JP3111205B2 - Exhaust heat recovery type absorption chiller / heater and its control method - Google Patents

Exhaust heat recovery type absorption chiller / heater and its control method

Info

Publication number
JP3111205B2
JP3111205B2 JP07192706A JP19270695A JP3111205B2 JP 3111205 B2 JP3111205 B2 JP 3111205B2 JP 07192706 A JP07192706 A JP 07192706A JP 19270695 A JP19270695 A JP 19270695A JP 3111205 B2 JP3111205 B2 JP 3111205B2
Authority
JP
Japan
Prior art keywords
solution
cooling water
heat
exhaust heat
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07192706A
Other languages
Japanese (ja)
Other versions
JPH0942798A (en
Inventor
正彦 大島
由実 竹内
勝 江寺
雅博 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Yazaki Corp
Original Assignee
Tokyo Gas Co Ltd
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Yazaki Corp filed Critical Tokyo Gas Co Ltd
Priority to JP07192706A priority Critical patent/JP3111205B2/en
Publication of JPH0942798A publication Critical patent/JPH0942798A/en
Application granted granted Critical
Publication of JP3111205B2 publication Critical patent/JP3111205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • Y02B30/625Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ガスエンジン等の排熱
を回収して動作する排熱回収型吸収冷温水機の制御方法
に係り、特にコージェネレーションシステムに使用され
るガスエンジンその他の排熱を回収する排熱回収型吸収
冷温水機とその制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling an exhaust heat recovery type absorption chiller / heater operating by recovering exhaust heat of a gas engine or the like, and more particularly to a gas engine used in a cogeneration system and other exhaust systems. The present invention relates to an exhaust heat recovery type absorption chiller / heater for recovering heat and a control method thereof.

【0002】[0002]

【従来の技術】ガスエンジン等の排熱を冷房に有効に利
用し、発電と熱回収を効率良く行うコージェネレーショ
ンシステムにおいて、排熱を吸収溶液にて回収し、ガス
インプットを低下させ、冷房効率の向上を図る排熱回収
型吸収冷温水機が考案されている。このような冷温水機
のシステムにおいて、冷房負荷が低下して出力を減少さ
せる必要が生じた場合、ガスのインプットを停止し、吸
収冷温水機の運転を停止させ、さらに、排熱による吸収
溶液の濃縮による排熱熱交換器内の晶析を防止するた
め、3方弁等により排熱をバイパスさせ、吸収冷温水機
への入熱を防止していた。
2. Description of the Related Art In a cogeneration system in which exhaust heat of a gas engine or the like is effectively used for cooling and power generation and heat recovery are efficiently performed, the exhaust heat is recovered with an absorbing solution, thereby reducing gas input and cooling efficiency. An exhaust heat recovery type absorption chiller / heater has been devised to improve the efficiency. In such a chiller / heater system, when the cooling load is reduced and the output needs to be reduced, the gas input is stopped, the operation of the absorption chiller / heater is stopped, and the absorption solution is discharged by the exhaust heat. In order to prevent crystallization in the waste heat exchanger due to concentration of the waste heat, the waste heat is bypassed by a three-way valve or the like to prevent heat input to the absorption chiller / heater.

【0003】[0003]

【発明が解決しようとする課題】しかし電力負荷と空調
負荷とは、増減が必ずしも一致しないため、吸収冷温水
機が停止してもガスエンジンが運転している場合、図2
に示すように、冷却水がもつ排熱は別に取り付けた放熱
用ラジェーターにて大気中に放熱させ、温度を低下させ
た後、エンジンの冷却水として利用していた。この場
合、放熱用ラジェーター、3方弁及びそれらの制御手段
が必要になり、システムが複雑になり、同時にイニシャ
ルコストが増加する問題があった。
However, the power load and the air-conditioning load do not necessarily increase or decrease in the same manner.
As shown in (1), the exhaust heat of the cooling water was radiated to the atmosphere by a separately mounted radiator for radiation, and the temperature was lowered before use as cooling water for the engine. In this case, a radiator for heat dissipation, a three-way valve and control means for them are required, and the system becomes complicated, and at the same time, the initial cost increases.

【0004】本発明の目的は、ガスエンジン等の排熱を
冷房の熱源として有効に利用するための排熱熱交換器を
付加した排熱回収型吸収冷温水機において、冷房運転停
止時、特別な放熱手段を設けることなく排熱を放出する
とともにシステムを簡素化するにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an exhaust heat recovery type absorption chiller / heater to which an exhaust heat exchanger for effectively using exhaust heat of a gas engine or the like as a heat source for cooling is provided. The purpose is to discharge exhaust heat without providing any heat radiation means and to simplify the system.

【0005】[0005]

【課題を解決するための手段】上記目的は、伝熱面を備
えた冷却水流路を内装し該伝熱面上に散布される濃溶液
に冷媒蒸気を吸収させて希溶液を生成する吸収器と、前
記冷却水流路に接続して設けられ該冷却水流路内を循環
する冷却水を冷却するクーリングタワーと、前記吸収器
で生成されて循環する希溶液を排熱を熱源として加熱す
る排熱熱交換器と、該排熱熱交換器で加熱された希溶液
が導入されてさらに加熱される高温再生器と、を含んで
なる排熱回収型吸収冷温水機において、前記排熱熱交換
器を通過した希溶液を前記吸収器に導いて前記伝熱面上
に散布する排熱放出手段を設けることにより達成され
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a cooling water flow path provided with a heat transfer surface, wherein a concentrated solution sprayed on the heat transfer surface absorbs refrigerant vapor to produce a dilute solution. A cooling tower provided to be connected to the cooling water flow passage to cool the cooling water circulating in the cooling water flow passage; and a waste heat heat for heating the diluted solution generated and circulated in the absorber by using the waste heat as a heat source. Exchanger, and a high-temperature regenerator to which the diluted solution heated by the waste heat heat exchanger is introduced and further heated, wherein the waste heat recovery type absorption chiller / heater comprises: This is achieved by providing exhaust heat discharging means for guiding the dilute solution that has passed through to the absorber and dispersing it on the heat transfer surface.

【0006】また、排熱放出手段は、排熱熱交換器で加
熱された希溶液を高温再生器に導く配管に介装された溶
液ストップ弁Aと、該溶液ストップ弁Aの上流側と濃溶
液を吸収器に導く配管とを溶液ストップ弁Bを介して連
通する溶液バイパス管とを含んで構成されたものとする
ことができる。さらに、冷房運転時には溶液ストップ弁
Aを開いて溶液ストップ弁Bを閉じ、冷房運転停止時に
は溶液ストップ弁Aを閉じて溶液ストップ弁Bを開く制
御手段を設けるとよい。
Further, the exhaust heat releasing means includes a solution stop valve A interposed in a pipe for guiding the dilute solution heated by the exhaust heat exchanger to the high temperature regenerator, and an upstream and downstream of the solution stop valve A. It may be configured to include a solution bypass pipe that communicates with a pipe for guiding the solution to the absorber via a solution stop valve B. Further, it is preferable to provide control means for opening the solution stop valve A and closing the solution stop valve B during the cooling operation, and for closing the solution stop valve A and opening the solution stop valve B when the cooling operation is stopped.

【0007】上記の目的はさらに、伝熱面を備えた冷却
水流路を内装し該伝熱面上に散布される濃溶液に冷媒蒸
気を吸収させて希溶液を生成する吸収器と、前記冷却水
流路に接続して設けられ該冷却水流路内を循環する冷却
水を冷却するクーリングタワーと、前記吸収器で生成さ
れて循環する希溶液を排熱を熱源として加熱する排熱熱
交換器と、該排熱熱交換器で加熱された希溶液が導入さ
れてさらに加熱される高温再生器と、を含んでなる排熱
回収型吸収冷温水機の制御方法において、冷房運転停止
時に前記排熱熱交換器への排熱の供給を継続し、前記排
熱熱交換器を通過した希溶液を前記吸収器に導いて前記
伝熱面上に散布することによっても達成される。
The above object is further achieved by providing a cooling water flow path provided with a heat transfer surface and absorbing the refrigerant vapor into a concentrated solution sprayed on the heat transfer surface to generate a dilute solution; A cooling tower that is provided connected to the water flow path and cools the cooling water circulating in the cooling water flow path, and a waste heat heat exchanger that heats the dilute solution generated and circulated in the absorber using waste heat as a heat source, A high-temperature regenerator to which the diluted solution heated by the exhaust heat exchanger is introduced and further heated, wherein the exhaust heat recovery type absorption chiller / heater comprises: This is also achieved by continuing to supply the exhaust heat to the exchanger, guiding the dilute solution passing through the exhaust heat exchanger to the absorber, and spraying the diluted solution on the heat transfer surface.

【0008】[0008]

【作用】冷房負荷が低下して冷温水機の運転が停止され
る場合について説明する。冷温水機の運転を停止するた
めに、高温再生器1における加熱が停止される。吸収器
内の希溶液は排熱熱交換器に送りこまれ、排熱を熱源と
して加熱されつつ通過する。排熱熱交換器で加熱されて
排熱を回収した希溶液は、排熱放出手段により、吸収器
に導かれ、伝熱面上に散布される。冷却水ポンプの運転
は継続されているから冷却水も循環しており、伝熱面上
に散布された希溶液が排熱熱交換器で回収した熱は伝熱
面を介して冷却水に伝達される。冷却水に伝達された熱
はクーリングタワーに運ばれ、そこで大気に放出され
る。一方、伝熱面を介して冷却水に熱を与えた希溶液
は、吸収器から再び溶液循環ポンプに吸引され、加圧さ
れて排熱熱交換器に送りこまれ、上述の循環を繰り返
す。このような希溶液と冷却水の循環により、冷房運転
停止中であっても、排熱は、排熱熱交換器、希溶液、伝
熱面、冷却水、クーリングタワーと順に送られ、クーリ
ングタワーから継続的に大気に放出される。
The case where the cooling load is reduced and the operation of the water heater / heater is stopped will be described. In order to stop the operation of the chiller / heater, the heating in the high-temperature regenerator 1 is stopped. The dilute solution in the absorber is sent to the waste heat exchanger, and passes while being heated using the waste heat as a heat source. The dilute solution that has been heated by the exhaust heat exchanger and has recovered the exhaust heat is guided to the absorber by the exhaust heat releasing means and is spread on the heat transfer surface. Since the operation of the cooling water pump is continued, the cooling water is also circulating, and the heat collected by the waste heat exchanger from the dilute solution sprayed on the heat transfer surface is transferred to the cooling water via the heat transfer surface. Is done. The heat transferred to the cooling water is transferred to the cooling tower, where it is released to the atmosphere. On the other hand, the dilute solution that has given heat to the cooling water via the heat transfer surface is again sucked into the solution circulation pump from the absorber, pressurized and sent to the waste heat exchanger, and repeats the above-described circulation. Due to such circulation of the dilute solution and the cooling water, even when the cooling operation is stopped, the exhaust heat is sent to the exhaust heat exchanger, the dilute solution, the heat transfer surface, the cooling water, and the cooling tower in this order, and continues from the cooling tower. Is released to the atmosphere.

【0009】排熱放出手段として、排熱熱交換器(12)で
加熱された希溶液を高温再生器(1)に導く配管(23
B)に介装された溶液ストップ弁A(11)と、該溶液スト
ップ弁A(11)の上流側と濃溶液を吸収器に導く配管(20)
とを溶液ストップ弁B(10)を介して連通する溶液バイパ
ス管(21)とを含んで構成されたものとすることで、溶液
ストップ弁A(11)と溶液ストップ弁B(10)の開閉操作を
行うだけで、排熱熱交換器(12)で加熱された希溶液を吸
収器の伝熱面上に散布することができる。
As a waste heat releasing means, a pipe (23) for leading the dilute solution heated in the waste heat exchanger (12) to the high temperature regenerator (1).
A solution stop valve A (11) interposed in B), and a pipe (20) for introducing the concentrated solution to the absorber on the upstream side of the solution stop valve A (11).
And a solution bypass pipe (21) communicating through a solution stop valve B (10) to open and close the solution stop valve A (11) and the solution stop valve B (10). By simply performing the operation, the dilute solution heated in the exhaust heat exchanger (12) can be sprayed on the heat transfer surface of the absorber.

【0010】また、溶液ストップ弁A(11)と溶液ストッ
プ弁B(10)の開閉操作を、冷房運転の有無と連動させて
行う制御手段を設けることで、従来から設けられている
コントローラの制御信号をそのまま流用でき、制御も簡
単にできる。
Also, by providing a control means for opening and closing the solution stop valve A (11) and the solution stop valve B (10) in conjunction with the presence or absence of the cooling operation, the control of the controller provided conventionally Signals can be used as they are, and control can be simplified.

【0011】[0011]

【実施例】本発明の実施例である排熱回収型吸収冷温水
機を図1を参照して説明する。この吸収冷温水機は、作
動流体として、吸収剤であるリチウムブロマイド(Li
Br)に冷媒である水を吸収させた吸収溶液を用いてい
る。吸収溶液のLiBr濃度は、作動流体が装置内を循環
するにつれて変動するが、この変動はほぼ3段階に分け
ることができ、濃度レベルの低い方から、希溶液、中間
濃溶液、濃溶液と呼ぶ。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An exhaust heat recovery type absorption chiller / heater according to an embodiment of the present invention will be described with reference to FIG. This absorption chiller / heater uses lithium bromide (Li) as an operating fluid.
An absorption solution in which water as a refrigerant is absorbed in Br) is used. The LiBr concentration of the absorbing solution fluctuates as the working fluid circulates through the apparatus, and this fluctuation can be roughly divided into three stages. From the lower concentration level, the dilute solution, the intermediate concentrated solution, and the concentrated solution are called. .

【0012】図示の排熱回収型吸収冷温水機は、内包す
る吸収溶液(希溶液)を加熱する手段を備えた高温再生
器1と、高温再生器1の上方に配置され該高温再生器1
に上昇管25で接続された分離器2と、該分離器2の気
相部分に一端を接続された冷媒蒸気コイル24を内装し
た低温再生器3と、該低温再生器3に二次冷媒蒸気通路
で連通され前記冷媒蒸気コイル24の他端が接続される
とともに冷却水コイル4Aを内装した凝縮器4と、該凝
縮器4に冷媒管17で接続され蒸発コイル5Aを内装し
た蒸発器5と、該蒸発器5に蒸発冷媒蒸気通路で連通さ
れ冷却水コイル6Aを内装した吸収器6と、吸収器6の
底部に希溶液吸入管22で吸入側を接続された溶液循環
ポンプ9と、溶液循環ポンプ9の吐出側に被加熱流体入
り口側を接続させた低温溶液熱交換器7と、低温溶液熱
交換器7の被加熱流体出側に希溶液吐出管23Aを介し
て被加熱流体入り口側を接続させた排熱熱交換器12
と、排熱熱交換器12の被加熱流体出側に希溶液吐出管
23Bを介して被加熱流体入り口側を接続させた高温溶
液熱交換器8と、高温溶液熱交換器8の被加熱流体出側
と前記高温再生器1の希溶液入り口を接続する希溶液吐
出管23Cと、前記分離器2の液相部と高温溶液熱交換
器8の加熱流体入り口を接続する中間濃溶液管15A
と、高温溶液熱交換器8の加熱流体出側と低温再生器3
の上部を接続する中間濃溶液管15Bと、低温再生器3
の底部と低温溶液熱交換器7の加熱流体入り側を接続す
る濃溶液管19と、低温溶液熱交換器7の加熱流体出側
と吸収器6の上部を接続する濃溶液管20と、希溶液吐
出管23Bに介装された溶液ストップ弁11と、溶液ス
トップ弁11上流側の希溶液吐出管23Bと濃溶液管2
0を溶液ストップ弁10を介して接続する溶液バイパス
管21と、冷却水コイル4Aの出側とクーリングタワー
14の冷却水入り側を接続する冷却水管18Cと、クー
リングタワー14の冷却水出側に吸入側を接続させた冷
却水ポンプ13と、冷却水ポンプ13の吐出側と冷却水
コイル6Aの入り側とを接続する冷却水管18Aと、冷
却水コイル6Aの出側と冷却水コイル4Aに入り側を接
続する冷却水管18Bと、を含んで構成されている。
The illustrated exhaust heat recovery type absorption chiller / heater has a high temperature regenerator 1 provided with means for heating an absorbing solution (dilute solution) contained therein, and a high temperature regenerator 1 disposed above the high temperature regenerator 1.
, A low-temperature regenerator 3 equipped with a refrigerant vapor coil 24 having one end connected to a gas phase portion of the separator 2, and a secondary refrigerant vapor connected to the low-temperature regenerator 3. A condenser 4 having the other end of the refrigerant vapor coil 24 connected thereto in a passage and having a cooling water coil 4A therein, and an evaporator 5 having a refrigerant pipe 17 connected to the condenser 4 and having an evaporation coil 5A therein. An absorber 6 which communicates with the evaporator 5 through an evaporating refrigerant vapor passage and has a cooling water coil 6A therein; a solution circulation pump 9 having a suction side connected to a bottom of the absorber 6 by a dilute solution suction pipe 22; A low-temperature solution heat exchanger 7 having a heated fluid inlet side connected to the discharge side of the circulation pump 9; and a heated fluid inlet side via a dilute solution discharge pipe 23A on the heated fluid outlet side of the low-temperature solution heat exchanger 7 Exhaust heat exchanger 12 connected to
A high-temperature solution heat exchanger 8 having a heated fluid inlet side connected to a heated fluid outlet side of the exhaust heat exchanger 12 via a dilute solution discharge pipe 23B, and a heated fluid of the high-temperature solution heat exchanger 8 A dilute solution discharge pipe 23C connecting the outlet side to the dilute solution inlet of the high temperature regenerator 1 and an intermediate concentrated solution pipe 15A connecting the liquid phase part of the separator 2 and the heating fluid inlet of the high temperature solution heat exchanger 8
And the heating fluid outlet side of the high-temperature solution heat exchanger 8 and the low-temperature regenerator 3
Concentrated solution tube 15B connecting the upper part of the low temperature regenerator 3
A concentrated solution tube 19 connecting the bottom of the low temperature solution heat exchanger 7 with the heated fluid inlet side, a concentrated solution tube 20 connecting the low temperature solution heat exchanger 7 with the heated fluid outlet side and the top of the absorber 6, A solution stop valve 11 interposed in the solution discharge pipe 23B; a dilute solution discharge pipe 23B and a concentrated solution pipe 2 upstream of the solution stop valve 11;
0, via a solution stop valve 10, a solution bypass pipe 21, a cooling water pipe 18C connecting the outlet side of the cooling water coil 4A and the cooling water inlet side of the cooling tower 14, and a suction side to the cooling water outlet side of the cooling tower 14. , A cooling water pipe 18A connecting the discharge side of the cooling water pump 13 and the inlet side of the cooling water coil 6A, and the outlet side of the cooling water coil 6A and the side entering the cooling water coil 4A. And a cooling water pipe 18B to be connected.

【0013】冷却水コイル6Aは、外周面を伝熱面と
し、内部を冷却水が流れる冷却水流路としたものであ
る。排熱熱交換器12の加熱流体入り側はガスエンジン
の冷却水出側に、加熱流体出側はガスエンジンの冷却水
入り側に、それぞれ接続されている。溶液ストップ弁1
0、11は、冷温水機の図示されていないコントローラ
により、開閉制御される電磁弁としてある。コントロー
ラは、冷房運転時は、溶液ストップ弁10を閉、溶液ス
トップ弁11を開、冷却水ポンプ13及び溶液循環ポン
プ9を運転、高温再生器1を運転とし、冷房運転停止時
は、溶液ストップ弁10を開、溶液ストップ弁11を
閉、冷却水ポンプ13及び溶液循環ポンプ9を運転、高
温再生器1を停止とする制御手段(コントローラの他の
制御については説明を省略した)を備えている。
The cooling water coil 6A has an outer peripheral surface serving as a heat transfer surface, and an internal portion serving as a cooling water flow path through which cooling water flows. The heating fluid inlet side of the exhaust heat exchanger 12 is connected to the cooling water outlet side of the gas engine, and the heating fluid outlet side is connected to the cooling water inlet side of the gas engine. Solution stop valve 1
Reference numerals 0 and 11 denote solenoid valves whose opening and closing are controlled by a controller (not shown) of the water heater / heater. The controller closes the solution stop valve 10 during the cooling operation, opens the solution stop valve 11, operates the cooling water pump 13 and the solution circulation pump 9, operates the high temperature regenerator 1, and stops the cooling operation when the cooling operation is stopped. Control means for opening the valve 10, closing the solution stop valve 11, operating the cooling water pump 13 and the solution circulation pump 9, and stopping the high-temperature regenerator 1 (the other control of the controller is omitted). I have.

【0014】上記の構成においては、溶液ストップ弁1
0、11及び溶液バイパス管21からなる排熱放出手段
が設けられていること、放熱用ラジェーター及び3方弁
が設けられていないことが、図2に示された従来技術と
異なっている。なお、本実施例では、排熱の熱源として
ガスエンジンを用いたが、ガスエンジン以外の熱源を用
いることも当然可能である。
In the above configuration, the solution stop valve 1
It is different from the prior art shown in FIG. 2 in that the exhaust heat discharging means including 0, 11 and the solution bypass pipe 21 is provided, and the radiator for radiation and the three-way valve are not provided. In this embodiment, the gas engine is used as the heat source of the exhaust heat. However, it is naturally possible to use a heat source other than the gas engine.

【0015】上記構成の吸収冷温水機の通常運転時の動
作を以下に説明する。高温再生器1内の希溶液は加熱さ
れて気液2相状態で上昇管25内を上昇し、分離器2に
流入する。分離器2に流入した気液2相状態の希溶液は
冷媒蒸気と中間濃溶液に分離され、冷媒蒸気は低温再生
器3に内装された冷媒蒸気コイル24を経て凝縮器4に
流入し、中間濃溶液は中間濃溶液管15Aを経て高温溶
液熱交換器8の加熱流体側に流入する。高温溶液熱交換
器8に流入した中間濃溶液は、被加熱流体側を流れる希
溶液を加熱しつつ熱交換器8を通過し、中間濃溶液管1
5Bを経て低温再生器3に流入し、冷媒蒸気コイル24
上に散布される。冷媒蒸気コイル24内を流れる冷媒蒸
気は、周囲の中間濃溶液を加熱して冷媒を蒸発させて二
次冷媒蒸気を生成し、自身は冷却されて凝縮し気液2相
となって凝縮器4に流入する。低温再生器3で生成され
た二次冷媒蒸気も、二次冷媒蒸気通路を経て凝縮器4に
流入し、冷媒蒸気コイル24を経て流入した冷媒ととも
に、冷却水コイル4A内を流れる冷却水に冷却されて凝
縮し、液冷媒となる。
The operation of the absorption chiller / heater of the above configuration during normal operation will be described below. The diluted solution in the high-temperature regenerator 1 is heated, rises in the riser 25 in a gas-liquid two-phase state, and flows into the separator 2. The dilute solution in a gas-liquid two-phase state that has flowed into the separator 2 is separated into a refrigerant vapor and an intermediate concentrated solution, and the refrigerant vapor flows into the condenser 4 via a refrigerant vapor coil 24 provided in the low-temperature regenerator 3. The concentrated solution flows into the heated fluid side of the high-temperature solution heat exchanger 8 via the intermediate concentrated solution pipe 15A. The intermediate concentrated solution that has flowed into the high-temperature solution heat exchanger 8 passes through the heat exchanger 8 while heating the dilute solution flowing on the side of the fluid to be heated.
5B, flows into the low-temperature regenerator 3 and passes through the refrigerant vapor coil 24.
Sprinkled on top. The refrigerant vapor flowing in the refrigerant vapor coil 24 heats the surrounding intermediate concentrated solution to evaporate the refrigerant to produce a secondary refrigerant vapor, which is cooled and condensed to form a gas-liquid two-phase condenser 4. Flows into. The secondary refrigerant vapor generated by the low-temperature regenerator 3 also flows into the condenser 4 through the secondary refrigerant vapor passage, and is cooled together with the refrigerant flowing through the refrigerant vapor coil 24 to the cooling water flowing in the cooling water coil 4A. Is condensed and becomes a liquid refrigerant.

【0016】凝縮器4で生成された液冷媒は、冷媒管1
7を経て蒸発器5に流入し、蒸発器に内装された蒸発コ
イル5A上に散布され、蒸発コイル5A内を流れる熱媒
体の熱を奪って蒸発し、再び冷媒蒸気となり、蒸発冷媒
蒸気通路を経て吸収器6に流入する。熱を奪われて冷却
された熱媒体は、冷房負荷に導かれ、冷房を行ったのち
再び蒸発コイル5に還流する。低温再生器4で二次冷媒
蒸気として冷媒を蒸発させた中間濃溶液は、濃溶液とな
り、濃溶液管19を経て低温溶液熱交換器7の加熱流体
入り側に流入する。低温溶液熱交換器7に流入した濃溶
液は、被加熱流体側を流れる希溶液を加熱しつつ低温溶
液熱交換器7を通過し、濃溶液管20を経て吸収器6に
流入する。通常運転状態では、溶液ストップ弁10は閉
じられている。吸収器6に流入した濃溶液は、冷却水コ
イル6A上に散布され、蒸発器から流入する冷媒蒸気を
吸収して希溶液となる。濃溶液が冷媒蒸気を吸収すると
きに発生する吸収熱は、冷却水コイル6A内を流れる冷
却水に移され、クーリングタワー14に運ばれる。
The liquid refrigerant generated in the condenser 4 is supplied to the refrigerant pipe 1
7, flows into the evaporator 5, is spread on the evaporator coil 5 </ b> A provided in the evaporator, evaporates by removing the heat of the heat medium flowing in the evaporator coil 5 </ b> A, and turns into refrigerant vapor again. After that, it flows into the absorber 6. The heat medium that has been deprived of heat and cooled is guided to a cooling load, performs cooling, and returns to the evaporating coil 5 again. The intermediate concentrated solution obtained by evaporating the refrigerant as the secondary refrigerant vapor in the low-temperature regenerator 4 becomes a concentrated solution and flows into the low-temperature solution heat exchanger 7 through the concentrated solution pipe 19 into the heating fluid inlet side. The concentrated solution that has flowed into the low-temperature solution heat exchanger 7 passes through the low-temperature solution heat exchanger 7 while heating the dilute solution flowing on the heated fluid side, and flows into the absorber 6 via the concentrated solution pipe 20. In a normal operation state, the solution stop valve 10 is closed. The concentrated solution that has flowed into the absorber 6 is sprayed on the cooling water coil 6A, absorbs the refrigerant vapor flowing from the evaporator, and becomes a dilute solution. The heat of absorption generated when the concentrated solution absorbs the refrigerant vapor is transferred to the cooling water flowing in the cooling water coil 6A, and is carried to the cooling tower 14.

【0017】吸収器6で生成された希溶液は、希溶液吸
入管22を経て溶液循環ポンプ9に吸入され、加圧され
て低温溶液熱交換器7の被加熱流体側に流入する。低温
溶液熱交換器7に流入した希溶液は加熱流体側を流れる
濃溶液に加熱されつつ低温溶液熱交換器7を通過し、希
溶液吐出管23Aを経て排熱熱交換器12の被加熱流体
側に流入する。排熱熱交換器12に流入した希溶液は、
加熱流体側を流れるガスエンジン冷却水に加熱されつつ
排熱熱交換器12を通過し、希溶液吐出管23Bを経て
(通常運転状態では溶液ストップ弁11は開いている)
高温溶液熱交換器8の被加熱流体側に流入する。高温溶
液熱交換器8に流入した希溶液は、加熱流体側を流れる
中間濃溶液に加熱されつつ高温溶液熱交換器8を通過
し、希溶液吐出管23Cを経て高温再生器1に流入す
る。高温再生器1に流入した希溶液は、再び上述のサイ
クルを繰り返す。
The dilute solution generated by the absorber 6 is sucked into the solution circulation pump 9 through the dilute solution suction pipe 22, is pressurized, and flows into the low temperature solution heat exchanger 7 on the side of the fluid to be heated. The dilute solution flowing into the low-temperature solution heat exchanger 7 passes through the low-temperature solution heat exchanger 7 while being heated by the concentrated solution flowing on the heating fluid side, passes through the dilute solution discharge pipe 23A, and is heated by the waste heat heat exchanger 12. Flows into the side. The dilute solution flowing into the exhaust heat exchanger 12 is
While being heated by the gas engine cooling water flowing on the heating fluid side, it passes through the exhaust heat exchanger 12 and passes through the dilute solution discharge pipe 23B (the solution stop valve 11 is open in the normal operation state).
It flows into the heated fluid side of the high-temperature solution heat exchanger 8. The dilute solution flowing into the high-temperature solution heat exchanger 8 passes through the high-temperature solution heat exchanger 8 while being heated by the intermediate concentrated solution flowing on the heating fluid side, and flows into the high-temperature regenerator 1 via the dilute solution discharge pipe 23C. The dilute solution flowing into the high-temperature regenerator 1 repeats the above cycle again.

【0018】冷却水コイル6Aで吸収熱を取り出し、冷
却水コイル4Aで凝縮熱を取り出した冷却水は、冷却水
管18Cを経てクーリングタワー14に流入し、運んで
きた吸収熱及び凝縮熱を大気中に放出する。また、排熱
熱交換器12の加熱流体側を流れつつ排熱を希溶液に移
したガスエンジン冷却水は、排熱熱交換器12を出たら
再びガスエンジンに戻り、ガスエンジンを冷却する。通
常運転時の動作は以上述べたサイクルが繰り返される。
The cooling water taken out by the cooling water coil 6A and the condensing heat taken out by the cooling water coil 4A flows into the cooling tower 14 through the cooling water pipe 18C, and transfers the absorbed heat and the condensed heat to the atmosphere. discharge. Further, the gas engine cooling water which has transferred the exhaust heat to the dilute solution while flowing on the heating fluid side of the exhaust heat exchanger 12 returns to the gas engine after exiting the exhaust heat exchanger 12 and cools the gas engine. The cycle described above is repeated for the operation during normal operation.

【0019】次に、冷房負荷が低下して冷温水機の運転
が停止される場合について説明する。冷温水機の運転を
停止するために、高温再生器1における加熱が停止され
るが、溶液循環ポンプ9及び冷却水ポンプ13の運転は
そのまま継続される。次いで、溶液ストップ弁10が開
かれ、溶液ストップ弁11が閉じられて、排熱熱交換器
12を通過した希溶液は溶液バイパス管21、溶液スト
ップ弁10を経て吸収器6に流入する。すなわち、溶液
循環ポンプから送り出された希溶液は、ガスエンジン等
の排熱を熱源とした排熱熱交換器12を通過しつつ加熱
され、溶液バイパス管(溶液バイパス回路)21を経て
吸収器6に流入し、吸収器内の冷却水コイル6A内を循
環する冷却水により熱を奪われ、冷却される。冷却され
た希溶液は吸収器底部から希溶液吸入管22を経て溶液
循環ポンプ9に吸入され、加圧されて低温溶液熱交換器
7を経て排熱熱交換器12へ戻り、上述のサイクルを継
続する。
Next, the case where the cooling load is reduced and the operation of the chiller / heater is stopped will be described. In order to stop the operation of the chiller / heater, the heating in the high temperature regenerator 1 is stopped, but the operation of the solution circulation pump 9 and the cooling water pump 13 is continued. Next, the solution stop valve 10 is opened, the solution stop valve 11 is closed, and the dilute solution that has passed through the exhaust heat exchanger 12 flows into the absorber 6 via the solution bypass pipe 21 and the solution stop valve 10. That is, the dilute solution sent from the solution circulation pump is heated while passing through the exhaust heat exchanger 12 using exhaust heat of a gas engine or the like as a heat source, and is passed through the solution bypass pipe (solution bypass circuit) 21 to the absorber 6. And the heat is taken away by the cooling water circulating in the cooling water coil 6A in the absorber and cooled. The cooled diluted solution is sucked into the solution circulation pump 9 through the diluted solution suction pipe 22 from the bottom of the absorber, pressurized and returned to the exhaust heat exchanger 12 through the low-temperature solution heat exchanger 7, and the cycle described above is repeated. continue.

【0020】吸収器内の冷却水コイル6Aを流れる冷却
水は、凝縮器4の冷却水コイル4A、冷温水機用のクー
リングタワー14、冷却水ポンプ13、吸収器内の冷却
水コイル6Aの順に冷却水ポンプ13に駆動されて循環
しており、冷却水コイル6Aで希溶液から奪った熱を冷
温水機用のクーリングタワー14に運び、大気中に放出
する。
The cooling water flowing through the cooling water coil 6A in the absorber is cooled in the order of the cooling water coil 4A of the condenser 4, the cooling tower 14 for the chiller / heater, the cooling water pump 13, and the cooling water coil 6A in the absorber. The water is circulated by being driven by the water pump 13, and the heat taken from the dilute solution by the cooling water coil 6 </ b> A is carried to the cooling tower 14 for the chiller / heater, and is released to the atmosphere.

【0021】冷房運転停止時にこのような希溶液のサイ
クルを形成し、維持することにより、吸収冷温水機が冷
房運転停止中でも、吸収溶液(希溶液)を熱搬送媒体と
して利用し、冷温水機用のクーリングタワーでエンジン
冷却水の熱を放熱できるので、放熱用のラジェーターを
別に設ける必要はない。また、吸収冷温水機が冷房運転
する場合は、溶液バイパス弁11を開、溶液バイパス弁
10を閉とすることにより、吸収溶液は排熱熱交換器1
2でエンジンの排熱を回収するとともに通常の冷房サイ
クルのルートを循環し、高温再生器1での入熱量を低減
できる。
By forming and maintaining such a cycle of the dilute solution when the cooling operation is stopped, the absorption solution (dilute solution) is used as a heat transfer medium even when the absorption chiller / heater is in the cooling operation. Since the heat of the engine cooling water can be dissipated by the cooling tower, there is no need to provide a separate radiator for heat dissipation. When the absorption chiller / heater performs the cooling operation, the solution bypass valve 11 is opened and the solution bypass valve 10 is closed, so that the absorption solution is discharged to the exhaust heat exchanger 1.
In step 2, the exhaust heat of the engine is recovered, and at the same time, the heat is circulated through the normal cooling cycle route, so that the heat input to the high-temperature regenerator 1 can be reduced.

【0022】[0022]

【発明の効果】請求項1に記載の発明によれば、特別な
ラジェーターや3方弁を設けることなく冷房運転停止中
の排熱を大気中に放出することができる。
According to the first aspect of the present invention, the exhaust heat during the cooling operation stop can be released to the atmosphere without providing a special radiator or a three-way valve.

【0023】請求項2に記載の発明によれば、請求項1
に記載の発明の効果に加え、排熱放出手段を簡易な構成
で実現できる。
According to the invention described in claim 2, according to claim 1
In addition to the effects of the invention described in (1), the exhaust heat release means can be realized with a simple configuration.

【0024】請求項3に記載の発明によれば、請求項2
に記載の発明の効果に加え、冷房運転を停止する場合や
停止状態から冷房運転に切り替える場合の弁の開閉操作
が自動化され、誤操作の恐れが無くなる。
According to the invention of claim 3, according to claim 2,
In addition to the effects of the invention described in the above, the opening and closing operation of the valve when the cooling operation is stopped or when the cooling operation is switched from the stopped state to the cooling operation is automated, and the risk of erroneous operation is eliminated.

【0025】請求項4に記載の発明によれば、請求項1
に記載の発明の効果と同様の効果がある。
According to the invention of claim 4, according to claim 1,
Has the same effects as the effects of the invention described in (1).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例である排熱吸収冷温水機を示す
系統図である。
FIG. 1 is a system diagram showing an exhaust heat absorption chiller / heater according to an embodiment of the present invention.

【図2】従来技術の例を示す系統図である。FIG. 2 is a system diagram showing an example of the related art.

【符号の説明】[Explanation of symbols]

1 高温再生器 2 分離器 3 低温再生器 4 凝縮器 4A 冷却水コイル 5 蒸発器 5A 蒸発コイル 6 吸収器 6A 冷却水コイル 7 低温溶液熱
交換器 8 高温溶液熱交換器 9 溶液循環ポ
ンプ 10 溶液ストップ弁 11 溶液スト
ップ弁 12 排熱熱交換器 13 冷却水ポ
ンプ 14 クーリングタワー 15A,15B
中間濃溶液管 17 冷媒管 18A,18
B,18C 冷却水管 19 濃溶液管 20 濃溶液管 21 溶液バイパス管 22 希溶液吸
入管 23A〜23C 希溶液吐出管 24 冷媒蒸気
コイル 25 上昇管
DESCRIPTION OF SYMBOLS 1 High temperature regenerator 2 Separator 3 Low temperature regenerator 4 Condenser 4A Cooling water coil 5 Evaporator 5A Evaporation coil 6 Absorber 6A Cooling water coil 7 Low temperature solution heat exchanger 8 High temperature solution heat exchanger 9 Solution circulation pump 10 Solution stop Valve 11 Solution stop valve 12 Waste heat exchanger 13 Cooling water pump 14 Cooling tower 15A, 15B
Intermediate concentrated solution pipe 17 Refrigerant pipe 18A, 18
B, 18C Cooling water pipe 19 Concentrated solution pipe 20 Concentrated solution pipe 21 Solution bypass pipe 22 Dilute solution suction pipe 23A-23C Dilute solution discharge pipe 24 Refrigerant vapor coil 25 Rise pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡 雅博 東京都江戸川区南小岩7−14−7 (56)参考文献 特開 平7−218018(JP,A) 特開 平8−152222(JP,A) 実開 昭55−28870(JP,U) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masahiro Oka 7-14-7 Minamikoiwa, Edogawa-ku, Tokyo (56) References JP-A-7-218018 (JP, A) JP-A 8-152222 (JP, A) ) Actually open sho 55-28870 (JP, U)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 伝熱面を備えた冷却水流路を内装し該伝
熱面上に散布される濃溶液に冷媒蒸気を吸収させて希溶
液を生成する吸収器と、前記冷却水流路に接続して設け
られ該冷却水流路内を循環する冷却水を冷却するクーリ
ングタワーと、前記吸収器で生成されて循環する希溶液
を排熱を熱源として加熱する排熱熱交換器と、該排熱熱
交換器で加熱された希溶液が導入されてさらに加熱され
る高温再生器と、を含んでなる排熱回収型吸収冷温水機
において、前記排熱熱交換器を通過した希溶液を前記吸
収器に導いて前記伝熱面上に散布する排熱放出手段を有
してなることを特徴とする排熱回収型吸収冷温水機。
1. An absorber for providing a cooling water flow path provided with a heat transfer surface, absorbing a refrigerant vapor into a concentrated solution sprayed on the heat transfer surface to generate a dilute solution, and connected to the cooling water flow path. A cooling tower for cooling the cooling water circulating in the cooling water flow path, a waste heat exchanger for heating the dilute solution generated by the absorber and circulating using the waste heat as a heat source, A high-temperature regenerator to which the diluted solution heated by the exchanger is introduced and further heated, wherein the diluted solution that has passed through the waste heat exchanger is absorbed by the absorber. An exhaust heat recovery type absorption chiller / heater comprising: an exhaust heat release means for guiding the heat to the heat transfer surface and dispersing the heat on the heat transfer surface.
【請求項2】 排熱放出手段が、排熱熱交換器で加熱さ
れた希溶液を高温再生器に導く配管に介装された溶液ス
トップ弁Aと、該溶液ストップ弁Aの上流側と濃溶液を
吸収器に導く配管とを溶液ストップ弁Bを介して連通す
る溶液バイパス管とを含んで構成されていることを特徴
とする請求項1に記載の排熱回収型吸収冷温水機。
2. A waste heat discharging means comprising: a solution stop valve A interposed in a pipe for guiding a dilute solution heated by a waste heat heat exchanger to a high-temperature regenerator; The exhaust heat recovery type absorption chiller / heater according to claim 1, further comprising: a solution bypass pipe for connecting a pipe for guiding the solution to the absorber via a solution stop valve B. 3.
【請求項3】 冷房運転時には溶液ストップ弁Aを開い
て溶液ストップ弁Bを閉じ、冷房運転停止時には溶液ス
トップ弁Aを閉じて溶液ストップ弁Bを開く制御手段を
設けたことを特徴とする請求項2に記載の排熱回収型吸
収冷温水機。
3. A control means for opening the solution stop valve A and closing the solution stop valve B during the cooling operation, and providing control means for closing the solution stop valve A and opening the solution stop valve B when the cooling operation is stopped. Item 3. An exhaust heat recovery type absorption chiller / heater according to Item 2.
【請求項4】 伝熱面を備えた冷却水流路を内装し該伝
熱面上に散布される濃溶液に冷媒蒸気を吸収させて希溶
液を生成する吸収器と、前記冷却水流路に接続して設け
られ該冷却水流路内を循環する冷却水を冷却するクーリ
ングタワーと、前記吸収器で生成されて循環する希溶液
を排熱を熱源として加熱する排熱熱交換器と、該排熱熱
交換器で加熱された希溶液が導入されてさらに加熱され
る高温再生器と、を含んでなる排熱回収型吸収冷温水機
の制御方法において、冷房運転停止時に前記排熱熱交換
器への排熱の供給を継続し、前記排熱熱交換器を通過し
た希溶液を前記吸収器に導いて前記伝熱面上に散布する
ことを特徴とする排熱回収型吸収冷温水機の制御方法。
4. An absorber for providing a cooling water flow path having a heat transfer surface therein and absorbing a refrigerant vapor to a concentrated solution sprayed on the heat transfer surface to generate a dilute solution, and connected to the cooling water flow path. A cooling tower for cooling the cooling water circulating in the cooling water flow path, a waste heat exchanger for heating the dilute solution generated by the absorber and circulating using the waste heat as a heat source, A high-temperature regenerator to which a dilute solution heated by an exchanger is introduced and further heated, and a method of controlling an exhaust heat recovery type absorption chiller / heater comprising: A method for controlling an exhaust heat recovery type absorption chiller / heater, wherein the supply of exhaust heat is continued, and the dilute solution passing through the exhaust heat exchanger is guided to the absorber and dispersed on the heat transfer surface. .
JP07192706A 1995-07-28 1995-07-28 Exhaust heat recovery type absorption chiller / heater and its control method Expired - Fee Related JP3111205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07192706A JP3111205B2 (en) 1995-07-28 1995-07-28 Exhaust heat recovery type absorption chiller / heater and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07192706A JP3111205B2 (en) 1995-07-28 1995-07-28 Exhaust heat recovery type absorption chiller / heater and its control method

Publications (2)

Publication Number Publication Date
JPH0942798A JPH0942798A (en) 1997-02-14
JP3111205B2 true JP3111205B2 (en) 2000-11-20

Family

ID=16295705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07192706A Expired - Fee Related JP3111205B2 (en) 1995-07-28 1995-07-28 Exhaust heat recovery type absorption chiller / heater and its control method

Country Status (1)

Country Link
JP (1) JP3111205B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112443387A (en) * 2020-10-22 2021-03-05 上海常田实业有限公司 Engine energy-saving heat dissipation system for excavator

Also Published As

Publication number Publication date
JPH0942798A (en) 1997-02-14

Similar Documents

Publication Publication Date Title
KR19980064574A (en) Operation stop method of absorption refrigeration unit
JP3111205B2 (en) Exhaust heat recovery type absorption chiller / heater and its control method
JP3326238B2 (en) Single double effect absorption refrigerator
JP3851764B2 (en) Absorption refrigerator
JP3883894B2 (en) Absorption refrigerator
JP3481530B2 (en) Absorption chiller / heater
JP3108800B2 (en) Exhaust heat recovery type absorption chiller / heater and its control method
JPH11337214A (en) Absorption cold/hot water device and operation thereof
JP3280169B2 (en) Double effect absorption refrigerator and chiller / heater
JP3381094B2 (en) Absorption type heating and cooling water heater
JP3729102B2 (en) Steam-driven double-effect absorption chiller / heater
JP2003269815A (en) Exhaust heat recovery type absorption refrigerator
JP3084650B2 (en) Absorption chiller / heater and its control method
JP3240343B2 (en) Steam-fired absorption chiller / heater and its control method
JP2787182B2 (en) Single / double absorption chiller / heater
JPS5849872A (en) Heat pump device
JPH07849Y2 (en) Air-cooled absorption chiller / heater
JPH11211262A (en) Absorption type refrigerating machine system
JPH01244257A (en) Double-effect absorption water cooler/heater
JP2003121021A (en) Double effect absorption refrigerating machine
JP2645948B2 (en) Hot water absorption absorption chiller / heater
JPH04313652A (en) Absorption refrigerating machine
KR100213794B1 (en) Ammonia absorption type cooler
JP2904659B2 (en) Absorption heat pump equipment
JPH01310272A (en) Absorption type air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees