JPH0381060B2 - - Google Patents

Info

Publication number
JPH0381060B2
JPH0381060B2 JP57051008A JP5100882A JPH0381060B2 JP H0381060 B2 JPH0381060 B2 JP H0381060B2 JP 57051008 A JP57051008 A JP 57051008A JP 5100882 A JP5100882 A JP 5100882A JP H0381060 B2 JPH0381060 B2 JP H0381060B2
Authority
JP
Japan
Prior art keywords
temperature difference
circuit
heat exchanger
air
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57051008A
Other languages
Japanese (ja)
Other versions
JPS58168848A (en
Inventor
Susumu Kojima
Fumio Aoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP57051008A priority Critical patent/JPS58168848A/en
Publication of JPS58168848A publication Critical patent/JPS58168848A/en
Publication of JPH0381060B2 publication Critical patent/JPH0381060B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は、空気熱源ピートポンプ、エアコン、
チラー、冷凍装置などに応用できる除霜方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an air heat source peat pump, an air conditioner,
This article relates to a defrosting method that can be applied to chillers, refrigeration equipment, etc.

従来の除霜方法として、特開昭48−20825号公
報に示された方法がある。この除霜方法を第1図
を参照して説明する。利用側熱交換器(室内熱交
換器)の入口空気温度と出口空気温度との温度差
を検知し、デアイスを行なわせるまでの1サイク
ルのうち最大温度差Bを記憶し、熱源側熱交換器
(室外熱交換器)への霜の蓄積により上記温度差
が減少していく経過で、その時点での温度差が記
憶してある無霜の最大温度差Bに対して設定され
た値Aまで低下した時デアイスを開始するように
している。一方、暖房能力は、利用側熱交換器を
通過する風量と、当該熱交換機の入口空気温度と
出口空気温度との温度差および空気の比熱の積で
表わされる。したがつて、従来方式では、利用側
熱交換器の暖房能力が不変であつてもフアンの切
換による風量の変化、補助ヒータのON−OFF、
圧縮機の容量制御等の熱源側交換器への霜の蓄積
以外の外乱によつて、入口空気温度と出口空気温
度との温度差が変動するので、的確に熱源側熱交
換器の霜の蓄積に基く利用側熱交換器の暖房能力
の低下を検知できないという不具合があつた。
As a conventional defrosting method, there is a method disclosed in Japanese Unexamined Patent Publication No. 48-20825. This defrosting method will be explained with reference to FIG. Detects the temperature difference between the inlet air temperature and outlet air temperature of the user side heat exchanger (indoor heat exchanger), stores the maximum temperature difference B in one cycle until de-ice is performed, and As the temperature difference described above decreases due to the accumulation of frost on the (outdoor heat exchanger), the temperature difference at that point reaches the value A set for the stored maximum temperature difference B without frost. I am trying to start de-ice when it drops. On the other hand, the heating capacity is expressed as the product of the amount of air passing through the user-side heat exchanger, the temperature difference between the inlet air temperature and the outlet air temperature of the heat exchanger, and the specific heat of the air. Therefore, in the conventional method, even if the heating capacity of the heat exchanger on the user side remains unchanged, the air volume changes due to fan switching, the auxiliary heater turns on and off,
The temperature difference between the inlet air temperature and the outlet air temperature fluctuates due to disturbances other than frost accumulation on the heat source side heat exchanger, such as compressor capacity control, so it is possible to accurately prevent frost accumulation on the heat source side heat exchanger. There was a problem that it was not possible to detect a decrease in the heating capacity of the heat exchanger on the user side based on the system.

本発明は上記事情にかんがみてなされたもの
で、たとえば利用側(室内側)のフアの風量切換
に伴う風量の変化に基く利用側熱交換器の入口お
よび出口の空気温度の温度差の変動を自動補正
し、熱源側熱交換器の霜の蓄積による暖房能力の
低下に応じてデアイスサイクルを開始させるよう
にして上記不具合を克服することを目的とする。
The present invention has been made in view of the above-mentioned circumstances. For example, the present invention suppresses fluctuations in the temperature difference between the air temperature at the inlet and outlet of the user-side heat exchanger based on the change in air volume caused by switching the air volume of the fan on the user side (indoor side). It is an object of the present invention to overcome the above-mentioned problems by performing automatic correction and starting a de-ice cycle in response to a decrease in heating capacity due to accumulation of frost on a heat source side heat exchanger.

以下第2図ないし第4図に例示した本発明の好
適な実施例について詳述する。
Preferred embodiments of the present invention illustrated in FIGS. 2 to 4 will be described in detail below.

第2図は空気熱源ヒートポンプ式空気調和機を
系統的に示したものである。第2図において、符
号1は冷媒圧縮機、2は四方切換弁、3は熱源側
熱交換器、4は断熱膨張用絞りである毛細管、5
は利用側熱交換器、6は利用側熱交換器5に送風
するための送風機7の駆動用電動機、7は利用側
送風機、8は熱源側送風機9の駆動用電動機、9
は熱源側熱交換器3に送風するための送風機、1
0は利用側熱交換器5に吸込まれる空気の温度を
感知する素子、11は利用側熱交換器5から吹出
された空気の温度を感知する素子、12は電子制
御部である。暖房運転時は冷媒は実線矢印に示す
ように流れる。除霜(デフロスト)運転時および
冷房運転時は、四方切換弁2を切換えることによ
り、冷媒は破線矢印に示すように流れる。
FIG. 2 systematically shows an air source heat pump type air conditioner. In FIG. 2, numeral 1 is a refrigerant compressor, 2 is a four-way switching valve, 3 is a heat source side heat exchanger, 4 is a capillary tube that is an adiabatic expansion throttle, and 5 is a refrigerant compressor.
6 is a drive motor for the blower 7 for blowing air to the heat exchanger 5 on the use side; 7 is a drive motor for the use side blower; 8 is a drive motor for the heat source side blower 9;
1 is a blower for blowing air to the heat source side heat exchanger 3;
0 is an element that senses the temperature of the air sucked into the user-side heat exchanger 5, 11 is an element that senses the temperature of the air blown out from the user-side heat exchanger 5, and 12 is an electronic control unit. During heating operation, the refrigerant flows as shown by the solid arrow. During defrosting operation and cooling operation, by switching the four-way switching valve 2, the refrigerant flows as shown by the broken line arrow.

電子制御部12は、第3図に示すとおり、室内
側吸込空気の温度を感知する素子10と室内側吹
出空気の温度を感知する素子11とで検知される
利用側熱交換器によつてもたらされる温度差(以
下温度差という)を求める比較回路13と、室内
側送風用の電動機6の速度切換時に切換信号を出
す信号発生回路14と、この信号発生回路14か
ら速度切換信号を受けた時にタイマカウントを始
動するタイマ回路15と、信号発生回路14から
速度切換信号を受けた時の温度差を記憶する記憶
回路16と、タイマ始動時即ち送風機7の速度切
換時の温度差であつて記憶回路16に記憶されて
いる温度差とタイマ回路15の設定時間経過後の
比較回路13で求められた温度差とを比較して補
正係数を求める演算回路17と、この演算回路1
7で求まつた補正係数を使つて比較回路13で求
められた温度差を補正する補正回路18と、この
補正回路で補正された温度差の最大値を記憶する
最大記憶回路19と、補正回路18で補正された
温度差が最大値記憶回路19にて記憶された最大
値に対してある割合まで減少した時、デアイス開
始信号を出す除霜開始判定回路20と、演算回路
17の補正係数および最大値記憶回路19の内容
をリセツトする指令装置21とから構成される。
As shown in FIG. 3, the electronic control unit 12 is operated by the user-side heat exchanger, which is detected by an element 10 that senses the temperature of the indoor intake air and an element 11 that senses the temperature of the indoor air blown out. a comparison circuit 13 that calculates the temperature difference (hereinafter referred to as temperature difference); a signal generation circuit 14 that outputs a switching signal when switching the speed of the indoor ventilation motor 6; A timer circuit 15 that starts timer counting, a memory circuit 16 that stores the temperature difference when receiving the speed switching signal from the signal generation circuit 14, and a storage circuit 16 that stores the temperature difference when the timer starts, that is, when the speed of the blower 7 is switched. an arithmetic circuit 17 for calculating a correction coefficient by comparing the temperature difference stored in the circuit 16 with the temperature difference found by the comparison circuit 13 after the elapse of the set time of the timer circuit 15;
a correction circuit 18 for correcting the temperature difference obtained by the comparator circuit 13 using the correction coefficient obtained in step 7; a maximum storage circuit 19 for storing the maximum value of the temperature difference corrected by this correction circuit; and a correction circuit. When the temperature difference corrected in step 18 decreases to a certain percentage with respect to the maximum value stored in the maximum value storage circuit 19, a defrosting start determination circuit 20 outputs a deice start signal, and a correction coefficient of the arithmetic circuit 17 and It is composed of a command device 21 for resetting the contents of the maximum value storage circuit 19.

次に作用について述べる。 Next, we will discuss the effect.

暖房運転時において、外気温の低下等により熱
源側熱交換器3の表面に着霜が進行すると、暖房
能力が低下し始め、効率の良い暖房運転を阻害す
る。そこで霜の蓄積によつて暖房能力の低下が激
しくなる前に霜を溶かす必要がある。本発明方法
では以下のように除霜運転の制御を行なう。
During heating operation, if frost builds up on the surface of the heat source side heat exchanger 3 due to a drop in outside temperature or the like, the heating capacity begins to decrease, which impedes efficient heating operation. Therefore, it is necessary to melt the frost before the heating capacity deteriorates significantly due to the accumulation of frost. In the method of the present invention, defrosting operation is controlled as follows.

利用側熱交換器5の入口空気温度TIを素子1
0で、出口空気温度TOを素子11でそれぞれ感
知し、それらの信号は電子制御部12へ供給され
る。第4図に示すように、ヒートポンプを暖房運
転とし、室内送風機用電動機6の速度を中速Me
として時間tOで起動すると、利用側熱交換器5を
流過する冷媒温度は次第に上昇する。室内空気は
この利用側熱交換器5を流過する際、冷媒と熱交
換して昇温するので、吸込空気温度TIと吹出空
気温度TOとの差、即ち温度差ΔT=TO−TIは次
第に上昇して、起動後のある時間経過後には、温
度差ΔTはある最高値Bに達する。その後、熱源
側熱交換器3への着霜に基く暖房能力の低下によ
り温度差ΔTが次第に減少していく。この間、素
子10,11により検知された夫々の温度TI
よびTOは電子制御部12の比較回路13に入力
される。比較回路13では温度TIとTOとの差ΔT
が求められ、この差ΔTは補正回路18を経て記
憶回路19に入力される。この時点での補正係数
kは1なので補正なしで記憶回路19に入力され
ていき、記憶回路19にはΔTの最高値Bが記憶
される。
The inlet air temperature T I of the heat exchanger 5 on the user side is set to element 1.
0, the outlet air temperature T O is sensed by the elements 11, and their signals are supplied to the electronic control unit 12. As shown in FIG.
When the refrigerant is started at time t O , the temperature of the refrigerant flowing through the user-side heat exchanger 5 gradually rises. When the indoor air flows through this user-side heat exchanger 5, it exchanges heat with the refrigerant and rises in temperature, so the difference between the suction air temperature T I and the outlet air temperature T O , that is, the temperature difference ΔT = T O − T I gradually increases, and after a certain period of time after startup, the temperature difference ΔT reaches a certain maximum value B. Thereafter, the temperature difference ΔT gradually decreases due to a decrease in heating capacity due to frost formation on the heat source side heat exchanger 3. During this time, the respective temperatures T I and T O detected by the elements 10 and 11 are input to the comparison circuit 13 of the electronic control section 12 . In the comparator circuit 13, the difference ΔT between the temperatures T I and T O
is determined, and this difference ΔT is input to the storage circuit 19 via the correction circuit 18. Since the correction coefficient k at this point is 1, it is input to the storage circuit 19 without correction, and the maximum value B of ΔT is stored in the storage circuit 19.

時間t1経過後に、第4図に示すように室内側送
風機用電動機6の速度を人為的に中速Meから低
速LOに切換えたとする。この時、速度を切換た
ことを示す信号が信号発生回路14に入力され
る。この信号発生回路14は電動機6の速度切換
信号をタイマ回路15および記憶回路16へ同時
に出力する。速度切換後に温度TIおよびTOが安
定するに要する時間を予め設定してあるタイマ回
路15は速度切換信号を受けるとその予め設定し
た時間をカウント開始する。また記憶回路16は
速度切換時の空気温度差ΔT(t1)を比較回路13
を介して受入れて記憶する。タイマ回路15が設
定時間をカウントし終えた時(タイムアツプした
時)(第4図の時間t2)、その時点t2において比較
回路13で求められた温度差ΔT(t2)と記憶回路
16に記憶されている速度切換時t1の温度差ΔT
(t1)とが演算回路17へ供給される。演算回路
17では、時間t2および時間t1の両温度差ΔT(t2
およびΔT(t1)を比較し、補正係数kを求める。
ここで補正係数kは次のように表わすことができ
る。
Assume that after time t1 has elapsed, the speed of the indoor blower electric motor 6 is artificially switched from medium speed Me to low speed L O as shown in FIG. At this time, a signal indicating that the speed has been switched is input to the signal generating circuit 14. This signal generating circuit 14 simultaneously outputs a speed switching signal for the electric motor 6 to a timer circuit 15 and a memory circuit 16. The timer circuit 15, which has a preset time required for the temperatures T I and T O to stabilize after speed switching, starts counting the preset time upon receiving the speed switching signal. In addition, the memory circuit 16 stores the air temperature difference ΔT (t 1 ) at the time of speed switching in the comparison circuit 13.
Accept and store via . When the timer circuit 15 finishes counting the set time (time up) (time t 2 in FIG. 4), the temperature difference ΔT (t 2 ) found by the comparator circuit 13 at that time t 2 and the memory circuit 16 Temperature difference ΔT at t 1 during speed switching stored in
(t 1 ) is supplied to the arithmetic circuit 17. In the arithmetic circuit 17, the temperature difference ΔT (t 2 ) between time t 2 and time t 1
and ΔT(t 1 ) to determine the correction coefficient k.
Here, the correction coefficient k can be expressed as follows.

k=ΔT(t1)/ΔT(t2) 演算回路17で求められた補正係数kは補正回
路18へ入力される。補正回路18はこの補正係
数kを受け入れた後は、再び送風機用電動機6の
速度が切換るまで、比較回路13から継続的に入
力される温度ΔT(t)を補正してΔT´=k×ΔT
(t)を出力する。具体的には、補正回路18は、
第4図の時間t2からt3までは、素子10および1
1で計測された空気温度差ΔT(t)に補正係数
kを乗じた補正値ΔT′(t)=k×ΔT(t)を出力
して最大値記憶回路19および判定回路20に供
給する。最大値記憶回路19は暖房運転開始時t0
より補正回路18を介して入力されるが、電動機
6の速度切換前は補正係数k=1なので空気温度
差ΔT(t)がそのまま入力され、速度切換後は
補正回路18で補正された温度差ΔT′(t)が入
力される。そしてこれらの温度差ΔT(t)、
ΔT′(t)の最大値Bを記憶する。この最大値記
憶回路19に記憶されている記憶値に対して更に
大きな温度差ΔT′(t)が入力されれば、記憶値
はその大きな温度差に更新されこれを記憶する。
k=ΔT(t 1 )/ΔT(t 2 ) The correction coefficient k determined by the arithmetic circuit 17 is input to the correction circuit 18. After accepting this correction coefficient k, the correction circuit 18 corrects the temperature ΔT(t) that is continuously input from the comparison circuit 13 until the speed of the blower motor 6 is changed again, so that ΔT′=k× ΔT
(t) is output. Specifically, the correction circuit 18
From time t 2 to t 3 in FIG.
A correction value ΔT′(t)=k×ΔT(t) obtained by multiplying the air temperature difference ΔT(t) measured in step 1 by a correction coefficient k is output and supplied to the maximum value storage circuit 19 and the determination circuit 20. The maximum value memory circuit 19 is set to t 0 at the start of heating operation.
However, since the correction coefficient k=1 before the speed switching of the electric motor 6, the air temperature difference ΔT(t) is input as is, and after the speed switching, the temperature difference corrected by the correction circuit 18 is inputted via the correction circuit 18. ΔT'(t) is input. And these temperature differences ΔT(t),
The maximum value B of ΔT'(t) is stored. If a larger temperature difference ΔT'(t) is inputted to the stored value stored in the maximum value storage circuit 19, the stored value is updated to the larger temperature difference and stored.

一方、除霜開始判定回路20は最大値記憶回路
19からの温度差最大値Bと補正回路18で補正
された温度差を入力し、相互に比較することによ
り温度差最大値Bに対して補正回路18で補正さ
れた温度差ΔT′(t)が予め設定された割合C=
A/BとなるA値まで減少した時、即ち時間t3
時デアイス開始信号を出力する。このデアイス開
始信号により図示しない手段により室内側送風用
電動機6および室外側送風用電動機8の運転は停
止され、かつ四方切換弁2は暖房運転状態から除
霜運転状態に切換えられて除霜運転が開始され
る。除霜の完了は図示しない手段により検出さ
れ、時間t4で再び暖房運転が再開される。即ち、
四方切換弁2を暖房状態に切換えると同時に室外
側送風用電動機8および室内送風用電動機6は第
4図の例であれば中速Meで再起動される。
On the other hand, the defrosting start determination circuit 20 inputs the maximum temperature difference value B from the maximum value storage circuit 19 and the temperature difference corrected by the correction circuit 18, and corrects the maximum temperature difference value B by comparing them with each other. The temperature difference ΔT′(t) corrected by the circuit 18 is the preset ratio C=
When the A value has decreased to A/B, that is, at time t3 , a de-ice start signal is output. In response to this de-ice start signal, the operation of the indoor fan motor 6 and the outdoor fan motor 8 is stopped by a means not shown, and the four-way switching valve 2 is switched from the heating operating state to the defrosting operating state, and the defrosting operation is started. Begins. Completion of defrosting is detected by means not shown, and heating operation is restarted again at time t4 . That is,
At the same time as the four-way switching valve 2 is switched to the heating state, the outdoor air blowing electric motor 8 and the indoor air blowing electric motor 6 are restarted at medium speed Me in the example of FIG. 4.

以後、デアイス(除霜)運転終了後、再びデア
イス運転を開始させるまでの1サイクル中に送風
用電動機6の速度が切換えられた場合は、切換の
都度同様の方法で空気温度差ΔT(t)を補正演
算し、その補正値ΔT′(t)を用いてAおよびB
を対比し、デアイス開始条件を判定させるのであ
る。
Thereafter, if the speed of the blower electric motor 6 is changed during one cycle from the end of the de-ice operation until the start of the de-ice operation again, the air temperature difference ΔT(t) is determined in the same manner each time the speed is changed. A and B are calculated using the correction value ΔT′(t).
The conditions for starting de-ice are determined by comparing the conditions.

第4図に例示した除霜サイクルについて説明す
る。第4図において、実際に感知された利用側熱
交換器5の入口および出口の空気温度差ΔT(t)
を実線で、また補正回路18で補正された空気温
度差ΔT′(t)を破線で示してある。
The defrosting cycle illustrated in FIG. 4 will be explained. In FIG. 4, the actually sensed air temperature difference ΔT(t) at the inlet and outlet of the user-side heat exchanger 5
is shown by a solid line, and the air temperature difference ΔT'(t) corrected by the correction circuit 18 is shown by a broken line.

第1回目の除霜サイクルt0−t3において、時間
t0からt1までは室内側送風機7は中速Me、時間t1
からデアイス開始時間t3までは低速TOに速度変換
した場合を示す。
In the first defrosting cycle t 0 - t 3 , the time
From t 0 to t 1 , the indoor fan 7 is at medium speed Me, and time t 1
The period from to de-ice start time t 3 shows the case where the speed is converted to low-speed TO .

従来の制御方式では、時間t1で風量が変化すれ
ば空気温度差ΔT(t)が変動し、この温度差ΔT
(t)が設定値Aに達する時間t5で初めてデアイ
スが開始される。したがつて、時間t3−t5の間デ
アイス開始時期が遅れ、効率のよい暖房運転が行
なわれない。
In the conventional control method, if the air volume changes at time t1 , the air temperature difference ΔT(t) changes, and this temperature difference ΔT
De-ice is started only at time t 5 when (t) reaches the set value A. Therefore, the start of de-icing is delayed for a period of time t3 - t5 , and efficient heating operation is not performed.

本発明によれば、風量変化後に温度差ΔTの補
正を行なう(実際には補正計算は空気温度差が安
定した時間t2から行なう)ので、第4図において
破線で示すように空気温度差ΔT′(t)を演算お
よび記憶するので、暖房能力を正確に反映した値
にて、デアイスの開始条件を判定でき、効率のよ
い暖房運転を行なうことができる。第4図の場
合、1の除霜サイクルの最大温度差Bに対し設定
された値Aの比率C=A/Bまで暖房能力が低下
した時デアイスを開始するようにしている。
According to the present invention, the temperature difference ΔT is corrected after the air volume changes (actually, the correction calculation is performed from time t 2 when the air temperature difference becomes stable), so the air temperature difference ΔT is '(t) is calculated and stored, the de-ice start condition can be determined using a value that accurately reflects the heating capacity, and efficient heating operation can be performed. In the case of FIG. 4, de-icing is started when the heating capacity decreases to the ratio C=A/B of the set value A to the maximum temperature difference B in one defrosting cycle.

次に、2回目の除霜サイクルでは時間t4からt6
までは室内側送風機7は中速Me、t6から2回目
のデアイス開始時間t9までは高速Hiに風量を人為
的に変化さけた場合である。
Then for the second defrost cycle from time t 4 to t 6
Up to this point, the indoor fan 7 is at medium speed Me, and from t6 to the second de-ice start time t9 , the air volume is artificially changed to high speed Hi.

補正のない従来方法では、第1回目の除霜サイ
クルとは逆に時間t6以後は、空気温度が実線に示
すように低下してデアイス開始の時期が必要以上
に早くなり(この場合、設定値Aに達する時間t8
で除霜運転開始)、効率のよい暖房運転は行なわ
れない。
In the conventional method without correction, contrary to the first defrosting cycle, after time t6 , the air temperature decreases as shown by the solid line, causing the de-icing to start earlier than necessary (in this case, the Time to reach value A t 8
defrosting operation starts), efficient heating operation is not performed.

本発明によれば、時間t6以後は、破線のように
補正された空気温度差ΔT′(t)を判定回路20
に出力するので的確にデアイス開始条件を判定で
き、効率のよい暖房運転ができる。
According to the present invention, after time t6 , the judgment circuit 20 calculates the corrected air temperature difference ΔT'(t) as shown by the broken line.
Since the de-ice start conditions can be accurately determined, efficient heating operation can be achieved.

なお、暖房運転開始時は、その指令装置21か
らの信号により最大値記憶回路19の記憶値はゼ
ロにリセツトされ、かつ演算回路17の補正係数
kはk=1にセツトされる。
At the start of the heating operation, the stored value of the maximum value storage circuit 19 is reset to zero by a signal from the command device 21, and the correction coefficient k of the arithmetic circuit 17 is set to k=1.

補正係数kは室内側送風用電動機6の運転開始
から電動機6の速度が最初に切換つてタイマ回路
15がタイムアツプして演算回路17で新たな補
正係数が求められるまでは補正係数はk=1にリ
セツトされている。
The correction coefficient k is 1 from the start of operation of the indoor ventilation motor 6 until the speed of the motor 6 is first switched, the timer circuit 15 times up, and a new correction coefficient is determined by the arithmetic circuit 17. It has been reset.

したがつて補正回路18はタイマ回路15がタ
イムアツプして演算回路17で新たな補正係数が
求められるまでは比較回路13で求められた温度
差をそのまま最大値記憶回路19に送りこの記憶
回路19ではその温度差の最大値を記憶すること
になる。
Therefore, the correction circuit 18 sends the temperature difference obtained by the comparison circuit 13 as it is to the maximum value storage circuit 19 until the timer circuit 15 times up and a new correction coefficient is obtained by the arithmetic circuit 17. The maximum value of the temperature difference will be stored.

このことは、暖房中に暖房運転を停止してその
後再運転する場合、および除霜運転終了後暖房運
転を再開する場合も同様である。
This also applies when the heating operation is stopped during heating and then restarted, and when the heating operation is restarted after the defrosting operation is finished.

以上本発明をその好適な実施例について詳述し
たが本発明はこの特定の実施例に限定されるもの
ではなく、本発明の精神を逸脱しない範囲で幾多
の変化変形が可能である。たとえば実施例におい
ては利用側フアンの回転速度に基いて利用側熱交
換器の出入口温度差の変動を補正しているが、利
用側熱交換器の熱交換能力を左右する因子はその
利用側フアンの回転速度の切換え以外にも補助ヒ
ータのON−OFF、圧縮機の容量制御等があるた
め、それらの外乱に基いて温度差の変動を補正す
るようにしてもよい。
Although the present invention has been described above in detail with reference to its preferred embodiment, the present invention is not limited to this specific embodiment, and can be modified in many ways without departing from the spirit of the invention. For example, in the embodiment, the variation in the temperature difference between the inlet and outlet of the user heat exchanger is corrected based on the rotation speed of the user fan, but the factor that influences the heat exchange capacity of the user heat exchanger is the user fan. In addition to switching the rotational speed, there are other functions such as turning on and off the auxiliary heater and controlling the capacity of the compressor, so it is also possible to correct the fluctuation in temperature difference based on these disturbances.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の除霜サイクルを例示した図、第
2図は空気熱源ヒートポンプ式空気調和機の系統
図、第3図は電子制御部の内部ブロツク図、第4
図は本発明による除霜サイクルを例示した図であ
る。 1……冷媒圧縮機、2……四方切換弁、3……
熱源側熱交換機、4……毛細管、5……利用側熱
交換機、6……電動機、7……送風機、8……電
動機、9……送風機、10,11……温度を感知
する素子、12……電子制御部、13……比較回
路、14……信号発生回路、15……タイマ回
路、16……記憶回路、17……演算回路、18
……補正回路、19……最大値記憶回路、20…
…除霜開始判定回路、21……指令装置。
Fig. 1 is a diagram illustrating a conventional defrosting cycle, Fig. 2 is a system diagram of an air source heat pump type air conditioner, Fig. 3 is an internal block diagram of the electronic control unit, and Fig. 4 is a diagram illustrating a conventional defrosting cycle.
The figure is a diagram illustrating a defrosting cycle according to the present invention. 1... Refrigerant compressor, 2... Four-way switching valve, 3...
Heat source side heat exchanger, 4...Capillary tube, 5...Using side heat exchanger, 6...Electric motor, 7...Blower, 8...Electric motor, 9...Blower, 10, 11...Temperature sensing element, 12 ...Electronic control unit, 13...Comparison circuit, 14...Signal generation circuit, 15...Timer circuit, 16...Storage circuit, 17...Arithmetic circuit, 18
...Correction circuit, 19...Maximum value storage circuit, 20...
...Defrosting start determination circuit, 21... Command device.

Claims (1)

【特許請求の範囲】[Claims] 1 利用側熱交換器を流体が流通することによる
流体の温度差を検出し、デアイスを行ないながら
運転しているときの1サイクルの最大温度差を記
憶し、熱源側熱交換器への霜の蓄積により温度差
が減少していく過程における温度差が記憶してあ
る最大温度差に対し設定された割合まで低下した
ときデアイスを開始するようにした除霜方法にお
いて、流体の流量切換等の熱源側熱交換器への霜
の蓄積以外の外乱による上記温度差の変化の前後
の安定状態における温度差を比較演算して補正係
数を算出し、上記外乱の発生の後は温度差に補正
係数を乗じてなる補正値を出力し、この補正値の
最大温度差を記憶し、補正値がその最大温度差に
対し設定された割合まで低下したときデアイスを
開始することを特徴とする除霜方法。
1. Detects the temperature difference in the fluid caused by the fluid flowing through the heat exchanger on the user side, stores the maximum temperature difference in one cycle when operating while performing de-icing, and prevents frost from flowing into the heat exchanger on the heat source side. In a defrosting method that starts de-icing when the temperature difference decreases to a set percentage of the stored maximum temperature difference during the process of decreasing the temperature difference due to accumulation, a heat source such as fluid flow rate switching is used. A correction coefficient is calculated by comparing the temperature difference in the stable state before and after the change in the temperature difference due to a disturbance other than the accumulation of frost on the side heat exchanger, and after the occurrence of the above disturbance, a correction coefficient is applied to the temperature difference. A defrosting method characterized by outputting a correction value obtained by multiplying the correction value, storing a maximum temperature difference of this correction value, and starting de-icing when the correction value decreases to a set ratio with respect to the maximum temperature difference.
JP57051008A 1982-03-31 1982-03-31 Defrosting method Granted JPS58168848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57051008A JPS58168848A (en) 1982-03-31 1982-03-31 Defrosting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57051008A JPS58168848A (en) 1982-03-31 1982-03-31 Defrosting method

Publications (2)

Publication Number Publication Date
JPS58168848A JPS58168848A (en) 1983-10-05
JPH0381060B2 true JPH0381060B2 (en) 1991-12-26

Family

ID=12874743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57051008A Granted JPS58168848A (en) 1982-03-31 1982-03-31 Defrosting method

Country Status (1)

Country Link
JP (1) JPS58168848A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989958A (en) * 1982-11-11 1984-05-24 三菱重工業株式会社 Defrosting method
JP2575063B2 (en) * 1990-03-09 1997-01-22 シャープ株式会社 Air conditioner
JP7390807B2 (en) * 2019-06-11 2023-12-04 清水建設株式会社 air conditioning system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772033U (en) * 1980-10-20 1982-05-01
JPS57148516U (en) * 1981-03-16 1982-09-18

Also Published As

Publication number Publication date
JPS58168848A (en) 1983-10-05

Similar Documents

Publication Publication Date Title
US10168067B2 (en) Detecting and handling a blocked condition in the coil
JP3893676B2 (en) Air conditioner
JPH1151500A (en) Heat pump type air-conditioner
JPS62218748A (en) Defrosting controller for air-conditioning machine
JPH0381060B2 (en)
JP2822705B2 (en) Defrost control device for heat pump type air conditioner
JPH1038398A (en) Controller of electric expansion valve
JPS6277538A (en) Derfosting device of air conditioner
JPH02192536A (en) Heater device
JPH05126384A (en) Air conditioner
KR19980018431A (en) Air conditioner
JPH0512623B2 (en)
JPS60575Y2 (en) Air conditioner defrosting device
JPH07167473A (en) Defrosting operation controller for air conditioner
JPH05264089A (en) Defrosting controller for freezer
JPH0684832B2 (en) Defroster for air conditioner
KR0152104B1 (en) Operating control device and control method of an airconditioner
JPH0684830B2 (en) Defroster for air conditioner
JPH0739897B2 (en) Refrigeration cycle equipment
JPH0684833B2 (en) Defroster for air conditioner
JPH0684835B2 (en) Defroster for air conditioner
JPS62186155A (en) Defrosting control unit of air conditioner
JPH05113252A (en) Refrigerating cycle
JPS6317955Y2 (en)
KR20000055144A (en) Method for preventing freezing of the heat exchanger in the air conditioner