WO2013151105A1 - Heat storage system and heat storage method for heat storage system - Google Patents

Heat storage system and heat storage method for heat storage system Download PDF

Info

Publication number
WO2013151105A1
WO2013151105A1 PCT/JP2013/060249 JP2013060249W WO2013151105A1 WO 2013151105 A1 WO2013151105 A1 WO 2013151105A1 JP 2013060249 W JP2013060249 W JP 2013060249W WO 2013151105 A1 WO2013151105 A1 WO 2013151105A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
storage tank
refrigerator
heat
temperature
Prior art date
Application number
PCT/JP2013/060249
Other languages
French (fr)
Japanese (ja)
Inventor
菊池 宏成
山下 孝
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2013151105A1 publication Critical patent/WO2013151105A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/026Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat with different heat storage materials not coming into direct contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • F24F2005/0032Systems storing energy during the night
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0065Details, e.g. particular heat storage tanks, auxiliary members within tanks
    • F28D2020/0082Multiple tanks arrangements, e.g. adjacent tanks, tank in tank
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat storage system that includes a heat storage tank that stores cold heat cooled by a refrigerator, and that supplies cold heat stored in the heat storage tank to a cold load, and a heat storage method of the heat storage system.
  • the heat storage system operates a refrigerator that cools chilled water and a pump that circulates chilled water between the refrigerator and the heat storage tank and stores the cold in the heat storage tank during an inexpensive period of power (for example, at night).
  • the power cost is reduced by supplying cold heat from a heat storage tank to a cold load (for example, an air conditioner that performs cooling operation).
  • the heat storage system operates the refrigerator and pump during a time period when the amount of power used per unit time is low and stores the cold in the heat storage tank.
  • This is a system that suppresses an increase in the maximum value of power consumption per unit time by supplying cold heat.
  • the basic charge is set for the electricity charge for commercial power, with the largest amount of power used per unit time being the maximum demand power (for example, “commercial power (contract power less than 500kW) ) ", [Online], Tokyo Electric Power Co., Inc., [February 29, 2012 search], Internet ⁇ URL: http://www.tepco.co.jp/e-rates/corporate/charge/charge09-j .html>). That is, the power cost can be reduced by reducing the maximum value of the power consumption per unit time.
  • Patent Document 1 discloses a latent heat storage type cooling system using a latent heat storage tank.
  • a latent heat storage material is provided inside the latent heat storage tank disclosed in Patent Document 1, and heat storage efficiency per volume of the heat storage tank can be increased.
  • an object of the present invention is to provide a heat storage system and a heat storage method for the heat storage system that reduce energy consumption during cold storage.
  • the present invention includes a refrigerator that cools a heat medium, a heat storage tank that stores cold heat, a pump that circulates the heat medium between the refrigerator and the heat storage tank,
  • the heat storage tank includes at least a first heat storage tank in which the first heat storage material is disposed, and a second heat storage tank in which a second heat storage material having a higher melting point than the first heat storage material is disposed.
  • the heat storage system is arranged such that the heat medium flows from the first heat storage tank to the second heat storage tank.
  • the present invention provides a refrigerator that cools the heat medium, a heat storage tank that stores cold heat, a pump that circulates the heat medium between the refrigerator and the heat storage tank, and the refrigerator that is cooled by the refrigerator Control means for controlling the refrigerator outlet temperature, which is the temperature of the heat medium, and a heat storage method of a heat storage system, wherein the heat storage tank is at least a first heat storage tank in which a first heat storage material is disposed, A second heat storage tank in which a second heat storage material having a higher melting point than the first heat storage material is disposed, and a third heat storage tank in which a third heat storage material having a higher melting point than the second heat storage material is disposed, and The heat medium flows from the first heat storage tank to the second heat storage tank, and the heat medium flows from the second heat storage tank to the third heat storage tank.
  • a thermal storage method of thermal storage system characterized by performing the steps of controlling so that the temperature becomes lower second target temperature than the first target temperature,
  • FIG. 1 is a configuration diagram of a heat storage system S1 according to the first embodiment.
  • the heat storage system S1 includes a refrigerator 1 that cools cold water, a cold water coil 2 (cooling load) to which cold water is supplied, heat storage tanks (first heat storage tank 21 and second heat storage tank 22), and pumps 31 and 32. , Inverters 41, 42, ECU (Electronic Control Unit) 50, various temperature sensors (60, 61, 62, 71, 72, 73), and pipes 3, 4a, 5a, through which cold water can flow. 5b, 7a, 7b, 8 are provided.
  • the pipe 3 connected to the outlet of the refrigerator 1 is connected to the lower part of the first heat storage tank 21.
  • the pipe 4 a connected to the upper part of the first heat storage tank 21 is connected to the lower part of the second heat storage tank 22.
  • the pipe 5 a connected to the upper part of the second heat storage tank 22 is connected to the inlet of the pump 31.
  • the pipe 5 b connected to the outlet of the pump 31 is connected to the inlet of the refrigerator 1.
  • the pipe 7 a connected to the lower part of the first heat storage tank 21 is connected to the inlet of the pump 32.
  • the pipe 7 b connected to the outlet of the pump 32 is connected to the inlet of the cold water coil 2.
  • the pipe 8 connected to the outlet of the cold water coil 2 is connected to the upper part of the second heat storage tank 22.
  • the refrigerator 1 can cool the cold water flowing from the inlet of the refrigerator 1 to which the pipe 5b is connected and can flow out from the outlet of the refrigerator 1 to which the pipe 3 is connected.
  • the operation of the refrigerator 1 is controlled by the ECU 50.
  • the cold water coil 2 is, for example, a heat exchanger of an air conditioner (not shown) that cools indoor air 9 in an air-conditioned space where the cold water coil 2 is installed, and an inlet of the cold water coil 2 to which a pipe 7b is connected.
  • an air conditioner not shown
  • the indoor air 9 can be cooled and the air-conditioned space can be cooled.
  • the cold water which absorbed heat by exchanging heat with room air 9 can be made to flow out from the exit of cold water coil 2 to which piping 8 was connected.
  • the first heat storage tank 21 is provided with a plurality of heat storage material containers 11 in which a heat storage material is enclosed, and can be cooled by latent heat of the heat storage material.
  • the heat storage material enclosed in the heat storage material container 11 is, for example, a heat storage material having a melting point of 8 ° C.
  • the second heat storage tank 22 is provided with a plurality of heat storage material containers 12 in which a heat storage material is enclosed, and can be cooled by the latent heat of the heat storage material.
  • the heat storage material sealed in the heat storage material container 12 is, for example, a heat storage material having a melting point of 10 ° C., and a heat storage material having a higher melting point than the heat storage material sealed in the heat storage material container 11 is used.
  • the pump 31 can circulate cold water between the refrigerator 1 and the heat storage tank (the first heat storage tank 21 and the second heat storage tank 22).
  • the pump 31 is controlled by the ECU 50 via the inverter 41 so that the rotational speed thereof can be controlled.
  • the pump 31 is demonstrated as what is arrange
  • the pump 32 is configured to circulate cold water between the heat storage tank (the first heat storage tank 21 and the second heat storage tank 22) and the cold water coil 2 in the second cold water circuit. Note that the rotational speed of the pump 32 is controlled by the ECU 50 via the inverter 42 so that the flow rate can be controlled.
  • the pump 32 is demonstrated as what is arrange
  • the ECU 50 controls the operation of the refrigerator 1 based on the detected temperatures of the various temperature sensors (60, 61, 62, 71, 72, 73) and controls the flow rates of the pumps 31, 32 via the inverters 41, 42. By controlling, the operation of the heat storage system S1 can be controlled.
  • the temperature sensor 60 is provided in the pipe 5 a and can detect the temperature of the cold water flowing into the inlet of the refrigerator 1 (the refrigerator inlet temperature).
  • the temperature sensor 60 may be provided on the pipe 5b.
  • the temperature sensor 61 is provided in the pipe 3 and can detect the temperature of the cold water flowing out from the outlet of the refrigerator 1 (the refrigerator outlet temperature).
  • the temperature sensor 62 is provided in the pipe 4a so that the temperature of the cold water flowing into the second heat storage tank 22 from the first heat storage tank 21 when the pump 31 operates (the first heat storage tank outlet temperature) can be detected. It has become.
  • the temperature sensor 62 can detect the temperature of the cold water flowing into the first heat storage tank 21 from the second heat storage tank 22 when the pump 32 operates.
  • the temperature sensor 71 is provided in the pipe 7 b and can detect the temperature of the cold water flowing into the inlet of the cold water coil 2.
  • the temperature sensor 71 may be provided in the pipe 7a.
  • the temperature sensor 72 is provided in the pipe 8 and can detect the temperature of the cold water flowing out from the outlet of the cold water coil 2.
  • the temperature sensor 73 is provided in an air conditioner (not shown) and can detect the temperature of the indoor air 9 (air-conditioned air temperature) cooled by the cold water coil 2.
  • the ECU 50 operates the refrigerator 1 and the pump 31 to store heat in the heat storage tanks (first heat storage tank 21 and second heat storage tank 22), and operates the pump 32 to operate the heat storage tank (first heat storage tank 21,
  • the cold supply operation which supplies the cold heat stored in the 2nd thermal storage tank 22) to the cold water coil 2 (cooling load) can be performed now.
  • the temperature of the cold water inside the first heat storage tank 21 is higher than the melting point 8 ° C. of the heat storage material of the heat storage material container 11.
  • the temperature of the cold water inside the second heat storage tank 22 is higher than the melting point 10 ° C. of the heat storage material of the heat storage material container 12.
  • the ECU 50 operates the pump 31 to cause cold water to flow from the upper part of the second heat storage tank 22 to the inlet of the refrigerator 1 through the pipes 5a and 5b.
  • the refrigerator inlet temperature is 10 ° C. or higher.
  • the ECU 50 operates the refrigerator 1 so that the refrigerator outlet temperature detected by the temperature sensor 61 becomes a predetermined temperature (for example, 5.0 ° C.).
  • the refrigerator 1 and the pump 31 cool the cold water of 10 ° C. or more supplied from the upper part of the second heat storage tank 22 to 5.0 ° C., and connect the lower part of the first heat storage tank 21 via the pipe 3. Supply.
  • the cold water of 5.0 ° C. supplied from the lower part of the first heat storage tank 21 cools the heat storage material (melting point 8 ° C.) of the heat storage material container 11 and changes the phase of the heat storage material from a liquid state to a solid state.
  • the temperature of the cold water rises to about 7.5 ° C. by supplying cold heat to the heat storage material of the heat storage material container 11.
  • about 7.5 degreeC cold water is supplied to the lower part of the 2nd heat storage tank 22 from the upper part of the 1st heat storage tank 21 via the piping 4a.
  • the cold water of about 7.5 ° C. supplied from the lower part of the second heat storage tank 22 cools the heat storage material (melting point 10 ° C.) of the heat storage material container 12 and changes the heat storage material from a liquid state to a solid state. Change.
  • the temperature of the cold water rises to about 9.5 ° C. by supplying cold heat to the heat storage material of the heat storage material container 12.
  • cold water at about 9.5 ° C. is supplied from the upper part of the second heat storage tank 22 to the inlet of the refrigerator 1.
  • the refrigerator 1 cools about 9.5 ° C. cold water supplied from the upper part of the second heat storage tank 22 to 5.0 ° C. and supplies it again to the lower part of the first heat storage tank 21.
  • the refrigerator inlet temperature is equal to the refrigerator inlet temperature. Almost equal.
  • the ECU 50 detects that the refrigerator inlet temperature detected by the temperature sensor 60 and the refrigerator outlet temperature detected by the temperature sensor 61 are substantially equal (the refrigerator inlet temperature detected by the temperature sensor 60 and the refrigerator detected by the temperature sensor 61).
  • the temperature difference from the outlet temperature is less than a predetermined threshold value
  • the ECU 50 operates the pump 32 to cause cold water to flow into the inlet of the cold water coil 2 from the lower part of the first heat storage tank 21 via the pipes 7a and 7b. At this time, the temperature of the cold water inside the first heat storage tank 21 and the second heat storage tank 22 is about 5.0 ° C. to 8.0 ° C. in a state where the cold heat is stored. 2 is supplied.
  • the cold water supplied to the cold water coil 2 absorbs heat by cooling the indoor air 9, reaches about 14 ° C., and flows into the upper portion of the second heat storage tank 22 through the pipe 8.
  • the cold water of about 14 ° C. supplied from the upper part of the second heat storage tank 22 is cooled to about 10.5 ° C. by exchanging heat with the heat storage material (melting point 10 ° C.) of the heat storage material container 12. And about 10.5 degreeC cold water is supplied to the upper part of the 1st heat storage tank 21 from the lower part of the 2nd heat storage tank 22 via the piping 4a.
  • the cold water of about 10.5 ° C. supplied from the upper part of the first heat storage tank 21 is cooled to about 8.5 ° C. by exchanging heat with the heat storage material (melting point 8 ° C.) of the heat storage material container 11. And about 8.5 degreeC cold water is supplied to the inlet_port
  • FIG. 7 is a configuration diagram of the heat storage system Sc according to the comparative example.
  • the heat storage system Sc according to the comparative example includes a plurality of heat storage material containers 11 in which a heat storage material having a melting point of 8 ° C. is enclosed in the heat storage tank (first heat storage tank 21). It differs in that the melting point of the heat storage material is only one type.
  • the pipe 5 a connects the upper part of the first heat storage tank 21 and the inlet of the pump 31.
  • the pipe 8 connects the outlet of the cold water coil 2 and the upper part of the first heat storage tank 21.
  • Other configurations are the same as those of the heat storage system S1 according to the first embodiment, and a description thereof will be omitted.
  • the ECU 50 operates the pump 31 and the refrigerator 1 so that the refrigerator outlet temperature detected by the temperature sensor 61 becomes a predetermined temperature (for example, 5.0 ° C.).
  • a predetermined temperature for example, 5.0 ° C.
  • the cold water of 5.0 ° C. supplied from the lower part of the first heat storage tank 21 cools the heat storage material (melting point 8 ° C.) of the heat storage material container 11, and changes the heat storage material from a liquid state to a solid state. And phase change.
  • the temperature of the cold water rises to about 7.5 ° C. by supplying cold heat to the heat storage material of the heat storage material container 11.
  • the refrigerator 1 operates to cool approximately 7.5 ° C. cold water to 5.0 ° C.
  • the refrigerator 1 operates to cool approximately 9.5 ° C. cold water to 5.0 ° C.
  • Cold storage heat quantity ⁇ ⁇ (refrigerator inlet temperature ⁇ refrigerator outlet temperature) ⁇ total flow rate of refrigerator pump 31 (1)
  • is a coefficient determined from the specific heat and density of the heat medium (water) cooled by the refrigerator 1.
  • the heat storage system S1 according to the first embodiment is compared with the heat storage system Sc according to the comparative example.
  • the heat storage system Sc according to the comparative example cannot increase the refrigerator inlet temperature, that is, cannot increase “refrigerator inlet temperature ⁇ refrigerator outlet temperature”.
  • the heat storage system Sc according to the comparative example has a flow rate of the refrigerator pump 31 ( (Rotational speed) needs to be increased.
  • the heat storage system S1 according to the first embodiment can reduce the flow rate of the refrigerator pump 31 by increasing “refrigerator inlet temperature ⁇ refrigerator outlet temperature”.
  • the energy consumed by the refrigerator pump 31 can be reduced.
  • the heat storage system S1 can be configured at a low cost.
  • the running cost is reduced, that is, CO 2 emission is suppressed.
  • the above-described temperature will be described as an example. If the refrigerator outlet temperature of the heat storage system S1 according to the first embodiment is 5.0 ° C. and the refrigerator inlet temperature is about 9.5 ° C., the temperature difference between the inlet and outlet of the refrigerator 1 is about 4.5. It becomes °C. On the other hand, if the refrigerator outlet temperature of the heat storage system S1 according to the comparative example is 5.0 ° C., the refrigerator inlet temperature is about 7.5 ° C., and the temperature difference between the inlet and outlet of the refrigerator 1 is about 2. 5 ° C.
  • the heat storage system S1 according to the first embodiment can make the temperature difference about twice as high as that of the heat storage system Sc according to the comparative example. 2 can be used. It is known that when the flow rate of the pump reaches 50% [1/2], the energy consumption of the pump decreases to 12.5% [(1/2) 3 ]. In the heat storage system Sc according to the comparative example, the proportion of the energy consumed by the refrigerator pump 31 in the energy consumed during heat storage (the sum of the energy consumed by the refrigerator 1 and the energy consumed by the refrigerator pump 31) was 10%. In this case, the heat storage system S1 according to the first embodiment can reduce the energy consumption of the entire system by about 9%.
  • the energy consumption during the cold storage operation can be reduced, and the operation efficiency of the entire heat storage system S1 can be improved.
  • FIG. 2 is a configuration diagram of a heat storage system S2 according to the second embodiment.
  • description is abbreviate
  • the heat storage system S2 includes three heat storage tanks as heat storage tanks. That is, in addition to the heat storage system S1 (refer FIG. 1) which concerns on 1st Embodiment, the 3rd heat storage tank 23, the piping 4b, and the temperature sensor 63 are further provided.
  • the pipe 4 b connected to the upper part of the second heat storage tank 22 is connected to the lower part of the third heat storage tank 23. Further, the pipe 5 a connects the upper part of the third heat storage tank 23 and the inlet of the pump 31. The pipe 8 connects the outlet of the cold water coil 2 and the upper part of the third heat storage tank 23.
  • a plurality of heat storage material containers 13 in which a heat storage material is enclosed are arranged so that cold storage can be performed by the latent heat of the heat storage material.
  • the heat storage material enclosed in the heat storage material container 13 is, for example, a heat storage material having a melting point of 13 ° C., and a heat storage material having a higher melting point than the heat storage material enclosed in the heat storage material container 12 is used.
  • the temperature sensor 63 is provided in the pipe 4b, and can detect the temperature of the cold water flowing into the third heat storage tank 23 from the second heat storage tank 22 when the pump 31 operates (second heat storage tank outlet temperature). It has become. Moreover, the temperature sensor 63 can detect the temperature of the cold water flowing into the second heat storage tank 22 from the third heat storage tank 23 when the pump 32 operates.
  • FIG. 3 is a flowchart of the cold storage operation process of the heat storage system S2 according to the second embodiment.
  • the temperature of the cold water inside the first heat storage tank 21 is the temperature of the heat storage material of the heat storage material container 11.
  • the melting point is higher than 8 ° C.
  • the temperature of the cold water inside the second heat storage tank 22 is higher than the melting point 10 ° C. of the heat storage material of the heat storage material container 12.
  • the temperature of the cold water is higher than the melting point 13 ° C. of the heat storage material of the heat storage material container 13.
  • step S101 the ECU 50 operates the refrigerator 1 and the pump 31.
  • the ECU 50 operates the refrigerator 1 so that the refrigerator outlet temperature detected by the temperature sensor 61 becomes a predetermined temperature T1 (for example, 8.5 ° C.).
  • the predetermined temperature T1 is higher than the melting point (8 ° C.) of the heat storage material of the heat storage material container 11, and the melting point (10 ° C.) of the heat storage material of the heat storage material container 12 and the melting point of the heat storage material of the heat storage material container 13.
  • a temperature lower than (13 ° C.) is set.
  • step S102 the ECU 50 determines whether the temperature difference between the refrigerator inlet temperature detected by the temperature sensor 60 and the second heat storage tank outlet temperature detected by the temperature sensor 63 is less than a predetermined threshold value X1.
  • the predetermined threshold value X1 is a threshold value for determining whether or not the refrigerator inlet temperature (third heat storage tank outlet temperature) and the second heat storage tank outlet temperature (third heat storage tank inlet temperature) are substantially equal. is there.
  • step S102 When the temperature difference is not less than the predetermined threshold value X1 (S102 / No), the ECU 50 repeats step S102. When the temperature difference is less than the predetermined threshold value X1 (S102 / Yes), the process of the ECU 50 proceeds to step S103.
  • step S103 the ECU 50 operates the refrigerator 1 so that the refrigerator outlet temperature detected by the temperature sensor 61 becomes a predetermined temperature T2 (for example, 5.0 ° C.).
  • the predetermined temperature T2 is set to a temperature lower than the melting point (8 ° C.) of the heat storage material of the heat storage material container 11.
  • step S104 the ECU 50 determines whether the temperature difference between the refrigerator inlet temperature detected by the temperature sensor 60 and the refrigerator outlet temperature detected by the temperature sensor 61 is less than a predetermined threshold value X2.
  • the predetermined threshold value X2 is a threshold value for determining whether or not the refrigerator inlet temperature and the refrigerator outlet temperature are substantially equal.
  • Step S104 If the temperature difference is not less than the predetermined threshold value X2 (No in S104), the ECU 50 repeats Step S104. When the temperature difference is less than the predetermined threshold value X2 (S104 / Yes), the process of the ECU 50 proceeds to step S105.
  • step S105 the ECU 50 stops the refrigerator 1 and the pump 31 and ends the cold storage operation.
  • step S101 the ECU 50 operates the pump 31 and operates the refrigerator 1 so that the refrigerator outlet temperature detected by the temperature sensor 61 becomes T1 (for example, 8.5 ° C.). ing.
  • the 8.5 degreeC cold water supplied from the lower part of the 1st heat storage tank 21 is higher than melting
  • the temperature is not increased and is supplied from the upper part of the first heat storage tank 21 to the lower part of the second heat storage tank 22 through the pipe 4a.
  • the cold water supplied from the lower part of the second heat storage tank 22 cools the heat storage material (melting point 10 ° C.) of the heat storage material container 12 and changes the phase of the heat storage material from a liquid state to a solid state.
  • the temperature of the cold water rises to about 9.5 ° C. by supplying cold heat to the heat storage material of the heat storage material container 12.
  • about 9.5 degreeC cold water is supplied to the lower part of the 3rd heat storage tank 23 from the upper part of the 2nd heat storage tank 22 via the piping 4b.
  • the cold water of about 9.5 ° C. supplied from the lower part of the third heat storage tank 23 cools the heat storage material (melting point 13 ° C.) of the heat storage material container 13 and changes the heat storage material from a liquid state to a solid state. Change.
  • the temperature of the cold water rises to about 12.5 ° C. by supplying cold heat to the heat storage material of the heat storage material container 13.
  • the cold water of about 12.5 ° C. is supplied from the upper part of the third heat storage tank 23 to the inlet of the refrigerator 1.
  • the refrigerator 1 cools about 12.5 ° C. cold water supplied from the upper part of the third heat storage tank 23 to 8.5 ° C., and supplies it again to the lower part of the first heat storage tank 21.
  • the ECU 50 determines whether the refrigerator inlet temperature (third heat storage tank outlet temperature) and the second heat storage tank outlet temperature (third heat storage tank inlet temperature) are substantially equal. It is determined whether or not the heat storage material (melting point 13 ° C.) of the heat storage material container 13 has completely changed to a solid state.
  • the heat storage material (melting point 13 ° C.) of the heat storage material container 13 is all changed to a solid state, the temperature of the cold water is increased only by the latent heat of the heat storage material of the heat storage material container 12.
  • the inlet temperature cannot be increased, that is, “refrigerator inlet temperature ⁇ refrigerator outlet temperature” cannot be increased.
  • ECU50 determines as step S102 * Yes, progresses to the process of step S103, and sets the refrigerator 1 so that the refrigerator outlet temperature detected with the temperature sensor 61 may become T2 (for example, 5.0 degreeC). It is supposed to work.
  • the cold water of 5.0 ° C. supplied from the lower part of the first heat storage tank 21 cools the heat storage material (melting point 8 ° C.) of the heat storage material container 11 and changes the phase of the heat storage material from a liquid state to a solid state.
  • the temperature of the cold water rises to about 7.5 ° C. by supplying cold heat to the heat storage material of the heat storage material container 11.
  • about 7.5 degreeC cold water is supplied to the lower part of the 2nd heat storage tank 22 from the upper part of the 1st heat storage tank 21 via the piping 4a.
  • the cold water of about 7.5 ° C. supplied from the lower part of the second heat storage tank 22 cools the heat storage material (melting point 10 ° C.) of the heat storage material container 12 and changes the heat storage material from a liquid state to a solid state. Change.
  • the temperature of the cold water rises to about 9.5 ° C. by supplying cold heat to the heat storage material of the heat storage material container 12.
  • about 9.5 degreeC cold water is supplied to the lower part of the 3rd heat storage tank 23 from the upper part of the 2nd heat storage tank 22 via the piping 4b.
  • the cold water of about 9.5 ° C. supplied from the lower part of the third heat storage tank 23 has all of the phase change of the heat storage material (melting point 13 ° C.) of the heat storage material container 13 to a solid state, so the latent heat of the heat storage material The temperature does not increase due to. Then, the cold water of about 9.5 ° C. is supplied from the upper part of the third heat storage tank 23 to the inlet of the refrigerator 1. The refrigerator 1 cools about 9.5 ° C. cold water supplied from the upper part of the third heat storage tank 23 to 5.0 ° C. and supplies it again to the lower part of the first heat storage tank 21.
  • step S104 the ECU 50 determines whether or not the refrigerator inlet temperature and the refrigerator outlet temperature are substantially equal, whereby the heat storage material of the heat storage material container 11, the heat storage material of the heat storage material container 12, and The heat storage material in the heat storage material container 13 is in a solid state, and it is determined whether or not the heat storage tank (the first heat storage tank 21, the second heat storage tank 22, and the third heat storage tank 23) has completed the cold storage operation. It is supposed to end.
  • the refrigerator outlet temperature can be controlled and stored in two stages of T1 and T2, so that the refrigerator outlet temperature is controlled only by T2 and stored.
  • the energy consumption of the refrigerator 1 can be reduced as compared with the heat storage system.
  • T1 is set to be smaller than the melting point (10 ° C.) of the heat storage material of the heat storage material container 12 and the melting point (13 ° C.) of the heat storage material of the heat storage material container 13.
  • the ECU 50 controls the refrigerator outlet temperature from T1 to T2. Therefore, similarly to the heat storage system S1 according to the first embodiment, the “refrigerator inlet temperature ⁇ refrigerator outlet temperature” can be increased, and the energy consumption of the pump 31 can be reduced.
  • the energy consumption during the cold storage operation can be reduced and the operation efficiency of the entire heat storage system S2 can be improved.
  • FIG. 4 is a configuration diagram of a heat storage system S3 according to the third embodiment.
  • description is abbreviate
  • the heat storage system S3 includes a pipe 3a, a first valve 81, and a pipe 3b instead of the pipe 3 that connects the outlet of the refrigerator 1 and the lower part of the first heat storage tank 21.
  • the heat storage system S3 includes a pipe 6a, a second valve 82, and a pipe 6b, and connects the pipe 3a and the lower part of the second heat storage tank 22.
  • the heat storage system S3 includes a pipe 5aa, a third valve 83, and a pipe 5ab instead of the pipe 5a connecting the upper part of the third heat storage tank 23 and the inlet of the pump 31.
  • the heat storage system S3 includes a pipe 6c, a fourth valve 84, and a pipe 6d, and connects the pipe 4 and the pipe 5ab.
  • the first valve 81 is an electromagnetic valve whose opening and closing is controlled by the ECU 50.
  • the first valve 81 can flow through the piping 3a and the piping 3b when the valve is open, and closes the flow between the piping 3a and the piping 3b when the valve is closed.
  • the second valve 82 is an electromagnetic valve whose opening and closing is controlled by the ECU 50.
  • the second valve 82 can flow through the pipe 6a and the pipe 6b when the valve is open, and closes the flow between the pipe 6a and the pipe 6b when the valve is closed.
  • the third valve 83 is an electromagnetic valve whose opening and closing is controlled by the ECU 50.
  • the third valve 83 allows the piping 5aa and the piping 5ab to flow in the opened state, and closes the flow of the piping 5aa and the piping 5ab in the closed state.
  • the fourth valve 84 is an electromagnetic valve whose opening and closing is controlled by the ECU 50, and allows the piping 6c and the piping 6d to flow in the open state, and closes the piping 6c and the piping 6d in the closed state. Yes.
  • FIG. 5 is a flowchart of the cold storage operation process of the heat storage system S3 according to the third embodiment.
  • the cool storage operation process (see FIG. 4) of the heat storage system S3 is different from the cool storage operation process (see FIG. 2) of the heat storage system S2 in that S101A and S103A are executed instead of S101 and S103. ing.
  • the other points are the same and will not be described.
  • step S101A the ECU 50 closes the first valve 81 and the fourth valve 84, opens the second valve 82 and the third valve 83, and operates the refrigerator 1 and the pump 31.
  • the ECU 50 operates the refrigerator 1 so that the refrigerator outlet temperature detected by the temperature sensor 61 becomes a predetermined temperature T1 (for example, 8.5 ° C.).
  • step S103A the ECU 50 opens the first valve 81 and the fourth valve 84, closes the second valve 82 and the third valve 83, and the refrigerator outlet temperature detected by the temperature sensor 61 is a predetermined temperature T2.
  • the refrigerator 1 is operated so that it becomes (for example, 5.0 degreeC).
  • step S101A the ECU 50 closes the first valve 81 and the fourth valve 84, opens the second valve 82 and the third valve 83, operates the pump 31, and detects it with the temperature sensor 61.
  • the refrigerator 1 is operated such that the temperature at the outlet of the refrigerator is T1 (for example, 8.5 ° C.).
  • the ECU 50 opens the first valve 81 and the fourth valve 84, closes the second valve 82 and the third valve 83, operates the pump 31, and detects it with the temperature sensor 61.
  • the refrigerator 1 is operated so that the outlet temperature of the refrigerator is T2 (for example, 5.0 ° C.).
  • heat storage system S3 concerning a 3rd embodiment, in addition to effect of heat storage system S1 concerning a 1st embodiment, and heat storage system S2 concerning a 2nd embodiment, load of pump 31 at the time of cold storage operation is carried out. Since it can reduce, the energy consumption at the time of cold storage operation can be reduced and the operation efficiency of the whole heat storage system S3 can be improved.
  • the heat storage system S1 according to the first has two heat storage tanks, and the heat storage systems S2 and S3 according to the second and third embodiments have been described as having three heat storage tanks, but are not limited thereto. There may be multiple.
  • the heat storage systems S1 to S3 according to the first to third embodiments have been described as connecting independent heat storage tanks with pipes, but are not limited thereto.
  • the heat storage is performed in the heat storage tanks 20a, 21b, 22a, 22b, 23a, and 23b divided into the heat storage type heat storage tank 20 by the heat transfer.
  • the heat storage material containers 11, 12, and 13 in which the material is enclosed may be disposed.
  • operation of heat storage system S4 which concerns on 4th Embodiment shown in FIG. 6 is the same as the driving

Abstract

Provided are a heat storage system and a heat storage method for a heat storage system with which energy consumption is reduced during cold storage. The heat storage system (S1) is equipped with a refrigerating machine (1) which cools cooling water, heat storage tanks (21, 22) which store cold heat, and a pump (31) that circulates cold water between the refrigerating machine (1) and the heat storage tanks (21, 22). The heat storage tanks (21, 22) include at least a first heat storage tank (21) in which a first heat-storing material (11) is arranged, and a second heat storage tank (22) in which a second heat storage material (12) having a higher melting point than the first heat storage material (11) is arranged, and the arrangement is such that cold water flows from the first heat storage tank (21) to the second heat storage tank (22).

Description

蓄熱システムおよび蓄熱システムの蓄熱方法Thermal storage system and thermal storage method for thermal storage system
 本発明は、冷凍機で冷却した冷熱を蓄冷する蓄熱槽を備え、蓄熱槽に蓄冷された冷熱を冷熱負荷に供給する蓄熱システムおよび蓄熱システムの蓄熱方法に関する。 The present invention relates to a heat storage system that includes a heat storage tank that stores cold heat cooled by a refrigerator, and that supplies cold heat stored in the heat storage tank to a cold load, and a heat storage method of the heat storage system.
 蓄熱システムは、電力の安価な時間帯(例えば、夜間)に、冷水を冷却する冷凍機と、冷凍機と蓄熱槽との間で冷水を循環させるポンプと、を運転して蓄熱槽に蓄冷し、別の時間帯(例えば、昼間)に蓄熱槽から冷熱負荷(例えば、冷房運転する空調機器)に冷熱を供給することにより、電力コストを低減させるシステムである。 The heat storage system operates a refrigerator that cools chilled water and a pump that circulates chilled water between the refrigerator and the heat storage tank and stores the cold in the heat storage tank during an inexpensive period of power (for example, at night). In another system (for example, daytime), the power cost is reduced by supplying cold heat from a heat storage tank to a cold load (for example, an air conditioner that performs cooling operation).
 または、蓄熱システムは、単位時間当たりの電力使用量が少ない時間帯に冷凍機およびポンプを運転して蓄熱槽に蓄冷し、単位時間当りの電力使用量が多い時間帯に蓄熱槽から冷熱負荷に冷熱を供給することにより、単位時間当りの電力使用量の最大値の増大を抑制するシステムである。なお、業務用電力の電気料金は、単位時間当りの電力使用量が最も大きい値を最大需用電力として基本料金が設定されるようになっている(例えば、"業務用電力(契約電力500kW未満)"、[online]、東京電力株式会社、[平成24年2月29日検索]、インターネット〈URL:http://www.tepco.co.jp/e-rates/corporate/charge/charge09-j.html〉参照)。即ち、単位時間当りの電力使用量の最大値を低減することにより、電力コストを低減させることができる。 Alternatively, the heat storage system operates the refrigerator and pump during a time period when the amount of power used per unit time is low and stores the cold in the heat storage tank. This is a system that suppresses an increase in the maximum value of power consumption per unit time by supplying cold heat. In addition, the basic charge is set for the electricity charge for commercial power, with the largest amount of power used per unit time being the maximum demand power (for example, “commercial power (contract power less than 500kW) ) ", [Online], Tokyo Electric Power Co., Inc., [February 29, 2012 search], Internet <URL: http://www.tepco.co.jp/e-rates/corporate/charge/charge09-j .html>). That is, the power cost can be reduced by reducing the maximum value of the power consumption per unit time.
 蓄熱システムとして、特許文献1には、潜熱蓄熱槽を用いた潜熱蓄熱式冷房システムが開示されている。特許文献1に開示された潜熱蓄熱槽の内部には、潜熱蓄熱材が備えられ、蓄熱槽の容積当りの蓄熱効率を高くすることができるようになっている。 As a heat storage system, Patent Document 1 discloses a latent heat storage type cooling system using a latent heat storage tank. A latent heat storage material is provided inside the latent heat storage tank disclosed in Patent Document 1, and heat storage efficiency per volume of the heat storage tank can be increased.
特開平7-332714号公報JP 7-332714 A
 このような蓄熱システムにおいて、蓄冷時の消費エネルギ(例えば、冷凍機やポンプが消費する電力)の更なる低減が求められている。 In such a heat storage system, further reduction of energy consumption during cold storage (for example, electric power consumed by a refrigerator or a pump) is required.
 そこで、本発明は、蓄冷時の消費エネルギを低減させる蓄熱システムおよび蓄熱システムの蓄熱方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a heat storage system and a heat storage method for the heat storage system that reduce energy consumption during cold storage.
 このような課題を解決するために、本発明は、熱媒体を冷却する冷凍機と、冷熱を蓄冷する蓄熱槽と、前記冷凍機および前記蓄熱槽の間で前記熱媒体を循環させるポンプと、を備え、前記蓄熱槽は、少なくとも、第1蓄熱材が配置された第1蓄熱槽と、前記第1蓄熱材より融点が高い第2蓄熱材が配置された第2蓄熱槽と、を有し、前記第1蓄熱槽から前記第2蓄熱槽へと前記熱媒体が流れるように配置されることを特徴とする蓄熱システムである。 In order to solve such a problem, the present invention includes a refrigerator that cools a heat medium, a heat storage tank that stores cold heat, a pump that circulates the heat medium between the refrigerator and the heat storage tank, The heat storage tank includes at least a first heat storage tank in which the first heat storage material is disposed, and a second heat storage tank in which a second heat storage material having a higher melting point than the first heat storage material is disposed. The heat storage system is arranged such that the heat medium flows from the first heat storage tank to the second heat storage tank.
 また、本発明は、熱媒体を冷却する冷凍機と、冷熱を蓄冷する蓄熱槽と、前記冷凍機および前記蓄熱槽の間で前記熱媒体を循環させるポンプと、前記冷凍機で冷却された前記熱媒体の温度である冷凍機出口温度を制御する制御手段と、を備える蓄熱システムの蓄熱方法であって、前記蓄熱槽は、少なくとも、第1蓄熱材が配置された第1蓄熱槽と、前記第1蓄熱材より融点が高い第2蓄熱材が配置された第2蓄熱槽と、前記第2蓄熱材より融点が高い第3蓄熱材が配置された第3蓄熱槽と、を有し、前記第1蓄熱槽から前記第2蓄熱槽へと前記熱媒体が流れ、前記第2蓄熱槽から前記第3蓄熱槽へと前記熱媒体が流れるように配置され、前記制御手段は、前記冷凍機出口温度が第1目標温度となるように制御するステップと、前記冷凍機出口温度が前記第1目標温度よりも低い第2目標温度となるように制御するステップと、を実行することを特徴とする蓄熱システムの蓄熱方法である。 Further, the present invention provides a refrigerator that cools the heat medium, a heat storage tank that stores cold heat, a pump that circulates the heat medium between the refrigerator and the heat storage tank, and the refrigerator that is cooled by the refrigerator Control means for controlling the refrigerator outlet temperature, which is the temperature of the heat medium, and a heat storage method of a heat storage system, wherein the heat storage tank is at least a first heat storage tank in which a first heat storage material is disposed, A second heat storage tank in which a second heat storage material having a higher melting point than the first heat storage material is disposed, and a third heat storage tank in which a third heat storage material having a higher melting point than the second heat storage material is disposed, and The heat medium flows from the first heat storage tank to the second heat storage tank, and the heat medium flows from the second heat storage tank to the third heat storage tank. A step of controlling the temperature to become a first target temperature; A thermal storage method of thermal storage system, characterized by performing the steps of controlling so that the temperature becomes lower second target temperature than the first target temperature, the.
 本発明によれば、蓄冷時の消費エネルギを低減させる蓄熱システムおよび蓄熱システムの蓄熱方法を提供することができる。 According to the present invention, it is possible to provide a heat storage system and a heat storage method for the heat storage system that reduce energy consumption during cold storage.
第1実施形態に係る蓄熱システムの構成図である。It is a lineblock diagram of the heat storage system concerning a 1st embodiment. 第2実施形態に係る蓄熱システムの構成図である。It is a block diagram of the thermal storage system which concerns on 2nd Embodiment. 第2実施形態に係る蓄熱システムの蓄冷運転処理のフローチャートである。It is a flowchart of the cool storage operation process of the heat storage system which concerns on 2nd Embodiment. 第3実施形態に係る蓄熱システムの構成図である。It is a block diagram of the thermal storage system which concerns on 3rd Embodiment. 第3実施形態に係る蓄熱システムの蓄冷運転処理のフローチャートである。It is a flowchart of the cool storage operation process of the heat storage system which concerns on 3rd Embodiment. 第4実施形態に係る蓄熱システムの構成図である。It is a block diagram of the thermal storage system which concerns on 4th Embodiment. 比較例に係る蓄熱システムの構成図である。It is a block diagram of the thermal storage system which concerns on a comparative example.
 以下、本発明を実施するための形態(以下「実施形態」という)について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as “embodiments”) will be described in detail with reference to the drawings as appropriate. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.
≪第1実施形態≫
 図1を用いて、第1実施形態に係る蓄熱システムS1について説明する。図1は、第1実施形態に係る蓄熱システムS1の構成図である。
 蓄熱システムS1は、冷水を冷却する冷凍機1と、冷水が供給される冷水コイル2(冷熱負荷)と、蓄熱槽(第1蓄熱槽21、第2蓄熱槽22)と、ポンプ31,32と、インバータ41,42と、ECU(Electronic Control Unit;電子制御装置)50と、各種温度センサ(60,61,62,71,72,73)と、冷水が流通可能な配管3,4a,5a,5b,7a,7b,8を備えている。
<< First Embodiment >>
The heat storage system S1 according to the first embodiment will be described with reference to FIG. FIG. 1 is a configuration diagram of a heat storage system S1 according to the first embodiment.
The heat storage system S1 includes a refrigerator 1 that cools cold water, a cold water coil 2 (cooling load) to which cold water is supplied, heat storage tanks (first heat storage tank 21 and second heat storage tank 22), and pumps 31 and 32. , Inverters 41, 42, ECU (Electronic Control Unit) 50, various temperature sensors (60, 61, 62, 71, 72, 73), and pipes 3, 4a, 5a, through which cold water can flow. 5b, 7a, 7b, 8 are provided.
 冷凍機1の出口と接続された配管3は、第1蓄熱槽21の下部に接続されている。第1蓄熱槽21の上部と接続された配管4aは、第2蓄熱槽22の下部に接続されている。第2蓄熱槽22の上部と接続された配管5aは、ポンプ31の入口に接続されている。ポンプ31の出口に接続された配管5bは、冷凍機1の入口に接続されている。
 このように、冷水が流通可能な配管3,4a,5a,5bが接続されることにより、冷凍機1の出口から配管3、第1蓄熱槽21、配管4a、第2蓄熱槽22、配管5a、ポンプ31、配管5bを介して冷凍機1の入口に接続する第1冷水回路が形成されている。
The pipe 3 connected to the outlet of the refrigerator 1 is connected to the lower part of the first heat storage tank 21. The pipe 4 a connected to the upper part of the first heat storage tank 21 is connected to the lower part of the second heat storage tank 22. The pipe 5 a connected to the upper part of the second heat storage tank 22 is connected to the inlet of the pump 31. The pipe 5 b connected to the outlet of the pump 31 is connected to the inlet of the refrigerator 1.
Thus, by connecting the pipes 3, 4 a, 5 a, 5 b through which cold water can flow, the pipe 3, the first heat storage tank 21, the pipe 4 a, the second heat storage tank 22, the pipe 5 a are connected from the outlet of the refrigerator 1. The 1st cold water circuit connected to the entrance of refrigerator 1 via pump 31 and piping 5b is formed.
 また、第1蓄熱槽21の下部と接続された配管7aは、ポンプ32の入口に接続されている。ポンプ32の出口と接続された配管7bは、冷水コイル2の入口に接続されている。冷水コイル2の出口と接続された配管8は、第2蓄熱槽22の上部に接続されている。
 このように、冷水が流通可能な配管7a,7b,8が接続されることにより、第1蓄熱槽21の下部から、配管7a、ポンプ32、配管7b、冷水コイル2、配管8、第2蓄熱槽22、配管4aを介して第1蓄熱槽21の上部に接続する第2冷水回路が形成されている。
The pipe 7 a connected to the lower part of the first heat storage tank 21 is connected to the inlet of the pump 32. The pipe 7 b connected to the outlet of the pump 32 is connected to the inlet of the cold water coil 2. The pipe 8 connected to the outlet of the cold water coil 2 is connected to the upper part of the second heat storage tank 22.
Thus, by connecting the pipes 7a, 7b, and 8 through which cold water can flow, the pipe 7a, the pump 32, the pipe 7b, the cold water coil 2, the pipe 8, and the second heat storage from the lower part of the first heat storage tank 21. The 2nd cold water circuit connected to the upper part of the 1st heat storage tank 21 via the tank 22 and the piping 4a is formed.
 冷凍機1は、配管5bが接続された冷凍機1の入口から流入した冷水を冷却して、配管3が接続された冷凍機1の出口から流出させることができるようになっている。なお、冷凍機1は、ECU50により、その動作が制御されるようになっている。 The refrigerator 1 can cool the cold water flowing from the inlet of the refrigerator 1 to which the pipe 5b is connected and can flow out from the outlet of the refrigerator 1 to which the pipe 3 is connected. The operation of the refrigerator 1 is controlled by the ECU 50.
 冷水コイル2は、例えば、冷水コイル2の設置された空調空間内の室内空気9を冷却する空気調和機(図示せず)の熱交換器であり、配管7bが接続された冷水コイル2の入口から流入した冷水と、室内空気9とを熱交換させることにより、室内空気9を冷却し、空調空間内を冷房することができるようになっている。そして、室内空気9と熱交換することにより吸熱した冷水は、配管8が接続された冷水コイル2の出口から流出させることができるようになっている。 The cold water coil 2 is, for example, a heat exchanger of an air conditioner (not shown) that cools indoor air 9 in an air-conditioned space where the cold water coil 2 is installed, and an inlet of the cold water coil 2 to which a pipe 7b is connected. By exchanging heat between the cold water flowing in from the indoor air 9 and the indoor air 9, the indoor air 9 can be cooled and the air-conditioned space can be cooled. And the cold water which absorbed heat by exchanging heat with room air 9 can be made to flow out from the exit of cold water coil 2 to which piping 8 was connected.
 第1蓄熱槽21には、蓄熱材が封入された蓄熱材容器11が複数個配置されており、蓄熱材の潜熱により蓄冷することができるようになっている。蓄熱材容器11に封入された蓄熱材は、例えば、融点が8℃の蓄熱材である。
 第2蓄熱槽22には、蓄熱材が封入された蓄熱材容器12が複数個配置されており、蓄熱材の潜熱により蓄冷することができるようになっている。蓄熱材容器12に封入された蓄熱材は、例えば、融点が10℃の蓄熱材であり、蓄熱材容器11に封入された蓄熱材よりも高い融点を有する蓄熱材を用いる。
The first heat storage tank 21 is provided with a plurality of heat storage material containers 11 in which a heat storage material is enclosed, and can be cooled by latent heat of the heat storage material. The heat storage material enclosed in the heat storage material container 11 is, for example, a heat storage material having a melting point of 8 ° C.
The second heat storage tank 22 is provided with a plurality of heat storage material containers 12 in which a heat storage material is enclosed, and can be cooled by the latent heat of the heat storage material. The heat storage material sealed in the heat storage material container 12 is, for example, a heat storage material having a melting point of 10 ° C., and a heat storage material having a higher melting point than the heat storage material sealed in the heat storage material container 11 is used.
 ポンプ31は、第1冷水回路において、冷凍機1と蓄熱槽(第1蓄熱槽21、第2蓄熱槽22)との間で冷水を循環させることができるようになっている。なお、ポンプ31は、インバータ41を介して、ECU50により、その回転速度が制御され、流量を制御することができるようになっている。
 なお、ポンプ31は、蓄熱槽(第2蓄熱槽22)の上部から冷凍機1の入口へと接続する配管5a,5bに配置するものとして説明するが、これに限られるものではなく、冷凍機1の出口から蓄熱槽(第1蓄熱槽21)の下部へと接続する配管3に配置するものであってもよい。
In the first cold water circuit, the pump 31 can circulate cold water between the refrigerator 1 and the heat storage tank (the first heat storage tank 21 and the second heat storage tank 22). The pump 31 is controlled by the ECU 50 via the inverter 41 so that the rotational speed thereof can be controlled.
In addition, although the pump 31 is demonstrated as what is arrange | positioned in piping 5a, 5b connected to the inlet_port | entrance of the refrigerator 1 from the upper part of a thermal storage tank (2nd thermal storage tank 22), it is not restricted to this, A refrigerator You may arrange | position to the piping 3 connected to the lower part of a thermal storage tank (1st thermal storage tank 21) from 1 exit.
 ポンプ32は、第2冷水回路において、蓄熱槽(第1蓄熱槽21、第2蓄熱槽22)と冷水コイル2との間で冷水を循環させることができるようになっている。なお、ポンプ32は、インバータ42を介して、ECU50により、その回転速度が制御され、流量を制御することができるようになっている。
 なお、ポンプ32は、蓄熱槽(第1蓄熱槽21)の下部から冷水コイル2の入口へと接続する配管7a,7bに配置するものとして説明するが、これに限られるものではなく、冷水コイル2の出口から蓄熱槽(第2蓄熱槽22)の上部へと接続する配管8に配置するものであってもよい。
The pump 32 is configured to circulate cold water between the heat storage tank (the first heat storage tank 21 and the second heat storage tank 22) and the cold water coil 2 in the second cold water circuit. Note that the rotational speed of the pump 32 is controlled by the ECU 50 via the inverter 42 so that the flow rate can be controlled.
In addition, although the pump 32 is demonstrated as what is arrange | positioned in piping 7a, 7b connected to the inlet_port | entrance of the cold water coil 2 from the lower part of a heat storage tank (1st heat storage tank 21), it is not restricted to this, A cold water coil You may arrange | position to the piping 8 connected to the upper part of a thermal storage tank (2nd thermal storage tank 22) from 2 exits.
 ECU50は、各種温度センサ(60,61,62,71,72,73)の検出温度に基づいて、冷凍機1の動作を制御するとともに、インバータ41,42を介してポンプ31,32の流量を制御することにより、蓄熱システムS1の運転を制御することができるようになっている。 The ECU 50 controls the operation of the refrigerator 1 based on the detected temperatures of the various temperature sensors (60, 61, 62, 71, 72, 73) and controls the flow rates of the pumps 31, 32 via the inverters 41, 42. By controlling, the operation of the heat storage system S1 can be controlled.
 温度センサ60は、配管5aに設けられ、冷凍機1の入口に流入する冷水の温度(冷凍機入口温度)を検出することができるようになっている。なお、温度センサ60は、配管5bに設けられていてもよい。
 温度センサ61は、配管3に設けられ、冷凍機1の出口から流出する冷水の温度(冷凍機出口温度)を検出することができるようになっている。
 温度センサ62は、配管4aに設けられ、ポンプ31が動作する際の第1蓄熱槽21から第2蓄熱槽22に流入する冷水の温度(第1蓄熱槽出口温度)を検出することができるようになっている。また、温度センサ62は、ポンプ32が動作する際の第2蓄熱槽22から第1蓄熱槽21に流入する冷水の温度を検出することができるようになっている。
The temperature sensor 60 is provided in the pipe 5 a and can detect the temperature of the cold water flowing into the inlet of the refrigerator 1 (the refrigerator inlet temperature). The temperature sensor 60 may be provided on the pipe 5b.
The temperature sensor 61 is provided in the pipe 3 and can detect the temperature of the cold water flowing out from the outlet of the refrigerator 1 (the refrigerator outlet temperature).
The temperature sensor 62 is provided in the pipe 4a so that the temperature of the cold water flowing into the second heat storage tank 22 from the first heat storage tank 21 when the pump 31 operates (the first heat storage tank outlet temperature) can be detected. It has become. Moreover, the temperature sensor 62 can detect the temperature of the cold water flowing into the first heat storage tank 21 from the second heat storage tank 22 when the pump 32 operates.
 温度センサ71は、配管7bに設けられ、冷水コイル2の入口に流入する冷水の温度を検出することができるようになっている。なお、温度センサ71は、配管7aに設けられていてもよい。
 温度センサ72は、配管8に設けられ、冷水コイル2の出口から流出する冷水の温度を検出することができるようになっている。
 温度センサ73は、空気調和機(図示せず)に設けられ、冷水コイル2で冷却された室内空気9の温度(空調空気温度)を検出することができるようになっている。
The temperature sensor 71 is provided in the pipe 7 b and can detect the temperature of the cold water flowing into the inlet of the cold water coil 2. The temperature sensor 71 may be provided in the pipe 7a.
The temperature sensor 72 is provided in the pipe 8 and can detect the temperature of the cold water flowing out from the outlet of the cold water coil 2.
The temperature sensor 73 is provided in an air conditioner (not shown) and can detect the temperature of the indoor air 9 (air-conditioned air temperature) cooled by the cold water coil 2.
 次に、ECU50が実行する蓄熱システムS1の運転制御について説明する。
 ECU50は、冷凍機1およびポンプ31を動作させて蓄熱槽(第1蓄熱槽21、第2蓄熱槽22)に蓄冷する蓄冷運転と、ポンプ32を動作させて蓄熱槽(第1蓄熱槽21、第2蓄熱槽22)に蓄冷された冷熱を冷水コイル2(冷熱負荷)に供給する冷熱供給運転と、をすることができるようになっている。
Next, operation control of the heat storage system S1 executed by the ECU 50 will be described.
The ECU 50 operates the refrigerator 1 and the pump 31 to store heat in the heat storage tanks (first heat storage tank 21 and second heat storage tank 22), and operates the pump 32 to operate the heat storage tank (first heat storage tank 21, The cold supply operation which supplies the cold heat stored in the 2nd thermal storage tank 22) to the cold water coil 2 (cooling load) can be performed now.
<蓄冷運転>
 まず、蓄熱材容器11の蓄熱材および蓄熱材容器12の蓄熱材が液体の状態であり、第1蓄熱槽21および第2蓄熱槽22に蓄冷された冷熱が全て使用された状態から、冷凍機1およびポンプ31を動作させて蓄熱槽(第1蓄熱槽21、第2蓄熱槽22)に蓄冷する蓄冷運転について説明する。
<Cool storage operation>
First, from the state where the heat storage material of the heat storage material container 11 and the heat storage material of the heat storage material container 12 are in a liquid state and all the cold energy stored in the first heat storage tank 21 and the second heat storage tank 22 is used, the refrigerator A cold storage operation in which 1 and the pump 31 are operated to store cold in the heat storage tank (the first heat storage tank 21 and the second heat storage tank 22) will be described.
 第1蓄熱槽21および第2蓄熱槽22に蓄冷された冷熱が全て使用された状態では、第1蓄熱槽21の内部の冷水の温度は蓄熱材容器11の蓄熱材の融点8℃より高くなっており、また、第2蓄熱槽22の内部の冷水の温度は蓄熱材容器12の蓄熱材の融点10℃より高くなっている。 In the state where all the cold energy stored in the first heat storage tank 21 and the second heat storage tank 22 is used, the temperature of the cold water inside the first heat storage tank 21 is higher than the melting point 8 ° C. of the heat storage material of the heat storage material container 11. In addition, the temperature of the cold water inside the second heat storage tank 22 is higher than the melting point 10 ° C. of the heat storage material of the heat storage material container 12.
 ECU50はポンプ31を動作させて、配管5a,5bを介して、第2蓄熱槽22の上部から冷凍機1の入口に冷水を流入させる。この際、冷凍機入口温度は、10℃以上となる。
 ECU50は温度センサ61で検出した冷凍機出口温度が所定の温度(例えば、5.0℃)となるように冷凍機1を動作させる。
 これにより、冷凍機1およびポンプ31は、第2蓄熱槽22の上部から供給された10℃以上の冷水を5.0℃まで冷却し、配管3を介して、第1蓄熱槽21の下部に供給する。
The ECU 50 operates the pump 31 to cause cold water to flow from the upper part of the second heat storage tank 22 to the inlet of the refrigerator 1 through the pipes 5a and 5b. At this time, the refrigerator inlet temperature is 10 ° C. or higher.
The ECU 50 operates the refrigerator 1 so that the refrigerator outlet temperature detected by the temperature sensor 61 becomes a predetermined temperature (for example, 5.0 ° C.).
Thereby, the refrigerator 1 and the pump 31 cool the cold water of 10 ° C. or more supplied from the upper part of the second heat storage tank 22 to 5.0 ° C., and connect the lower part of the first heat storage tank 21 via the pipe 3. Supply.
 第1蓄熱槽21の下部から供給された5.0℃の冷水は、蓄熱材容器11の蓄熱材(融点8℃)を冷却して、蓄熱材を液体の状態から固体の状態へと相変化させる。冷水の温度は、蓄熱材容器11の蓄熱材に冷熱を供給したことにより約7.5℃まで上昇する。
 そして、約7.5℃の冷水は、配管4aを介して、第1蓄熱槽21の上部から第2蓄熱槽22の下部へと供給される。
The cold water of 5.0 ° C. supplied from the lower part of the first heat storage tank 21 cools the heat storage material (melting point 8 ° C.) of the heat storage material container 11 and changes the phase of the heat storage material from a liquid state to a solid state. Let The temperature of the cold water rises to about 7.5 ° C. by supplying cold heat to the heat storage material of the heat storage material container 11.
And about 7.5 degreeC cold water is supplied to the lower part of the 2nd heat storage tank 22 from the upper part of the 1st heat storage tank 21 via the piping 4a.
 第2蓄熱槽22の下部から供給された約7.5℃の冷水は、蓄熱材容器12の蓄熱材(融点10℃)を冷却して、蓄熱材を液体の状態から固体の状態へと相変化させる。冷水の温度は、蓄熱材容器12の蓄熱材に冷熱を供給したことにより約9.5℃まで上昇する。
 そして、約9.5℃の冷水は、第2蓄熱槽22の上部から冷凍機1の入口へと供給される。冷凍機1は、第2蓄熱槽22の上部から供給された約9.5℃の冷水を5.0℃まで冷却し、再び、第1蓄熱槽21の下部に供給する。
The cold water of about 7.5 ° C. supplied from the lower part of the second heat storage tank 22 cools the heat storage material (melting point 10 ° C.) of the heat storage material container 12 and changes the heat storage material from a liquid state to a solid state. Change. The temperature of the cold water rises to about 9.5 ° C. by supplying cold heat to the heat storage material of the heat storage material container 12.
Then, cold water at about 9.5 ° C. is supplied from the upper part of the second heat storage tank 22 to the inlet of the refrigerator 1. The refrigerator 1 cools about 9.5 ° C. cold water supplied from the upper part of the second heat storage tank 22 to 5.0 ° C. and supplies it again to the lower part of the first heat storage tank 21.
 なお、蓄熱材容器11の蓄熱材および蓄熱材容器12の蓄熱材が固体の状態となり、第1蓄熱槽21および第2蓄熱槽22の蓄冷が完了すると、冷凍機入口温度が冷凍機入口温度と略等しくなる。ECU50は、温度センサ60で検出した冷凍機入口温度と温度センサ61で検出した冷凍機出口温度とが略等しくなったら(温度センサ60で検出した冷凍機入口温度と温度センサ61で検出した冷凍機出口温度との温度差が所定の閾値未満となったら)、第1蓄熱槽21および第2蓄熱槽22の蓄冷が完了したと判定して、冷凍機1およびポンプ31を停止させて蓄冷運転を終了する。 When the heat storage material of the heat storage material container 11 and the heat storage material of the heat storage material container 12 are in a solid state and the cold storage of the first heat storage tank 21 and the second heat storage tank 22 is completed, the refrigerator inlet temperature is equal to the refrigerator inlet temperature. Almost equal. The ECU 50 detects that the refrigerator inlet temperature detected by the temperature sensor 60 and the refrigerator outlet temperature detected by the temperature sensor 61 are substantially equal (the refrigerator inlet temperature detected by the temperature sensor 60 and the refrigerator detected by the temperature sensor 61). When the temperature difference from the outlet temperature is less than a predetermined threshold value), it is determined that the cold storage in the first heat storage tank 21 and the second heat storage tank 22 is completed, and the refrigerator 1 and the pump 31 are stopped to perform the cold storage operation. finish.
<冷熱供給運転>
 次に、蓄熱材容器11の蓄熱材および蓄熱材容器12の蓄熱材が固体の状態であり、ポンプ32を動作させて蓄熱槽(第1蓄熱槽21、第2蓄熱槽22)に蓄冷された冷熱を冷水コイル2に供給する冷熱供給運転について説明する。
<Cooling supply operation>
Next, the heat storage material of the heat storage material container 11 and the heat storage material of the heat storage material container 12 are in a solid state, and the pump 32 is operated to cool the heat storage tank (the first heat storage tank 21 and the second heat storage tank 22). A cold heat supply operation for supplying cold heat to the cold water coil 2 will be described.
 ECU50はポンプ32を動作させて、配管7a,7bを介して、第1蓄熱槽21の下部から冷水コイル2の入口に冷水を流入させる。この際、第1蓄熱槽21および第2蓄熱槽22の内部の冷水の温度は、冷熱が蓄冷された状態では、約5.0℃~8.0℃であり、この温度の冷水が冷水コイル2に供給される。 The ECU 50 operates the pump 32 to cause cold water to flow into the inlet of the cold water coil 2 from the lower part of the first heat storage tank 21 via the pipes 7a and 7b. At this time, the temperature of the cold water inside the first heat storage tank 21 and the second heat storage tank 22 is about 5.0 ° C. to 8.0 ° C. in a state where the cold heat is stored. 2 is supplied.
 冷水コイル2に供給された冷水は室内空気9を冷却することにより吸熱して、14℃程度となって、配管8を介して、第2蓄熱槽22の上部に流入する。 The cold water supplied to the cold water coil 2 absorbs heat by cooling the indoor air 9, reaches about 14 ° C., and flows into the upper portion of the second heat storage tank 22 through the pipe 8.
 第2蓄熱槽22の上部から供給された14℃程度の冷水は、蓄熱材容器12の蓄熱材(融点10℃)と熱交換することにより、約10.5℃まで冷却される。
 そして、約10.5℃の冷水は、配管4aを介して、第2蓄熱槽22の下部から第1蓄熱槽21の上部へと供給される。
The cold water of about 14 ° C. supplied from the upper part of the second heat storage tank 22 is cooled to about 10.5 ° C. by exchanging heat with the heat storage material (melting point 10 ° C.) of the heat storage material container 12.
And about 10.5 degreeC cold water is supplied to the upper part of the 1st heat storage tank 21 from the lower part of the 2nd heat storage tank 22 via the piping 4a.
 第1蓄熱槽21の上部から供給された約10.5℃の冷水は、蓄熱材容器11の蓄熱材(融点8℃)と熱交換することにより、約8.5℃まで冷却される。
 そして、約8.5℃の冷水は、第1蓄熱槽21の下部から冷水コイル2の入口へと供給される。
The cold water of about 10.5 ° C. supplied from the upper part of the first heat storage tank 21 is cooled to about 8.5 ° C. by exchanging heat with the heat storage material (melting point 8 ° C.) of the heat storage material container 11.
And about 8.5 degreeC cold water is supplied to the inlet_port | entrance of the cold water coil 2 from the lower part of the 1st heat storage tank 21. FIG.
<効果>
 図7に示す比較例に係る蓄熱システムScと対比しつつ、図1に示す第1実施形態に係る蓄熱システムS1の効果について説明する。
 図7は、比較例に係る蓄熱システムScの構成図である。比較例に係る蓄熱システムScは、第1実施形態に係る蓄熱システムS1と比較して、融点8℃の蓄熱材が封入された蓄熱材容器11が蓄熱槽(第1蓄熱槽21)に複数個配置されており、蓄熱材の融点が1種類のみである点で相違する。また、配管5aは、第1蓄熱槽21の上部とポンプ31の入口とを接続するようになっている。また、配管8は、冷水コイル2の出口と第1蓄熱槽21の上部とを接続するようになっている。その他の構成は、第1実施形態に係る蓄熱システムS1と同様であり、説明を省略する。
<Effect>
The effects of the heat storage system S1 according to the first embodiment shown in FIG. 1 will be described while comparing with the heat storage system Sc according to the comparative example shown in FIG.
FIG. 7 is a configuration diagram of the heat storage system Sc according to the comparative example. As compared with the heat storage system S1 according to the first embodiment, the heat storage system Sc according to the comparative example includes a plurality of heat storage material containers 11 in which a heat storage material having a melting point of 8 ° C. is enclosed in the heat storage tank (first heat storage tank 21). It differs in that the melting point of the heat storage material is only one type. The pipe 5 a connects the upper part of the first heat storage tank 21 and the inlet of the pump 31. The pipe 8 connects the outlet of the cold water coil 2 and the upper part of the first heat storage tank 21. Other configurations are the same as those of the heat storage system S1 according to the first embodiment, and a description thereof will be omitted.
 比較例に係る蓄熱システムScの蓄冷運転において、ECU50はポンプ31を動作させるとともに、温度センサ61で検出した冷凍機出口温度が所定の温度(例えば、5.0℃)となるように冷凍機1を動作させる。
 ここで、第1蓄熱槽21の下部から供給された5.0℃の冷水は、蓄熱材容器11の蓄熱材(融点8℃)を冷却して、蓄熱材を液体の状態から固体の状態へと相変化させる。冷水の温度は、蓄熱材容器11の蓄熱材に冷熱を供給したことにより約7.5℃まで上昇する。
In the cold storage operation of the heat storage system Sc according to the comparative example, the ECU 50 operates the pump 31 and the refrigerator 1 so that the refrigerator outlet temperature detected by the temperature sensor 61 becomes a predetermined temperature (for example, 5.0 ° C.). To work.
Here, the cold water of 5.0 ° C. supplied from the lower part of the first heat storage tank 21 cools the heat storage material (melting point 8 ° C.) of the heat storage material container 11, and changes the heat storage material from a liquid state to a solid state. And phase change. The temperature of the cold water rises to about 7.5 ° C. by supplying cold heat to the heat storage material of the heat storage material container 11.
 このように、比較例に係る蓄熱システムScの蓄冷運転において、冷凍機1は約7.5℃の冷水を5.0℃まで冷却するように動作する。これに対し、第1実施形態に係る蓄熱システムS1の蓄冷運転において、冷凍機1は約9.5℃の冷水を5.0℃まで冷却するように動作する。 Thus, in the cold storage operation of the heat storage system Sc according to the comparative example, the refrigerator 1 operates to cool approximately 7.5 ° C. cold water to 5.0 ° C. On the other hand, in the cold storage operation of the heat storage system S1 according to the first embodiment, the refrigerator 1 operates to cool approximately 9.5 ° C. cold water to 5.0 ° C.
 ここで、配管や蓄熱槽壁面からの放熱等によるロスを無視するものとして、冷凍機1で生成した冷熱の全量が蓄熱槽に蓄熱されたとすると、冷凍機1が蓄熱槽に蓄熱した冷熱の熱量(蓄冷熱量)は、以下の式(1)で表すことができる。 Here, assuming that the total amount of cold generated by the refrigerator 1 is stored in the heat storage tank, assuming that the loss due to heat radiation from the piping or the wall of the heat storage tank is ignored, the amount of cold heat stored in the heat storage tank by the refrigerator 1 (Cool storage heat amount) can be expressed by the following equation (1).
 蓄冷熱量=α×(冷凍機入口温度-冷凍機出口温度)×冷凍機ポンプ31の全流量…(1)
 なお、αは、冷凍機1で冷却される熱媒体(水)の比熱および密度から定まる係数である。
Cold storage heat quantity = α × (refrigerator inlet temperature−refrigerator outlet temperature) × total flow rate of refrigerator pump 31 (1)
Α is a coefficient determined from the specific heat and density of the heat medium (water) cooled by the refrigerator 1.
 第1実施形態に係る蓄熱システムS1と、比較例に係る蓄熱システムScとを比較する。比較例に係る蓄熱システムScは、冷凍機入口温度を高くすることができない、即ち、「冷凍機入口温度-冷凍機出口温度」を大きくすることができない。このため、第1実施形態に係る蓄熱システムS1と、比較例に係る蓄熱システムScとにおいて、同量の蓄冷熱量を蓄冷する場合、比較例に係る蓄熱システムScは、冷凍機ポンプ31の流量(回転速度)を高くする必要がある。換言すれば、第1実施形態に係る蓄熱システムS1は、「冷凍機入口温度-冷凍機出口温度」を大きくすることにより、冷凍機ポンプ31の流量を小さくすることができる。
 これにより、冷凍機ポンプ31で消費されるエネルギを削減することができる。また、高価な大流量ポンプを必要としないため、その点において、蓄熱システムS1を安価に構成することができる。また、ランニングコストの低減、即ち、COの排出抑制にもなる。
The heat storage system S1 according to the first embodiment is compared with the heat storage system Sc according to the comparative example. The heat storage system Sc according to the comparative example cannot increase the refrigerator inlet temperature, that is, cannot increase “refrigerator inlet temperature−refrigerator outlet temperature”. For this reason, in the heat storage system S1 according to the first embodiment and the heat storage system Sc according to the comparative example, when the same amount of cold storage heat is stored, the heat storage system Sc according to the comparative example has a flow rate of the refrigerator pump 31 ( (Rotational speed) needs to be increased. In other words, the heat storage system S1 according to the first embodiment can reduce the flow rate of the refrigerator pump 31 by increasing “refrigerator inlet temperature−refrigerator outlet temperature”.
Thereby, the energy consumed by the refrigerator pump 31 can be reduced. Moreover, since an expensive large flow pump is not required, the heat storage system S1 can be configured at a low cost. In addition, the running cost is reduced, that is, CO 2 emission is suppressed.
 ここで、前述した温度を例に説明する。
 第1実施形態に係る蓄熱システムS1の冷凍機出口温度が5.0℃であり、冷凍機入口温度が約9.5℃であったとすると、冷凍機1の出入口の温度差は約4.5℃となる。
 これに対し、比較例に係る蓄熱システムS1の冷凍機出口温度が5.0℃であったとすると、冷凍機入口温度は約7.5℃となり、冷凍機1の出入口の温度差は約2.5℃となる。
Here, the above-described temperature will be described as an example.
If the refrigerator outlet temperature of the heat storage system S1 according to the first embodiment is 5.0 ° C. and the refrigerator inlet temperature is about 9.5 ° C., the temperature difference between the inlet and outlet of the refrigerator 1 is about 4.5. It becomes ℃.
On the other hand, if the refrigerator outlet temperature of the heat storage system S1 according to the comparative example is 5.0 ° C., the refrigerator inlet temperature is about 7.5 ° C., and the temperature difference between the inlet and outlet of the refrigerator 1 is about 2. 5 ° C.
 このように、第1実施形態に係る蓄熱システムS1は、比較例に係る蓄熱システムScと比較して、温度差を約2倍にすることができるので、冷凍機ポンプ31の流量を約1/2とすることができる。
 なお、ポンプの流量が50%〔1/2〕となると、ポンプの消費エネルギは12.5%〔(1/2)〕まで減少することが知られている。比較例に係る蓄熱システムScにおいて蓄熱時に消費するエネルギ(冷凍機1の消費エネルギ、冷凍機ポンプ31の消費エネルギ等の総和)のうち冷凍機ポンプ31の消費エネルギが占める割合が10%であったとした場合、第1実施形態に係る蓄熱システムS1はシステム全体の消費エネルギを約9%削減することができる。
As described above, the heat storage system S1 according to the first embodiment can make the temperature difference about twice as high as that of the heat storage system Sc according to the comparative example. 2 can be used.
It is known that when the flow rate of the pump reaches 50% [1/2], the energy consumption of the pump decreases to 12.5% [(1/2) 3 ]. In the heat storage system Sc according to the comparative example, the proportion of the energy consumed by the refrigerator pump 31 in the energy consumed during heat storage (the sum of the energy consumed by the refrigerator 1 and the energy consumed by the refrigerator pump 31) was 10%. In this case, the heat storage system S1 according to the first embodiment can reduce the energy consumption of the entire system by about 9%.
 さらに、冷凍機出口温度が同じ場合、冷凍機入口温度が高いほど、冷凍機1のCOP(Coefficient Of Performance;成績係数)が向上することが知られている。このため、冷凍機1においても消費エネルギを削減することができる。また、COの排出抑制にもなる。 Furthermore, when the refrigerator outlet temperature is the same, it is known that the COP (Coefficient Of Performance) of the refrigerator 1 is improved as the refrigerator inlet temperature is higher. For this reason, also in the refrigerator 1, energy consumption can be reduced. It also reduces CO 2 emissions.
 このように、第1実施形態に係る蓄熱システムS1によれば、蓄冷運転時の消費エネルギを削減して、蓄熱システムS1全体の運転効率を向上させることができる。 Thus, according to the heat storage system S1 according to the first embodiment, the energy consumption during the cold storage operation can be reduced, and the operation efficiency of the entire heat storage system S1 can be improved.
≪第2実施形態≫
 次に、図2を用いて、第2実施形態に係る蓄熱システムS2について説明する。図2は、第2実施形態に係る蓄熱システムS2の構成図である。なお、第1実施形態に係る蓄熱システムS1と共通する点については、説明を省略する。
 蓄熱システムS2は、蓄熱槽として3つの蓄熱槽を備えている。即ち、第1実施形態に係る蓄熱システムS1(図1参照)に加え、第3蓄熱槽23と、配管4bと、温度センサ63と、を更に備えている。
<< Second Embodiment >>
Next, the heat storage system S2 according to the second embodiment will be described with reference to FIG. FIG. 2 is a configuration diagram of a heat storage system S2 according to the second embodiment. In addition, description is abbreviate | omitted about the point which is common in heat storage system S1 which concerns on 1st Embodiment.
The heat storage system S2 includes three heat storage tanks as heat storage tanks. That is, in addition to the heat storage system S1 (refer FIG. 1) which concerns on 1st Embodiment, the 3rd heat storage tank 23, the piping 4b, and the temperature sensor 63 are further provided.
 第2蓄熱槽22の上部と接続された配管4bは、第3蓄熱槽23の下部に接続されている。また、配管5aは、第3蓄熱槽23の上部とポンプ31の入口とを接続するようになっている。また、配管8は、冷水コイル2の出口と第3蓄熱槽23の上部とを接続するようになっている。 The pipe 4 b connected to the upper part of the second heat storage tank 22 is connected to the lower part of the third heat storage tank 23. Further, the pipe 5 a connects the upper part of the third heat storage tank 23 and the inlet of the pump 31. The pipe 8 connects the outlet of the cold water coil 2 and the upper part of the third heat storage tank 23.
 第3蓄熱槽23には、蓄熱材が封入された蓄熱材容器13が複数個配置されており、蓄熱材の潜熱により蓄冷することができるようになっている。蓄熱材容器13に封入された蓄熱材は、例えば、融点が13℃の蓄熱材であり、蓄熱材容器12に封入された蓄熱材よりも高い融点を有する蓄熱材を用いる。 In the third heat storage tank 23, a plurality of heat storage material containers 13 in which a heat storage material is enclosed are arranged so that cold storage can be performed by the latent heat of the heat storage material. The heat storage material enclosed in the heat storage material container 13 is, for example, a heat storage material having a melting point of 13 ° C., and a heat storage material having a higher melting point than the heat storage material enclosed in the heat storage material container 12 is used.
 温度センサ63は、配管4bに設けられ、ポンプ31が動作する際の第2蓄熱槽22から第3蓄熱槽23に流入する冷水の温度(第2蓄熱槽出口温度)を検出することができるようになっている。また、温度センサ63は、ポンプ32が動作する際の第3蓄熱槽23から第2蓄熱槽22に流入する冷水の温度を検出することができるようになっている。 The temperature sensor 63 is provided in the pipe 4b, and can detect the temperature of the cold water flowing into the third heat storage tank 23 from the second heat storage tank 22 when the pump 31 operates (second heat storage tank outlet temperature). It has become. Moreover, the temperature sensor 63 can detect the temperature of the cold water flowing into the second heat storage tank 22 from the third heat storage tank 23 when the pump 32 operates.
<蓄冷運転>
 次に、ECU50が実行する蓄熱システムS2の蓄冷運転制御について説明する。図3は、第2実施形態に係る蓄熱システムS2の蓄冷運転処理のフローチャートである。
<Cool storage operation>
Next, the cold storage operation control of the heat storage system S2 executed by the ECU 50 will be described. FIG. 3 is a flowchart of the cold storage operation process of the heat storage system S2 according to the second embodiment.
 第1蓄熱槽21、第2蓄熱槽22および第3蓄熱槽23に蓄冷された冷熱が全て使用された状態では、第1蓄熱槽21の内部の冷水の温度は蓄熱材容器11の蓄熱材の融点8℃より高くなっており、また、第2蓄熱槽22の内部の冷水の温度は蓄熱材容器12の蓄熱材の融点10℃より高くなっており、また、第3蓄熱槽23の内部の冷水の温度は蓄熱材容器13の蓄熱材の融点13℃より高くなっている。 In the state where all the cold energy stored in the first heat storage tank 21, the second heat storage tank 22 and the third heat storage tank 23 is used, the temperature of the cold water inside the first heat storage tank 21 is the temperature of the heat storage material of the heat storage material container 11. The melting point is higher than 8 ° C., and the temperature of the cold water inside the second heat storage tank 22 is higher than the melting point 10 ° C. of the heat storage material of the heat storage material container 12. The temperature of the cold water is higher than the melting point 13 ° C. of the heat storage material of the heat storage material container 13.
 ステップS101において、ECU50は、冷凍機1およびポンプ31を動作させる。ここで、ECU50は温度センサ61で検出した冷凍機出口温度が所定の温度T1(例えば、8.5℃)となるように冷凍機1を動作させる。ここで、所定の温度T1は、蓄熱材容器11の蓄熱材の融点(8℃)より高く、かつ、蓄熱材容器12の蓄熱材の融点(10℃)および蓄熱材容器13の蓄熱材の融点(13℃)よりも低い温度が設定される。 In step S101, the ECU 50 operates the refrigerator 1 and the pump 31. Here, the ECU 50 operates the refrigerator 1 so that the refrigerator outlet temperature detected by the temperature sensor 61 becomes a predetermined temperature T1 (for example, 8.5 ° C.). Here, the predetermined temperature T1 is higher than the melting point (8 ° C.) of the heat storage material of the heat storage material container 11, and the melting point (10 ° C.) of the heat storage material of the heat storage material container 12 and the melting point of the heat storage material of the heat storage material container 13. A temperature lower than (13 ° C.) is set.
 ステップS102において、ECU50は、温度センサ60で検出した冷凍機入口温度と温度センサ63で検出した第2蓄熱槽出口温度との温度差が所定の閾値X1未満であるか否かを判定する。ここで、所定の閾値X1は、冷凍機入口温度(第3蓄熱槽出口温度)と第2蓄熱槽出口温度(第3蓄熱槽入口温度)とが略等しいか否かを判定するための閾値である。 In step S102, the ECU 50 determines whether the temperature difference between the refrigerator inlet temperature detected by the temperature sensor 60 and the second heat storage tank outlet temperature detected by the temperature sensor 63 is less than a predetermined threshold value X1. Here, the predetermined threshold value X1 is a threshold value for determining whether or not the refrigerator inlet temperature (third heat storage tank outlet temperature) and the second heat storage tank outlet temperature (third heat storage tank inlet temperature) are substantially equal. is there.
 温度差が所定の閾値X1未満でない場合(S102・No)、ECU50の処理は、ステップS102を繰り返す。温度差が所定の閾値X1未満である場合(S102・Yes)、ECU50の処理は、ステップS103に進む。 When the temperature difference is not less than the predetermined threshold value X1 (S102 / No), the ECU 50 repeats step S102. When the temperature difference is less than the predetermined threshold value X1 (S102 / Yes), the process of the ECU 50 proceeds to step S103.
 ステップS103において、ECU50は温度センサ61で検出した冷凍機出口温度が所定の温度T2(例えば、5.0℃)となるように冷凍機1を動作させる。ここで、所定の温度T2は、蓄熱材容器11の蓄熱材の融点(8℃)よりも低い温度が設定される。 In step S103, the ECU 50 operates the refrigerator 1 so that the refrigerator outlet temperature detected by the temperature sensor 61 becomes a predetermined temperature T2 (for example, 5.0 ° C.). Here, the predetermined temperature T2 is set to a temperature lower than the melting point (8 ° C.) of the heat storage material of the heat storage material container 11.
 ステップS104において、ECU50は、温度センサ60で検出した冷凍機入口温度と温度センサ61で検出した冷凍機出口温度との温度差が所定の閾値X2未満であるか否かを判定する。ここで、所定の閾値X2は、冷凍機入口温度と冷凍機出口温度とが略等しいか否かを判定するための閾値である。 In step S104, the ECU 50 determines whether the temperature difference between the refrigerator inlet temperature detected by the temperature sensor 60 and the refrigerator outlet temperature detected by the temperature sensor 61 is less than a predetermined threshold value X2. Here, the predetermined threshold value X2 is a threshold value for determining whether or not the refrigerator inlet temperature and the refrigerator outlet temperature are substantially equal.
 温度差が所定の閾値X2未満でない場合(S104・No)、ECU50の処理は、ステップS104を繰り返す。温度差が所定の閾値X2未満である場合(S104・Yes)、ECU50の処理は、ステップS105に進む。 If the temperature difference is not less than the predetermined threshold value X2 (No in S104), the ECU 50 repeats Step S104. When the temperature difference is less than the predetermined threshold value X2 (S104 / Yes), the process of the ECU 50 proceeds to step S105.
 ステップS105において、ECU50は、冷凍機1およびポンプ31を停止させて蓄冷運転を終了する。 In step S105, the ECU 50 stops the refrigerator 1 and the pump 31 and ends the cold storage operation.
<効果>
 図2および図3に示す第2実施形態に係る蓄熱システムS2の効果について説明する。
<Effect>
The effect of heat storage system S2 which concerns on 2nd Embodiment shown in FIG. 2 and FIG. 3 is demonstrated.
 ステップS101に示すように、ECU50は、ポンプ31を動作させるとともに、温度センサ61で検出した冷凍機出口温度がT1(例えば、8.5℃)となるように冷凍機1を動作させるようになっている。 As shown in step S101, the ECU 50 operates the pump 31 and operates the refrigerator 1 so that the refrigerator outlet temperature detected by the temperature sensor 61 becomes T1 (for example, 8.5 ° C.). ing.
 第1蓄熱槽21の下部から供給された8.5℃の冷水は、蓄熱材容器11の蓄熱材の融点(8℃)より高温であるため、第1蓄熱槽21では、蓄熱材の潜熱による温度上昇はしないで、配管4aを介して、第1蓄熱槽21の上部から第2蓄熱槽22の下部へと供給される。 Since the 8.5 degreeC cold water supplied from the lower part of the 1st heat storage tank 21 is higher than melting | fusing point (8 degreeC) of the heat storage material of the heat storage material container 11, in the 1st heat storage tank 21, it is by the latent heat of a heat storage material. The temperature is not increased and is supplied from the upper part of the first heat storage tank 21 to the lower part of the second heat storage tank 22 through the pipe 4a.
 第2蓄熱槽22の下部から供給された冷水は、蓄熱材容器12の蓄熱材(融点10℃)を冷却して、蓄熱材を液体の状態から固体の状態へと相変化させる。冷水の温度は、蓄熱材容器12の蓄熱材に冷熱を供給したことにより約9.5℃まで上昇する。
 そして、約9.5℃の冷水は、配管4bを介して、第2蓄熱槽22の上部から第3蓄熱槽23の下部へと供給される。
The cold water supplied from the lower part of the second heat storage tank 22 cools the heat storage material (melting point 10 ° C.) of the heat storage material container 12 and changes the phase of the heat storage material from a liquid state to a solid state. The temperature of the cold water rises to about 9.5 ° C. by supplying cold heat to the heat storage material of the heat storage material container 12.
And about 9.5 degreeC cold water is supplied to the lower part of the 3rd heat storage tank 23 from the upper part of the 2nd heat storage tank 22 via the piping 4b.
 第3蓄熱槽23の下部から供給された約9.5℃の冷水は、蓄熱材容器13の蓄熱材(融点13℃)を冷却して、蓄熱材を液体の状態から固体の状態へと相変化させる。冷水の温度は、蓄熱材容器13の蓄熱材に冷熱を供給したことにより約12.5℃まで上昇する。
 そして、約12.5℃の冷水は、第3蓄熱槽23の上部から冷凍機1の入口へと供給される。冷凍機1は、第3蓄熱槽23の上部から供給された約12.5℃の冷水を8.5℃まで冷却し、再び、第1蓄熱槽21の下部に供給する。
The cold water of about 9.5 ° C. supplied from the lower part of the third heat storage tank 23 cools the heat storage material (melting point 13 ° C.) of the heat storage material container 13 and changes the heat storage material from a liquid state to a solid state. Change. The temperature of the cold water rises to about 12.5 ° C. by supplying cold heat to the heat storage material of the heat storage material container 13.
Then, the cold water of about 12.5 ° C. is supplied from the upper part of the third heat storage tank 23 to the inlet of the refrigerator 1. The refrigerator 1 cools about 12.5 ° C. cold water supplied from the upper part of the third heat storage tank 23 to 8.5 ° C., and supplies it again to the lower part of the first heat storage tank 21.
 ステップS102に示すように、ECU50は、冷凍機入口温度(第3蓄熱槽出口温度)と第2蓄熱槽出口温度(第3蓄熱槽入口温度)とが略等しいか否かを判定することにより、蓄熱材容器13の蓄熱材(融点13℃)が全て固体の状態へと相変化したか否かを判定するようになっている。ここで、蓄熱材容器13の蓄熱材(融点13℃)が全て固体の状態へと相変化すると、蓄熱材容器12の蓄熱材の潜熱のみにより冷水の温度が上昇することとなるため、冷凍機入口温度を高くすることができず、即ち、「冷凍機入口温度-冷凍機出口温度」を大きくすることができない。このため、ECU50は、ステップS102・Yesと判定して、ステップS103の処理に進み、温度センサ61で検出した冷凍機出口温度がT2(例えば、5.0℃)となるように冷凍機1を動作させるようになっている。 As shown in step S102, the ECU 50 determines whether the refrigerator inlet temperature (third heat storage tank outlet temperature) and the second heat storage tank outlet temperature (third heat storage tank inlet temperature) are substantially equal. It is determined whether or not the heat storage material (melting point 13 ° C.) of the heat storage material container 13 has completely changed to a solid state. Here, when the heat storage material (melting point 13 ° C.) of the heat storage material container 13 is all changed to a solid state, the temperature of the cold water is increased only by the latent heat of the heat storage material of the heat storage material container 12. The inlet temperature cannot be increased, that is, “refrigerator inlet temperature−refrigerator outlet temperature” cannot be increased. For this reason, ECU50 determines as step S102 * Yes, progresses to the process of step S103, and sets the refrigerator 1 so that the refrigerator outlet temperature detected with the temperature sensor 61 may become T2 (for example, 5.0 degreeC). It is supposed to work.
 第1蓄熱槽21の下部から供給された5.0℃の冷水は、蓄熱材容器11の蓄熱材(融点8℃)を冷却して、蓄熱材を液体の状態から固体の状態へと相変化させる。冷水の温度は、蓄熱材容器11の蓄熱材に冷熱を供給したことにより約7.5℃まで上昇する。
 そして、約7.5℃の冷水は、配管4aを介して、第1蓄熱槽21の上部から第2蓄熱槽22の下部へと供給される。
The cold water of 5.0 ° C. supplied from the lower part of the first heat storage tank 21 cools the heat storage material (melting point 8 ° C.) of the heat storage material container 11 and changes the phase of the heat storage material from a liquid state to a solid state. Let The temperature of the cold water rises to about 7.5 ° C. by supplying cold heat to the heat storage material of the heat storage material container 11.
And about 7.5 degreeC cold water is supplied to the lower part of the 2nd heat storage tank 22 from the upper part of the 1st heat storage tank 21 via the piping 4a.
 第2蓄熱槽22の下部から供給された約7.5℃の冷水は、蓄熱材容器12の蓄熱材(融点10℃)を冷却して、蓄熱材を液体の状態から固体の状態へと相変化させる。冷水の温度は、蓄熱材容器12の蓄熱材に冷熱を供給したことにより約9.5℃まで上昇する。
 そして、約9.5℃の冷水は、配管4bを介して、第2蓄熱槽22の上部から第3蓄熱槽23の下部へと供給される。
The cold water of about 7.5 ° C. supplied from the lower part of the second heat storage tank 22 cools the heat storage material (melting point 10 ° C.) of the heat storage material container 12 and changes the heat storage material from a liquid state to a solid state. Change. The temperature of the cold water rises to about 9.5 ° C. by supplying cold heat to the heat storage material of the heat storage material container 12.
And about 9.5 degreeC cold water is supplied to the lower part of the 3rd heat storage tank 23 from the upper part of the 2nd heat storage tank 22 via the piping 4b.
 第3蓄熱槽23の下部から供給された約9.5℃の冷水は、蓄熱材容器13の蓄熱材(融点13℃)が全て固体の状態へと相変化しているため、蓄熱材の潜熱による温度上昇はしない。
 そして、約9.5℃の冷水は、第3蓄熱槽23の上部から冷凍機1の入口へと供給される。冷凍機1は、第3蓄熱槽23の上部から供給された約9.5℃の冷水を5.0℃まで冷却し、再び、第1蓄熱槽21の下部に供給する。
The cold water of about 9.5 ° C. supplied from the lower part of the third heat storage tank 23 has all of the phase change of the heat storage material (melting point 13 ° C.) of the heat storage material container 13 to a solid state, so the latent heat of the heat storage material The temperature does not increase due to.
Then, the cold water of about 9.5 ° C. is supplied from the upper part of the third heat storage tank 23 to the inlet of the refrigerator 1. The refrigerator 1 cools about 9.5 ° C. cold water supplied from the upper part of the third heat storage tank 23 to 5.0 ° C. and supplies it again to the lower part of the first heat storage tank 21.
 そして、ステップS104に示すように、ECU50は、冷凍機入口温度と冷凍機出口温度とが略等しいか否かを判定することにより、蓄熱材容器11の蓄熱材、蓄熱材容器12の蓄熱材および蓄熱材容器13の蓄熱材が固体の状態となり、蓄熱槽(第1蓄熱槽21、第2蓄熱槽22および第3蓄熱槽23)の蓄冷が完了したか否かを判定して、蓄冷運転を終了するようになっている。 Then, as shown in step S104, the ECU 50 determines whether or not the refrigerator inlet temperature and the refrigerator outlet temperature are substantially equal, whereby the heat storage material of the heat storage material container 11, the heat storage material of the heat storage material container 12, and The heat storage material in the heat storage material container 13 is in a solid state, and it is determined whether or not the heat storage tank (the first heat storage tank 21, the second heat storage tank 22, and the third heat storage tank 23) has completed the cold storage operation. It is supposed to end.
ここで、冷凍機出口温度を高くすると、冷凍機1のCOP(Coefficient Of Performance;成績係数)が向上することが知られている。このため、第2実施形態に係る蓄熱システムS2によれば、冷凍機出口温度をT1およびT2の2段階で制御して蓄冷することができるため、冷凍機出口温度をT2のみで制御して蓄冷する蓄熱システムと比較して、冷凍機1の消費エネルギを削減することができる。 Here, it is known that when the refrigerator outlet temperature is increased, the COP (Coefficient Of Performance) of the refrigerator 1 is improved. For this reason, according to the heat storage system S2 according to the second embodiment, the refrigerator outlet temperature can be controlled and stored in two stages of T1 and T2, so that the refrigerator outlet temperature is controlled only by T2 and stored. The energy consumption of the refrigerator 1 can be reduced as compared with the heat storage system.
 また、T1は、蓄熱材容器12の蓄熱材の融点(10℃)および蓄熱材容器13の蓄熱材の融点(13℃)より小さくなるように設定される。このようにT1を設定することにより、第1実施形態に係る蓄熱システムS1と同様に「冷凍機入口温度-冷凍機出口温度」を大きくして、ポンプ31の消費エネルギを削減することができる。 T1 is set to be smaller than the melting point (10 ° C.) of the heat storage material of the heat storage material container 12 and the melting point (13 ° C.) of the heat storage material of the heat storage material container 13. By setting T1 in this way, as in the heat storage system S1 according to the first embodiment, “refrigerator inlet temperature−refrigerator outlet temperature” can be increased, and energy consumption of the pump 31 can be reduced.
 また、蓄熱材容器13の蓄熱材(融点13℃)が全て固体の状態へと相変化したと判定すると(S102・Yes参照)、ECU50は冷凍機出口温度がT1からT2となるように制御するので、第1実施形態に係る蓄熱システムS1と同様に「冷凍機入口温度-冷凍機出口温度」を大きくして、ポンプ31の消費エネルギを削減することができる。 When it is determined that the heat storage material (melting point 13 ° C.) of the heat storage material container 13 has completely changed to a solid state (see S102 / Yes), the ECU 50 controls the refrigerator outlet temperature from T1 to T2. Therefore, similarly to the heat storage system S1 according to the first embodiment, the “refrigerator inlet temperature−refrigerator outlet temperature” can be increased, and the energy consumption of the pump 31 can be reduced.
 このように、第2実施形態に係る蓄熱システムS2によれば、蓄冷運転時の消費エネルギを削減して、蓄熱システムS2全体の運転効率を向上させることができる。 Thus, according to the heat storage system S2 according to the second embodiment, the energy consumption during the cold storage operation can be reduced and the operation efficiency of the entire heat storage system S2 can be improved.
≪第3実施形態≫
 次に、図4を用いて、第3実施形態に係る蓄熱システムS3について説明する。図4は、第3実施形態に係る蓄熱システムS3の構成図である。なお、第1実施形態に係る蓄熱システムS1および第2実施形態に係る蓄熱システムS2と共通する点については、説明を省略する。
<< Third Embodiment >>
Next, the heat storage system S3 according to the third embodiment will be described with reference to FIG. FIG. 4 is a configuration diagram of a heat storage system S3 according to the third embodiment. In addition, description is abbreviate | omitted about the point which is common in heat storage system S1 which concerns on 1st Embodiment, and heat storage system S2 which concerns on 2nd Embodiment.
 蓄熱システムS3は、冷凍機1の出口と第1蓄熱槽21の下部とを接続する配管3に替えて、配管3aと、第1バルブ81と、配管3bとを備えている。
 また、蓄熱システムS3は、配管6aと、第2バルブ82と、配管6bとを備え、配管3aと第2蓄熱槽22の下部とを接続するようになっている。
 また、蓄熱システムS3は、第3蓄熱槽23の上部とポンプ31の入口とを接続する配管5aに替えて、配管5aaと、第3バルブ83と、配管5abとを備えている。
 また、蓄熱システムS3は、配管6cと、第4バルブ84と、配管6dとを備え、配管4と配管5abとを接続するようになっている。
The heat storage system S3 includes a pipe 3a, a first valve 81, and a pipe 3b instead of the pipe 3 that connects the outlet of the refrigerator 1 and the lower part of the first heat storage tank 21.
The heat storage system S3 includes a pipe 6a, a second valve 82, and a pipe 6b, and connects the pipe 3a and the lower part of the second heat storage tank 22.
The heat storage system S3 includes a pipe 5aa, a third valve 83, and a pipe 5ab instead of the pipe 5a connecting the upper part of the third heat storage tank 23 and the inlet of the pump 31.
The heat storage system S3 includes a pipe 6c, a fourth valve 84, and a pipe 6d, and connects the pipe 4 and the pipe 5ab.
 第1バルブ81は、ECU50により開閉が制御される電磁弁であり、開弁状態で配管3aと配管3bを流通可能とし、閉弁状態で配管3aと配管3bの流通を閉塞するようになっている。
 第2バルブ82は、ECU50により開閉が制御される電磁弁であり、開弁状態で配管6aと配管6bを流通可能とし、閉弁状態で配管6aと配管6bの流通を閉塞するようになっている。
 第3バルブ83は、ECU50により開閉が制御される電磁弁であり、開弁状態で配管5aaと配管5abを流通可能とし、閉弁状態で配管5aaと配管5abの流通を閉塞するようになっている。
 第4バルブ84は、ECU50により開閉が制御される電磁弁であり、開弁状態で配管6cと配管6dを流通可能とし、閉弁状態で配管6cと配管6dの流通を閉塞するようになっている。
The first valve 81 is an electromagnetic valve whose opening and closing is controlled by the ECU 50. The first valve 81 can flow through the piping 3a and the piping 3b when the valve is open, and closes the flow between the piping 3a and the piping 3b when the valve is closed. Yes.
The second valve 82 is an electromagnetic valve whose opening and closing is controlled by the ECU 50. The second valve 82 can flow through the pipe 6a and the pipe 6b when the valve is open, and closes the flow between the pipe 6a and the pipe 6b when the valve is closed. Yes.
The third valve 83 is an electromagnetic valve whose opening and closing is controlled by the ECU 50. The third valve 83 allows the piping 5aa and the piping 5ab to flow in the opened state, and closes the flow of the piping 5aa and the piping 5ab in the closed state. Yes.
The fourth valve 84 is an electromagnetic valve whose opening and closing is controlled by the ECU 50, and allows the piping 6c and the piping 6d to flow in the open state, and closes the piping 6c and the piping 6d in the closed state. Yes.
<蓄冷運転>
 次に、ECU50が実行する蓄熱システムS3の蓄冷運転制御について説明する。図5は、第3実施形態に係る蓄熱システムS3の蓄冷運転処理のフローチャートである。
 ここで、蓄熱システムS3の蓄冷運転処理(図4参照)は、蓄熱システムS2の蓄冷運転処理(図2参照)と比較して、S101およびS103に替えて、S101AおよびS103Aを実行する点で異なっている。他の点は同様であり説明を省略する。
<Cool storage operation>
Next, cold storage operation control of the heat storage system S3 executed by the ECU 50 will be described. FIG. 5 is a flowchart of the cold storage operation process of the heat storage system S3 according to the third embodiment.
Here, the cool storage operation process (see FIG. 4) of the heat storage system S3 is different from the cool storage operation process (see FIG. 2) of the heat storage system S2 in that S101A and S103A are executed instead of S101 and S103. ing. The other points are the same and will not be described.
 ステップS101Aにおいて、ECU50は、第1バルブ81および第4バルブ84を閉弁し、第2バルブ82および第3バルブ83を開弁し、冷凍機1およびポンプ31を動作させる。ここで、ECU50は温度センサ61で検出した冷凍機出口温度が所定の温度T1(例えば、8.5℃)となるように冷凍機1を動作させる。 In step S101A, the ECU 50 closes the first valve 81 and the fourth valve 84, opens the second valve 82 and the third valve 83, and operates the refrigerator 1 and the pump 31. Here, the ECU 50 operates the refrigerator 1 so that the refrigerator outlet temperature detected by the temperature sensor 61 becomes a predetermined temperature T1 (for example, 8.5 ° C.).
 ステップS103Aにおいて、ECU50は、第1バルブ81および第4バルブ84を開弁し、第2バルブ82および第3バルブ83を閉弁し、温度センサ61で検出した冷凍機出口温度が所定の温度T2(例えば、5.0℃)となるように冷凍機1を動作させる。 In step S103A, the ECU 50 opens the first valve 81 and the fourth valve 84, closes the second valve 82 and the third valve 83, and the refrigerator outlet temperature detected by the temperature sensor 61 is a predetermined temperature T2. The refrigerator 1 is operated so that it becomes (for example, 5.0 degreeC).
<効果>
 図4および図5に示す第3実施形態に係る蓄熱システムS3の効果について説明する。
<Effect>
The effect of the heat storage system S3 according to the third embodiment shown in FIGS. 4 and 5 will be described.
 ステップS101Aに示すように、ECU50は、第1バルブ81および第4バルブ84を閉弁し、第2バルブ82および第3バルブ83を開弁し、ポンプ31を動作させるとともに、温度センサ61で検出した冷凍機出口温度がT1(例えば、8.5℃)となるように冷凍機1を動作させるようになっている。 As shown in step S101A, the ECU 50 closes the first valve 81 and the fourth valve 84, opens the second valve 82 and the third valve 83, operates the pump 31, and detects it with the temperature sensor 61. The refrigerator 1 is operated such that the temperature at the outlet of the refrigerator is T1 (for example, 8.5 ° C.).
 このように、第1~第4バルブ81~84を切り替えることにより、冷凍機1の出口から配管3a、配管6a、第2バルブ82、配管6b、第2蓄熱槽22、配管4b、第3蓄熱槽23、配管5aa、第3バルブ83、配管5ab、ポンプ31、配管5bを介して冷凍機1の入口に接続する冷水回路が形成され、温度T1の冷水では蓄熱材が固体状態とならない第1蓄熱槽21をバイパスするようになっている。
 これにより、冷水が第1蓄熱槽21を流れる際の圧損を低減して、ポンプ31の負荷を低減し、ポンプ31の効率を向上させることができる。
In this way, by switching the first to fourth valves 81 to 84, the pipe 3a, the pipe 6a, the second valve 82, the pipe 6b, the second heat storage tank 22, the pipe 4b, the third heat storage from the outlet of the refrigerator 1 are performed. A chilled water circuit connected to the inlet of the refrigerator 1 is formed through the tank 23, the pipe 5aa, the third valve 83, the pipe 5ab, the pump 31, and the pipe 5b, and the first heat storage material is not in a solid state with the cold water at the temperature T1. The heat storage tank 21 is bypassed.
Thereby, the pressure loss at the time of cold water flowing through the 1st heat storage tank 21 can be reduced, the load of the pump 31 can be reduced, and the efficiency of the pump 31 can be improved.
 ステップS103Aに示すように、ECU50は、第1バルブ81および第4バルブ84を開弁し、第2バルブ82および第3バルブ83を閉弁し、ポンプ31を動作させるとともに、温度センサ61で検出した冷凍機出口温度がT2(例えば、5.0℃)となるように冷凍機1を動作させるようになっている。 As shown in step S103A, the ECU 50 opens the first valve 81 and the fourth valve 84, closes the second valve 82 and the third valve 83, operates the pump 31, and detects it with the temperature sensor 61. The refrigerator 1 is operated so that the outlet temperature of the refrigerator is T2 (for example, 5.0 ° C.).
 このように、第1~第4バルブ81~84を切り替えることにより、冷凍機1の出口から配管3a、第1バルブ81、配管3b、第1蓄熱槽21、配管4a、第2蓄熱槽22、配管4b、配管6c、第4バルブ84、配管6d、配管5ab、ポンプ31、配管5bを介して冷凍機1の入口に接続する冷水回路が形成され、既に蓄熱材が固体状態となっている第3蓄熱槽23をバイパスするようになっている。
 これにより、冷水が第1蓄熱槽21を流れる際の圧損を低減して、ポンプ31の負荷を低減し、ポンプ31の効率を向上させることができる。
In this way, by switching the first to fourth valves 81 to 84, the pipe 3a, the first valve 81, the pipe 3b, the first heat storage tank 21, the pipe 4a, the second heat storage tank 22, from the outlet of the refrigerator 1 A chilled water circuit connected to the inlet of the refrigerator 1 is formed through the pipe 4b, the pipe 6c, the fourth valve 84, the pipe 6d, the pipe 5ab, the pump 31, and the pipe 5b, and the heat storage material is already in a solid state. 3 The heat storage tank 23 is bypassed.
Thereby, the pressure loss at the time of cold water flowing through the 1st heat storage tank 21 can be reduced, the load of the pump 31 can be reduced, and the efficiency of the pump 31 can be improved.
 このように、第3実施形態に係る蓄熱システムS3によれば、第1実施形態に係る蓄熱システムS1および第2実施形態に係る蓄熱システムS2の効果に加え、蓄冷運転時のポンプ31の負荷を低減できるので、蓄冷運転時の消費エネルギを削減して、蓄熱システムS3全体の運転効率を向上させることができる。 Thus, according to heat storage system S3 concerning a 3rd embodiment, in addition to effect of heat storage system S1 concerning a 1st embodiment, and heat storage system S2 concerning a 2nd embodiment, load of pump 31 at the time of cold storage operation is carried out. Since it can reduce, the energy consumption at the time of cold storage operation can be reduced and the operation efficiency of the whole heat storage system S3 can be improved.
≪変形例≫
 なお、本実施形態(第1~第3実施形態)に係る蓄熱システム(S1~S3)は、上記実施形態の構成に限定されるものではなく、発明の趣旨を逸脱しない範囲内で種々の変更が可能である。
≪Modification≫
Note that the heat storage system (S1 to S3) according to the present embodiment (first to third embodiments) is not limited to the configuration of the above embodiment, and various modifications can be made without departing from the spirit of the invention. Is possible.
 第1に係る蓄熱システムS1は2つの蓄熱槽を備え、第2,第3実施形態に係る蓄熱システムS2,S3は3つの蓄熱槽を備えるものとして説明したが、これに限られるものではなく、複数あってもよい。 The heat storage system S1 according to the first has two heat storage tanks, and the heat storage systems S2 and S3 according to the second and third embodiments have been described as having three heat storage tanks, but are not limited thereto. There may be multiple.
 第1~第3実施形態に係る蓄熱システムS1~S3は、独立した蓄熱槽を配管で接続するものとして説明したが、これに限られるものではない。
 例えば、図6に示す第4実施形態に係る蓄熱システムS4のように、もぐりぜき式蓄熱槽20に、もぐりぜきで区切られた蓄熱槽21a,21b,22a,22b,23a,23bに蓄熱材が封入された蓄熱材容器11,12,13を配置するものであってもよい。なお、図6に示す第4実施形態に係る蓄熱システムS4の運転は、第2実施形態に係る蓄熱システムS2の運転(図3参照)と同様であり、説明を省略する。
The heat storage systems S1 to S3 according to the first to third embodiments have been described as connecting independent heat storage tanks with pipes, but are not limited thereto.
For example, as in the heat storage system S4 according to the fourth embodiment shown in FIG. 6, the heat storage is performed in the heat storage tanks 20a, 21b, 22a, 22b, 23a, and 23b divided into the heat storage type heat storage tank 20 by the heat transfer. The heat storage material containers 11, 12, and 13 in which the material is enclosed may be disposed. In addition, the driving | operation of heat storage system S4 which concerns on 4th Embodiment shown in FIG. 6 is the same as the driving | operation (refer FIG. 3) of heat storage system S2 which concerns on 2nd Embodiment, and abbreviate | omits description.
S1,S2,S3,S4 蓄熱システム
1           冷凍機
2           冷水コイル(冷熱負荷)
6a,6b       配管(第1バイパス流路)
6c,6d       配管(第2バイパス流路)
11,12,13    蓄熱材容器
20          もぐりぜき式蓄熱槽
21          第1蓄熱槽
22          第2蓄熱槽
23          第3蓄熱槽
21a,21b,22a,22b,23a,23b 蓄熱槽
31,32       ポンプ
41,42       インバータ
50          ECU(制御手段、状態判定手段)
60,61,62,63 温度センサ(状態判定手段)
71,72,73    温度センサ
81          第1バルブ
82          第2バルブ(第1作動手段)
83          第3バルブ(第2作動手段)
84          第4バルブ
S1, S2, S3, S4 Thermal storage system 1 Refrigerator 2 Chilled water coil (Cooling load)
6a, 6b piping (first bypass flow path)
6c, 6d piping (second bypass flow path)
11, 12, 13 Heat storage material container 20 Muguri-type heat storage tank 21 First heat storage tank 22 Second heat storage tank 23 Third heat storage tank 21a, 21b, 22a, 22b, 23a, 23b Heat storage tank 31, 32 Pump 41, 42 Inverter 50 ECU (control means, state determination means)
60, 61, 62, 63 Temperature sensor (state determination means)
71, 72, 73 Temperature sensor 81 First valve 82 Second valve (first actuating means)
83 Third valve (second actuating means)
84 4th valve

Claims (7)

  1.  熱媒体を冷却する冷凍機と、
     冷熱を蓄冷する蓄熱槽と、
    前記冷凍機および前記蓄熱槽の間で前記熱媒体を循環させるポンプと、を備え、
     前記蓄熱槽は、
     少なくとも、第1蓄熱材が配置された第1蓄熱槽と、前記第1蓄熱材より融点が高い第2蓄熱材が配置された第2蓄熱槽と、を有し、
     前記第1蓄熱槽から前記第2蓄熱槽へと前記熱媒体が流れるように配置される
    ことを特徴とする蓄熱システム。
    A refrigerator that cools the heat medium;
    A heat storage tank for storing cold energy;
    A pump that circulates the heat medium between the refrigerator and the heat storage tank,
    The heat storage tank
    At least a first heat storage tank in which the first heat storage material is disposed, and a second heat storage tank in which a second heat storage material having a higher melting point than the first heat storage material is disposed,
    The heat storage system is arranged such that the heat medium flows from the first heat storage tank to the second heat storage tank.
  2.  前記蓄熱槽は、
     前記第2蓄熱材より融点が高い第3蓄熱材が配置された第3蓄熱槽を更に有し、
     前記第2蓄熱槽から前記第3蓄熱槽へと前記熱媒体が流れるように配置され、
     前記冷凍機で冷却された前記熱媒体の温度である冷凍機出口温度を制御する制御手段と、を更に備え、
     前記制御手段は、
     前記冷凍機出口温度が第1目標温度となるように制御した後に、前記冷凍機出口温度が前記第1目標温度よりも低い第2目標温度となるように制御する
    ことを特徴とする請求項1に記載の蓄熱システム。
    The heat storage tank
    A third heat storage tank in which a third heat storage material having a melting point higher than that of the second heat storage material is disposed;
    Arranged so that the heat medium flows from the second heat storage tank to the third heat storage tank,
    Control means for controlling the refrigerator outlet temperature, which is the temperature of the heat medium cooled by the refrigerator, and
    The control means includes
    The control is performed so that the refrigerator outlet temperature becomes a second target temperature lower than the first target temperature after the refrigerator outlet temperature is controlled to become the first target temperature. The heat storage system described in 1.
  3.  前記第1目標温度は、
     前記第1蓄熱材の融点より高く、かつ、前記第2蓄熱材の融点より低く、
     前記第2目標温度は、
     前記第1蓄熱材の融点より低い
    ことを特徴とする請求項2に記載の蓄熱システム。
    The first target temperature is
    Higher than the melting point of the first heat storage material and lower than the melting point of the second heat storage material,
    The second target temperature is
    The heat storage system according to claim 2, wherein the heat storage system is lower than a melting point of the first heat storage material.
  4.  前記第3蓄熱材が固体状態であるか否かを判定する状態判定手段を更に備え、
     前記制御手段は、
     前記状態判定手段が前記第3蓄熱材は固体状態であると判定すると、
     前記冷凍機出口温度を前記第1目標温度から前記第2目標温度へとなるように制御することを特徴とする請求項2に記載の蓄熱システム。
    Further comprising a state determining means for determining whether or not the third heat storage material is in a solid state;
    The control means includes
    When the state determination means determines that the third heat storage material is in a solid state,
    The heat storage system according to claim 2, wherein the refrigerator outlet temperature is controlled so as to be changed from the first target temperature to the second target temperature.
  5.  前記第1蓄熱槽をバイパスする第1バイパス流路と、
     前記第1バイパス流路を作動させる第1作動手段と、を更に備え、
     前記制御手段が前記冷凍機出口温度を前記第1目標温度となるように制御する際に、前記第1作動手段は前記第1バイパス流路を作動させる
    ことを特徴とする請求項4に記載の蓄熱システム。
    A first bypass flow path that bypasses the first heat storage tank;
    First operating means for operating the first bypass flow path,
    The said 1st action | operation means operates the said 1st bypass flow path, when the said control means controls the said refrigerator exit temperature so that it may become said 1st target temperature. Thermal storage system.
  6.  前記第3蓄熱槽をバイパスする第2バイパス流路と、
     前記第2バイパス流路を作動させる第2作動手段と、を更に備え、
     前記制御手段が前記冷凍機出口温度を前記第2目標温度となるように制御する際に、前記第2作動手段は前記第2バイパス流路を作動させる
    ことを特徴とする請求項4または請求項5に記載の蓄熱システム。
    A second bypass flow path for bypassing the third heat storage tank;
    Second operating means for operating the second bypass flow path,
    The said 2nd operation means operates the said 2nd bypass flow path, when the said control means controls the said refrigerator exit temperature so that it may become said 2nd target temperature. 5. The heat storage system according to 5.
  7.  熱媒体を冷却する冷凍機と、
     冷熱を蓄冷する蓄熱槽と、
    前記冷凍機および前記蓄熱槽の間で前記熱媒体を循環させるポンプと、
     前記冷凍機で冷却された前記熱媒体の温度である冷凍機出口温度を制御する制御手段と、
    を備える蓄熱システムの蓄熱方法であって、
     前記蓄熱槽は、
     少なくとも、第1蓄熱材が配置された第1蓄熱槽と、前記第1蓄熱材より融点が高い第2蓄熱材が配置された第2蓄熱槽と、前記第2蓄熱材より融点が高い第3蓄熱材が配置された第3蓄熱槽と、を有し、
     前記第1蓄熱槽から前記第2蓄熱槽へと前記熱媒体が流れ、前記第2蓄熱槽から前記第3蓄熱槽へと前記熱媒体が流れるように配置され、
     前記制御手段は、
     前記冷凍機出口温度が第1目標温度となるように制御するステップと、
     前記冷凍機出口温度が前記第1目標温度よりも低い第2目標温度となるように制御するステップと、を実行する
    ことを特徴とする蓄熱システムの蓄熱方法。
    A refrigerator that cools the heat medium;
    A heat storage tank for storing cold energy;
    A pump for circulating the heat medium between the refrigerator and the heat storage tank;
    Control means for controlling the outlet temperature of the refrigerator, which is the temperature of the heat medium cooled by the refrigerator;
    A heat storage method for a heat storage system comprising:
    The heat storage tank
    At least a first heat storage tank in which the first heat storage material is disposed, a second heat storage tank in which a second heat storage material having a higher melting point than the first heat storage material is disposed, and a third melting point higher than that of the second heat storage material. A third heat storage tank in which the heat storage material is disposed,
    The heat medium flows from the first heat storage tank to the second heat storage tank, and the heat medium flows from the second heat storage tank to the third heat storage tank,
    The control means includes
    Controlling the refrigerator outlet temperature to be a first target temperature;
    Controlling the refrigerator outlet temperature to be a second target temperature lower than the first target temperature. A heat storage method for a heat storage system, comprising:
PCT/JP2013/060249 2012-04-04 2013-04-03 Heat storage system and heat storage method for heat storage system WO2013151105A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-085702 2012-04-04
JP2012085702A JP5875925B2 (en) 2012-04-04 2012-04-04 Thermal storage system and thermal storage method for thermal storage system

Publications (1)

Publication Number Publication Date
WO2013151105A1 true WO2013151105A1 (en) 2013-10-10

Family

ID=49300585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/060249 WO2013151105A1 (en) 2012-04-04 2013-04-03 Heat storage system and heat storage method for heat storage system

Country Status (2)

Country Link
JP (1) JP5875925B2 (en)
WO (1) WO2013151105A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103712304A (en) * 2013-12-27 2014-04-09 长兴酷莱科技有限公司 Energy storage air conditioner system of mobile base station
CN106440141A (en) * 2016-11-03 2017-02-22 深圳市贝思特美科技有限公司 Automatic control energy storage and conservation device and control method thereof
CN106969449A (en) * 2017-04-17 2017-07-21 深圳达实智能股份有限公司 Mesolimnion cuts down the water energy-storage system and its application method with utilizing
WO2020021014A1 (en) * 2018-07-26 2020-01-30 ETH Zürich Thermocline control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7259622B2 (en) * 2019-07-29 2023-04-18 パナソニックホールディングス株式会社 Cooling system and its operation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211906A (en) * 1982-06-03 1983-12-09 Nissan Motor Co Ltd Air conditioning device for vehicle
JPH11311454A (en) * 1998-04-28 1999-11-09 Taikisha Ltd Latent heat storage type heat source system
JP2002337537A (en) * 2000-05-26 2002-11-27 Denso Corp Air conditioner for vehicle
JP2004050991A (en) * 2002-07-22 2004-02-19 Denso Corp Cold storage type refrigeration cycle device
JP2006036171A (en) * 2004-07-30 2006-02-09 Denso Corp Brine type air-conditioner
JP2010234837A (en) * 2009-03-30 2010-10-21 Nissan Motor Co Ltd Air conditioner for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58211906A (en) * 1982-06-03 1983-12-09 Nissan Motor Co Ltd Air conditioning device for vehicle
JPH11311454A (en) * 1998-04-28 1999-11-09 Taikisha Ltd Latent heat storage type heat source system
JP2002337537A (en) * 2000-05-26 2002-11-27 Denso Corp Air conditioner for vehicle
JP2004050991A (en) * 2002-07-22 2004-02-19 Denso Corp Cold storage type refrigeration cycle device
JP2006036171A (en) * 2004-07-30 2006-02-09 Denso Corp Brine type air-conditioner
JP2010234837A (en) * 2009-03-30 2010-10-21 Nissan Motor Co Ltd Air conditioner for vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103712304A (en) * 2013-12-27 2014-04-09 长兴酷莱科技有限公司 Energy storage air conditioner system of mobile base station
CN103712304B (en) * 2013-12-27 2016-01-13 长兴酷莱科技有限公司 Mobile base station energy storage air conditioner system
CN106440141A (en) * 2016-11-03 2017-02-22 深圳市贝思特美科技有限公司 Automatic control energy storage and conservation device and control method thereof
CN106440141B (en) * 2016-11-03 2019-01-29 深圳市中能泰富科技有限公司 A kind of the energy-storage economical device and its control method of automatic control
CN106969449A (en) * 2017-04-17 2017-07-21 深圳达实智能股份有限公司 Mesolimnion cuts down the water energy-storage system and its application method with utilizing
CN106969449B (en) * 2017-04-17 2019-11-22 深圳达实智能股份有限公司 The water energy-storage system and its application method that mesolimnion is cut down and utilized
WO2020021014A1 (en) * 2018-07-26 2020-01-30 ETH Zürich Thermocline control method
US11821692B2 (en) 2018-07-26 2023-11-21 ETH Zürich Thermocline control method

Also Published As

Publication number Publication date
JP2013217508A (en) 2013-10-24
JP5875925B2 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP6857883B2 (en) Geothermal utilization system and geothermal utilization method
KR101222331B1 (en) Heat-pump hot water apparatus
CN107110570A (en) Heat storage type air conditioner
US9157654B2 (en) Heat pump system
US20140230477A1 (en) Hot water supply air conditioning system
JP5875925B2 (en) Thermal storage system and thermal storage method for thermal storage system
US20120180984A1 (en) Heat-accumulating hot-water-supplying air conditioner
JP5492346B2 (en) Air conditioning and hot water supply system
JP2007218463A (en) Heat pump hot water supply heating/cooling device
JP2012042098A (en) Operation method of air conditioner and refrigerating machine
JP4934009B2 (en) Heat source water supply system
JP5256462B2 (en) Thermal insulation device for open type hot water storage tank
JP5828219B2 (en) Cogeneration system, waste heat utilization apparatus, cogeneration system control method, and heat pump hot water supply apparatus
KR101001293B1 (en) Energy-saving ice thermal storage system for separating cold charge and discharge pump
JP5528903B2 (en) Absorption type air conditioning and hot water supply system
JP2010085009A (en) Air conditioning method, air conditioning system and method of controlling air conditioning system
EA027263B1 (en) Heat supply method and heat supply system
JP5508668B2 (en) Heat medium supply system
JP2008224155A (en) Ice heat storage type heat source machine device and its control method
JP6118065B2 (en) Water-cooled air conditioning system and operation control method thereof
JP2005141913A (en) Fuel cell exhaust heat utilization system and its operation method
JP5608033B2 (en) Heating mode switching device
US20220074637A1 (en) Electric heating and cooling system
JP6116093B2 (en) Heat source system
JP2007278655A (en) Heat storage type hot water supplier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13772278

Country of ref document: EP

Kind code of ref document: A1