともに、圧縮機の定格容量等の機種
が定まると、インバータ周波数による出口−入口温度差
の変化特性がほぼ一定することに着目し、インバータ周
波数と補正係数との関係を圧縮機の機種で定まる回帰式
で数式化することで、各冷凍装置への適用の簡易化を図
ることにある。
The present invention has been made in view of the above point, and an object thereof is that the outlet temperature of the medium to be heated of the utilization side heat exchanger changes according to the condensation temperature of the utilization side heat exchanger. When the outlet-inlet temperature difference of the heat exchanger on the use side changes according to the condensing temperature of the refrigerant, and the condensing temperature also changes according to the inverter frequency, and when the model such as the rated capacity of the compressor is determined, it depends on the inverter frequency. Focusing on the fact that the change characteristic of the outlet-inlet temperature difference is almost constant, formulating the relationship between the inverter frequency and the correction coefficient with a regression equation determined by the model of the compressor simplifies the application to each refrigeration system. Is to try.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の講じた手段は、図1に示すよう
に、インバータにより周波数を可変に調節される圧縮機
(1)と、熱源側熱交換器(3)と、減圧機構(5)
と、利用側熱交換器(6)とを順次接続してなる冷媒回
路(9)を備えた冷凍装置を前提とする。
Means for Solving the Problems To achieve the above object, the means of the invention of claim 1 is, as shown in FIG. 1, a compressor (1) whose frequency is variably adjusted by an inverter, Heat source side heat exchanger (3) and pressure reducing mechanism (5)
It is premised on a refrigerating apparatus provided with a refrigerant circuit (9) in which the above and the use side heat exchanger (6) are sequentially connected.

【0009】そして、冷凍装置の除霜運転制御装置とし
て、上記利用側熱交換器(6)の被加熱媒体の入口温度
(Ti)を検出する入口温度検出手段(Thr)と、上記
利用側熱交換器(6)の被加熱媒体の出口温度(To)
を検出する出口温度検出手段(The)と、上記両温度検
出手段(Thr),(The)の出力を受け、一定周期ごと
に、暖房運転中における出口温度(To)と入口温度
(Ti)との温度差である出口−入口温度差(ΔTn )
を演算する温度差演算手段(51)と、暖房能力に対応
する温度差を与えるインバータの所定周波数を基準と
し、インバータ周波数(Hz)と凝縮温度との相関関係
に基づき、上記温度差演算手段(51)で演算される出
口−入口温度差(ΔTn )を上記所定周波数における出
口−入口温度差に換算するための補正係数(XD5)をイ
ンバータ周波数(Hz)の関数として圧縮機(1)の機
種毎に記憶する補正式記憶手段(12)と、インバータ
周波数(Hz)に応じ、上記温度差演算手段(51)で
演算された出口−入口温度差(ΔTn )を上記補正式記
憶手段(12)に記憶される補正係数(XD5)により補
正する補正手段(52)と、除霜終了後の暖房運転開始
時点からの積算暖房能力(Sn )を、上記補正手段(5
3)で補正された出口−入口温度差(ΔTnh)に基づ
き、周期的に演算する積算暖房能力演算手段(53)
と、暖房運転開始時期から現在に至る暖房運転時間(t
f)と設定した予測除霜運転時間(tdy)との和で、上
記積算暖房能力演算手段(53)で演算された積算暖房
能力(Sn )を除算することにより、平均暖房能力(Q
n )を算出する平均暖房能力演算手段(54)と、該平
均暖房能力演算手段(54)で演算された平均暖房能力
(Qn )の今回の演算値(Qk )を前回の演算値(Qk-
1 )と比較して、今回の演算値が小さいときに除霜信号
を出力する除霜信号出力手段(55)とを設ける構成と
してものである。
As a defrosting operation control device for the refrigeration system, an inlet temperature detecting means (Thr) for detecting the inlet temperature (Ti) of the medium to be heated of the utilization side heat exchanger (6) and the utilization side heat. Outlet temperature (To) of heated medium of exchanger (6)
The outlet temperature detecting means (The) for detecting the temperature and the outputs of the both temperature detecting means (Thr), (The) are received, and the outlet temperature (To) and the inlet temperature (Ti) during the heating operation are set at regular intervals. Difference between outlet and inlet (ΔTn)
Based on the correlation between the inverter frequency (Hz) and the condensing temperature, the temperature difference calculating means (51) is used as a reference, and the temperature difference calculating means (51) is used as a reference. 51) The model of the compressor (1) is a correction coefficient (XD5) for converting the outlet-inlet temperature difference (ΔTn) calculated in 51) into the outlet-inlet temperature difference at the predetermined frequency as a function of the inverter frequency (Hz). A correction formula storage means (12) for storing each of the correction formula storage means (12) and an outlet-inlet temperature difference (ΔTn) calculated by the temperature difference calculation means (51) according to the inverter frequency (Hz). The correction means (52) for correcting by the correction coefficient (XD5) stored in and the cumulative heating capacity (Sn) from the start of heating operation after the end of defrosting are corrected by the correction means (5).
Integrated heating capacity calculation means (53) for periodically calculating based on the outlet-inlet temperature difference (ΔTnh) corrected in 3)
And the heating operation time (t
The average heating capacity (Q) is calculated by dividing the integrated heating capacity (Sn) calculated by the integrated heating capacity calculation means (53) by the sum of f) and the set predicted defrosting operation time (tdy).
n) and an average heating capacity calculation means (54), and a current calculated value (Qk) of the average heating capacity (Qn) calculated by the average heating capacity calculation means (54) is changed to a previous calculated value (Qk-
Compared to 1), a defrost signal output means (55) for outputting a defrost signal when the calculated value this time is small is provided.

【0010】請求項2の発明の講じた手段は、図1の破
線部分に示すように、上記請求項1の発明に加えて、補
正手段(52)で補正された温度差(ΔTnh)が負のと
きには、温度差を「0」とするよう再補正する再補正手
段(56)を設けたものである。
As shown by the broken line portion in FIG. 1, the means taken by the invention of claim 2 is, in addition to the invention of claim 1, the temperature difference (ΔTnh) corrected by the correction means (52) is negative. In this case, the re-correction means (56) for re-correcting the temperature difference to "0" is provided.

【0011】[0011]

【作用】以上の構成により、請求項1の発明では、被加
熱媒体の出口−入口温度差ΔTn (=To−Ti)に基
づいて、積算暖房能力演算手段(53)及び平均暖房能
力演算手段(54)により、積分暖房能力Sn 、平均暖
房能力Qn が演算され、除霜信号出力手段(55)によ
り、平均暖房能力のピーク値から暖房能力の減少を熱源
側熱交換器(3)の着霜時とする除霜開始時期の判断が
行われ、除霜指令がなされる。
With the above construction, in the invention of claim 1, the integrated heating capacity calculating means (53) and the average heating capacity calculating means (53) are calculated based on the outlet-inlet temperature difference ΔTn (= To-Ti) of the medium to be heated. 54) the integral heating capacity Sn and the average heating capacity Qn are calculated, and the defrosting signal output means (55) reduces the heating capacity from the peak value of the average heating capacity by frosting the heat source side heat exchanger (3). The defrosting start time is determined and the defrosting command is issued.

【0012】一方、補正式記憶手段(12)には、暖房
能力に対応する出口−入口温度差を与えるインバータの
所定周波数を基準として、出口−入口温度差ΔTn を所
定周波数における出口−入口温度差に換算するための補
正式がインバータ周波数Hzの関数として記憶されてお
り、補正手段(53)により、インバータ周波数に応
じ、この補正式で求まる補正係数XD5を用いて出口−入
口温度差ΔTn が補正されるので、補正された出口−入
口温度差ΔTnhは正確な暖房能力の指標になっている。
そして、この回帰式(1) に基づいて補正された出口−入
口温度差ΔTnhに基づき、積分暖房能力Sn や平均暖房
能力Qn が演算されるので、インバータ周波数による凝
縮温度の変化に起因する除霜突入時期の誤判断を招くこ
とがなく、除霜運転開始の判断が行われることになる。
On the other hand, the correction-type storage means (12) stores the outlet-inlet temperature difference ΔTn at the predetermined frequency with the outlet-inlet temperature difference ΔTn as a reference, based on a predetermined frequency of the inverter that gives the outlet-inlet temperature difference corresponding to the heating capacity. A correction formula for converting into the above is stored as a function of the inverter frequency Hz, and the outlet-inlet temperature difference ΔTn is corrected by the correction means (53) according to the inverter frequency using the correction coefficient XD5 obtained by this correction formula. Therefore, the corrected outlet-inlet temperature difference ΔTnh is an accurate indicator of the heating capacity.
Then, since the integrated heating capacity Sn and the average heating capacity Qn are calculated based on the outlet-inlet temperature difference ΔTnh corrected based on the regression equation (1), the defrosting caused by the change in the condensation temperature due to the inverter frequency is calculated. The start of the defrosting operation can be determined without causing an erroneous determination of the entry time.

【0013】請求項2の発明では、請求項1の発明の作
用において、補正手段(52)で補正された出口−入口
温度差ΔTnhが負になったときには、再補正手段(5
6)により、出口−入口温度差ΔTnhが「0」に再補正
されるので、特殊条件下で生じうる出口温度Toと入口
温度Tiとの逆転で、平均暖房能力Qn の演算誤差が生
じ、除霜運転への突入時期を誤ることが防止され、除霜
運転突入時期の判断がより正確に行われることになる。
According to the invention of claim 2, in the operation of the invention of claim 1, when the outlet-inlet temperature difference ΔTnh corrected by the correcting means (52) becomes negative, the re-correcting means (5
Since the outlet-inlet temperature difference ΔTnh is re-corrected to “0” by 6), the error in calculation of the average heating capacity Qn occurs due to the reversal of the outlet temperature To and the inlet temperature Ti that may occur under special conditions, and the removal is eliminated. It is possible to prevent the rush time to the frost operation from being mistaken, and to more accurately determine the rush time to the defrost operation.

【0014】[0014]

【実施例】以下、本発明の実施例について、図2以下の
図面に基づき説明する。
Embodiments of the present invention will be described below with reference to the drawings starting from FIG.

【0015】図2は本発明を適用した空気調和装置の冷
媒配管系統を示し、一台の室外ユニット(A)に対して
一台の室内ユニット(B)が接続されたいわゆるセパレ
ートタイプのものである。上記室外ユニット(A)に
は、インバータ(図示せず)により運転周波数が可変に
調節される圧縮機(1)と、冷房運転時には図中実線の
ごとく、暖房運転時には図中破線のごとく切換わる四路
切換弁(2)と、冷房運転時には凝縮器として、暖房運
転時には蒸発器として機能する熱源側熱交換器でる室外
熱交換器(3)と、冷媒を減圧するための減圧部(2
0)と、圧縮機(1)の吸入管に介設され、吸入冷媒中
の液冷媒を除去するためのアキュムレ―タ(7)とが主
要機器として配置されている。また、室内ユニット
(B)には、冷房運転時には蒸発器として、暖房運転時
には凝縮器として機能する利用側熱交換器である室内熱
交換器(6)が配置されている。上記各機器は冷媒配管
(8)により順次接続され、冷媒の循環により熱移動を
生ぜしめるようにした冷媒回路(9)が構成されてい
る。
FIG. 2 shows a refrigerant piping system of an air conditioner to which the present invention is applied, which is a so-called separate type in which one outdoor unit (A) is connected to one indoor unit (B). is there. The outdoor unit (A) is switched to a compressor (1) whose operating frequency is variably adjusted by an inverter (not shown), and a solid line in the drawing during the cooling operation and a broken line in the drawing during the heating operation. A four-way switching valve (2), an outdoor heat exchanger (3) that is a heat source side heat exchanger that functions as a condenser during cooling operation, and as an evaporator during heating operation, and a decompression unit (2) for decompressing refrigerant.
0) and an accumulator (7) which is interposed in the suction pipe of the compressor (1) and removes the liquid refrigerant in the suction refrigerant are arranged as main devices. Further, in the indoor unit (B), an indoor heat exchanger (6), which is a utilization side heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation, is arranged. The above-mentioned devices are sequentially connected by a refrigerant pipe (8), and a refrigerant circuit (9) is configured so that heat is transferred by circulating the refrigerant.

【0016】ここで、上記減圧部(20)には、液冷媒
を貯溜するためのレシ―バ(4)と、液冷媒の減圧機能
と流量調節機能とを有する電動膨張弁(5)とが配設さ
れ、上記レシ―バ(4)と電動膨張弁(5)とは、電動
膨張弁(5)がレシ―バ(4)の下部つまり液部に連通
するよう、室外熱交換器(3)の補助熱交換器(3a)
を介して共通路(8a)に直列に配置されている。そし
て、共通路(8a)のレシ―バ(4)上流側の端部
(P)と室外熱交換器(3)との間は、室外熱交換器
(3)からレシ―バ(4)への冷媒の流通のみを許容す
る第1逆止弁(D1)を介して第1流入路(8b1)によ
り、上記共通路(8a)の点(P)と室内熱交換器
(6)との間は室内熱交換器(6)からレシ―バ(4)
への冷媒の流通のみを許容する第2逆止弁(D2)を介
して第2流入路(8b2)により、それぞれ接続されてい
る一方、共通路(8a)の上記電動膨張弁(5)他端側
の端部(Q)と上記第2逆止弁(D2)−室内熱交換器
(6)間の点(R)との間は電動膨張弁(5)から室内
熱交換器(6)への冷媒の流通のみを許容する第3逆止
弁(D3)を介して第1流出路(8c1)により、共通路
(8a)の上記点(Q)と上記第1逆止弁(D1)−室
外熱交換器(3)間の点(S)との間は電動膨張弁
(5)から室外熱交換器(3)への冷媒の流通のみを許
容する第4逆止弁(D4)を介して第2流出路(8c2)
により、それぞれ接続されている。
Here, the pressure reducing section (20) includes a receiver (4) for storing the liquid refrigerant and an electric expansion valve (5) having a pressure reducing function and a flow rate adjusting function for the liquid refrigerant. The receiver (4) and the electric expansion valve (5) are disposed so that the electric expansion valve (5) communicates with the lower portion of the receiver (4), that is, the liquid portion. ) Auxiliary heat exchanger (3a)
Are arranged in series on the common path (8a). Then, between the outdoor end (P) of the receiver (4) upstream of the common path (8a) and the outdoor heat exchanger (3), the outdoor heat exchanger (3) goes to the receiver (4). Between the point (P) of the common path (8a) and the indoor heat exchanger (6) by the first inflow path (8b1) via the first check valve (D1) that allows only the circulation of the refrigerant of Is from the indoor heat exchanger (6) to the receiver (4)
The electric expansion valve (5) and the like on the common path (8a), while being connected to each other by the second inflow path (8b2) through the second check valve (D2) that allows only the flow of the refrigerant to the Between the end portion (Q) on the end side and the point (R) between the second check valve (D2) and the indoor heat exchanger (6), the electric expansion valve (5) is connected to the indoor heat exchanger (6). The first check valve (D1) and the point (Q) of the common path (8a) by the first outflow passage (8c1) through the third check valve (D3) that allows only the flow of the refrigerant to the first check valve (D1). A fourth check valve (D4) which allows only the flow of the refrigerant from the electric expansion valve (5) to the outdoor heat exchanger (3) between the outdoor heat exchanger (3) and the point (S). Through the 2nd outflow path (8c2)
Are connected to each other.

【0017】また、上記レシ―バ(4)の上流側の点
(P)と流出側の点(Q)との間には、キャピラリチュ
―ブ(C)を介設してなる液封防止バイパス路(8f)
が設けられていて、該液封防止バイパス路(8f)によ
り、圧縮機(1)の停止時における液封を防止する要に
なっされている。また、ガス冷媒をレシ―バ(4)上部
から開閉弁(SV)を介して電動膨張弁(5)下流側に
バイパスさせて、レシーバ(4)の冷媒貯溜機能を確保
するためのバイパス管(4a)が設けられている。な
お、上記キャピラリチュ―ブ(C)の減圧度は電動膨張
弁(5)よりも十分大きくなるように設定されていて、
通常運転時における電動膨張弁(5)による冷媒流量調
節機能を良好に維持しうるようになされている。
Further, a capillary tube (C) is provided between the point (P) on the upstream side and the point (Q) on the outflow side of the receiver (4) to prevent liquid sealing. Bypass road (8f)
Is provided, and it is essential to prevent liquid sealing when the compressor (1) is stopped by the liquid sealing prevention bypass passage (8f). In addition, the bypass pipe (by which the gas refrigerant is bypassed from the upper portion of the receiver (4) to the downstream side of the electric expansion valve (5) via the on-off valve (SV) to ensure the refrigerant reservoir function of the receiver (4) ( 4a) is provided. The degree of pressure reduction of the capillary tube (C) is set to be sufficiently larger than that of the electric expansion valve (5),
The function of adjusting the refrigerant flow rate by the electric expansion valve (5) during normal operation can be favorably maintained.

【0018】なお、(F1)〜(F4)は冷媒中の塵埃
を除去するためのフィルタ、(ER)は圧縮機(1)の
運転音を低減させるための消音器である。
Incidentally, (F1) to (F4) are filters for removing dust in the refrigerant, and (ER) is a silencer for reducing the operation noise of the compressor (1).

【0019】さらに、空気調和装置にはセンサ類が設け
られていて、(Th2)は吐出管に配置され、吐出管温度
を検出する吐出管センサ、(Tha)は室外ユニット
(A)の空気吸込口に配置され、外気温度である吸込空
気温度を検出する室外吸込センサ、(Thc)は室外熱交
換器(3)に配置され、冷房運転時には凝縮温度となり
暖房運転時には蒸発温度となる外熱交温度を検出する外
熱交センサ、(Thr)は室内ユニット(B)の空気吸込
口に配置され、被加熱媒体の入口温度となる吸込空気温
度Tiを検出する室内吸込センサ、(The)は室内熱交
換器(6)に配置され、暖房運転時に凝縮温度となる内
熱交温度を被加熱媒体の出口温度Toとして検出する内
熱交センサ、(HPS)は高圧側圧力の過上昇によりオン
となって後述の保護装置(11)を作動させる高圧圧力
スイッチ、(LPS)は低圧側圧力の過低下によりオンと
なって保護装置(11)を作動させる低圧圧力スイッチ
である。上記各センサ類の信号は空気調和装置の運転を
制御するコントローラ(10)に入力可能に接続されて
おり、該コントローラ(10)により、上記各センサ類
の信号に応じて、空気調和装置の運転を制御するように
なされている。
Further, the air conditioner is provided with sensors, (Th2) is arranged in the discharge pipe, a discharge pipe sensor for detecting the discharge pipe temperature, and (Tha) is the air intake of the outdoor unit (A). The outdoor suction sensor (Thc), which is placed at the mouth and detects the temperature of the intake air that is the outside air temperature, (Thc) is placed in the outdoor heat exchanger (3), and has the condensation temperature during the cooling operation and the evaporation temperature during the heating operation. An outdoor heat exchange sensor for detecting the temperature, (Thr) is arranged in the air suction port of the indoor unit (B), and an indoor suction sensor for detecting the suction air temperature Ti which is the inlet temperature of the medium to be heated, (The) is the indoor An internal heat exchange sensor that is arranged in the heat exchanger (6) and detects the internal heat exchange temperature that becomes the condensation temperature during the heating operation as the outlet temperature To of the medium to be heated, (HPS) is turned on due to an excessive rise in the high-pressure side pressure. The protection device ( 1 high pressure switch, which actuates the) (LPS) is a low pressure switch for actuating the protective device (11) turned on by excessive reduction of the low-pressure side pressure. The signals of the sensors are connected to a controller (10) that controls the operation of the air conditioner, and the controller (10) operates the air conditioner according to the signals of the sensors. Is designed to control.

【0020】ここで、上記コントローラ(10)には、
後述のインバータ周波数Hzと補正係数XD5の関係式等
を記憶する補正式記憶手段としての記憶装置(11)
や、運転中の各種データを演算処理するための演算回路
(12)等が内蔵されている。上記記憶装置(12)に
は、補正係数XD5がインバータ周波数Hzの関数とし
て、下記数式(1) XD5=A+B・Hz+C・Hz2 ) (1) のように予め設定されている。そのとき、この数式(1)
の各項の係数A,B,Cは圧縮機の定格容量等の機種で
定まり、例えば図5のような二次回帰曲線(xo),
(x1)によって、決定されるものである。
Here, the controller (10) includes
Storage device (11) as correction formula storage means for storing a relational expression between an inverter frequency Hz and a correction coefficient XD5 described later.
Also, an arithmetic circuit (12) for arithmetically processing various data during operation is incorporated. In the storage device (12), the correction coefficient XD5 is preset as a function of the inverter frequency Hz, as in the following mathematical expression (1) XD5 = A + B · Hz + C · Hz 2 (1). Then, this formula (1)
The coefficients A, B, and C of each term are determined by the model such as the rated capacity of the compressor. For example, a quadratic regression curve (xo) as shown in FIG.
It is determined by (x1).

【0021】例えば二次回帰曲線(x1)の場合、イン
バータ周波数Hzが60(Hz)のときに(点X1)、
出口−入口温度差ΔTn が正確な暖房能力を与えること
から、補正係数XD5がほぼ「1」になる。そして、この
周波数値60(Hz)を基準とし、インバータ周波数H
zが変化したときにおける出口−入口温度差ΔTn をイ
ンバータ周波数が60(Hz)のときの出口−入口温度
差に換算するための補正係数XD5をプロットして得られ
たものであって、ここではほぼ二次回帰曲線となるが、
三次以上の高次の回帰式とすることもできる。なお、曲
線(xo)では、点(Xo)の周波数値が所定周波数と
なる。
For example, in the case of a quadratic regression curve (x1), when the inverter frequency Hz is 60 (Hz) (point X1),
Since the outlet-inlet temperature difference ΔTn gives an accurate heating capacity, the correction coefficient XD5 becomes almost "1". Then, based on this frequency value of 60 (Hz), the inverter frequency H
It is obtained by plotting a correction coefficient XD5 for converting the outlet-inlet temperature difference ΔTn when z changes to the outlet-inlet temperature difference when the inverter frequency is 60 (Hz). It becomes a quadratic regression curve,
It is also possible to use a higher-order regression equation of third or higher order. In the curve (xo), the frequency value at the point (Xo) becomes the predetermined frequency.

【0022】上記冷媒回路(9)において、冷房運転時
には、室外熱交換器(3)で凝縮液化された液冷媒が第
1流入路(8b1)から流入し、第1逆止弁(D1)を経
てレシ―バ(4)に貯溜され、電動膨張弁(5)で減圧
された後、第1流出路(8c1)を経て室内熱交換器
(6)で蒸発して圧縮機(1)に戻る循環となる一方、
暖房運転時には、室内熱交換器(6)で凝縮液化された
液冷媒が第2流入路(8b2)から流入し、第2逆止弁
(D2)を経てレシ―バ(4)に貯溜され、電動膨張弁
(5)で減圧された後、第2流出路(8c2)を経て室外
熱交換器(3)で蒸発して圧縮機(1)に戻る循環とな
る。
In the refrigerant circuit (9), during the cooling operation, the liquid refrigerant condensed and liquefied in the outdoor heat exchanger (3) flows in from the first inflow passage (8b1), and the first check valve (D1) is turned on. After being stored in the receiver (4) and decompressed by the electric expansion valve (5), it is evaporated in the indoor heat exchanger (6) through the first outflow passage (8c1) and returned to the compressor (1). While becoming a cycle,
During the heating operation, the liquid refrigerant condensed and liquefied in the indoor heat exchanger (6) flows in from the second inflow passage (8b2), is stored in the receiver (4) via the second check valve (D2), After the pressure is reduced by the electric expansion valve (5), it is circulated through the second outflow passage (8c2) to evaporate in the outdoor heat exchanger (3) and return to the compressor (1).

【0023】そのとき、電動膨張弁(5)の開度は、上
記吐出管センサ(Th2)で検出される吐出管温度T2を
パラメータとして行われる。すなわち、上記外熱交セン
サ(Thc)及び内熱交センサ(The)で検出される凝縮
温度と蒸発温度とから最適の冷凍効果を与える吐出管温
度(最適温度Tk)を演算し、吐出管温度T2がこの最
適温度Tkになるよう電動膨張弁(5)の開度を制御す
るようになされている。
At this time, the opening degree of the electric expansion valve (5) is set with the discharge pipe temperature T2 detected by the discharge pipe sensor (Th2) as a parameter. That is, the discharge pipe temperature (optimum temperature Tk) that gives the optimum refrigerating effect is calculated from the condensation temperature and the evaporation temperature detected by the external heat exchange sensor (Thc) and the internal heat exchange sensor (The), and the discharge pipe temperature is calculated. The opening of the electric expansion valve (5) is controlled so that T2 becomes the optimum temperature Tk.

【0024】また、暖房運転中に、除霜指令を受ける
と、上記四路切換弁(2)を冷房サイクル側に切換え、
室外熱交換器(3)にホットガスを導入して室外熱交換
器(3)の着霜を融解するようになされている。
When the defrosting command is received during the heating operation, the four-way switching valve (2) is switched to the cooling cycle side,
Hot gas is introduced into the outdoor heat exchanger (3) to melt the frost formed on the outdoor heat exchanger (3).

【0025】次に、暖房運転中における制御内容につい
て、図3のフロ―チャ―トに基づき説明する。
Next, the control contents during the heating operation will be described based on the flowchart of FIG.

【0026】ステップST1で、運転状態か否かを判別
し、運転状態でなければステップST2で、暖房運転時
間の計数値tfsを「0」とし、運転状態であればステッ
プST3以下の制御を行う。まず、ステップST3,S
T4で、暖房運転時間tf のカウントを行い、ステップ
ST5で、空気吹出温度Toと空気吸込温度Tiとの温
度差ΔTn (=To−Ti)を演算し、ステップST6
で、補正係数XD5を、上記数式(1) で決定される補正式
XD5=f(Hz)に基づき演算する。
In step ST1, it is determined whether or not it is in the operating state. If it is not in the operating state, the heating operation time count value tfs is set to "0" in step ST2, and if it is in the operating state, control from step ST3 onward is performed. .. First, steps ST3 and S
At T4, the heating operation time tf is counted, and at step ST5, a temperature difference ΔTn (= To-Ti) between the air outlet temperature To and the air intake temperature Ti is calculated, and step ST6
Then, the correction coefficient XD5 is calculated based on the correction equation XD5 = f (Hz) determined by the above equation (1).

【0027】そして、ステップST7で、ΔTnh=ΔT
n /XD5とし、つまり上記ステップST5で求めた温度
差ΔTn を補正係数XD5で補正して、その値を補正され
た温度差ΔTnhとする。ステップST8,ST9で、運
転条件によって温度差ΔTnhが負となったときの演算値
を「0」とする処理を行ってから、ステップST10
で、積算暖房能力Sn の加算を行う。
Then, in step ST7, ΔTnh = ΔT
n / XD5, that is, the temperature difference ΔTn obtained in step ST5 is corrected by the correction coefficient XD5, and the value is set as the corrected temperature difference ΔTnh. In steps ST8 and ST9, a process of setting the calculated value when the temperature difference ΔTnh becomes negative depending on the operating conditions to “0” is performed, and then in step ST10.
Then, the cumulative heating capacity Sn is added.

【0028】次に、ステップST11で、運転開始後の
最初のサイクルのときのみ「0」となるフラグFlgの判
別を行い、最初のサイクルであれば、ステップST12
に進んで、下記の数式(2) Qn =Sn /(td+tf ) (2) に基づき平均暖房能力Qn を演算する。なお、この場
合、まだ除霜を行っていないことから、設定除霜時間t
d (例えば5分程度)と暖房運転時間tf との和で、積
算暖房能力Sn を除算するようにしている。
Next, in step ST11, the flag Flg which becomes "0" only in the first cycle after the start of operation is determined, and if it is the first cycle, step ST12.
Then, the average heating capacity Qn is calculated based on the following equation (2) Qn = Sn / (td + tf) (2). In this case, since the defrosting has not been performed yet, the set defrosting time t
The cumulative heating capacity Sn is divided by the sum of d (for example, about 5 minutes) and the heating operation time tf.

【0029】一方、デフロストを行った後の次回のサイ
クルからは、ステップST11の判別で、フラグFlgが
「1」となり、ステップST13に移行し、下記の数式
(3) tdy=a・tf +1 (3) に基づき、予測除霜運転時間tdyを演算する。ただし、
係数aは、前回の暖房運転時間tu と前回の除霜運転時
間td から、除霜−暖房の切換えにおける蒸発器−凝縮
器の機能の切換えに要するタイムラグをほぼ1分と仮定
したときに、下記の数式(4) a=(td −1)/tu (4) で表されるものである。
On the other hand, from the next cycle after the defrosting, the flag Flg becomes "1" in the determination in step ST11, the process proceeds to step ST13, and
(3) Calculate the predicted defrosting operation time tdy based on tdy = a · tf + 1 (3). However,
The coefficient a is calculated from the previous heating operation time tu and the previous defrosting operation time td, assuming that the time lag required for switching the function of the evaporator-condenser in switching between defrosting and heating is approximately 1 minute, Equation (4) a = (td -1) / tu (4)

【0030】次に、ステップST14〜ST17におい
て、安全度を考慮し、センサの誤検知等で算出結果が前
回の除霜運転時間td から余りに隔たった値となるのを
防止すべく、予測除霜運転時間tdyを下限値0.5td
と上限値1.5td の間に規定した後、ステップST1
8で、平均暖房能力Qn を下記の数式(5) Qn =Sn /(tdy+tf ) (5) に基づき演算する。
Next, in steps ST14 to ST17, in consideration of safety, the predicted defrosting is performed in order to prevent the calculation result from being too far from the previous defrosting operation time td due to an erroneous detection of the sensor or the like. The lower limit of the operating time tdy is 0.5td
And the upper limit of 1.5td, step ST1
In step 8, the average heating capacity Qn is calculated based on the following equation (5) Qn = Sn / (tdy + tf) (5).

【0031】次に、上記制御によって平均暖房能力Qn
を算出すると、除霜運転への突入時期の判断制御に進
む。図4は除霜運転への突入時期の判断制御の内容を示
し、ステップSS1で、今回の制御で算出した平均暖房
能力Qk と前回の制御で算出した平均暖房能力Qk-1 と
を比較し、Qk ≦Qk-1 でなければ、ステップSS2に
進んで、減少回数計数値CD1を、CD1=CD1−1と減算
し、ステップSS3,SS4でCD1が負でなければその
ままの値に、負になると「0」にする処理を行って、除
霜運転指令を出力することなく、ステップSS1の制御
に戻る。
Next, by the above control, the average heating capacity Qn
When is calculated, the process proceeds to the determination control of the entry time to the defrosting operation. FIG. 4 shows the content of the judgment control of the entry time to the defrosting operation, and in step SS1, the average heating capacity Qk calculated in this control is compared with the average heating capacity Qk-1 calculated in the previous control, If Qk≤Qk-1 is not established, the process proceeds to step SS2, the reduction count value CD1 is subtracted from CD1 = CD1-1, and if CD1 is not negative in steps SS3 and SS4, the value remains unchanged. The process of setting to "0" is performed, and the process returns to the control of step SS1 without outputting the defrosting operation command.

【0032】一方、ステップSS1の判別で、Qk ≦Q
k-1 になると、平均暖房能力Qn が減少したことから、
ステップSS5に移行して、減少回数計数値CD1のカウ
ントを行い、ステップSS6の判別で、CD1が10回以
上に達するまでは、除霜運転指令をすることなく、上記
制御を繰り返し、CD1≧10になると、ステップSS7
に進んで、CD1=10と、つまり平均暖房能力がピーク
に達したと判断して、除霜運転指令を出力する。
On the other hand, in the judgment of step SS1, Qk≤Q
At k-1, since the average heating capacity Qn decreased,
The process proceeds to step SS5 to count the decrease count value CD1, and in the determination of step SS6, the above control is repeated without issuing a defrosting operation command until CD1 reaches 10 times or more, and CD1 ≧ 10. Then, step SS7
Then, it is determined that CD1 = 10, that is, the average heating capacity has reached the peak, and the defrosting operation command is output.

【0033】上記フローにおいて、ステップST5の制
御により温度差演算手段(51)が構成され、ステップ
ST7の制御により補正手段(52)が構成され、ステ
ップST10の制御により積分暖房能力演算手段(5
3)が構成され、ステップST10の制御により平均暖
房能力演算手段(54)が構成され、ステップSS8の
制御により除霜信号出力手段(55)が構成されてい
る。
In the above flow, the temperature difference calculating means (51) is constituted by the control of step ST5, the correction means (52) is constituted by the control of step ST7, and the integral heating capacity calculating means (5) is constituted by the control of step ST10.
3) is configured, the average heating capacity calculation means (54) is configured by the control of step ST10, and the defrost signal output means (55) is configured by the control of step SS8.

【0034】また、ステップST9の制御により、請求
項2の発明にいう再補正手段(56)が構成されてい
る。
Further, the recorrecting means (56) according to the invention of claim 2 is constituted by the control of step ST9.

【0035】したがって、上記実施例では、暖房運転
中、被加熱媒体の出口温度To−入口温度Ti間の温度
差ΔTn (=To−Ti)に基づいて、積算暖房能力演
算手段(53)及び平均暖房能力演算手段(54)によ
り、積分暖房能力Sn 、平均暖房能力Qn が演算され、
除霜信号出力手段(55)により、平均暖房能力のピー
ク値から暖房能力の減少を熱源側熱交換器(3)の着霜
時とする除霜開始時期の判断が行われ、除霜指令がなさ
れる。
Therefore, in the above embodiment, the integrated heating capacity calculating means (53) and the average value are calculated based on the temperature difference ΔTn (= To-Ti) between the outlet temperature To and the inlet temperature Ti of the medium to be heated during the heating operation. The heating capacity calculation means (54) calculates the integral heating capacity Sn and the average heating capacity Qn,
The defrosting signal output means (55) determines the defrosting start time when the heat source side heat exchanger (3) is defrosted from the peak value of the average heating capacity, and the defrosting command is issued. Done.

【0036】そのとき、インバータで周波数が可変に調
節される圧縮機(1)を備えたものでは、圧縮機(1)
の容量が変化すると、冷媒循環量が変化すると共に凝縮
器となっている室内熱交換器(6)における冷媒の凝縮
温度つまり被加熱媒体の出口温度Toが変化するので、
出口−入口温度差ΔTn も変化し、出口−入口温度差Δ
Tn が常に暖房能力の正確な指標であるとは限らない。
すなわち、図6に示すように、平均暖房能力Qn が真の
変化(実線の曲線qo )よりも、見掛上小さく(破線の
曲線q1 )、或いは大きく算出される(破線の曲線q2
)。そして、この平均暖房能力Qn に基づいて除霜運
転への突入時期が判断されるので、真の着霜時からずれ
た時期に除霜運転に突入する虞れが生じる(同図の時点
Q1e又は時点Q2e)。
At this time, in the case where the compressor (1) whose frequency is variably adjusted by the inverter is provided, the compressor (1)
When the capacity of is changed, the refrigerant circulation amount is changed and the condensing temperature of the refrigerant in the indoor heat exchanger (6), which is the condenser, that is, the outlet temperature To of the heated medium is changed.
The outlet-inlet temperature difference ΔTn also changes, and the outlet-inlet temperature difference ΔTn
Tn is not always an accurate indicator of heating capacity.
That is, as shown in FIG. 6, the average heating capacity Qn is calculated to be apparently smaller (broken curve q1) or larger than the true change (solid curve qo) (broken curve q2).
). Since the rushing timing for the defrosting operation is determined based on this average heating capacity Qn, there is a risk of rushing into the defrosting operation at a time deviated from the time of true frost formation (time point Q1e or Time point Q2e).

【0037】ここで、上記実施例では、補正手段(5
2)により、インバータ周波数Hzの関数として予め記
憶装置(12)に記憶されている二次回帰式(1) で求ま
る補正係数XD5を用いて、温度差ΔTn が補正されるの
で、補正された出口−入口温度差ΔTnhは正確な暖房能
力の指標となっている。そして、この回帰式(1) に基づ
いて補正された出口−入口温度差ΔTnhに基づき、積分
暖房能力Sn や平均暖房能力Qn が演算されるので、正
確な除霜運転開始の判断を行うことができるのである
(同図の時点Qoe)。
Here, in the above embodiment, the correction means (5
According to 2), the temperature difference ΔTn is corrected by using the correction coefficient XD5 obtained by the quadratic regression equation (1) stored in advance in the storage device (12) as a function of the inverter frequency Hz. -The inlet temperature difference ΔTnh is an accurate indicator of heating capacity. Then, since the integrated heating capacity Sn and the average heating capacity Qn are calculated based on the outlet-inlet temperature difference ΔTnh corrected based on this regression equation (1), it is possible to accurately determine the start of the defrosting operation. It is possible (time point Qoe in the figure).

【0038】また、再補正手段(56)により、上記補
正手段(52)で補正された出口−入口温度差ΔTnhが
負になったときには「0」に補正することにより、演算
精度がさらに向上する。例えばデフロスト運転から復帰
した直後には、吸込空気温度Tr が凝縮温度Tcよりも
低いことがあり、このような場合、出口−入口温度差Δ
Tnhが負になるが、実際には、暖房能力が負になること
はない。したがって、そのまま演算を続行すると、平均
暖房能力Qn が実際の値よりも小さく算出される虞れが
あるが、再補正手段(56)によって再補正をすること
で、除霜運転突入時期の判断をより正確に行うことがで
きる。
Further, when the outlet-inlet temperature difference ΔTnh corrected by the correcting means (52) becomes negative by the re-correcting means (56), it is corrected to "0" to further improve the calculation accuracy. .. For example, immediately after returning from the defrost operation, the intake air temperature Tr may be lower than the condensation temperature Tc. In such a case, the outlet-inlet temperature difference Δ
Although Tnh becomes negative, the heating capacity does not actually become negative. Therefore, if the calculation is continued as it is, the average heating capacity Qn may be calculated to be smaller than the actual value, but the re-correction means (56) re-corrects to determine the defrosting operation inrush time. It can be done more accurately.

【0039】なお、上記実施例では、出口−入口温度Δ
Tn を求める際、室内熱交換器(6)の出口温度Toを
内熱交温度Tcから求めたが、吹出空気温度を検出し、
その値を出口温度Toとしてもよい。
In the above embodiment, the outlet-inlet temperature Δ
At the time of obtaining Tn, the outlet temperature To of the indoor heat exchanger (6) was obtained from the internal heat exchange temperature Tc.
The value may be used as the outlet temperature To.

【0040】また、上記実施例では、被加熱媒体を空調
空気としたが、本発明はかかる実施例に限定されるもの
ではなく、例えば利用側熱交換器で温水を生成するよう
にしたもの等についても同様に適用しうるものである。
In the above embodiment, the medium to be heated is the conditioned air, but the present invention is not limited to this embodiment. For example, a heat exchanger for producing hot water is used. Can be similarly applied.

【0041】[0041]

【発明の効果】以上説明したように、請求項1の発明に
よれば、冷凍装置の除霜運転制御装置として、利用側熱
交換器の被加熱媒体の出口−入口温度差を周期的に求め
て、その値から順次積算暖房能力,平均暖房能力を算出
し、平均暖房能力が低下する時点で除霜指令を出力する
とともに、暖房能力に対応する温度差を与えるインバー
タ周波数の所定周波数を基準とし、出口−入口温度差の
値を所定周波数のときにおける値に換算するための補正
係数をインバータ周波数の関数として圧縮機の機種毎に
予め記憶しておき、この補正係数により出口−入口温度
差を補正するようにしたので、インバータ周波数に応じ
た凝縮温度の変化により暖房能力の指標から外れた値と
なる出口−入口温度差を暖房能力の正確な指標に補正す
ることができ、よって、除霜運転突入の時期判断の精度
の向上を図ることができる。
As described above, according to the invention of claim 1, as the defrosting operation control device of the refrigeration system, the outlet-inlet temperature difference of the medium to be heated of the utilization side heat exchanger is periodically obtained. Then, the integrated heating capacity and the average heating capacity are calculated from the values, and a defrosting command is output when the average heating capacity drops, and the inverter frequency that gives the temperature difference corresponding to the heating capacity is used as a reference frequency. , A correction coefficient for converting the value of the outlet-inlet temperature difference into a value at a predetermined frequency is stored in advance as a function of the inverter frequency for each compressor model, and the outlet-inlet temperature difference is calculated by this correction coefficient. Since it is corrected, it is possible to correct the outlet-inlet temperature difference, which is a value deviating from the heating capacity index due to the change in the condensation temperature according to the inverter frequency, to an accurate heating capacity index. Te, it is possible to improve the timing determination accuracy of the defrosting operation inrush.

【0042】請求項2の発明によれば、上記請求項1の
発明において、補正された出口−入口温度差が負の値に
なったときには、これを「0」に再補正するようにした
ので、特定条件下で生じる出口温度と入口温度との見掛
上の逆転で積算暖房能力が実際よりも小さく算出される
のを有効に防止することができ、よって、請求項1の発
明の効果をより顕著に発揮することができる。
According to the invention of claim 2, in the invention of claim 1, when the corrected outlet-inlet temperature difference becomes a negative value, it is corrected again to "0". It is possible to effectively prevent the cumulative heating capacity from being calculated smaller than the actual value due to the apparent reversal of the outlet temperature and the inlet temperature that occurs under specific conditions, and thus the effect of the invention of claim 1 is obtained. It can be more significantly demonstrated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】実施例に係る空気調和装置の冷媒配管系統図で
ある。
FIG. 2 is a refrigerant piping system diagram of the air conditioning apparatus according to the embodiment.

【図3】平均暖房能力演算のための制御内容を示すフロ
―チャ―ト図である。
FIG. 3 is a flowchart showing the control contents for calculating the average heating capacity.

【図4】除霜突入時期判断のための制御内容を示すフロ
―チャ―ト図である。
FIG. 4 is a flow chart showing the control contents for determining the defrosting entry time.

【図5】インバータ周波数に対する補正係数の二次回帰
曲線を示す図である。
FIG. 5 is a diagram showing a quadratic regression curve of the correction coefficient with respect to the inverter frequency.

【図6】本発明の効果を示す特性図である。FIG. 6 is a characteristic diagram showing the effect of the present invention.

【図7】出口−入口温度差の時間変化を示す特性図であ
る。
FIG. 7 is a characteristic diagram showing a time change of an outlet-inlet temperature difference.

【図8】出口−入口温度差から積算暖房能力,平均暖房
能力を算出する過程を説明するための図である。
FIG. 8 is a diagram for explaining a process of calculating an integrated heating capacity and an average heating capacity from an outlet-inlet temperature difference.

【図9】平均暖房能力の時間変化を示す図である。FIG. 9 is a diagram showing changes over time in average heating capacity.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 室外熱交換器(熱源側熱交換器) 5 電動膨張弁(減圧機構) 6 室内熱交換器(利用側熱交換器) 9 冷媒回路 12 記憶装置(補正式記憶手段) Thr 室内吸込センサ(入口温度検出手段) The 内熱交センサ(出口温度検出手段) 51 温度差演算手段 52 補正手段 53 積算暖房能力演算手段 54 平均暖房能力演算手段 55 除霜指令出力手段 56 再補正手段 1 Compressor 3 Outdoor heat exchanger (heat source side heat exchanger) 5 Electric expansion valve (pressure reducing mechanism) 6 Indoor heat exchanger (use side heat exchanger) 9 Refrigerant circuit 12 Storage device (correction type storage means) Thr Indoor suction Sensor (inlet temperature detection means) The heat exchange sensor (outlet temperature detection means) 51 Temperature difference calculation means 52 Correction means 53 Integrated heating capacity calculation means 54 Average heating capacity calculation means 55 Defrost command output means 56 Recorrection means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 インバータにより周波数を可変に調節さ
れる圧縮機(1)と、熱源側熱交換器(3)と、減圧機
構(5)と、利用側熱交換器(6)とを順次接続してな
る冷媒回路(9)を備えた冷凍装置において、 上記利用側熱交換器(6)の被加熱媒体の入口温度(T
i)を検出する入口温度検出手段(Thr)と、 上記利用側熱交換器(6)の被加熱媒体の出口温度(T
o)を検出する出口温度検出手段(The)と、 上記両温度検出手段(Thr),(The)の出力を受け、
一定周期ごとに、暖房運転中における出口温度(To)
と入口温度(Ti)との温度差である出口−入口温度差
(ΔTn )を演算する温度差演算手段(51)と、 暖房能力に対応する温度差を与えるインバータの所定周
波数を基準とし、インバータ周波数(Hz)と凝縮温度
との相関関係に基づき、上記温度差演算手段(51)で
演算される出口−入口温度差(ΔTn )を上記所定周波
数における出口−入口温度差に換算するための補正係数
(XD5)をインバータ周波数(Hz)の関数として圧縮
機(1)の機種毎に記憶する補正式記憶手段(12)
と、 インバータ周波数(Hz)に応じ、上記温度差演算手段
(51)で演算された出口−入口温度差(ΔTn )を上
記補正式記憶手段(12)に記憶される補正係数(XD
5)により補正する補正手段(52)と、 除霜終了後の暖房運転開始時点からの積算暖房能力(S
n )を、上記補正手段(53)で補正された出口−入口
温度差(ΔTnh)に基づき、周期的に演算する積算暖房
能力演算手段(53)と、 暖房運転開始時期から現在に至る暖房運転時間(tf)
と設定した予測除霜運転時間(tdy)との和で、上記積
算暖房能力演算手段(53)で演算された積算暖房能力
(Sn )を除算することにより、平均暖房能力(Qn )
を算出する平均暖房能力演算手段(54)と、 該平均暖房能力演算手段(54)で演算された平均暖房
能力(Qn )の今回の演算値(Qk )を前回の演算値
(Qk-1 )と比較して、今回の演算値が小さいときに除
霜信号を出力する除霜信号出力手段(55)とを備えた
ことを特徴とする冷凍装置の除霜運転制御装置。
1. A compressor (1) whose frequency is variably adjusted by an inverter, a heat source side heat exchanger (3), a pressure reducing mechanism (5), and a use side heat exchanger (6) are sequentially connected. In the refrigerating apparatus including the refrigerant circuit (9), the inlet temperature (T of the medium to be heated of the utilization side heat exchanger (6) (T
i) the inlet temperature detecting means (Thr), and the outlet temperature (T) of the medium to be heated of the use side heat exchanger (6).
receiving the output of the outlet temperature detecting means (The) for detecting o) and the above temperature detecting means (Thr), (The),
Outlet temperature (To) during heating operation at regular intervals
Temperature difference calculating means (51) for calculating an outlet-inlet temperature difference (ΔTn), which is a temperature difference between the inlet temperature (Ti) and the inlet temperature (Ti), and an inverter based on a predetermined frequency of the inverter that provides the temperature difference corresponding to the heating capacity. Correction for converting the outlet-inlet temperature difference (ΔTn) calculated by the temperature difference calculating means (51) into the outlet-inlet temperature difference at the predetermined frequency based on the correlation between the frequency (Hz) and the condensation temperature. Correction formula storage means (12) for storing the coefficient (XD5) as a function of the inverter frequency (Hz) for each model of the compressor (1)
According to the inverter frequency (Hz), the outlet-inlet temperature difference (ΔTn) calculated by the temperature difference calculating means (51) is stored in the correction formula storing means (12) as a correction coefficient (XD).
The correction means (52) for correction by 5) and the cumulative heating capacity (S
n) is periodically calculated based on the outlet-inlet temperature difference (ΔTnh) corrected by the correction means (53), and an integrated heating capacity calculation means (53) and a heating operation from the heating operation start time to the present time. Time (tf)
The average heating capacity (Qn) is calculated by dividing the integrated heating capacity (Sn) calculated by the integrated heating capacity calculation means (53) by the sum of the predicted defrosting operation time (tdy)
The average heating capacity calculation means (54) for calculating, and the current calculation value (Qk) of the average heating capacity (Qn) calculated by the average heating capacity calculation means (54) is calculated as the previous calculation value (Qk-1). The defrosting operation control device for a refrigerating apparatus, further comprising: a defrosting signal output means (55) that outputs a defrosting signal when the calculated value this time is small.
【請求項2】 請求項1記載の冷凍装置の運転制御装置
において、 補正手段(52)で補正された温度差(ΔTnh)が負の
ときには、温度差を「0」とするよう再補正する再補正
手段(56)を備えたことを特徴とする冷凍装置の運転
制御装置。
2. The operation control device for a refrigerating apparatus according to claim 1, wherein when the temperature difference (ΔTnh) corrected by the correction means (52) is negative, the temperature difference is corrected again to “0”. An operation control device for a refrigerating apparatus, comprising a correction means (56).
JP4060114A 1992-03-17 1992-03-17 Defrosting operation control device for refrigeration equipment Expired - Fee Related JP2909941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4060114A JP2909941B2 (en) 1992-03-17 1992-03-17 Defrosting operation control device for refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4060114A JP2909941B2 (en) 1992-03-17 1992-03-17 Defrosting operation control device for refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH05264089A true JPH05264089A (en) 1993-10-12
JP2909941B2 JP2909941B2 (en) 1999-06-23

Family

ID=13132768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4060114A Expired - Fee Related JP2909941B2 (en) 1992-03-17 1992-03-17 Defrosting operation control device for refrigeration equipment

Country Status (1)

Country Link
JP (1) JP2909941B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093297A1 (en) * 2008-01-21 2009-07-30 Mitsubishi Electric Corporation Heat pump apparatus and air conditioner or water heater having the heat pump apparatus mounted thereon
WO2014170982A1 (en) * 2013-04-18 2014-10-23 三菱電機株式会社 Heat pump device and air-conditioning system
JP2016033438A (en) * 2014-07-31 2016-03-10 東芝キヤリア株式会社 Heat pump heat source machine
CN109405207A (en) * 2018-10-10 2019-03-01 海信科龙电器股份有限公司 Energy-saving method and device for air conditioner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093297A1 (en) * 2008-01-21 2009-07-30 Mitsubishi Electric Corporation Heat pump apparatus and air conditioner or water heater having the heat pump apparatus mounted thereon
EP2157380A1 (en) * 2008-01-21 2010-02-24 Mitsubishi Electric Corporation Heat pump apparatus and air conditioner or water heater having the heat pump apparatus mounted thereon
JPWO2009093297A1 (en) * 2008-01-21 2011-05-26 三菱電機株式会社 Heat pump device and air conditioner or water heater equipped with the heat pump device
JP5528119B2 (en) * 2008-01-21 2014-06-25 三菱電機株式会社 Heat pump device and air conditioner or water heater equipped with the heat pump device
EP2157380A4 (en) * 2008-01-21 2015-02-18 Mitsubishi Electric Corp Heat pump apparatus and air conditioner or water heater having the heat pump apparatus mounted thereon
WO2014170982A1 (en) * 2013-04-18 2014-10-23 三菱電機株式会社 Heat pump device and air-conditioning system
GB2528213A (en) * 2013-04-18 2016-01-13 Mitsubishi Electric Corp Heat pump device and air-conditioning system
JP6072901B2 (en) * 2013-04-18 2017-02-01 三菱電機株式会社 Heat pump device and air conditioning system
GB2528213B (en) * 2013-04-18 2020-01-15 Mitsubishi Electric Corp Heat pump apparatus and air conditioning system
JP2016033438A (en) * 2014-07-31 2016-03-10 東芝キヤリア株式会社 Heat pump heat source machine
CN109405207A (en) * 2018-10-10 2019-03-01 海信科龙电器股份有限公司 Energy-saving method and device for air conditioner

Also Published As

Publication number Publication date
JP2909941B2 (en) 1999-06-23

Similar Documents

Publication Publication Date Title
US5771704A (en) Operation control apparatus for air conditioner
JP3893676B2 (en) Air conditioner
JPH07120121A (en) Drive controller for air conditioner
JP4271275B2 (en) Electronic expansion valve control device and electronic expansion valve control method
JP2909941B2 (en) Defrosting operation control device for refrigeration equipment
CN115095956B (en) Air conditioner and defrosting control method thereof
JP3097323B2 (en) Operation control device for air conditioner
JPH09184662A (en) Air conditioner
JPH0245777B2 (en)
JPS6277538A (en) Derfosting device of air conditioner
JP2842020B2 (en) Operation control device for air conditioner
JP2757685B2 (en) Operation control device for air conditioner
JP2822764B2 (en) Operation control device for outdoor fan of air conditioner
JP2666660B2 (en) Operation control device for air conditioner
JP2536354B2 (en) Refrigerator protection device
KR19980018431A (en) Air conditioner
JPH0684834B2 (en) Defroster for air conditioner
JP3337264B2 (en) Air conditioner defroster
JPH0684835B2 (en) Defroster for air conditioner
JP2531297B2 (en) Operation control device for air conditioner
KR100256317B1 (en) Defrost device and algorithm of heat pump
JPH0684832B2 (en) Defroster for air conditioner
JPH0381060B2 (en)
JPH0611173A (en) Operation control device for air conditioner
JPS6329159A (en) Refrigerator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees