JP2002310528A - Control device for absorption type refrigerator - Google Patents

Control device for absorption type refrigerator

Info

Publication number
JP2002310528A
JP2002310528A JP2001108820A JP2001108820A JP2002310528A JP 2002310528 A JP2002310528 A JP 2002310528A JP 2001108820 A JP2001108820 A JP 2001108820A JP 2001108820 A JP2001108820 A JP 2001108820A JP 2002310528 A JP2002310528 A JP 2002310528A
Authority
JP
Japan
Prior art keywords
cooling water
flow rate
temperature
control signal
rated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001108820A
Other languages
Japanese (ja)
Other versions
JP3819727B2 (en
Inventor
Hidekazu Enomoto
英一 榎本
Masahiro Furukawa
雅裕 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001108820A priority Critical patent/JP3819727B2/en
Publication of JP2002310528A publication Critical patent/JP2002310528A/en
Application granted granted Critical
Publication of JP3819727B2 publication Critical patent/JP3819727B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PROBLEM TO BE SOLVED: To provide a control device wherein energy saving operation and safety are compatible. SOLUTION: The control device 50 is provided with a control program that during energy saving operation effected in a state that a flow rate of cooling water fed to an absorber 2 and a condenser 6 is limited to a value lower than a rated flow rate, the number of revolutions of a cooling water pump 26 is returned to the rated number of revolutions when the temperature T5 of a weak absorbent solution detected by a temperature detecting means 42 exceeds a given temperature, for example, 40 deg.C and the temperature T6 of the solution in a high temperature regenerator 3 detected by a temperature detecting means 43 is a given temperature, for example, 155 deg.C, an opening V of a heating amount control valve 22 is a given opening, for example, 80% or less of an opening during the rated operation, and a flow rate of cooling water fed to the absorber 2 and the condenser 6 through cooling water piping 25 is returned to a rated flow rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は吸収式冷凍機の制御
装置に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for an absorption refrigerator.

【0002】[0002]

【従来の技術】地球環境問題の高まりと共に、省エネル
ギー性向上に対する要求は益々高まってきている。そし
て、空調システムにおいても、省エネ法の改正により空
調エネルギー消費係数の基準が強化されるなど、一層の
高効率化が求められている。
2. Description of the Related Art As global environmental problems increase, demands for energy savings have been increasing. Further, in the air conditioning system, further improvement in efficiency is required, for example, the standard of the air conditioning energy consumption coefficient is strengthened by the revision of the Energy Conservation Law.

【0003】空調用吸収式冷凍機においても、熱源機本
体の高効率化を始めとして、冷水系の搬送動力低減を目
的に大温度差システムなどが検討されているが、冷却水
系の搬送動力低減による省エネ化は、今日まで余り検討
されてこなかった。
For the absorption type refrigerator for air conditioning, a large temperature difference system and the like are being studied for the purpose of reducing the transfer power of the chilled water system, such as increasing the efficiency of the heat source unit itself. Energy saving by has not been considered so far.

【0004】その理由の一つは、冷却水の流量が変化す
ると、吸収式冷凍機の内部サイクルにまで影響が及び、
安全運転を確保することが困難になることに起因してい
る。すなわち、吸収式冷凍機においては冷却水の流量が
減少すると、吸収器と凝縮器の効率が低下し、高温再生
器に供給する熱量の増加が必要になるだけでなく、高温
再生器において圧力と温度の上昇が起こるので、省エネ
化を図る場合にも高温再生器の温度と圧力に影響を及ぼ
す冷却水出口温度を監視して、冷却水の流量を絞ったり
するのが一般的であった。
One of the reasons is that when the flow rate of the cooling water changes, it affects the internal cycle of the absorption refrigerator.
This is because it becomes difficult to ensure safe driving. That is, in the absorption refrigerator, when the flow rate of the cooling water is reduced, the efficiency of the absorber and the condenser is reduced, and not only the amount of heat supplied to the high-temperature regenerator needs to be increased, but also the pressure and the pressure in the high-temperature regenerator need to be increased. Since the temperature rises, it is common to reduce the flow rate of the cooling water by monitoring the temperature of the cooling water outlet that affects the temperature and pressure of the high-temperature regenerator even when energy saving is to be achieved.

【0005】また、空調負荷の大きさに関係付けられる
高温再生器の温度が低いときに冷却水の流量を減少さ
せ、その温度が上昇すると冷却水の流量を増加させる制
御も行われている。一方、冷却水の流量を減らした運転
を行っていて、高温再生器の温度が所定温度を超えると
冷却水を定格の流量に戻し、安全を確保するようになっ
ている。
[0005] Further, control is also performed to decrease the flow rate of the cooling water when the temperature of the high-temperature regenerator, which is related to the magnitude of the air conditioning load, is low, and to increase the flow rate of the cooling water when the temperature rises. On the other hand, when the operation is performed with the flow rate of the cooling water reduced, and the temperature of the high-temperature regenerator exceeds a predetermined temperature, the cooling water is returned to the rated flow rate to ensure safety.

【0006】[0006]

【発明が解決しようとする課題】冷却水の流量を絞った
省エネ運転から、冷却水の流量を定格流量に戻す操作を
高温再生器の温度だけに基づいて行う従来の制御におい
ては、冷却水の流量を絞った省エネ運転を継続しても何
等問題が生じないときにも冷却水の流量が定格流量に戻
されることがあり、省エネ運転を行っているときの時間
が短く、本当の意味での省エネ運転とはなっていなかっ
たので、本当に必要なときだけ冷却水の流量を定格流量
に戻す制御が可能な制御技術を提供する必要があり、そ
れが解決すべき課題となっていた。
In the conventional control in which the operation of returning the flow rate of the cooling water to the rated flow rate from the energy saving operation in which the flow rate of the cooling water is reduced, based on only the temperature of the high-temperature regenerator, The cooling water flow rate may be returned to the rated flow rate even if no problem occurs even if the energy saving operation with the reduced flow rate is continued. Since it was not an energy-saving operation, it was necessary to provide a control technology capable of controlling the flow rate of the cooling water to the rated flow rate only when it was really necessary, which was an issue to be solved.

【0007】[0007]

【課題を解決するための手段】本発明は上記従来技術の
課題を解決するための具体的手段として、再生器に供給
する熱量を制御する制御信号と、吸収器と凝縮器に供給
する冷却水の流量を制御する制御信号とを出力する機能
を備えた吸収式冷凍機の制御装置において、
According to the present invention, a control signal for controlling the amount of heat supplied to a regenerator, cooling water supplied to an absorber and a condenser are provided as specific means for solving the above-mentioned problems of the prior art. In a control device of an absorption refrigerator having a function of outputting a control signal for controlling the flow rate of

【0008】冷却水の流量を定格流量未満に制限する制
御信号の出力中に、稀吸収液の温度が所定温度以上にな
ると冷却水の流量を定格流量に戻す制御信号を出力する
機能を備えるようにした第1の構成の制御装置と、
While outputting the control signal for limiting the flow rate of the cooling water to less than the rated flow rate, a function is provided for outputting a control signal for returning the flow rate of the cooling water to the rated flow rate when the temperature of the diluted absorbing solution becomes higher than a predetermined temperature. A control device of the first configuration,

【0009】冷却水の流量を定格流量未満に制限する制
御信号の出力中に、再生器の温度が所定温度以上、再生
器に供給する熱量を制御する弁の開度が所定開度以下、
稀吸収液の温度が所定温度以上になると、冷却水の流量
を定格流量に戻す制御信号を出力する機能を備えるよう
にした第2の構成の制御装置と、
During the output of the control signal for limiting the flow rate of the cooling water to less than the rated flow rate, the temperature of the regenerator is equal to or higher than a predetermined temperature, and the opening of a valve for controlling the amount of heat supplied to the regenerator is equal to or lower than a predetermined opening.
A control device having a second configuration, having a function of outputting a control signal for returning the flow rate of the cooling water to the rated flow rate when the temperature of the diluted absorbing solution is equal to or higher than a predetermined temperature;

【0010】冷却水の流量を定格流量未満に制限する制
御信号の出力中に、濃吸収液の吸収液濃度が所定濃度以
上になると冷却水の流量を定格流量に戻す制御信号を出
力する機能を備えるようにした第3の構成の制御装置
と、
During the output of the control signal for limiting the flow rate of the cooling water to less than the rated flow rate, a function of outputting a control signal for returning the flow rate of the cooling water to the rated flow rate when the concentration of the concentrated absorbing solution becomes a predetermined concentration or more. A control device of a third configuration provided for;

【0011】冷却水の流量を定格流量未満に制限する制
御信号の出力中に、再生器の温度が所定温度以上、再生
器に供給する熱量を制御する弁の開度が所定開度以下、
濃吸収液の吸収液濃度が所定濃度以上になると、冷却水
の流量を定格流量に戻す制御信号を出力する機能を備え
るようにした第4の構成の制御装置と、
[0011] During the output of the control signal for limiting the flow rate of the cooling water to less than the rated flow rate, the temperature of the regenerator is equal to or higher than a predetermined temperature, and the opening of a valve for controlling the amount of heat supplied to the regenerator is equal to or lower than a predetermined opening.
A control device having a fourth configuration having a function of outputting a control signal for returning the flow rate of the cooling water to the rated flow rate when the concentration of the concentrated absorbent is equal to or higher than a predetermined concentration;

【0012】冷却水の流量を定格流量未満に制限する制
御信号の出力中に、吸収器または凝縮器で冷却作用を終
えて出た冷却水の温度が所定温度以上になると、冷却水
の流量を定格流量に戻す制御信号を出力する機能を備え
るようにした第5の構成の制御装置と、を提供すること
により、前記した従来技術の課題を解決するものであ
る。
During the output of the control signal for limiting the flow rate of the cooling water to less than the rated flow rate, when the temperature of the cooling water discharged after finishing the cooling operation in the absorber or the condenser becomes higher than a predetermined temperature, the flow rate of the cooling water is reduced. By providing a control device having a fifth configuration that has a function of outputting a control signal for returning the flow rate to the rated flow rate, the above-described problem of the related art is solved.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施形態を図面に
基づいて詳細に説明する。図2は冷媒に例えば水、吸収
液(溶液)に臭化リチウム(LiBr)溶液を用いた吸
収式冷凍機である吸収冷温水機の概略構成図であり、1
は蒸発器、2は吸収器、3は例えばガスバーナ4によっ
て加熱される高温再生器、5は低温再生器、6は凝縮
器、7は吸収器2から高温再生器3に流れる吸収液の薄
い液、すなわち稀吸収液と、低温再生器5から吸収器2
に流れる吸収液の濃い液、すなわち濃吸収液とが熱交換
する溶液熱交換器である低温熱交換器、8は吸収器2か
ら低温熱交換器7を経て高温再生器3に流れる稀吸収液
と高温再生器3から低温再生器5に流れる中間濃度の吸
収液とが熱交換する溶液熱交換器である高温熱交換器、
11〜15は吸収液配管、16は吸収液ポンプ、17〜
19は冷媒配管、20は冷媒ポンプ、21はガスバーナ
4に接続したガス配管、22は加熱量制御弁、23は途
中に蒸発器熱交換器24が設けられた冷温水配管、25
は途中に冷却水ポンプ26と吸収器熱交換器27と凝縮
器熱交換器28とが設けられた冷却水配管であり、それ
ぞれは図2に示したように配管接続されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 2 is a schematic configuration diagram of an absorption chiller / heater which is an absorption refrigerator using, for example, water as a refrigerant and a lithium bromide (LiBr) solution as an absorption liquid (solution).
Is an evaporator, 2 is an absorber, 3 is a high-temperature regenerator heated by, for example, a gas burner 4, 5 is a low-temperature regenerator, 6 is a condenser, and 7 is a thin liquid of the absorbent flowing from the absorber 2 to the high-temperature regenerator 3. That is, the rare absorbing solution and the low-temperature regenerator 5 to the absorber 2
A low-temperature heat exchanger, which is a solution heat exchanger for exchanging heat with the concentrated absorbent, that is, a rare absorbent that flows from the absorber 2 to the high-temperature regenerator 3 via the low-temperature heat exchanger 7 A high-temperature heat exchanger, which is a solution heat exchanger that exchanges heat with the intermediate concentration absorbent flowing from the high-temperature regenerator 3 to the low-temperature regenerator 5;
11 to 15 are absorbent pipes, 16 is an absorbent pump, 17 to
19 is a refrigerant pipe, 20 is a refrigerant pump, 21 is a gas pipe connected to the gas burner 4, 22 is a heating amount control valve, 23 is a cold / hot water pipe provided with an evaporator heat exchanger 24 in the middle, 25
Is a cooling water pipe provided with a cooling water pump 26, an absorber heat exchanger 27, and a condenser heat exchanger 28 in the middle, each of which is connected as shown in FIG.

【0014】また、29は蒸発器1の冷媒液溜り30と
吸収器2の吸収液溜り31とを配管接続する冷媒バイパ
ス管、32は開閉弁、33は吸収液配管12と吸収器2
とを接続する吸収液バイパス管、34は開閉弁、35は
冷媒配管17と吸収器2とを接続する冷媒蒸気バイパス
管、36は開閉弁であり、それぞれ図のように接続さ
れ、各開閉弁32・34・36は冷水の供給時に閉じ、
温水の供給時に開く。
Reference numeral 29 denotes a refrigerant bypass pipe connecting the refrigerant liquid reservoir 30 of the evaporator 1 to the absorbent liquid reservoir 31 of the absorber 2; 32, an open / close valve; 33, an absorbent pipe 12 and the absorber 2;
Is an on-off valve, 34 is an on-off valve, 35 is a refrigerant vapor bypass pipe connecting the refrigerant pipe 17 and the absorber 2, and 36 is an on-off valve, each of which is connected as shown in the figure. 32, 34 and 36 are closed when supplying cold water,
Open when supplying hot water.

【0015】また、37は冷却水ポンプ26に加える電
力を所望の周波数に変換する周波数変換装置、38は冷
温水配管23の蒸発器1入口側に設置されて冷水の入口
温度T1を検出する温度検出手段、39は冷温水配管2
3の蒸発器1出口側に設置されて冷水の出口温度T2を
検出する温度検出手段、40は冷却水配管25の吸収器
2入口側に設置されて冷却水の入口温度T3を検出する
温度検出手段、41は冷却水配管25の凝縮器6出口側
に設置されて冷却水の出口温度T4を検出する温度検出
手段、42は吸収液配管11の低温熱交換器7入口側に
設置されて吸収器2から吸収液配管11に流れ出た稀吸
収液の温度T5を検出する温度検出手段、43は高温再
生器3に設置されて高温再生器3内にある溶液の温度T
6を検出する温度検出手段、44は吸収液配管14に設
置されて低温再生器5から吸収器2に流れている濃吸収
液の吸収液濃度Nを検出する濃度検出手段である。
Reference numeral 37 denotes a frequency converter for converting the electric power applied to the cooling water pump 26 to a desired frequency, and reference numeral 38 denotes a temperature which is installed on the inlet side of the evaporator 1 of the cold / hot water pipe 23 and detects the inlet temperature T1 of the cold water. Detecting means, 39 is cold / hot water pipe 2
Temperature detecting means 40 installed on the outlet side of the evaporator 1 for detecting the outlet temperature T2 of the cold water, and 40 is a temperature detecting means installed on the inlet side of the absorber 2 of the cooling water pipe 25 for detecting the inlet temperature T3 of the cooling water. A means 41 is provided on the outlet side of the condenser 6 of the cooling water pipe 25 to detect the outlet temperature T4 of the cooling water, and a 42 is provided on the inlet side of the low-temperature heat exchanger 7 of the absorbent pipe 11 for absorption. Temperature detecting means 43 for detecting the temperature T5 of the diluted absorption liquid flowing out of the high temperature regenerator 3 from the high temperature regenerator 3
A temperature detecting means 44 for detecting the concentration 6 is a concentration detecting means for detecting the concentration N of the concentrated absorbent flowing from the low-temperature regenerator 5 to the absorber 2 by being installed in the absorbent pipe 14.

【0016】50は、マイクロコンピュータなどを備え
て構成される本発明の制御装置であり、前記検出手段3
8〜44より信号を入力して、高温再生器3に投入する
熱量と冷却水配管25を流れる冷却水の流量とを制御す
る。
Reference numeral 50 denotes a control device of the present invention comprising a microcomputer and the like.
Signals are input from 8 to 44 to control the amount of heat supplied to the high-temperature regenerator 3 and the flow rate of the cooling water flowing through the cooling water pipe 25.

【0017】制御装置50の構成を示す図1において、
51は検出手段38〜44などからの検出信号を入力
し、信号変換して中央演算処理手段52へ出力する入力
手段、53は制御プログラムなどを記憶している記憶手
段、54は適宜の制御条件、例えば冷却水ポンプ26に
加える電力周波数の最低周波数、冷却水ポンプ26に加
える電力周波数の変化速度、後述するコスト係数κなど
を設定するための設定入力手段、55はガスバーナ4の
火力を制御するために、温度検出手段39が検出する冷
水の出口温度T2などに基づいて実行する中央演算処理
手段52の演算結果を受けて加熱量制御弁22に所要の
制御信号を出力するための容量制御出力手段、56は冷
却水配管25を介して吸収器2の吸収器熱交換器27と
凝縮器6の凝縮器熱交換器28に冷却水を供給する冷却
水ポンプ26の回転数を制御するために、中央演算処理
手段52の演算結果を受けて周波数変換装置37などに
所要の制御信号を出力するための外部出力手段である。
In FIG. 1 showing the configuration of the control device 50,
Reference numeral 51 denotes input means for inputting detection signals from the detection means 38 to 44 and converting and outputting the signals to the central processing means 52; 53, storage means for storing a control program and the like; For example, setting input means for setting the lowest frequency of the power frequency applied to the cooling water pump 26, the changing speed of the power frequency applied to the cooling water pump 26, a cost coefficient κ described later, and the like, 55 controls the heating power of the gas burner 4. Therefore, a capacity control output for outputting a required control signal to the heating amount control valve 22 in response to a calculation result of the central processing unit 52 executed based on the outlet temperature T2 of the cold water detected by the temperature detection unit 39 and the like. Means 56 is a rotation of the cooling water pump 26 that supplies cooling water to the absorber heat exchanger 27 of the absorber 2 and the condenser heat exchanger 28 of the condenser 6 via the cooling water pipe 25. To control the receives the operation result of the central processing unit 52 is an external output means for outputting the required control signals such as the frequency converter 37.

【0018】上記構成の吸収式冷凍機による冷水供給運
転においては、従来と同様に高温再生器3で蒸発した冷
媒は低温再生器5を経て凝縮器6へ流れ、冷却水ポンプ
26によって凝縮器熱交換器28を流れる冷却水と熱交
換して凝縮したのち冷媒配管18を介して蒸発器1へ流
れる。そして、冷媒が蒸発器熱交換器24を流れる水と
熱交換して蒸発し、気化熱によって蒸発器熱交換器24
を流れる水が冷却される。そして、冷水が冷温水配管2
3を介して図示しない負荷に循環し冷房作用などを行
う。
In the chilled water supply operation by the absorption chiller having the above structure, the refrigerant evaporated in the high temperature regenerator 3 flows to the condenser 6 through the low temperature regenerator 5 as in the conventional case, and the heat of the condenser is cooled by the cooling water pump 26. After condensing by exchanging heat with the cooling water flowing through the exchanger 28, the refrigerant flows to the evaporator 1 via the refrigerant pipe 18. Then, the refrigerant exchanges heat with water flowing through the evaporator heat exchanger 24 to evaporate, and the evaporator heat exchanger 24
The water flowing through is cooled. And cold water is cold and hot water piping 2
The cooling water is circulated through a load 3 (not shown) to perform a cooling operation and the like.

【0019】また、蒸発器1で蒸発した冷媒は、冷却水
ポンプ26によって吸収器熱交換器27を流れる冷却水
により冷却されている吸収器2で吸収液に吸収される。
冷媒を吸収して吸収液濃度が薄くなった稀吸収液が吸収
液ポンプ16の運転によって低温熱交換器7および高温
熱交換器8を経て高温再生器3へ送られる。高温再生器
3へ送られた吸収液はガスバーナ4により加熱されて冷
媒が蒸発し、中濃度の吸収液が高温熱交換器8を経て低
温再生器5へ流れる。低温再生器5で吸収液は高温再生
器3から冷媒配管17を流れてきた冷媒蒸気によって加
熱され、さらに冷媒蒸気が分離され吸収液濃度が高くな
る。吸収液濃度が高まった濃吸収液は低温熱交換器7を
経て温度低下して吸収器2へ送られて散布される。
The refrigerant evaporated in the evaporator 1 is absorbed by the absorbing liquid in the absorber 2 which is cooled by the cooling water flowing through the absorber heat exchanger 27 by the cooling water pump 26.
The diluted absorbing liquid having a reduced absorption liquid concentration by absorbing the refrigerant is sent to the high temperature regenerator 3 via the low temperature heat exchanger 7 and the high temperature heat exchanger 8 by the operation of the absorption liquid pump 16. The absorbing liquid sent to the high-temperature regenerator 3 is heated by the gas burner 4 to evaporate the refrigerant, and the medium-absorbing liquid flows through the high-temperature heat exchanger 8 to the low-temperature regenerator 5. In the low-temperature regenerator 5, the absorbent is heated by the refrigerant vapor flowing from the high-temperature regenerator 3 through the refrigerant pipe 17, and the refrigerant vapor is further separated to increase the concentration of the absorbent. The concentrated absorbent having an increased concentration of the absorbent is cooled down through the low-temperature heat exchanger 7 and sent to the absorber 2 to be dispersed.

【0020】冷却水ポンプ26を運転するための固定費
を除く電力費、すなわち電力変動費の定格運転に対する
比率は、例えば図3(A)、(B)に破線で示したよう
に冷却水の流量比率Rが少ないほど減少する。一方、高
温再生器3で消費する燃料変動費の定格運転に対する比
率は、例えば図3(A)、(B)に細線で示したよう
に、負荷率Wが低いほど減少し、冷却水の流量比率Rが
多いほど減少し、冷却水の吸収器2への入口温度T3が
低いほど減少するので、負荷率W、冷却水の流量比率R
および冷却水の入口温度T3を変数としてそれぞれ数式
化できる。
The power cost excluding the fixed cost for operating the cooling water pump 26, that is, the ratio of the power fluctuation cost to the rated operation is, for example, as shown by broken lines in FIGS. 3A and 3B. It decreases as the flow rate ratio R decreases. On the other hand, the ratio of the fuel variable cost consumed by the high-temperature regenerator 3 to the rated operation decreases as the load factor W decreases, for example, as shown by the thin line in FIGS. The load ratio W and the flow rate ratio R of the cooling water are decreased as the ratio R increases, and decreased as the cooling water inlet temperature T3 to the absorber 2 decreases.
And the cooling water inlet temperature T3 can be expressed as a variable.

【0021】したがって、冷却水ポンプ26を運転する
ための電力変動費を前記燃料変動費に加算した図3
(A)、(B)に太い実線で示すトータル変動費曲線
も、また、そのトータル変動費曲線の極小値、すなわち
コスト最小点を繋ぐコスト最小曲線も、負荷率W、冷却
水の流量比率Rおよび冷却水の入口温度T3を変数とし
て数式化できる。なお、図3(C)は冷却水の入口温度
T3をパラメータとしてコスト最小曲線を示したもので
ある。
Accordingly, FIG. 3 is a graph in which the power fluctuation cost for operating the cooling water pump 26 is added to the fuel fluctuation cost.
(A) and (B) show the total variable cost curve shown by a thick solid line, and the minimum value of the total variable cost curve, that is, the minimum cost curve connecting the minimum cost points, the load factor W and the flow rate R of the cooling water. And the cooling water inlet temperature T3 as a variable. FIG. 3C shows a minimum cost curve using the cooling water inlet temperature T3 as a parameter.

【0022】周知のように、電力と燃料の単価は一般に
顧客毎に相違するので、図3に示した電力変動費曲線と
燃料変動費曲線、したがってコスト最小曲線も顧客毎に
相違する。このため、電力変動費と燃料変動費との和、
すなわちトータルランニングコストを最低にする冷却水
の定格流量に対する流量比率Rを求める演算式も、通常
は顧客毎に決定する必要があるが、所定運転条件、例え
ば定格運転時に冷却水ポンプ26を運転するために消費
する電力変動費とそのときにガスバーナ4で消費する燃
料変動費との比であるコスト係数κと、負荷率Wと、温
度検出手段40が検出した冷却水の入口温度T3を変数
とした一つの演算式により演算算出できることが分かっ
たので、この演算式を制御装置50の記憶手段53に記
憶してある。
As is well known, since the unit price of power and fuel generally differs for each customer, the power variable cost curve and the fuel variable cost curve shown in FIG. 3 also differ for each customer. Therefore, the sum of the variable electricity cost and the variable fuel cost,
In other words, an arithmetic expression for calculating the flow rate ratio R to the rated flow rate of the cooling water that minimizes the total running cost usually needs to be determined for each customer. However, operating the cooling water pump 26 at a predetermined operating condition, for example, during the rated operation. Coefficient κ, which is the ratio of the power fluctuation cost consumed for this purpose and the fuel fluctuation cost consumed by the gas burner 4 at that time, the load factor W, and the inlet temperature T3 of the cooling water detected by the temperature detecting means 40 are defined as variables. Since it has been found that the calculation can be performed by one of the calculation formulas, the calculation formula is stored in the storage means 53 of the control device 50.

【0023】すなわち、制御装置50の記憶手段53に
は、温度検出手段38・39が検出する冷水の入口温度
T1と出口温度T2との温度差(T1−T2)に基づい
て負荷率W(%)を演算算出するための演算式、例えば
W=(T1−T2)÷5×100(定格運転時の前記温
度差が5℃である場合)と、さらにその演算式で求めた
負荷率W、温度検出手段40が検出した冷却水の入口温
度T3、およびコスト係数κを変数として、電力変動費
と燃料変動費との和が最低、すなわちトータルランニン
グコストが最低になる冷却水の定格流量に対する流量比
率R(%)を演算算出するための一つの演算式、例えば
R={F(W)+F(T3)+A}÷F(κ)、但し、
Aは常数、を記憶してある。
That is, the load ratio W (%) is stored in the storage means 53 of the control device 50 based on the temperature difference (T1-T2) between the inlet temperature T1 and the outlet temperature T2 of the cold water detected by the temperature detecting means 38 and 39. ), For example, W = (T1−T2) ÷ 5 × 100 (when the temperature difference at the time of rated operation is 5 ° C.), and the load factor W obtained by the equation. Using the cooling water inlet temperature T3 detected by the temperature detecting means 40 and the cost coefficient κ as variables, the flow rate with respect to the rated flow rate of the cooling water at which the sum of the power fluctuation cost and the fuel fluctuation cost is the lowest, that is, the total running cost is the lowest. One arithmetic expression for calculating and calculating the ratio R (%), for example, R = {F (W) + F (T3) + A} ÷ F (κ), where
A stores a constant.

【0024】そして、吸収式冷凍機を納入設置する際に
は納入先の顧客が電力会社と契約した電力単価と、ガス
会社と契約したガス単価に基づいて前記コスト係数κの
値を算出し、設定入力手段54を操作してその値をコス
ト係数κとすると共に、冷却水ポンプ26に加える電力
周波数の下限値(例えば、定格の50%未満は回転数制
御が不安定となるときは50%)と、冷却水ポンプ26
に加える電力周波数の変化速度ΔH(例えば、5%/1
分)を制御装置50の設定入力手段54を操作して設定
する。
Then, when the absorption chiller is delivered and installed, the value of the cost coefficient κ is calculated based on the unit price of the electric power contracted by the customer at the delivery destination and the unit price of the gas contracted with the gas company. By operating the setting input means 54, the value is set as the cost coefficient κ, and the lower limit value of the power frequency applied to the cooling water pump 26 (for example, less than 50% of the rated value is 50% when the rotation speed control becomes unstable). ) And the cooling water pump 26
Change rate ΔH (for example, 5% / 1
) Is set by operating the setting input means 54 of the control device 50.

【0025】吸収式冷凍機が前記のように運転されてい
る時の制御装置50による冷却水流量制御を、図4のフ
ローチャートに基づいて説明する。
The control of the flow rate of the cooling water by the control unit 50 when the absorption refrigerator is operated as described above will be described with reference to the flowchart of FIG.

【0026】ステップS1においては、温度検出手段3
8・39・40による温度検出を行い。続くステップS
2においては、温度検出手段38・39が検出した冷水
の入口温度T1と出口温度T2に基づいて、そのときの
負荷率Wを演算算出する。
In step S1, the temperature detecting means 3
The temperature is detected by 8.39.40. Subsequent step S
In 2, the load factor W at that time is calculated based on the inlet temperature T1 and the outlet temperature T2 of the cold water detected by the temperature detecting means 38 and 39.

【0027】ステップS3においては、トータルランニ
ングコストが最低となる回転数で冷却水ポンプ26を運
転するために冷却水ポンプ26に加える目標電力周波数
Htを、前記コスト係数κと、ステップS1で温度検出
手段40が検出した冷却水の入口温度T3と、ステップ
S2で算出した負荷率Wに基づいて演算算出する。
In step S3, the target power frequency Ht to be applied to the cooling water pump 26 to operate the cooling water pump 26 at the rotational speed at which the total running cost is minimized is determined by the cost coefficient κ and the temperature detection in step S1. The calculation is performed based on the cooling water inlet temperature T3 detected by the means 40 and the load factor W calculated in step S2.

【0028】ステップS4においては、ステップS3で
算出した目標電力周波数Htが、冷却水ポンプ26に現
在加えている電力周波数Hn以上であるか否かを判定す
る。
In step S4, it is determined whether or not the target power frequency Ht calculated in step S3 is equal to or higher than the power frequency Hn currently applied to the cooling water pump 26.

【0029】そして、前記ステップS4においてイエス
と判定されたときにはステップS5に移行して周波数変
換装置37にHn+ΔHを出力し、続くステップS7に
おいては冷却水ポンプ26に新たに加える電力周波数H
をその周波数、すなわちHn+ΔHに周波数変換装置3
7により変換し、ステップS8で冷却水ポンプ26の回
転数が実際に変更される。
If the determination in step S4 is YES, the process proceeds to step S5 to output Hn + ΔH to the frequency conversion device 37. In the subsequent step S7, the power frequency H to be newly added to the cooling water pump 26 is output.
To the frequency, ie, Hn + ΔH.
7 and the rotational speed of the cooling water pump 26 is actually changed in step S8.

【0030】一方、前記ステップS4においてノーと判
定されたときにはステップS6に移行して周波数変換装
置37にHn−ΔHを出力し、続いてステップS7に移
行して冷却水ポンプ26に新たに加える電力周波数Hを
その周波数、すなわちHn−ΔHに周波数変換装置37
により変換し、ステップS8で冷却水ポンプ26の回転
数が実際に変更される。
On the other hand, if the determination in step S4 is NO, the process proceeds to step S6 to output Hn-.DELTA.H to the frequency converter 37. Then, the process proceeds to step S7 to add the electric power newly added to the cooling water pump 26. The frequency converter 37 converts the frequency H to the frequency, that is, Hn-ΔH.
The rotation speed of the cooling water pump 26 is actually changed in step S8.

【0031】このように、冷却水ポンプ26は温度検出
手段38・39が検出した冷水の温度情報と、温度検出
手段40が検出した冷却水の温度情報に基づいて最適の
回転数に制御されるので、冷却水ポンプ26を運転する
ために要する電力変動費と、ガスバーナ4で消費する燃
料変動費とのトータルランニングコストは、図5に示し
たように冷却水ポンプ26を定格運転するときに比べて
顕著に抑えられる。
As described above, the cooling water pump 26 is controlled to an optimum rotation speed based on the temperature information of the cooling water detected by the temperature detecting means 38 and 39 and the temperature information of the cooling water detected by the temperature detecting means 40. Therefore, the total running cost of the power fluctuation cost required to operate the cooling water pump 26 and the fuel fluctuation cost consumed by the gas burner 4 is smaller than when the cooling water pump 26 is operated at rated speed as shown in FIG. Remarkably suppressed.

【0032】また、制御装置50の記憶手段53には、
吸収器2の吸収器熱交換器27と凝縮器6の凝縮器熱交
換器28への冷却水の供給を定格流量以下に制限して行
う上記省エネ運転中に温度検出手段42が検出する稀吸
収液の温度T5が所定の温度、例えば40℃以上あり、
温度検出手段43が検出する高温再生器3内にある溶液
の温度T6が所定の温度、例えば155℃あり、且つ、
加熱量制御弁22の開度Vが所定の開度、例えば定格運
転時の開度の80%以下であるとき、冷却水ポンプ26
の回転数を定格回転数に戻して、吸収器熱交換器27と
凝縮器熱交換器28に供給する冷却水の流量を定格流量
に戻す制御プログラムを記憶してある。
The storage means 53 of the control device 50 stores
The rare absorption detected by the temperature detecting means 42 during the above-mentioned energy saving operation in which the supply of the cooling water to the absorber heat exchanger 27 of the absorber 2 and the condenser heat exchanger 28 of the condenser 6 is limited to the rated flow or less. The temperature T5 of the liquid is a predetermined temperature, for example, 40 ° C. or higher,
The temperature T6 of the solution in the high-temperature regenerator 3 detected by the temperature detecting means 43 is a predetermined temperature, for example, 155 ° C., and
When the opening V of the heating amount control valve 22 is a predetermined opening, for example, 80% or less of the opening during rated operation, the cooling water pump 26
And a control program for returning the flow rate of the cooling water supplied to the absorber heat exchanger 27 and the condenser heat exchanger 28 to the rated flow rate.

【0033】したがって、本発明の制御装置50を備え
た吸収式冷凍機においては、吸収器2の吸収器熱交換器
27と凝縮器6の凝縮器熱交換器28への冷却水の供給
を定格流量以下に制限する省エネ運転を行っていても、
温度検出手段42が検出する稀吸収液の温度T5が所定
の40℃以上、温度検出手段43が検出する高温再生器
3内の溶液温度T6が所定の155℃以上、加熱量制御
弁22の開度Vが所定の80%以下、の条件が同時に満
たされ、総合的な判断により、高温再生器3が冷却水の
不足により高温・高圧異常に陥る懸念が生じた、と判断
されときには、冷却水ポンプ26の回転数が定格回転数
に戻され、冷却水配管25を介して吸収器2の吸収器熱
交換器27と凝縮器6の凝縮器熱交換器28には定格流
量の冷却水が供給されるので、高温再生器3が高温・高
圧異常となることはない。
Therefore, in the absorption refrigerator equipped with the control device 50 of the present invention, the supply of the cooling water to the absorber heat exchanger 27 of the absorber 2 and the condenser heat exchanger 28 of the condenser 6 is rated. Even if energy saving operation is performed to limit the flow rate to less than
When the temperature T5 of the diluted absorbent detected by the temperature detecting means 42 is equal to or higher than a predetermined value of 40 ° C., the temperature T6 of the solution in the high-temperature regenerator 3 detected by the temperature detecting means 43 is equal to or higher than a predetermined value of 155 ° C., and the heating amount control valve 22 is opened. When the condition that the temperature V is equal to or less than the predetermined 80% is simultaneously satisfied, and the comprehensive judgment determines that the high-temperature regenerator 3 has a fear of falling into a high-temperature / high-pressure abnormality due to a shortage of the cooling water, the cooling water The rotation speed of the pump 26 is returned to the rated rotation speed, and the cooling water of the rated flow rate is supplied to the absorber heat exchanger 27 of the absorber 2 and the condenser heat exchanger 28 of the condenser 6 via the cooling water pipe 25. Therefore, the high temperature regenerator 3 does not have a high temperature / high pressure abnormality.

【0034】すなわち、冷却水配管25を介して吸収器
2の吸収器熱交換器27と凝縮器6の凝縮器熱交換器2
8に供給する冷却水の流量が定格流量に戻されるのは、
高温再生器3内の溶液温度T6だけではなく、温度検出
手段42が検出する稀吸収液の温度T5と、加熱量制御
弁22の開度Vの大きさにも基づいて判断され、高温再
生器3が本当に高温・高圧異常となる懸念があるときだ
け冷却水の流量は増加するので、省エネ化と安全性の両
立が図れると云った顕著な作用効果がある。
That is, the heat exchanger 27 of the absorber 2 and the heat exchanger 2 of the condenser 6 are connected via the cooling water pipe 25.
The flow rate of the cooling water supplied to 8 is returned to the rated flow rate.
The determination is made not only based on the solution temperature T6 in the high-temperature regenerator 3 but also based on the temperature T5 of the dilute absorbing solution detected by the temperature detecting means 42 and the magnitude of the opening degree V of the heating amount control valve 22. Since the flow rate of the cooling water is increased only when there is a concern that the temperature of the fuel cell 3 may be abnormally high temperature and high pressure, there is a remarkable effect that energy saving and safety can be achieved at the same time.

【0035】なお、温度検出手段42が検出する稀吸収
液の温度T5の代わりに、濃度検出手段44が検出する
濃吸収液の吸収液濃度Nを判定材料として採用し、その
吸収液濃度Nが所定の濃度、例えば62%以上になった
ときに、冷却水ポンプ26の回転数を定格回転数に戻す
ための制御信号を出力する制御プログラムを制御装置5
0の記憶手段53に記憶し、吸収器2の吸収器熱交換器
27と凝縮器6の凝縮器熱交換器28に供給する冷却水
の流量を定格の流量に戻すようにしても良い。
Instead of the temperature T5 of the diluted absorption liquid detected by the temperature detection means 42, the absorption liquid concentration N of the concentrated absorption liquid detected by the concentration detection means 44 is adopted as a judgment material. When the concentration reaches a predetermined concentration, for example, 62% or more, the control device 5 outputs a control program for outputting a control signal for returning the rotation speed of the cooling water pump 26 to the rated rotation speed.
0 may be stored in the storage means 53, and the flow rate of the cooling water supplied to the absorber heat exchanger 27 of the absorber 2 and the condenser heat exchanger 28 of the condenser 6 may be returned to the rated flow rate.

【0036】また、温度検出手段42、43が検出する
温度T5、T6、加熱量制御弁22の開度Vの代わり
に、温度検出手段42が検出する稀吸収液の温度T5の
みを判定材料として採用することもできる。その場合
は、稀吸収液の温度T5が前記所定温度、すなわち40
℃よりさらに少し高い所定温度、例えば43℃以上にな
ったときに、冷却水ポンプ26の回転数を定格回転数に
戻すための制御信号を出力する制御プログラムを制御装
置50の記憶手段53に記憶し、温度検出手段42が検
出する稀吸収液の温度T5が所定の43℃以上になった
ときに、吸収器2の吸収器熱交換器27と凝縮器6の凝
縮器熱交換器28に供給する冷却水の流量を定格の流量
に戻すようにしても良い。
Instead of the temperatures T5 and T6 detected by the temperature detecting means 42 and 43 and the opening degree V of the heating amount control valve 22, only the temperature T5 of the rare absorbing liquid detected by the temperature detecting means 42 is used as a judgment material. Can also be adopted. In this case, the temperature T5 of the diluted absorbing solution is equal to the predetermined temperature, that is, 40 ° C.
A control program for outputting a control signal for returning the rotation speed of the cooling water pump 26 to the rated rotation speed when the temperature reaches a predetermined temperature slightly higher than the predetermined temperature, for example, 43 ° C. or more, is stored in the storage means 53 of the control device 50. Then, when the temperature T5 of the diluted absorbing liquid detected by the temperature detecting means 42 becomes equal to or higher than a predetermined 43 ° C., the diluted absorbing liquid is supplied to the absorber heat exchanger 27 of the absorber 2 and the condenser heat exchanger 28 of the condenser 6. The flow rate of the cooling water to be returned may be returned to the rated flow rate.

【0037】同様に、温度検出手段43が検出する高温
再生器3内の溶液温度T6、加熱量制御弁22の開度
V、濃度検出手段44が検出する濃吸収液の吸収液濃度
Nの代わりに、濃度検出手段44が検出する稀吸収液の
吸収液濃度Nのみを判定材料として採用し、吸収液濃度
Nが前記所定濃度、すなわち62%よりさらに少し高い
所定濃度、例えば63%以上となったときに、冷却水ポ
ンプ26の回転数を定格回転数に戻すための制御信号を
出力する制御プログラムを制御装置50の記憶手段53
に記憶し、濃度検出手段44が検出する濃吸収液の吸収
液濃度Nが所定の63%以上になったときに、吸収器2
の吸収器熱交換器27と凝縮器6の凝縮器熱交換器28
に供給する冷却水の流量を定格の流量に戻すようにして
も良い。
Similarly, instead of the solution temperature T6 in the high-temperature regenerator 3 detected by the temperature detecting means 43, the opening degree V of the heating amount control valve 22, and the concentration N of the concentrated absorbing liquid detected by the concentration detecting means 44, In addition, only the absorption liquid concentration N of the diluted absorption liquid detected by the concentration detection means 44 is adopted as a determination material, and the absorption liquid concentration N becomes a predetermined concentration slightly higher than the predetermined concentration, that is, 62%, for example, 63% or more. The control program for outputting a control signal for returning the rotation speed of the cooling water pump 26 to the rated rotation speed when the
When the absorption solution concentration N of the concentrated absorption solution detected by the concentration detecting means 44 becomes 63% or more of a predetermined value, the absorber 2
Absorber heat exchanger 27 and condenser heat exchanger 28 of condenser 6
The flow rate of the cooling water supplied to the air conditioner may be returned to the rated flow rate.

【0038】さらに、温度検出手段41が検出する冷却
水の温度、すなわち凝縮器熱交換器28を通って冷媒蒸
気から熱を奪い、冷媒蒸気を凝縮させて冷却水配管25
に流れ出た冷却水の出口温度T4が所定の温度、例えば
40℃以上となったときに、冷却水ポンプ26の回転数
を定格回転数に戻すための制御信号を出力する制御プロ
グラムを制御装置50の記憶手段53に記憶し、温度検
出手段41が検出する冷却水の出口温度T4が所定の4
0℃以上になったときに、吸収器2の吸収器熱交換器2
7と凝縮器6の凝縮器熱交換器28に供給する冷却水の
流量を定格の流量に戻すようにしても良い。
Further, the temperature of the cooling water detected by the temperature detecting means 41, that is, heat is taken from the refrigerant vapor through the condenser heat exchanger 28, and the refrigerant vapor is condensed to form the cooling water pipe 25.
When the outlet temperature T4 of the cooling water flowing out to the predetermined temperature, for example, 40 ° C. or higher, a control program for outputting a control signal for returning the rotation speed of the cooling water pump 26 to the rated rotation speed is controlled by the control device 50. The cooling water outlet temperature T4 detected by the temperature detecting means 41 is stored in a predetermined
When the temperature reaches 0 ° C. or higher, the absorber heat exchanger 2 of the absorber 2
The flow rate of the cooling water supplied to the condenser heat exchanger 28 of the condenser 7 and the condenser 6 may be returned to the rated flow rate.

【0039】なお、本発明は上記実施形態に限定される
ものではないので、特許請求の範囲に記載の趣旨から逸
脱しない範囲で各種の変形実施が可能である。
Since the present invention is not limited to the above embodiment, various modifications can be made without departing from the spirit of the present invention.

【0040】例えば、図4に示した制御フローにおいて
は、算出した目標電力周波数Htが冷却水ポンプ26に
現在加えている電力周波数Hn以上であるか否かを判定
し、イエスのときには冷却水ポンプ26の回転数を上
げ、ノーのときには冷却水ポンプ26の回転数を下げる
にように制御したが、目標電力周波数Htが現在の電力
周波数Hnに近いときには冷却水ポンプ26の回転数を
変更しない選択肢を付加して制御することもできる。
For example, in the control flow shown in FIG. 4, it is determined whether the calculated target power frequency Ht is equal to or higher than the power frequency Hn currently applied to the cooling water pump 26. The rotation speed of the cooling water pump 26 is controlled to be increased and the rotation speed of the cooling water pump 26 is decreased when the rotation speed is no, but when the target power frequency Ht is close to the current power frequency Hn, the rotation speed of the cooling water pump 26 is not changed. Can be added to control.

【0041】また、極数変換してその回転数を制御する
タイプの冷却水ポンプ26を使用した吸収式冷凍機、あ
るいは冷却水ポンプ26を並列に複数台設置し、その運
転台数制御により冷却水配管25を流れる冷却水の流量
を制御する吸収式冷凍機であっても、前記したようにコ
スト係数κと、負荷率Wと、冷却水の入口温度T3とを
変数とする一つの演算式に基づいて、トータルランニン
グコストが最小となるように冷却水配管25の冷却水流
量を制御し、且つ、温度検出手段42が検出する稀吸収
液の温度T5が所定の40℃以上、温度検出手段43が
検出する高温再生器3内の溶液温度T6が所定の155
℃以上、加熱量制御弁22の開度Vが所定の80%以下
となったときなどに、高温再生器3が冷却水の不足によ
り高温・高圧異常に陥る懸念が生じたと判断し、冷却水
ポンプ26の回転数を定格回転数に戻し、冷却水配管2
5を介して吸収器2の吸収器熱交換器27と凝縮器6の
凝縮器熱交換器28には定格流量の冷却水が供給される
ように構成して、高温再生器3が高温・高圧異常となら
ないようにしても良い。
Further, an absorption refrigerator using a cooling water pump 26 of a type in which the number of poles is converted to control the number of rotations, or a plurality of cooling water pumps 26 are installed in parallel, and the cooling water is controlled by controlling the number of operating water pumps. As described above, even with an absorption refrigerator that controls the flow rate of the cooling water flowing through the pipe 25, the cost coefficient κ, the load factor W, and the inlet temperature T3 of the cooling water can be calculated using one arithmetic expression. The cooling water flow rate of the cooling water pipe 25 is controlled so that the total running cost is minimized, and the temperature T5 of the rare absorbing solution detected by the temperature detecting means 42 is equal to or higher than a predetermined 40 ° C. The solution temperature T6 in the high temperature regenerator 3 detected by
When the opening degree V of the heating amount control valve 22 becomes equal to or less than 80% or less, the high temperature regenerator 3 determines that there is a concern that the high temperature regenerator 3 may fall into a high temperature / high pressure abnormality due to a shortage of the cooling water. Return the rotation speed of the pump 26 to the rated rotation speed, and
The cooling water of the rated flow rate is supplied to the absorber heat exchanger 27 of the absorber 2 and the condenser heat exchanger 28 of the condenser 6 via the cooling water 5. It may not be abnormal.

【0042】また、吸収式冷凍機としては、高温再生器
3内の吸収液を加熱するガスバーナ4に代えて、高温の
蒸気などを供給して吸収液を加熱するものであっても良
い。
As the absorption refrigerator, instead of the gas burner 4 for heating the absorption liquid in the high-temperature regenerator 3, a high-temperature steam or the like may be supplied to heat the absorption liquid.

【0043】さらに、前記実施形態においては冷水ある
いは温水を供給できる構成の吸収式冷凍機に基づいて説
明したが、冷水のみを供給する吸収式冷凍機であっても
上記と同様の運転制御が可能である。
Further, in the above embodiment, the description has been given based on the absorption refrigerator having a configuration capable of supplying cold water or hot water. However, the same operation control as described above is possible even with the absorption refrigerator which supplies only cold water. It is.

【0044】[0044]

【発明の効果】以上説明したように、本発明の制御装置
を備えた吸収式冷凍機においては、省エネ化と安全性の
両立が図れると云った顕著な作用効果がある。
As described above, the absorption type refrigerator equipped with the control device of the present invention has a remarkable operation and effect that both energy saving and safety can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の制御装置の一構成例を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing a configuration example of a control device of the present invention.

【図2】本発明の制御装置で制御する吸収式冷凍機の構
成を示す説明図である。
FIG. 2 is an explanatory diagram showing a configuration of an absorption refrigerator controlled by a control device of the present invention.

【図3】コスト最小曲線の説明図であり、(A)は冷却
水の入口温度が32℃のときのもの、(B)は冷却水の
入口温度が20℃のときのもの、(C)は冷却水の入口
温度をパラメータとして示したものである。
[Figure 3] is an explanatory diagram of the minimum cost curve, (A) is obtained when the inlet temperature of the cooling water is 32 ℃, (B) is obtained when the inlet temperature of the cooling water is 20 ℃, (C) Shows the cooling water inlet temperature as a parameter.

【図4】制御フローの説明図である。FIG. 4 is an explanatory diagram of a control flow.

【図5】ランニングコストの削減量を示す説明図であ
る。
FIG. 5 is an explanatory diagram showing a reduction amount of a running cost.

【符号の説明】[Explanation of symbols]

1 蒸発器 2 吸収器 3 高温再生器 4 ガスバーナ 5 低温再生器 6 凝縮器 7 低温熱交換器 8 高温熱交換器 11・12・13・14・15 吸収液配管 16 吸収液ポンプ 17・18・19 冷媒配管 20 冷媒ポンプ 21 ガス配管 22 加熱量制御弁 23 冷温水配管 24 蒸発器熱交換器 25 冷却水配管 26 冷却水ポンプ 27 吸収器熱交換器 28 凝縮器熱交換器 29 冷媒バイパス管 30 冷媒液溜り 31 吸収液溜り 32 開閉弁 33 吸収液バイパス管 34 開閉弁 35 冷媒蒸気バイパス管 36 開閉弁 37 周波数変換装置 38〜43 温度検出手段 44 濃度検出手段 50 制御装置 51 入力手段 52 中央演算処理手段 53 記憶手段 54 設定入力手段 55 容量制御出力手段 56 外部出力手段 DESCRIPTION OF SYMBOLS 1 Evaporator 2 Absorber 3 High temperature regenerator 4 Gas burner 5 Low temperature regenerator 6 Condenser 7 Low temperature heat exchanger 8 High temperature heat exchanger 11 ・ 12 ・ 13 ・ 14 ・ 15 Absorbent pipe 16 Absorbent pump 17.18 ・ 19 Refrigerant pipe 20 Refrigerant pump 21 Gas pipe 22 Heating amount control valve 23 Cold / hot water pipe 24 Evaporator heat exchanger 25 Cooling water pipe 26 Cooling water pump 27 Absorber heat exchanger 28 Condenser heat exchanger 29 Refrigerant bypass pipe 30 Refrigerant liquid Reservoir 31 Absorbent liquid reservoir 32 Open / close valve 33 Absorbent liquid bypass pipe 34 Open / close valve 35 Refrigerant vapor bypass pipe 36 Open / close valve 37 Frequency converter 38-43 Temperature detecting means 44 Concentration detecting means 50 Control device 51 Input means 52 Central processing means 53 Storage means 54 Setting input means 55 Capacity control output means 56 External output means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古川 雅裕 栃木県足利市大月町1番地 三洋電機空調 株式会社内 Fターム(参考) 3L093 AA05 BB11 BB22 CC01 CC03 DD06 DD08 EE02 EE14 EE25 GG02 GG07 HH06 HH12 LL03 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masahiro Furukawa 1 Otsukicho, Ashikaga-shi, Tochigi Sanyo Electric Air Conditioning Co., Ltd. F-term (reference) 3L093 AA05 BB11 BB22 CC01 CC03 DD06 DD08 EE02 EE14 EE25 GG02 GG07 HH06 HH12 LL03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 再生器に供給する熱量を制御する制御信
号と、吸収器と凝縮器に供給する冷却水の流量を制御す
る制御信号とを出力する機能を備えた吸収式冷凍機の制
御装置において、冷却水の流量を定格流量未満に制限す
る制御信号の出力中に、稀吸収液の温度が所定温度以上
になると冷却水の流量を定格流量に戻す制御信号を出力
する機能を備えたことを特徴とする吸収式冷凍機の制御
装置。
A control device for an absorption refrigerator having a function of outputting a control signal for controlling the amount of heat supplied to a regenerator and a control signal for controlling a flow rate of cooling water supplied to an absorber and a condenser. A function for outputting a control signal for returning the flow rate of the cooling water to the rated flow rate when the temperature of the diluted absorption liquid becomes equal to or higher than a predetermined temperature while outputting the control signal for limiting the flow rate of the cooling water to less than the rated flow rate. A control device for an absorption refrigerator.
【請求項2】 再生器に供給する熱量を制御する制御信
号と、吸収器と凝縮器に供給する冷却水の流量を制御す
る制御信号とを出力する機能を備えた吸収式冷凍機の制
御装置において、冷却水の流量を定格流量未満に制限す
る制御信号の出力中に、再生器の温度が所定温度以上、
再生器に供給する熱量を制御する弁の開度が所定開度以
下、稀吸収液の温度が所定温度以上になると、冷却水の
流量を定格流量に戻す制御信号を出力する機能を備えた
ことを特徴とする吸収式冷凍機の制御装置。
2. A control device for an absorption refrigerator having a function of outputting a control signal for controlling an amount of heat supplied to a regenerator and a control signal for controlling a flow rate of cooling water supplied to an absorber and a condenser. In, during the output of the control signal to limit the flow rate of the cooling water to less than the rated flow rate, the temperature of the regenerator is equal to or higher than a predetermined temperature,
A function to output a control signal to return the flow rate of the cooling water to the rated flow rate when the opening of the valve that controls the amount of heat supplied to the regenerator is equal to or less than the predetermined opening and the temperature of the diluted absorbing liquid is equal to or higher than the predetermined temperature. A control device for an absorption refrigerator.
【請求項3】 再生器に供給する熱量を制御する制御信
号と、吸収器と凝縮器に供給する冷却水の流量を制御す
る制御信号とを出力する機能を備えた吸収式冷凍機の制
御装置において、冷却水の流量を定格流量未満に制限す
る制御信号の出力中に、濃吸収液の吸収液濃度が所定濃
度以上になると冷却水の流量を定格流量に戻す制御信号
を出力する機能を備えたことを特徴とする吸収式冷凍機
の制御装置。
3. A control device for an absorption refrigerator having a function of outputting a control signal for controlling the amount of heat supplied to a regenerator and a control signal for controlling a flow rate of cooling water supplied to an absorber and a condenser. Has a function of outputting a control signal for returning the flow rate of the cooling water to the rated flow rate when the concentration of the absorbing liquid of the concentrated absorbing liquid becomes equal to or higher than a predetermined concentration while outputting the control signal for limiting the flow rate of the cooling water to less than the rated flow rate. A control device for an absorption refrigerator.
【請求項4】 再生器に供給する熱量を制御する制御信
号と、吸収器と凝縮器に供給する冷却水の流量を制御す
る制御信号とを出力する機能を備えた吸収式冷凍機の制
御装置において、冷却水の流量を定格流量未満に制限す
る制御信号の出力中に、再生器の温度が所定温度以上、
再生器に供給する熱量を制御する弁の開度が所定開度以
下、濃吸収液の吸収液濃度が所定濃度以上になると、冷
却水の流量を定格流量に戻す制御信号を出力する機能を
備えたことを特徴とする吸収式冷凍機の制御装置。
4. A control device for an absorption refrigerator having a function of outputting a control signal for controlling the amount of heat supplied to a regenerator and a control signal for controlling a flow rate of cooling water supplied to an absorber and a condenser. In the output of the control signal for limiting the flow rate of the cooling water to less than the rated flow rate, while the temperature of the regenerator is equal to or higher than a predetermined temperature,
When the opening of the valve that controls the amount of heat supplied to the regenerator is equal to or less than the predetermined opening and the concentration of the concentrated absorbent is equal to or greater than the predetermined concentration, a function is provided for outputting a control signal that returns the flow rate of the cooling water to the rated flow rate. A control device for an absorption refrigerator.
【請求項5】 再生器に供給する熱量を制御する制御信
号と、吸収器と凝縮器に供給する冷却水の流量を制御す
る制御信号とを出力する機能を備えた吸収式冷凍機の制
御装置において、冷却水の流量を定格流量未満に制限す
る制御信号の出力中に、吸収器または凝縮器で冷却作用
を終えて出た冷却水の温度が所定温度以上になると、冷
却水の流量を定格流量に戻す制御信号を出力する機能を
備えたことを特徴とする吸収式冷凍機の制御装置。
5. A control device for an absorption refrigerator having a function of outputting a control signal for controlling the amount of heat supplied to a regenerator and a control signal for controlling a flow rate of cooling water supplied to an absorber and a condenser. In the output of the control signal to limit the flow rate of the cooling water to less than the rated flow rate, if the temperature of the cooling water discharged after finishing the cooling operation by the absorber or the condenser becomes higher than the predetermined temperature, the flow rate of the cooling water is rated A control device for an absorption refrigerator having a function of outputting a control signal for returning to a flow rate.
JP2001108820A 2001-04-06 2001-04-06 Absorption refrigerator control system Expired - Fee Related JP3819727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001108820A JP3819727B2 (en) 2001-04-06 2001-04-06 Absorption refrigerator control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001108820A JP3819727B2 (en) 2001-04-06 2001-04-06 Absorption refrigerator control system

Publications (2)

Publication Number Publication Date
JP2002310528A true JP2002310528A (en) 2002-10-23
JP3819727B2 JP3819727B2 (en) 2006-09-13

Family

ID=18960889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001108820A Expired - Fee Related JP3819727B2 (en) 2001-04-06 2001-04-06 Absorption refrigerator control system

Country Status (1)

Country Link
JP (1) JP3819727B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057991A (en) * 2004-07-23 2006-03-02 Kawasaki Thermal Engineering Co Ltd Absorptive freezer control method and absorptive freezer facility for controlling cooling water temperature in interlock with cooling load control operation
KR102074912B1 (en) * 2019-04-16 2020-03-17 (주)월드에너지 Refrigerator for controlling pump inverter depending on loading amount

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057991A (en) * 2004-07-23 2006-03-02 Kawasaki Thermal Engineering Co Ltd Absorptive freezer control method and absorptive freezer facility for controlling cooling water temperature in interlock with cooling load control operation
JP4551233B2 (en) * 2004-07-23 2010-09-22 川重冷熱工業株式会社 Absorption-type refrigerator control method and absorption-type refrigerator installation for controlling cooling water temperature in conjunction with cooling load control operation
KR102074912B1 (en) * 2019-04-16 2020-03-17 (주)월드에너지 Refrigerator for controlling pump inverter depending on loading amount

Also Published As

Publication number Publication date
JP3819727B2 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
JP2002031376A (en) Air-conditioning system
WO2012090579A1 (en) Heat source system and control method therefor
JPH01134177A (en) Air-cooled absorption water cooler and heater
WO2013151105A1 (en) Heat storage system and heat storage method for heat storage system
JP4287113B2 (en) Refrigerator control method and refrigeration apparatus
JP2000337729A (en) Operation method for water-cooled air conditioner
JP4321318B2 (en) Triple effect absorption refrigerator
JP2002310528A (en) Control device for absorption type refrigerator
CN103335408B (en) Used heat utilization system water outlet constant-temperature control method and control device thereof
JP2002295918A (en) Control device
JP6603066B2 (en) Waste heat input type absorption chiller / heater
KR20100005097A (en) A method and system for rejecting heat in an absorption chiller
JP2002295919A (en) Control device
JP3638408B2 (en) Absorption cogeneration system using engine exhaust heat and its operation control method
JP2000274864A (en) Method for controlling absorption refrigerator
JP2002115929A (en) Control device
JP2708900B2 (en) Absorption refrigerator
JP3902912B2 (en) Control device
JP4605600B2 (en) Air conditioning system
JP3138164B2 (en) Absorption refrigerator
JP2821724B2 (en) Single double effect absorption refrigerator
CN117906318A (en) Waterway system, waterway system control method and air conditioning unit
JP2002005538A (en) Absorptive freezer and cooling water flow rate control method
JP3434279B2 (en) Absorption refrigerator and how to start it
JP3086594B2 (en) Single double effect absorption refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130623

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees