JP2003294295A - Air conditioner - Google Patents
Air conditionerInfo
- Publication number
- JP2003294295A JP2003294295A JP2002096520A JP2002096520A JP2003294295A JP 2003294295 A JP2003294295 A JP 2003294295A JP 2002096520 A JP2002096520 A JP 2002096520A JP 2002096520 A JP2002096520 A JP 2002096520A JP 2003294295 A JP2003294295 A JP 2003294295A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- compressor
- pipe length
- detecting means
- discharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、室内機と室外機を
接続配管で接続した、分離型の空気調和機の制御に関す
る。TECHNICAL FIELD The present invention relates to control of a separation type air conditioner in which an indoor unit and an outdoor unit are connected by a connecting pipe.
【0002】[0002]
【従来の技術】従来分離型の空気調和機において電動膨
張弁によって冷凍サイクルの冷媒循環量を制御する方法
としては、例えば特許第2921254号公報を挙げる
ことができる。2. Description of the Related Art As a conventional method for controlling the refrigerant circulation amount of a refrigerating cycle by an electric expansion valve in a separation type air conditioner, for example, Japanese Patent No. 2912254 can be cited.
【0003】この従来例においては、蒸発温度と凝縮温
度と圧縮機単体の傾斜特性線により、モリエル線図上か
ら目標吐出温度を設定し、圧縮機の吐出温度が目標吐出
温度になるよう電動膨張弁によって冷媒循環量を制御す
ることで、冷媒の過熱度を制御している。In this conventional example, the target discharge temperature is set on the Mollier diagram by the evaporation temperature, the condensation temperature and the slope characteristic line of the compressor alone, and the motor expansion is performed so that the discharge temperature of the compressor becomes the target discharge temperature. The degree of superheat of the refrigerant is controlled by controlling the refrigerant circulation amount by the valve.
【0004】[0004]
【発明が解決しようとする課題】ところで、近年省エネ
ルギや快適性といった観点から、圧縮機の回転数が大き
く変化するインバータを搭載した分離型の空気調和機が
多く普及している。また設置自由度の拡大という観点か
ら接続可能な配管長に関しても、より短く、あるいはよ
り長くまで接続できるよう要求されている。By the way, in recent years, from the viewpoint of energy saving and comfort, a separation type air conditioner equipped with an inverter in which the number of revolutions of a compressor greatly changes has become widespread. Also, from the viewpoint of increasing the degree of freedom in installation, the length of connectable pipe is required to be shorter or longer.
【0005】しかしながらこのような空気調和機におい
ては、インバータにより冷媒循環量が大きく変化し、更
に接続配管長も大きく変化するため、図4に示す冷媒循
環量と配管長の圧損関係のように、暖房運転時に凝縮器
の圧力と圧縮機の吐出側圧力との差(以後圧損という)
も大きく変化する。However, in such an air conditioner, the refrigerant circulation amount greatly changes due to the inverter, and the connecting pipe length also greatly changes. Therefore, as shown in the pressure loss relationship between the refrigerant circulation amount and the pipe length shown in FIG. The difference between the pressure of the condenser and the pressure on the discharge side of the compressor during heating operation (hereinafter referred to as pressure loss)
Also changes greatly.
【0006】その結果、図5に示すモリエル線図のよう
に蒸発温度と凝縮温度だけで目標吐出温度を設定し吐出
温度制御を行っても、接続配管の圧損影響で吸入点は図
中の〇のように変動し、圧縮機の吸入側の冷媒過熱度を
適正過熱度に保つことが困難であった。As a result, as shown in the Mollier diagram shown in FIG. 5, even if the target discharge temperature is set only by the evaporation temperature and the condensation temperature and the discharge temperature control is performed, the suction point is indicated by ◯ in the figure due to the pressure loss of the connecting pipe. It was difficult to maintain the refrigerant superheat degree on the suction side of the compressor at an appropriate superheat degree.
【0007】一般に圧縮機の吸入側の冷媒過熱度が適正
過熱度(一般的に5K前後)に保たれていれば、圧縮機
の運転効率が高くなり、省エネ運転が可能となる。しか
し冷媒過熱度が大きくなりすぎると、能力不足となる課
題が生じる。Generally, if the refrigerant superheat degree on the suction side of the compressor is maintained at an appropriate superheat degree (generally around 5K), the operation efficiency of the compressor is increased and energy saving operation can be performed. However, if the degree of superheat of the refrigerant becomes too large, there arises a problem of insufficient capacity.
【0008】一方吸入冷媒が湿り過ぎる(冷媒過熱度が
全くとれていない)と液バックといった圧縮機の信頼性
が低下するという課題が生じる。On the other hand, if the sucked refrigerant is too wet (the degree of superheat of the refrigerant is not sufficient at all), there arises a problem that the reliability of the compressor such as liquid back is lowered.
【0009】そこで蒸発温度と吸入温度との差により検
出した吸入側の冷媒過熱度が所定値範囲から外れたら目
標吐出温度を修正するという方法もある。Therefore, there is also a method of correcting the target discharge temperature when the degree of superheat of the refrigerant on the suction side, which is detected by the difference between the evaporation temperature and the suction temperature, is out of a predetermined value range.
【0010】しかし、この方法では運転条件(例えば圧
縮機の回転数)が変わった場合には目標吐出温度を修正
することで吸入側の冷媒過熱度を修正することはできて
も、施工条件(配管長)が変わった場合には吸入側の冷
媒過熱度を修正することはできない。However, in this method, when the operating condition (for example, the number of revolutions of the compressor) changes, the target discharge temperature can be corrected to correct the refrigerant superheat degree on the suction side, but the working condition ( If the pipe length) changes, the refrigerant superheat on the suction side cannot be corrected.
【0011】そこで、施工時にスイッチ等で施工者が確
実に実配管長を設定する必要があり、製品コストが上が
る、施工時間が長くなるといった課題が生じる。Therefore, it is necessary for the builder to surely set the actual pipe length with a switch or the like at the time of construction, which causes problems such as an increase in product cost and an increase in construction time.
【0012】そこで本発明は、斯かる点に鑑みてなされ
たものであり、その目的は、吐出温度制御で暖房運転を
行う場合に、様々な運転条件下や施工条件下でも圧縮機
の吐出圧力の飽和温度を高精度に推定することにより吸
入側の冷媒過熱度を適正過熱度に制御し、運転効率を高
め、必要能力を確保するとともに圧縮機の信頼性を高め
ることができる安価な空気調和機を提供することであ
る。Therefore, the present invention has been made in view of the above point, and an object thereof is to perform a discharge pressure of a compressor under various operating conditions and construction conditions when performing a heating operation by controlling a discharge temperature. An inexpensive air conditioner that can control the refrigerant superheat on the suction side to a proper superheat by estimating the saturation temperature of the compressor with high accuracy, improve operating efficiency, secure necessary capacity, and improve the reliability of the compressor. Is to provide a machine.
【0013】[0013]
【課題を解決するための手段】上記課題を解決するため
に、請求項1に記載の本発明は、容量可変形圧縮機と室
外熱交換器と前記室外熱交換器の温度を検出する第1の
温度検出手段と弁開度の制御可能な電動膨張弁とを有す
る室外機と、室内熱交換器と前記室内熱交換器の温度を
検出する第2の温度検出手段とを有する室内機と、前記
室外機と前記室内機を接続する接続配管を有する空気調
和機において、前記接続配管の配管長を予め記憶する記
憶手段と、暖房運転時に前記第2の温度検出手段により
検出された凝縮温度と前記記憶手段に記憶されている配
管長と前記圧縮機の回転数とに基づいて前記圧縮機の吐
出圧力の飽和温度を推定する第1の推定手段と、前記圧
縮機の吐出温度を検出する第3の温度検出手段と、前記
第1の温度検出手段により検出された蒸発温度と前記第
1の推定手段により推定された吐出圧力の飽和温度に基
づいて前記圧縮機の目標吐出温度を算出する目標吐出温
度算出手段と、前記電動膨張弁の開度を制御することに
より、前記目標吐出温度を目指して、前記第3の温度検
出手段により検出される吐出温度を変更させる膨張弁制
御手段とを備えたものである。In order to solve the above problems, the present invention as set forth in claim 1, is a first variable temperature compressor, an outdoor heat exchanger, and a first temperature detecting device for detecting the temperatures of the outdoor heat exchanger. An outdoor unit having a temperature detecting means and an electric expansion valve whose valve opening can be controlled, and an indoor unit having an indoor heat exchanger and a second temperature detecting means for detecting the temperature of the indoor heat exchanger, In an air conditioner having a connection pipe connecting the outdoor unit and the indoor unit, a storage unit that stores a pipe length of the connection pipe in advance, and a condensation temperature detected by the second temperature detection unit during heating operation. First estimating means for estimating a saturation temperature of a discharge pressure of the compressor based on a pipe length and a rotation speed of the compressor stored in the storage means; and a first estimating means for detecting a discharge temperature of the compressor. 3 temperature detecting means and the first temperature detecting means The target discharge temperature calculating means for calculating the target discharge temperature of the compressor based on the vaporization temperature detected by the above and the saturation temperature of the discharge pressure estimated by the first estimating means, and the opening degree of the electric expansion valve. By controlling the expansion valve control means, the discharge temperature detected by the third temperature detecting means is changed to aim at the target discharge temperature.
【0014】このように、凝縮温度に圧損を考慮するこ
とで運転条件が変化しても圧縮機の吐出圧力の飽和温度
を高精度に推定することができ、その高精度に推定され
た吐出圧力の飽和温度を使って目標吐出温度を算出し吐
出温度を制御するため、運転条件が変化しても高精度に
実際の吸入冷媒過熱度を適正過熱度に制御することがで
きる。As described above, by considering the pressure loss in the condensation temperature, the saturation temperature of the discharge pressure of the compressor can be estimated with high accuracy even if the operating condition changes, and the discharge pressure estimated with the high accuracy can be estimated. Since the target discharge temperature is calculated and the discharge temperature is controlled using the saturation temperature of 1, the actual intake refrigerant superheat degree can be controlled to an appropriate superheat degree with high accuracy even if the operating conditions change.
【0015】[0015]
【発明の実施の形態】上記課題を解決するために、請求
項1に記載の本発明は、容量可変形圧縮機と室外熱交換
器と前記室外熱交換器の温度を検出する第1の温度検出
手段と弁開度の制御可能な電動膨張弁とを有する室外機
と、室内熱交換器と前記室内熱交換器の温度を検出する
第2の温度検出手段とを有する室内機と、前記室外機と
前記室内機を接続する接続配管を有する空気調和機にお
いて、前記接続配管の配管長を予め記憶する記憶手段
と、暖房運転時に前記第2の温度検出手段により検出さ
れた凝縮温度と前記記憶手段に記憶されている配管長と
前記圧縮機の回転数とに基づいて前記圧縮機の吐出圧力
の飽和温度を推定する第1の推定手段と、前記圧縮機の
吐出温度を検出する第3の温度検出手段と、前記第1の
温度検出手段により検出された蒸発温度と前記第1の推
定手段により推定された吐出圧力の飽和温度に基づいて
前記圧縮機の目標吐出温度を算出する目標吐出温度算出
手段と、前記電動膨張弁の開度を制御することにより、
前記目標吐出温度を目指して、前記第3の温度検出手段
により検出される吐出温度を変更させる膨張弁制御手段
とを備えたものである。In order to solve the above problems, the present invention according to claim 1 provides a variable temperature compressor, an outdoor heat exchanger, and a first temperature for detecting the temperatures of the outdoor heat exchanger. An outdoor unit having a detection unit and an electric expansion valve whose valve opening can be controlled, an indoor unit having an indoor heat exchanger and a second temperature detection unit that detects the temperature of the indoor heat exchanger, and the outdoor unit. In an air conditioner having a connection pipe connecting an indoor unit and the indoor unit, a storage unit that stores the pipe length of the connection pipe in advance, and a condensation temperature and the storage that are detected by the second temperature detection unit during heating operation. A first estimating means for estimating a saturation temperature of a discharge pressure of the compressor based on a pipe length and a rotation speed of the compressor stored in a means; and a third estimating means for detecting a discharge temperature of the compressor. By the temperature detecting means and the first temperature detecting means Target discharge temperature calculation means for calculating the target discharge temperature of the compressor based on the vaporization temperature that has been discharged and the saturation temperature of the discharge pressure estimated by the first estimation means, and the opening of the electric expansion valve is controlled. By doing
Expansion valve control means for changing the discharge temperature detected by the third temperature detection means, aiming at the target discharge temperature.
【0016】このように、凝縮温度に圧損を考慮するこ
とで運転条件が変化しても圧縮機の吐出圧力の飽和温度
を高精度に推定することができ、その高精度に推定され
た吐出圧力の飽和温度を使って目標吐出温度を算出し吐
出温度を制御するため、運転条件が変化しても高精度に
実際の吸入冷媒過熱度を適正過熱度に制御することがで
きる。Thus, by considering the pressure loss in the condensing temperature, the saturation temperature of the discharge pressure of the compressor can be estimated with high accuracy even if the operating conditions change, and the discharge pressure estimated with the high accuracy can be estimated. Since the target discharge temperature is calculated and the discharge temperature is controlled using the saturation temperature of 1, the actual intake refrigerant superheat degree can be controlled to an appropriate superheat degree with high accuracy even if the operating conditions change.
【0017】また、請求項2記載の本発明は、容量可変
形圧縮機と室外熱交換器と前記室外熱交換器の温度を検
出する第1の温度検出手段と弁開度を制御可能な複数の
電動膨張弁とを有する室外機と、室内熱交換器と前記室
内熱交換器の温度を検出する第2の温度検出手段とを有
する複数の室内機とを接続配管により並列に接続したマ
ルチタイプの空気調和機において、前記各室内機への各
接続配管の配管長を予め記憶する記憶手段と、暖房運転
時に前記各室内機の前記第2の温度検出手段により検出
された各凝縮温度と前記記憶手段に記憶されている各接
続配管の配管長と前記圧縮機の回転数とに基づいて前記
圧縮機の吐出圧力の飽和温度を推定する第1の推定手段
と、前記圧縮機の吐出温度を検出する第3の温度検出手
段と、前記第1の温度検出手段により検出された蒸発温
度と前記第1の推定手段により推定された吐出圧力の飽
和温度に基づいて前記圧縮機の目標吐出温度を算出する
目標吐出温度算出手段と、前記電動膨張弁の開度を制御
することにより、前記目標吐出温度を目指して、前記第
3の温度検出手段により検出される吐出温度を変更させ
る膨張弁制御手段とを備えたものである。According to a second aspect of the present invention, the variable capacity compressor, the outdoor heat exchanger, the first temperature detecting means for detecting the temperature of the outdoor heat exchanger, and a plurality of valve opening controllable parts. Of the electric expansion valve, and a plurality of indoor units having an indoor heat exchanger and a second temperature detecting means for detecting the temperature of the indoor heat exchanger are connected in parallel by connecting pipes. In the air conditioner, storage means for storing in advance the pipe length of each connection pipe to each indoor unit, each condensation temperature detected by the second temperature detection means of each indoor unit during heating operation, and The first estimating means for estimating the saturation temperature of the discharge pressure of the compressor based on the pipe length of each connecting pipe and the rotation speed of the compressor stored in the storage means, and the discharge temperature of the compressor A third temperature detecting means for detecting, and the first temperature detecting means. Of the discharge temperature of the compressor based on the evaporation temperature detected by the temperature detecting means and the saturation temperature of the discharge pressure estimated by the first estimating means; Expansion valve control means is provided for changing the discharge temperature detected by the third temperature detection means by aiming at the target discharge temperature by controlling the opening degree.
【0018】このように、マルチタイプの空気調和機に
おいても、凝縮温度に圧損を考慮することで運転条件が
変化しても圧縮機の吐出圧力の飽和温度を高精度に推定
することができ、その高精度に推定された吐出圧力の飽
和温度を使って目標吐出温度を算出し吐出温度を制御す
るため、運転条件が変化しても高精度に実際の吸入冷媒
過熱度を適正過熱度に制御することができる。As described above, even in the multi-type air conditioner, the saturation temperature of the discharge pressure of the compressor can be estimated with high accuracy by considering the pressure loss in the condensation temperature even if the operating conditions change. The target discharge temperature is calculated using the saturation temperature of the discharge pressure estimated with high accuracy and the discharge temperature is controlled.Therefore, even if the operating conditions change, the actual intake refrigerant superheat degree is controlled to an appropriate superheat degree with high accuracy. can do.
【0019】また、請求項3記載の本発明は、圧縮機の
吸入温度を検出する第4の温度検出手段と、前記第1の
温度検出手段により検出された蒸発温度と前記第4の温
度検出手段により検出された吸入温度に基づき圧縮機の
吸入冷媒過熱度を推定する第2の推定手段と、第3の温
度検出手段により検出された吐出温度が前記目標吐出温
度算出手段により算出された目標吐出温度に対し所定の
範囲内にあり、かつ前記第2の推定手段により推定され
た前記吸入冷媒過熱度が所定の範囲から外れた場合に、
予め記憶手段に記憶されている配管長を修正するもので
ある。Further, according to the present invention, the fourth temperature detecting means for detecting the suction temperature of the compressor, the evaporation temperature detected by the first temperature detecting means and the fourth temperature detecting means. Second estimation means for estimating the suction refrigerant superheat degree of the compressor based on the suction temperature detected by the means, and the discharge temperature detected by the third temperature detection means, the target calculated by the target discharge temperature calculation means. When it is within a predetermined range with respect to the discharge temperature, and the suction refrigerant superheat degree estimated by the second estimating means is out of the predetermined range,
The pipe length previously stored in the storage means is corrected.
【0020】このように、予め記憶されている配管長が
実際に据付られている配管長と大きく異なる場合でも自
動的に配管長を修正するため、修正を行う度に実際の配
管長に近づくことになる。この結果、目標吐出温度が修
正されるため、運転条件や施工条件が変化しても実際の
吸入冷媒過熱度は適正過熱度近傍へと修正される。As described above, since the pipe length is automatically corrected even when the previously stored pipe length is significantly different from the actually installed pipe length, the pipe length should be close to the actual pipe length each time the correction is performed. become. As a result, the target discharge temperature is corrected, so that the actual superheat degree of the suction refrigerant is corrected to be near the proper superheat degree even if the operating condition or the construction condition changes.
【0021】また、請求項4記載の本発明は、配管長修
正手段により修正された配管長が所定配管長から外れた
場合、据付配管長が適切ではない旨を使用者に知らせる
異常検出手段を備えたものである。Further, according to the present invention, the abnormality detecting means for notifying the user that the installed pipe length is not appropriate when the pipe length corrected by the pipe length correcting means deviates from the predetermined pipe length. Be prepared.
【0022】このように、実際に据付られている配管長
が適正配管長から逸脱され、システムの運転に不具合が
生じやすい場合に使用者にその旨を知らせることがで
き、この結果システムの重大な損傷等を間逃れることが
できる。As described above, when the actually installed pipe length deviates from the proper pipe length and a malfunction of the system is likely to occur, it is possible to inform the user of that fact, and as a result, a serious problem of the system is caused. It is possible to escape damage etc.
【0023】以下、本発明の実施の形態について、図面
を参照しながら説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0024】(実施の形態1)図1は、本発明の実施の
形態1を示す構成図であり、室外機1と室内機2が接続
配管8により接続され、冷凍サイクルを形成している。(Embodiment 1) FIG. 1 is a configuration diagram showing Embodiment 1 of the present invention, in which an outdoor unit 1 and an indoor unit 2 are connected by a connection pipe 8 to form a refrigeration cycle.
【0025】図1において、室外機1にはインバータ駆
動の容量可変形圧縮機3(以下単に圧縮機と称す)と室
外熱交換器5と冷暖房切換用の四方弁4とが設けられる
一方、室内機2には室内熱交換器7が設けられている。
また、室外機1の液側主管には、例えばステッピングモ
ータ等により弁開度を制御可能な電動膨張弁6が介装さ
れている。In FIG. 1, an outdoor unit 1 is provided with an inverter-driven variable displacement compressor 3 (hereinafter simply referred to as a compressor), an outdoor heat exchanger 5 and a four-way valve 4 for switching between heating and cooling, while indoors. The machine 2 is provided with an indoor heat exchanger 7.
Further, the liquid side main pipe of the outdoor unit 1 is provided with an electric expansion valve 6 whose valve opening can be controlled by, for example, a stepping motor or the like.
【0026】上記構成の冷凍サイクルにおいて、暖房
時、圧縮機3から吐出された冷媒は、四方弁4より接続
配管8のガス側配管を通って室内熱交換器7へと流れ
て、ここで室内空気と熱交換して凝縮液化し接続配管8
の液側配管を通った後、電動膨張弁6を通過することに
より減圧されて冷媒は蒸発しやすい状態となり、室外熱
交換器5へと流れて室外空気と熱交換して蒸発した後、
再び圧縮機3に吸入される。また、圧縮機3の回転数
は、室内機2からの要求能力に応じて決定される(本発
明とは直接関係しないため、説明は省略する。)。In the refrigeration cycle having the above structure, during heating, the refrigerant discharged from the compressor 3 flows from the four-way valve 4 through the gas side pipe of the connecting pipe 8 to the indoor heat exchanger 7, where it is indoors. Connection pipe 8 for heat exchange with air to condense and liquefy
After passing through the liquid side pipe, the pressure is reduced by passing through the electric expansion valve 6 and the refrigerant is easily evaporated, and flows into the outdoor heat exchanger 5 to exchange heat with the outdoor air and evaporate,
It is again sucked into the compressor 3. Further, the rotation speed of the compressor 3 is determined according to the required capacity from the indoor unit 2 (the description is omitted because it is not directly related to the present invention).
【0027】次に、圧縮機3の吐出圧力の飽和温度を推
定する方法について説明する。まず第1の推定手段(マ
イクロコンピュータ)は室内熱交換器温度センサ11に
より得られた凝縮温度Tcに圧損相当温度△Tを付加す
ることにより吐出圧力の飽和温度Twdを推定する。Next, a method for estimating the saturation temperature of the discharge pressure of the compressor 3 will be described. First, the first estimating means (microcomputer) estimates the saturation temperature Twd of the discharge pressure by adding the pressure loss equivalent temperature ΔT to the condensation temperature Tc obtained by the indoor heat exchanger temperature sensor 11.
【0028】ここで冷凍サイクルを流れる冷媒循環量は
圧縮機3の回転数Rにほぼ比例することから、圧損相当
温度△Tは、式(2)に示す圧縮機3の回転数Rと記憶
手段(メモリ装置)に記憶されている接続配管8の長さ
H(例えば10m)とから推定できる。
Twd=Tc+△T・・・・・式(1)
△T=a×R×H+b・・・・式(2) a、bは定数
このように、圧損相当温度を高精度で推定することで、
吐出圧力の飽和温度も高精度に推定できる。ここで圧損
相当温度△Tの推定精度を更に高めるため、回転数Rの
2乗等を使って推定してもよい。Here, since the refrigerant circulation amount flowing through the refrigeration cycle is substantially proportional to the rotation speed R of the compressor 3, the pressure loss equivalent temperature ΔT is calculated by the rotation speed R of the compressor 3 and the storage means shown in the equation (2). It can be estimated from the length H (for example, 10 m) of the connection pipe 8 stored in the (memory device). Twd = Tc + ΔT (Equation (1)) ΔT = a × R × H + b (Equation (2) a and b are constants In this way, by estimating the pressure loss equivalent temperature with high accuracy. ,
The saturation temperature of the discharge pressure can also be estimated with high accuracy. Here, in order to further improve the estimation accuracy of the pressure drop equivalent temperature ΔT, the square of the rotation speed R or the like may be used for the estimation.
【0029】(実施の形態2)また図2は本発明の実施
の形態2おけるマルチタイプの空気調和機の一例を示す
構成図であり、マルチタイプの場合、第1の推定手段
(マイクロコンピュータ)は記憶手段に記憶されている
各配管長Hから平均配管長Hr[=(Ha+Hb)/
2]を算出し、圧縮機3の平均回転数Rr(=R/2)
を算出するとともに、前記平均配管長Hrと前記平均回
転数Rrから式(2)より1室当たりの平均圧損相当温
度△Trを算出する。(Second Embodiment) FIG. 2 is a block diagram showing an example of a multi-type air conditioner according to the second embodiment of the present invention. In the case of the multi-type, first estimating means (microcomputer) Is the average pipe length Hr [= (Ha + Hb) / from each pipe length H stored in the storage means.
2] is calculated, and the average rotation speed Rr (= R / 2) of the compressor 3 is calculated.
At the same time, the average pressure loss-equivalent temperature ΔTr per chamber is calculated from the average pipe length Hr and the average rotational speed Rr according to the equation (2).
【0030】そして、各室内機2の凝縮温度Tcから平
均凝縮温度Tcr[=(Tca+Tcb)/2)]を算
出し、前記平均凝縮温度Tcrと前記平均圧損相当温度
△Trから式(1)より吐出圧力の飽和温度Twdを推
定する。このようにマルチタイプの空気調和機において
は、平均配管長を用いて平均圧損相当温度を推定するた
め全体圧損相当温度を高精度に推定でき、その結果吐出
圧力の飽和温度も高精度に推定できる。Then, the average condensing temperature Tcr [= (Tca + Tcb) / 2)] is calculated from the condensing temperature Tc of each indoor unit 2, and the average condensing temperature Tcr and the average pressure drop equivalent temperature ΔTr are calculated from the equation (1). The saturation temperature Twd of the discharge pressure is estimated. As described above, in the multi-type air conditioner, the average pressure loss equivalent temperature is estimated using the average pipe length, so that the overall pressure loss equivalent temperature can be estimated with high accuracy, and as a result, the saturation temperature of the discharge pressure can also be estimated with high accuracy. .
【0031】次に吸入冷媒過熱度を間接的に制御する吐
出温度制御について説明する。まず圧縮機3の圧縮原理
はポリトロープ圧縮であることから、ポリトロープ圧縮
の温度近似式を用いて適正過熱度SHmでの吐出温度が
計算できる。そこで目標吐出温度算出手段(マイクロコ
ンピュータ)は室外熱交換器温度センサ10により検出
された蒸発温度Teと第1の推定手段により推定された
圧縮機の吐出圧力の飽和温度Twdから式(3)の温度
近似式を用いて圧縮機3の目標吐出温度Tdmを算出す
る。
Tdm=c×Te+d×Twd+e・・・式(3)
c、d、eは定数
更に膨張弁制御手段(マイクロコンピュータ)は、吐出
温度センサ9により検出された吐出温度Tdと前記目標
吐出温度Tdmとの偏差DTに基づいて、電動膨張弁6
の操作開度△Kを算出し、例えば60秒毎に電動膨張弁
6を制御する。
DT=Td−Tdm・・・式(4)
△K=e×DT・・・・・式(5) eは定数
このように、高精度に推定された吐出圧力の飽和温度を
使って目標吐出温度を算出し、フィードバック制御を行
うため、運転条件が変化しても高精度に実際の吸入冷媒
過熱度を適正過熱度SHmに制御することができる。Next, the discharge temperature control for indirectly controlling the superheat degree of the suction refrigerant will be described. First, since the compression principle of the compressor 3 is polytropic compression, the discharge temperature at the proper superheat degree SHm can be calculated using the temperature approximation formula of polytropic compression. Therefore, the target discharge temperature calculating means (microcomputer) uses the evaporation temperature Te detected by the outdoor heat exchanger temperature sensor 10 and the saturation temperature Twd of the discharge pressure of the compressor estimated by the first estimating means to obtain the equation (3). The target discharge temperature Tdm of the compressor 3 is calculated using the temperature approximation formula. Tdm = c × Te + d × Twd + e (Equation (3) c, d, and e are constants, and the expansion valve control means (microcomputer) calculates the discharge temperature Td detected by the discharge temperature sensor 9 and the target discharge temperature Tdm. Based on the deviation DT of the electric expansion valve 6
Is calculated, and the electric expansion valve 6 is controlled every 60 seconds, for example. DT = Td-Tdm (Equation (4)) ΔK = e × DT (Equation (5)) e is a constant In this way, the target discharge is performed using the saturation temperature of the discharge pressure estimated with high accuracy. Since the temperature is calculated and the feedback control is performed, the actual superheat degree of the intake refrigerant can be controlled to the proper superheat degree SHm with high accuracy even if the operating condition changes.
【0032】ここで目標吐出温度Tdmの算出に蒸発温
度Teを用いたが、更に精度を高めるため外気温等によ
る補正を加えてもよい。Although the evaporation temperature Te is used in the calculation of the target discharge temperature Tdm, it may be corrected by the outside air temperature or the like to further improve the accuracy.
【0033】また電動膨張弁6の操作開度△Kの算出方
法に偏差DTを用いたが、PID制御やファジー制御と
いった制御方法を用いても同様の効果が得られる。Although the deviation DT is used as the method for calculating the operating opening ΔK of the electric expansion valve 6, the same effect can be obtained by using a control method such as PID control or fuzzy control.
【0034】次に実際に据付られている実配管長と記憶
手段に記憶されている配管長が大きく異なる場合の冷凍
サイクル挙動について説明する。図5は上記吐出温度制
御を行った場合のモリエル線図であり、図5において太
線で書かれたサイクルは実際に据付られている実配管長
と記憶手段に記憶されている配管長が等しい時の冷凍サ
イクルを示している。Next, the refrigerating cycle behavior when the actual installed pipe length and the pipe length stored in the storage means are greatly different will be described. FIG. 5 is a Mollier diagram when the above discharge temperature control is performed, and the cycle indicated by the bold line in FIG. 5 is when the actually installed pipe length is equal to the pipe length stored in the storage means. Shows the refrigeration cycle of.
【0035】ここから実配管長Htが配管長Hよりも短
くなると、実際の吐出圧力は推定された吐出圧力A点
(図中の●)よりも低いB点(図中の●)となり、この
時の吸入冷媒過熱度は適正過熱度SHmよりも大きくな
る。From here, when the actual pipe length Ht becomes shorter than the pipe length H, the actual discharge pressure becomes a point B (● in the figure) lower than the estimated discharge pressure point A (● in the figure). The superheat degree of the suctioned refrigerant at this time becomes larger than the proper superheat degree SHm.
【0036】この結果、運転効率が低下したり能力不足
といった問題が生じやすくなる。逆に実配管長Htが配
管長Hよりも長くなると、実際の吐出圧力は推定された
吐出圧力A点(図中の●)よりも高いC点(図中の●)
となり、この時の吸入冷媒過熱度は適正過熱度SHmよ
りも小さくなる。この結果、運転効率が低下したり液バ
ックといった圧縮機の信頼性低下問題が生じやすくな
る。As a result, problems such as reduced operating efficiency and insufficient capacity are likely to occur. On the contrary, when the actual pipe length Ht becomes longer than the pipe length H, the actual discharge pressure is higher than the estimated discharge pressure A point (● in the figure) and C point (● in the figure).
Therefore, the superheat degree of the suctioned refrigerant at this time becomes smaller than the proper superheat degree SHm. As a result, the problem of lowering the reliability of the compressor, such as a decrease in operating efficiency and liquid back, is likely to occur.
【0037】そこで、実際に据付られている実配管長H
tと記憶手段に記憶されている配管長Hが大きく異なる
場合の吐出温度制御について図3のフローチャートを用
いて説明する。Therefore, the actual installed pipe length H
The discharge temperature control when t and the pipe length H stored in the storage means are significantly different will be described with reference to the flowchart of FIG.
【0038】まずステップS1では配管長Hを初期値1
0mに設定するとともに、カウンタMとNを0にセット
する。ステップS2では制御間隔(例えば60秒)をカ
ウントするタイマをリセットし、ステップS3でタイマ
をスタートさせる。First, in step S1, the pipe length H is set to the initial value 1
The counters M and N are set to 0 while being set to 0 m. In step S2, the timer that counts the control interval (for example, 60 seconds) is reset, and in step S3, the timer is started.
【0039】ステップS4では蒸発温度Teと凝縮温度
Tcと吐出温度Tdと圧縮機回転数Rと吸入温度センサ
12により吸入温度Tsを読み込む。ステップS5では
第1の推定手段により吐出圧力の飽和温度Twdを推定
し、ステップS6では目標吐出温度算出手段により目標
吐出温度Tdmを算出し、スッテプS7では第2の推定
手段により式(6)を用いて吸入冷媒過熱度SHsを推
定する。
SHs=Ts−Te・・・式(6)
ステップS8では吐出温度Tdが目標吐出温度Tdmに
対し±h ℃以内(例えば1℃以内)に入っているか判
断し、Tdm±h ℃に入っていれば、ステップS9に
進む。一方ステップS8にて吐出温度TdがTdm±h
℃以内に入っていなければ、ステップS27、S1
6、S17、S18と進み、吐出温度Tdが目標吐出温
度Tdmになるよう膨張弁制御手段により膨張弁6の開
度操作を行う。ステップS19ではタイマが60秒経過
するのを待ってから、再びステップS2に戻りフィード
バック制御を行う。In step S4, the evaporation temperature Te, the condensation temperature Tc, the discharge temperature Td, the compressor speed R, and the suction temperature Ts are read by the suction temperature sensor 12. In step S5, the first estimation means estimates the saturation temperature Twd of the discharge pressure, in step S6 the target discharge temperature calculation means calculates the target discharge temperature Tdm, and in step S7, the second estimation means calculates the equation (6). The intake refrigerant superheat degree SHs is estimated by using this. SHs = Ts−Te (Equation (6)) In step S8, it is determined whether the discharge temperature Td is within ± h ° C (for example, within 1 ° C) of the target discharge temperature Tdm, and Tdm ± h ° C is entered. If so, go to step S9. On the other hand, in step S8, the discharge temperature Td is Tdm ± h
If not within ℃, steps S27, S1
In S6, S17 and S18, the opening degree of the expansion valve 6 is operated by the expansion valve control means so that the discharge temperature Td becomes the target discharge temperature Tdm. In step S19, the timer waits for 60 seconds, and then the process returns to step S2 to perform feedback control.
【0040】またステップS9においては、吸入冷媒過
熱度SHsが適正過熱度SHm+iK(例えば3K)を
超えているか判断し、超えている場合は実配管長Htが
配管長Hよりも短いとみなし、ステップS10にて短い
と判断された回数をカウントするカウンタMをプラス1
するのと同時に、長いと判断された回数をカウントする
カウンタNを0にセットする。In step S9, it is determined whether the intake refrigerant superheat degree SHs exceeds the appropriate superheat degree SHm + iK (for example, 3K). If it exceeds, it is considered that the actual pipe length Ht is shorter than the pipe length H, and the step Add 1 to the counter M that counts the number of times determined to be short in S10
At the same time, the counter N that counts the number of times determined to be long is set to 0.
【0041】ステップS11ではカウンタMがα以上か
を判断し、カウンタMがα以上であればα回(例えば1
0回)連続で吸入冷媒過熱度SHsが適正過熱度SHm
+iKを超えているため、本当に実配管長Htが配管長
Hよりも短いと判断し、ステップS12にて配管長Hを
j m(例えば5m)短く修正する。In step S11, it is determined whether the counter M is α or more. If the counter M is α or more, α times (for example, 1
(0 times) Continuously, the superheat degree SHs of the suction refrigerant is the proper superheat degree SHm.
Since it exceeds + iK, it is determined that the actual pipe length Ht is really shorter than the pipe length H, and the pipe length H is corrected to be shorter by j m (for example, 5 m) in step S12.
【0042】ここで吐出温度Tdは圧縮機3の熱容量の
影響で、蒸発温度Teや凝縮温度Tcが安定していても
すぐには安定しないため、α回連続でという条件を入れ
ることで、冷凍サイクルが不安定な時の誤判定を防止す
ることができる。Since the discharge temperature Td is affected by the heat capacity of the compressor 3 and the evaporation temperature Te and the condensation temperature Tc are stable, they are not immediately stable. It is possible to prevent erroneous determination when the cycle is unstable.
【0043】ステップS13、S14では修正された配
管長Hを用いて吐出圧力の飽和温度Twdおよび目標吐
出温度Tdmを再計算し修正する。ステップS15では
カウンタMをリセットした後、ステップS16、S1
7、S18へと進み、吐出温度Tdが修正された目標吐
出温度Tdmになるよう膨張弁6の開度操作を行う。In steps S13 and S14, the saturation temperature Twd of the discharge pressure and the target discharge temperature Tdm are recalculated and corrected using the corrected pipe length H. After resetting the counter M in step S15, steps S16 and S1 are performed.
7, the process proceeds to S18, and the opening degree operation of the expansion valve 6 is performed so that the discharge temperature Td becomes the corrected target discharge temperature Tdm.
【0044】またステップS9にて吸入冷媒過熱度SH
sが適正過熱度SHm+iKを超えていない場合は、ス
テップS20にて吸入冷媒過熱度SHsが適正過熱度S
Hm−i Kを下回っているか判断し、下回っている場
合は実配管長Htが配管長Hよりも長いとみなし、同様
にα回連続したらステップS23、S24、S25、S
26にて配管長Hと吐出圧力の飽和温度Twdおよび目
標吐出温度Tdmを修正し、カウンタNを0にセットす
る。Further, in step S9, the degree of superheat of the intake refrigerant SH
If s does not exceed the appropriate superheat degree SHm + iK, the intake refrigerant superheat degree SHs is determined to be the appropriate superheat degree S in step S20.
Hm-i K is determined, and if it is less than Hm-i K, it is considered that the actual pipe length Ht is longer than the pipe length H. Similarly, if α times are consecutive, steps S23, S24, S25, S are performed.
At 26, the pipe length H, the saturation temperature Twd of the discharge pressure and the target discharge temperature Tdm are corrected, and the counter N is set to zero.
【0045】一方ステップS20にて吸入冷媒過熱度S
Hsが適正過熱度SHm−iK以上であれば実配管長H
tは配管長Hにほぼ近いとみなし、配管長Hは修正せず
に制御を行う。On the other hand, in step S20, the intake refrigerant superheat S
If Hs is above the appropriate superheat degree SHm-iK, the actual pipe length H
It is assumed that t is almost close to the pipe length H, and the pipe length H is controlled without correction.
【0046】上記のように配管長Hの修正を繰り返すこ
とにより配管長Hは実配管長Htへと次第に近づいてい
く。その結果、図5に示す目標吐出温度が修正され(図
中の破線)、圧縮機3の吸入点(図中の〇)はD点へと
近づいていき、施工条件が変化しても実際の吸入冷媒過
熱度を適正過熱度SHm近傍へと修正することができ
る。By repeating the correction of the pipe length H as described above, the pipe length H gradually approaches the actual pipe length Ht. As a result, the target discharge temperature shown in FIG. 5 is corrected (broken line in the figure), the suction point of the compressor 3 (◯ in the figure) approaches point D, and even if the construction conditions change, the actual It is possible to correct the suction refrigerant superheat degree to be close to the appropriate superheat degree SHm.
【0047】またマルチタイプの空気調和機の場合、全
体冷媒循環量の制御と同時に各室内機への個別冷媒循環
量も制御する必要がある。そこでマルチタイプの空気調
和機の場合、まず各運転機の凝縮温度Tcn(n=a号
機またはb号機)と室内熱交換器7の液側配管に設けら
れた室内液温度センサ13により検出された各液温度T
lnから式(7)を用いて各運転機の室内冷媒過冷却度
SCnを算出する。
SCn=Tcn−Tln・・・式(7)
そしてステップS17にて各運転機の電動膨張弁6の操
作開度△K(全運転機同じ)を算出した後、前記操作開
度△Kを付加した全運転機の電動膨張弁6の合計開度
(Σ(現在開度+△K))を算出し、前記合計開度を保
ちながら各上記室内冷媒過冷却度SCnが同じ値になる
よう各電動膨張弁6の開度を新開度に補正し(a号機の
新開度+b号機の新開度=合計開度)、ステップS18
にて各電動膨張弁6の開度を新開度に操作することで、
全体冷媒循環量の制御と各室内機への個別冷媒循環量の
制御を同時に行うことができる。この点については種々
の制御が提案されて公知であるのでフローチャートから
は省略する。In the case of a multi-type air conditioner, it is necessary to control the total refrigerant circulation amount as well as the individual refrigerant circulation amount to each indoor unit. Therefore, in the case of a multi-type air conditioner, first, the condensing temperature Tcn (n = a or b) of each operating device and the indoor liquid temperature sensor 13 provided in the liquid side pipe of the indoor heat exchanger 7 are detected. Each liquid temperature T
The in-room refrigerant supercooling degree SCn of each operating machine is calculated from ln using the equation (7). SCn = Tcn-Tln (Equation (7)) Then, in step S17, after calculating the operating opening ΔK (the same for all operating machines) of the electric expansion valve 6 of each operating machine, the operating opening ΔK is added. The total opening (Σ (current opening + ΔK)) of the electric expansion valves 6 of all the operated machines is calculated, and each indoor refrigerant supercooling degree SCn is set to the same value while maintaining the total opening. The opening degree of the electric expansion valve 6 is corrected to a new opening degree (new opening degree of Unit a + new opening degree of Unit b = total opening degree), and step S18
By operating the opening of each electric expansion valve 6 at
It is possible to simultaneously control the total refrigerant circulation amount and the individual refrigerant circulation amount to each indoor unit. Since various controls have been proposed and are publicly known in this respect, they are omitted from the flowchart.
【0048】また実際に据付られる配管長には、圧縮機
3のオイルと冷媒の比率やオイルの戻り具合といった圧
縮機の信頼性等を加味し最小配管長Hminおよび最大
配管長Hmaxが規定される。In addition, the minimum pipe length Hmin and the maximum pipe length Hmax are specified for the actually installed pipe length in consideration of the reliability of the compressor such as the ratio of the oil and the refrigerant of the compressor 3 and the returning condition of the oil. .
【0049】一方上述したように配管長修正手段により
実配管長Htが推測できる。そこで異常検出手段(マイ
クロコンピュータ)は、配管長修正手段により修正され
た配管長Hが、前記最小配管長Hminから最大配管長
Hmaxまでの適正配管長内であるか判断し、前記適正
配管長内から外れた場合に室内機2に設けられているL
EDランプ20(図示せず)を用いて据付配管長が適切
ではない旨を表示する。On the other hand, as described above, the actual pipe length Ht can be estimated by the pipe length correcting means. Therefore, the abnormality detecting means (microcomputer) determines whether the pipe length H corrected by the pipe length correcting means is within the proper pipe length from the minimum pipe length Hmin to the maximum pipe length Hmax, and within the proper pipe length. L provided in the indoor unit 2 when it comes off
An ED lamp 20 (not shown) is used to indicate that the installed pipe length is not appropriate.
【0050】これにより据付配管長が適切ではない旨を
施工者や使用者に知らせることができ、配管施工の修正
を促すことができる。ここで前記LEDランプ20の他
にブザーによる音やリモコン等に表示しても、据付配管
長が適切ではない旨を知らせることができる。As a result, it is possible to inform the installer or user that the installed pipe length is not appropriate, and it is possible to prompt correction of the pipe installation. Here, in addition to the LED lamp 20, a buzzer sound, a remote control, or the like may be displayed to inform that the installation pipe length is not appropriate.
【0051】このように、実際に据付られている配管長
が適正配管長から逸脱され、システムの運転に不具合が
生じやすい場合に、配管施工の修正を促すことでシステ
ムの重大な損傷等を間逃れることができる。As described above, when the actually installed pipe length deviates from the proper pipe length and the system operation is apt to be defective, the system is urged to correct the pipe construction to prevent serious damage to the system. You can escape.
【0052】[0052]
【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。Since the present invention is constructed as described above, it has the following effects.
【0053】請求項1に記載の本発明は、容量可変形圧
縮機と室外熱交換器と前記室外熱交換器の温度を検出す
る第1の温度検出手段と弁開度の制御可能な電動膨張弁
とを有する室外機と、室内熱交換器と前記室内熱交換器
の温度を検出する第2の温度検出手段とを有する室内機
と、前記室外機と前記室内機を接続する接続配管を有す
る空気調和機において、前記接続配管の配管長を予め記
憶する記憶手段と、暖房運転時に前記第2の温度検出手
段により検出された凝縮温度と前記記憶手段に記憶され
ている配管長と前記圧縮機の回転数とに基づいて前記圧
縮機の吐出圧力の飽和温度を推定する第1の推定手段
と、前記圧縮機の吐出温度を検出する第3の温度検出手
段と、前記第1の温度検出手段により検出された蒸発温
度と前記第1の推定手段により推定された吐出圧力の飽
和温度に基づいて前記圧縮機の目標吐出温度を算出する
目標吐出温度算出手段と、前記電動膨張弁の開度を制御
することにより、前記目標吐出温度を目指して、前記第
3の温度検出手段により検出される吐出温度を変更させ
る膨張弁制御手段とを備えたものである。According to a first aspect of the present invention, the variable displacement compressor, the outdoor heat exchanger, the first temperature detecting means for detecting the temperature of the outdoor heat exchanger, and the electric expansion capable of controlling the valve opening degree. An outdoor unit having a valve; an indoor unit having an indoor heat exchanger and a second temperature detecting means for detecting the temperature of the indoor heat exchanger; and a connecting pipe connecting the outdoor unit and the indoor unit. In the air conditioner, a storage unit that stores the pipe length of the connection pipe in advance, a condensation temperature detected by the second temperature detection unit during heating operation, the pipe length stored in the storage unit, and the compressor. First estimating means for estimating the saturation temperature of the discharge pressure of the compressor, third temperature detecting means for detecting the discharge temperature of the compressor, and the first temperature detecting means. Evaporation temperature detected by and the first estimation Aiming at the target discharge temperature by controlling the target discharge temperature calculating means for calculating the target discharge temperature of the compressor based on the saturation temperature of the discharge pressure estimated by the stage and the opening degree of the electric expansion valve. And expansion valve control means for changing the discharge temperature detected by the third temperature detection means.
【0054】このように配管長と圧縮機の回転数とに基
づいて圧損相当温度を高精度に推定し、凝縮温度に前記
圧損相当温度を付加することで、様々な運転条件下で圧
縮機の吐出圧力の飽和温度を常に高精度に推定すること
ができ、その高精度に推定された圧縮機の吐出圧力の飽
和温度に基づいて圧縮機の目標吐出温度を算出し、吐出
温度を制御することで、様々な運転条件下で実際の吸入
冷媒過熱度を常に適正過熱度に制御することができる。As described above, the temperature equivalent to the pressure loss is highly accurately estimated based on the pipe length and the rotation speed of the compressor, and the temperature equivalent to the pressure loss is added to the condensation temperature, so that the compressor can be operated under various operating conditions. The saturation temperature of the discharge pressure can always be estimated with high accuracy, and the target discharge temperature of the compressor can be calculated based on the highly estimated saturation temperature of the discharge pressure of the compressor to control the discharge temperature. Thus, it is possible to always control the actual intake refrigerant superheat degree to an appropriate superheat degree under various operating conditions.
【0055】これにより省エネ運転が可能となるととも
に、能力不足や液バックといった圧縮機の信頼性低下問
題を回避することができる。As a result, energy-saving operation can be performed, and the problem of reduced reliability of the compressor such as insufficient capacity and liquid back can be avoided.
【0056】また、請求項2記載の本発明は、容量可変
形圧縮機と室外熱交換器と前記室外熱交換器の温度を検
出する第1の温度検出手段と弁開度を制御可能な複数の
電動膨張弁とを有する室外機と、室内熱交換器と前記室
内熱交換器の温度を検出する第2の温度検出手段とを有
する複数の室内機とを接続配管により並列に接続したマ
ルチタイプの空気調和機において、前記各室内機への各
接続配管の配管長を予め記憶する記憶手段と、暖房運転
時に前記各室内機の前記第2の温度検出手段により検出
された各凝縮温度と前記記憶手段に記憶されている各接
続配管の配管長と前記圧縮機の回転数とに基づいて前記
圧縮機の吐出圧力の飽和温度を推定する第1の推定手段
と、前記圧縮機の吐出温度を検出する第3の温度検出手
段と、前記第1の温度検出手段により検出された蒸発温
度と前記第1の推定手段により推定された吐出圧力の飽
和温度に基づいて前記圧縮機の目標吐出温度を算出する
目標吐出温度算出手段と、前記電動膨張弁の開度を制御
することにより、前記目標吐出温度を目指して、前記第
3の温度検出手段により検出される吐出温度を変更させ
る膨張弁制御手段とを備えたものである。The present invention according to claim 2 is characterized in that the variable capacity compressor, the outdoor heat exchanger, the first temperature detecting means for detecting the temperature of the outdoor heat exchanger, and a plurality of valves capable of controlling the valve opening degree. Of the electric expansion valve, and a plurality of indoor units having an indoor heat exchanger and a second temperature detecting means for detecting the temperature of the indoor heat exchanger are connected in parallel by connecting pipes. In the air conditioner, storage means for storing in advance the pipe length of each connection pipe to each indoor unit, each condensation temperature detected by the second temperature detection means of each indoor unit during heating operation, and The first estimating means for estimating the saturation temperature of the discharge pressure of the compressor based on the pipe length of each connecting pipe and the rotation speed of the compressor stored in the storage means, and the discharge temperature of the compressor A third temperature detecting means for detecting, and the first temperature detecting means. Of the discharge temperature of the compressor based on the evaporation temperature detected by the temperature detecting means and the saturation temperature of the discharge pressure estimated by the first estimating means; Expansion valve control means is provided for changing the discharge temperature detected by the third temperature detection means by aiming at the target discharge temperature by controlling the opening degree.
【0057】このように1室当たりの平均配管長と圧縮
機の平均回転数に基づいて平均圧損相当温度を高精度に
推定し、平均凝縮温度に平均圧損相当温度を付加するこ
とで、マルチタイプの空気調和機においても様々な運転
条件下で圧縮機の吐出圧力の飽和温度を常に高精度に推
定することができ、その高精度に推定された圧縮機の吐
出圧力の飽和温度に基づいて圧縮機の目標吐出温度を算
出し、吐出温度を制御することで、様々な運転条件下で
実際の吸入冷媒過熱度を常に適正過熱度に制御すること
ができる。As described above, the average pressure loss-equivalent temperature is highly accurately estimated based on the average pipe length per room and the average number of revolutions of the compressor, and the average pressure-loss-equivalent temperature is added to the average condensation temperature. Even in this air conditioner, the saturation temperature of the discharge pressure of the compressor can always be estimated with high accuracy under various operating conditions, and the compression based on the saturation temperature of the discharge pressure of the compressor estimated with high accuracy can be used for compression. By calculating the target discharge temperature of the machine and controlling the discharge temperature, it is possible to always control the actual intake refrigerant superheat degree to an appropriate superheat degree under various operating conditions.
【0058】さらに、請求項3に記載の本発明によれ
ば、圧縮機の吸入温度を検出する第4の温度検出手段
と、前記第1の温度検出手段により検出された蒸発温度
と前記第4の温度検出手段により検出された吸入温度に
基づき圧縮機の吸入冷媒過熱度を推定する第2の推定手
段と、第3の温度検出手段により検出された吐出温度が
前記目標吐出温度算出手段により算出された目標吐出温
度に対し所定の範囲内にあり、かつ前記第2の推定手段
により推定された前記吸入冷媒過熱度が所定の範囲から
外れた場合に、予め記憶手段に記憶されている配管長を
修正する配管長修正手段を備えたものである。Further, according to the present invention as set forth in claim 3, fourth temperature detecting means for detecting the suction temperature of the compressor, evaporation temperature detected by the first temperature detecting means and the fourth temperature detecting means. Second estimating means for estimating the degree of superheat of the refrigerant sucked in the compressor on the basis of the intake temperature detected by the temperature detecting means, and the discharge temperature detected by the third temperature detecting means is calculated by the target discharge temperature calculating means. If the suction refrigerant superheat degree estimated by the second estimating means is out of the predetermined range with respect to the set target discharge temperature, the pipe length stored in the storage means in advance. Is provided with a pipe length correcting means.
【0059】このように吐出温度制御時に吸入冷媒過熱
度を用いて予め記憶されている配管長を自動的に修正す
るため、実際に据え付けられている配管長が様々に変化
しても実際の配管長を推定することができる。In this way, the pipe length stored in advance is automatically corrected by using the suction refrigerant superheat during the discharge temperature control. Therefore, even if the actually installed pipe length changes variously, The length can be estimated.
【0060】これにより様々な運転条件下や施工条件下
でも実際の吸入冷媒過熱度を常に適正過熱度近傍に制御
することができる。この結果省エネ運転が可能となると
ともに、能力不足や液バックといった圧縮機の信頼性低
下問題を回避することができる。As a result, it is possible to always control the actual intake refrigerant superheat degree near the appropriate superheat degree even under various operating conditions and construction conditions. As a result, it is possible to perform energy saving operation, and it is possible to avoid problems of compressor reliability deterioration such as insufficient capacity and liquid back.
【0061】また自動的に配管長を推定することで、施
工者が電気回路上に設けたスイッチ等により手動で配管
長を設定する必要がなくなり、スイッチ等が不要となる
ことで製品のコストを下げることができる。更に吐出冷
媒圧力を直接検知する圧力センサの変わりにコストの安
い温度センサで済むため、製品のコストを下げることが
できる。Further, by automatically estimating the pipe length, it is not necessary for the builder to manually set the pipe length by a switch or the like provided on the electric circuit, and the switch or the like becomes unnecessary, thereby reducing the cost of the product. Can be lowered. Furthermore, a low-cost temperature sensor can be used instead of the pressure sensor that directly detects the discharge refrigerant pressure, so that the cost of the product can be reduced.
【0062】さらに、請求項4に記載の本発明によれ
ば、配管長修正手段により修正された配管長が所定の配
管長から外れた場合、据付配管長が適切ではない旨を使
用者に知らせる異常検出手段を備えたものである。Further, according to the present invention described in claim 4, when the pipe length corrected by the pipe length correcting means deviates from the predetermined pipe length, the user is informed that the installed pipe length is not appropriate. It is provided with an abnormality detecting means.
【0063】これにより配管施工の不備によるシステム
の重大な損傷等を間逃れることができるとともに、さら
に据付配管長は適正配管長内ではあるが、据付時に配管
を変形してしまい冷媒流通抵抗が増大した場合でも異常
を検知でき、配管施工の修正を促すことができる。As a result, it is possible to avoid serious damage to the system due to inadequate piping work, and the installed pipe length is within the proper pipe length, but the pipe is deformed during installation and the refrigerant flow resistance increases. Even if it does, it is possible to detect the abnormality and prompt the correction of the piping construction.
【図1】本発明の実施の形態における空気調和機の構成
図FIG. 1 is a configuration diagram of an air conditioner according to an embodiment of the present invention.
【図2】本発明の他の実施形態における空気調和機の構
成図FIG. 2 is a configuration diagram of an air conditioner according to another embodiment of the present invention.
【図3】同空気調和機の制御を示すフローチャートFIG. 3 is a flowchart showing control of the air conditioner.
【図4】同冷媒循環量と配管長の圧損関係を示すグラフFIG. 4 is a graph showing a pressure loss relationship between the refrigerant circulation amount and the pipe length.
【図5】空気調和機の冷凍サイクル挙動を示すモリエル
線図FIG. 5 is a Mollier diagram showing the refrigeration cycle behavior of the air conditioner.
1 室外機 2 室内機 3 圧縮機 5 室外熱交換器 6 電動膨張弁 7 室内熱交換器 8 接続配管 9 吐出温度センサ 10 室外熱交換器温度センサ 11 室内熱交換器温度センサ 12 吸入温度センサ 13 室内液温度センサ Ha、Hb 配管長 Tca、Tcb 凝縮温度 1 outdoor unit 2 Indoor unit 3 compressor 5 outdoor heat exchanger 6 Electric expansion valve 7 Indoor heat exchanger 8 connection piping 9 Discharge temperature sensor 10 Outdoor heat exchanger temperature sensor 11 Indoor heat exchanger temperature sensor 12 Intake temperature sensor 13 Indoor liquid temperature sensor Ha, Hb piping length Tca, Tcb Condensation temperature
Claims (4)
室外熱交換器の温度を検出する第1の温度検出手段と弁
開度の制御可能な電動膨張弁とを有する室外機と、室内
熱交換器と前記室内熱交換器の温度を検出する第2の温
度検出手段とを有する室内機と、前記室外機と前記室内
機を接続する接続配管を有する空気調和機において、前
記接続配管の配管長を予め記憶する記憶手段と、暖房運
転時に前記第2の温度検出手段により検出された凝縮温
度と前記記憶手段に記憶されている配管長と前記圧縮機
の回転数とに基づいて前記圧縮機の吐出圧力の飽和温度
を推定する第1の推定手段と、前記圧縮機の吐出温度を
検出する第3の温度検出手段と、前記第1の温度検出手
段により検出された蒸発温度と前記第1の推定手段によ
り推定された吐出圧力の飽和温度に基づいて前記圧縮機
の目標吐出温度を算出する目標吐出温度算出手段と、前
記電動膨張弁の開度を制御することにより、前記目標吐
出温度を目指して、前記第3の温度検出手段により検出
される吐出温度を変更させる膨張弁制御手段とを備えた
空気調和機。1. An outdoor unit having a variable capacity compressor, an outdoor heat exchanger, a first temperature detecting means for detecting a temperature of the outdoor heat exchanger, and an electric expansion valve having a controllable valve opening. An air conditioner having an indoor unit having an indoor heat exchanger and a second temperature detecting means for detecting a temperature of the indoor heat exchanger, and a connection pipe connecting the outdoor unit and the indoor unit, Based on the condensing temperature detected by the second temperature detecting means during the heating operation, the pipe length stored in the storing means, and the rotation speed of the compressor. First estimating means for estimating the saturation temperature of the discharge pressure of the compressor, third temperature detecting means for detecting the discharge temperature of the compressor, evaporation temperature detected by the first temperature detecting means, and Discharge pressure estimated by the first estimating means Target discharge temperature calculation means for calculating the target discharge temperature of the compressor based on the saturation temperature of the force, and the third temperature aiming at the target discharge temperature by controlling the opening degree of the electric expansion valve An air conditioner comprising: an expansion valve control means for changing the discharge temperature detected by the detection means.
室外熱交換器の温度を検出する第1の温度検出手段と弁
開度を制御可能な複数の電動膨張弁とを有する室外機
と、室内熱交換器と前記室内熱交換器の温度を検出する
第2の温度検出手段とを有する複数の室内機とを接続配
管により並列に接続したマルチタイプの空気調和機にお
いて、前記各室内機への各接続配管の配管長を予め記憶
する記憶手段と、暖房運転時に前記各室内機の前記第2
の温度検出手段により検出された各凝縮温度と前記記憶
手段に記憶されている各接続配管の配管長と前記圧縮機
の回転数とに基づいて前記圧縮機の吐出圧力の飽和温度
を推定する第1の推定手段と、前記圧縮機の吐出温度を
検出する第3の温度検出手段と、前記第1の温度検出手
段により検出された蒸発温度と前記第1の推定手段によ
り推定された吐出圧力の飽和温度に基づいて前記圧縮機
の目標吐出温度を算出する目標吐出温度算出手段と、前
記電動膨張弁の開度を制御することにより、前記目標吐
出温度を目指して、前記第3の温度検出手段により検出
される吐出温度を変更させる膨張弁制御手段とを備えた
空気調和機。2. An outdoor unit having a variable capacity compressor, an outdoor heat exchanger, a first temperature detecting means for detecting the temperature of the outdoor heat exchanger, and a plurality of electric expansion valves capable of controlling valve opening. And a plurality of indoor units each having an indoor heat exchanger and a second temperature detecting means for detecting the temperature of the indoor heat exchanger, the multi-type air conditioner being connected in parallel by connecting pipes. Storage means for storing in advance the pipe length of each connection pipe to the unit, and the second unit of each indoor unit during heating operation.
Estimating the saturation temperature of the discharge pressure of the compressor based on each condensation temperature detected by the temperature detecting means, the pipe length of each connecting pipe stored in the storage means, and the rotation speed of the compressor. No. 1 estimation means, third temperature detection means for detecting the discharge temperature of the compressor, evaporation temperature detected by the first temperature detection means, and discharge pressure estimated by the first estimation means. Target discharge temperature calculating means for calculating the target discharge temperature of the compressor based on the saturation temperature, and the third temperature detecting means aiming at the target discharge temperature by controlling the opening degree of the electric expansion valve. And an expansion valve control means for changing the discharge temperature detected by the air conditioner.
検出手段と、前記第1の温度検出手段により検出された
蒸発温度と前記第4の温度検出手段により検出された吸
入温度とに基づき圧縮機の吸入冷媒過熱度を推定する第
2の推定手段と、第3の温度検出手段により検出された
吐出温度が前記目標吐出温度算出手段により算出された
目標吐出温度に対し所定の範囲内にあり、かつ前記第2
の推定手段により推定された前記吸入冷媒過熱度が所定
の範囲から外れた場合に、予め記憶手段に記憶されてい
る配管長を修正する配管長修正手段を備えた請求項1ま
たは2記載の空気調和機。3. A fourth temperature detecting means for detecting a suction temperature of a compressor, an evaporation temperature detected by the first temperature detecting means and a suction temperature detected by the fourth temperature detecting means. A second estimating means for estimating the superheat degree of the refrigerant sucked into the compressor based on the above, and a discharge temperature detected by the third temperature detecting means are within a predetermined range with respect to the target discharge temperature calculated by the target discharge temperature calculating means. And the second
3. The air according to claim 1 or 2, further comprising: a pipe length correction unit that corrects a pipe length stored in advance in the storage unit when the intake refrigerant superheat degree estimated by the estimation unit deviates from a predetermined range. Harmony machine.
が所定の配管長から外れた場合、据付配管長が適切では
ない旨を使用者に知らせる異常検出手段を備えたことを
特徴とする請求項3記載の空気調和機。4. When the pipe length corrected by the pipe length correcting means deviates from a predetermined pipe length, an abnormality detecting means is provided to inform the user that the installed pipe length is not appropriate. Item 3. The air conditioner according to Item 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002096520A JP3791444B2 (en) | 2002-03-29 | 2002-03-29 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002096520A JP3791444B2 (en) | 2002-03-29 | 2002-03-29 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003294295A true JP2003294295A (en) | 2003-10-15 |
JP3791444B2 JP3791444B2 (en) | 2006-06-28 |
Family
ID=29239536
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002096520A Expired - Fee Related JP3791444B2 (en) | 2002-03-29 | 2002-03-29 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3791444B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006071211A (en) * | 2004-09-03 | 2006-03-16 | Advanced Kucho Kaihatsu Center Kk | Air conditioner and its control method |
JP2008096019A (en) * | 2006-10-11 | 2008-04-24 | Mitsubishi Heavy Ind Ltd | Air conditioner |
JP2009243832A (en) * | 2008-03-31 | 2009-10-22 | Daikin Ind Ltd | Air conditioner |
JP2010156507A (en) * | 2008-12-26 | 2010-07-15 | Daikin Ind Ltd | Air conditioner |
WO2014102940A1 (en) * | 2012-12-26 | 2014-07-03 | 三菱電機株式会社 | Refrigeration cycle device and method for controlling refrigeration cycle device |
KR101510378B1 (en) | 2008-02-20 | 2015-04-14 | 엘지전자 주식회사 | Air conditioner and method of controlling the same |
CN115654700A (en) * | 2022-10-12 | 2023-01-31 | 宁波奥克斯电气股份有限公司 | Air injection enthalpy increasing control method and device of air conditioner and air conditioner |
WO2024180747A1 (en) * | 2023-03-02 | 2024-09-06 | 三菱電機株式会社 | Multi-type refrigeration cycle apparatus |
-
2002
- 2002-03-29 JP JP2002096520A patent/JP3791444B2/en not_active Expired - Fee Related
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006071211A (en) * | 2004-09-03 | 2006-03-16 | Advanced Kucho Kaihatsu Center Kk | Air conditioner and its control method |
JP4583114B2 (en) * | 2004-09-03 | 2010-11-17 | 三洋電機株式会社 | Air conditioning apparatus and control method thereof |
JP2008096019A (en) * | 2006-10-11 | 2008-04-24 | Mitsubishi Heavy Ind Ltd | Air conditioner |
KR101510378B1 (en) | 2008-02-20 | 2015-04-14 | 엘지전자 주식회사 | Air conditioner and method of controlling the same |
JP2009243832A (en) * | 2008-03-31 | 2009-10-22 | Daikin Ind Ltd | Air conditioner |
JP2010156507A (en) * | 2008-12-26 | 2010-07-15 | Daikin Ind Ltd | Air conditioner |
WO2014102940A1 (en) * | 2012-12-26 | 2014-07-03 | 三菱電機株式会社 | Refrigeration cycle device and method for controlling refrigeration cycle device |
EP2940405A4 (en) * | 2012-12-26 | 2016-08-17 | Mitsubishi Electric Corp | Refrigeration cycle device and method for controlling refrigeration cycle device |
JP6021945B2 (en) * | 2012-12-26 | 2016-11-09 | 三菱電機株式会社 | Refrigeration cycle apparatus and control method of refrigeration cycle apparatus |
US10465964B2 (en) | 2012-12-26 | 2019-11-05 | Mitsubishi Electric Corporation | Refrigeration cycle apparatus and control method of refrigeration cycle apparatus |
CN115654700A (en) * | 2022-10-12 | 2023-01-31 | 宁波奥克斯电气股份有限公司 | Air injection enthalpy increasing control method and device of air conditioner and air conditioner |
WO2024180747A1 (en) * | 2023-03-02 | 2024-09-06 | 三菱電機株式会社 | Multi-type refrigeration cycle apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP3791444B2 (en) | 2006-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3290306B2 (en) | Air conditioner | |
WO2009157191A1 (en) | Air conditioner and method for determining the amount of refrigerant therein | |
JP6072901B2 (en) | Heat pump device and air conditioning system | |
WO2020115935A1 (en) | Air conditioning system | |
CN111780382A (en) | Air conditioner | |
JP3835453B2 (en) | Air conditioner | |
JP4270274B2 (en) | Outdoor unit | |
JP3849467B2 (en) | Air conditioner | |
CN113983643A (en) | Control method of air conditioner | |
JP5505477B2 (en) | AIR CONDITIONER AND REFRIGERANT AMOUNT JUDGING METHOD FOR AIR CONDITIONER | |
JP2009058222A (en) | Outdoor unit | |
JP2007192422A (en) | Multi-room type air conditioner | |
JP3791444B2 (en) | Air conditioner | |
JP2010164270A (en) | Multiple chamber type air conditioner | |
KR20180093342A (en) | Method for controlling of air conditioner | |
JP3849468B2 (en) | Air conditioner | |
JP7067864B2 (en) | Air conditioner | |
JP3668750B2 (en) | Air conditioner | |
JP2019163873A (en) | Heat pump cycle device | |
JP2013137165A (en) | Refrigeration device | |
JP2005016782A (en) | Method for controlling expansion valve for multi-room type air conditioner | |
JP2020091080A (en) | Refrigeration cycle device | |
JP3791443B2 (en) | Air conditioner | |
JPH1038398A (en) | Controller of electric expansion valve | |
JP5245575B2 (en) | Refrigerant amount determination method for air conditioner and air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20050706 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060306 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060314 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060327 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100414 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110414 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120414 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130414 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140414 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |