KR101001293B1 - Energy-saving ice thermal storage system for separating cold charge and discharge pump - Google Patents

Energy-saving ice thermal storage system for separating cold charge and discharge pump Download PDF

Info

Publication number
KR101001293B1
KR101001293B1 KR1020100063481A KR20100063481A KR101001293B1 KR 101001293 B1 KR101001293 B1 KR 101001293B1 KR 1020100063481 A KR1020100063481 A KR 1020100063481A KR 20100063481 A KR20100063481 A KR 20100063481A KR 101001293 B1 KR101001293 B1 KR 101001293B1
Authority
KR
South Korea
Prior art keywords
cooling
pump
cold
temperature
brine
Prior art date
Application number
KR1020100063481A
Other languages
Korean (ko)
Inventor
강한기
Original Assignee
강한기
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강한기 filed Critical 강한기
Priority to KR1020100063481A priority Critical patent/KR101001293B1/en
Application granted granted Critical
Publication of KR101001293B1 publication Critical patent/KR101001293B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PURPOSE: An energy-saving cold storage system with separate cold storage/cold release pumps is provided to prevent unnecessary power consumption by actuating only the cold release pump in a cold release mode. CONSTITUTION: An energy-saving cold storage system comprises a hot storage tank(110), a freezer(120), a heat exchanger(130), a closed cold storage circuit(140), a cold storage pump(150), a closed cold release circuit(160), a cold release pump(170), and a controller(180). The hot storage tank stores cold using midnight electricity. The freezer comprises a cooling tower and a cooling water pump to form a closed freezing circuit. The heat exchanger comprises a temperature sensor for measuring the temperature of cooling water and lowers the temperature of the cooling water through heat exchange with brine. The closed cold storage circuit connects the hot storage tank and the freezer. The cold storage pump is installed in the closed cold storage circuit to circulate brine. The closed cold release circuit connects the hot storage tank and the heat exchanger. The cold release pump is installed in the closed cold release circuit to circulate brine.

Description

축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템{ENERGY-SAVING ICE THERMAL STORAGE SYSTEM FOR SEPARATING COLD CHARGE AND DISCHARGE PUMP}Energy-saving ice heat storage system separating shaft and cooling pump {ENERGY-SAVING ICE THERMAL STORAGE SYSTEM FOR SEPARATING COLD CHARGE AND DISCHARGE PUMP}

본 발명은 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템에 관한 것으로서, 상세하게는 축열조를 중심으로 냉방기측과 열교환기측으로 축냉 폐회로와, 방냉 폐회로를 각각 형성하고, 각각의 폐회로에 냉방기와 열교환기의 부하 용량에 맞게 산정된 축냉 펌프와 방냉 펌프를 설치하여 축냉 시에는 축냉 펌프만을 방냉, 즉 냉방 시에는 방냉 펌프만을 동작시키도록 하는 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템에 관한 것이다.The present invention relates to an energy-saving ice heat storage system in which an axial cooling pump is separated, and specifically, a cold storage closed circuit and an air cooling closed circuit are respectively formed on a cooler side and a heat exchanger side mainly on a heat storage tank, and a cooler and a heat exchanger are formed on each closed circuit. The present invention relates to an energy-saving ice heat storage system in which an axial cooling pump and an anti-cooling pump are installed according to the load capacity of the engine, and the axial cooling pump is separated from the cold storage pump.

일반적으로 빙축열 냉방시스템은 전기요금이 싼 심야전기로 야간에 저온냉동기를 가동시켜 냉열을 축열시킨 후 주간에 저온냉동기의 가동을 정지시킨 상태에서도 그 축열된 냉열을 이용하여 냉방이 이루어질 수 있도록 된 공조기로 주로 대형건물에 설치 및 운용된다.In general, ice heat storage cooling system is a midnight electricity with a low electric charge, which operates a low temperature freezer at night to accumulate cold heat, and an air conditioner capable of cooling by using the stored heat stored in the state in which the low temperature freezer is stopped during the day. It is mainly installed and operated in large buildings.

이러한 빙축열 냉방시스템은 축열조 내부에 열을 쉽게 흡수하는 캡슐을 충전하고 그 물질에 고온의 브라인(brine; 에칠렌그리콜)을 통과시켜 1차 열교환이 이루어지게 한 후 열원을 저장하고, 저장된 열원을 브라인을 통해 폐회로를 구성한 열교환기 측으로 보내 열교환기에서 또 다른 폐회로를 구성한 냉수순환수와 2차 열교환이 이루어지게 하고, 다시 이 열교환된 순환수를 팬코일유니트 등의 방열기로 보내 3차 열교환, 즉 냉방이 이루어질 수 있게 구성되어 있으며, 축열조 내부의 물질은 보편적으로 아이스캡슐(ice ball; 빙축볼)이 사용되고, 아이스캡슐은 구 형상의 플라스틱 용기에 물과 조핵재(상온결빙재)가 희석된 용액을 캡슐에 넣어 밀봉한 것으로 구성되어 있다.The ice heat storage cooling system fills a capsule that easily absorbs heat inside the heat storage tank, passes a high temperature brine (Ethylene glycol) through the material to allow a first heat exchange, and stores a heat source, and then stores the stored heat source. To send the heat exchanger side of the closed circuit to the second heat exchanger with the cold water circulating water which constitutes another closed circuit, and then send the heat exchanged circulating water to a radiator such as a fan coil unit. The material inside the heat storage tank is generally used as an ice capsule (ice ball), the ice capsule is a solution of dilute water and nucleated material (room freezing material) in a spherical plastic container It consists of sealed in a capsule.

도 1은 일반적인 빙축열 냉방시스템을 나타낸 계통도이다.1 is a system diagram showing a general ice heat storage cooling system.

냉방시 제 1브라인순환로(10) 상의 브라인펌프(20)가 작동되면, 축열조(30) 내부의 저온 브라인이 제 1삼방 밸브(40)를 통해 열교환기(70) 측으로 유입된다.When the brine pump 20 on the first brine circulation path 10 is operated during cooling, the low temperature brine inside the heat storage tank 30 flows into the heat exchanger 70 through the first three-way valve 40.

열교환기(70) 측으로 유입된 저온의 브라인은 브라인유입관(77)을 통해 유입되어 냉수유입관(71)과 냉수배출관(73) 및 순환 펌프(75)를 통해 열교환기(70) 내부를 순환하는 냉수와 열교환이 이루어지면서 고온의 브라인으로 상태 변화된 후 브라인배출관(79)을 통해 다시 브라인순환로(10) 측으로 송출되고, 이 송출된 고온의 브라인은 미동작되는 냉동기(50)를 관통하여 제 2삼방 밸브(60)를 거쳐 브라인펌프(20)로 유입되는 식으로 냉방을 위한 브라인의 순환이 연속적으로 이루어지게 되는 것이다. 이때, 냉동기(50)는 냉각탑(51)과, 냉방수펌프(53)와 함께 폐회로로 구성된다.The low temperature brine introduced into the heat exchanger 70 is introduced through the brine inlet pipe 77 to circulate the inside of the heat exchanger 70 through the cold water inlet pipe 71, the cold water discharge pipe 73, and the circulation pump 75. After the heat exchange with the cold water is changed to the state of the high temperature brine is sent out to the brine circulation path 10 again through the brine discharge pipe 79, the high temperature brine is sent through the non-operating refrigerator 50, the second Through the three-way valve 60 is introduced into the brine pump 20 is the circulation of the brine for cooling is made continuously. At this time, the refrigerator 50 is configured in a closed circuit together with the cooling tower 51 and the cooling water pump 53.

축냉시 브라인순환로(10) 상의 브라인펌프(20)가 작동되면, 축열조(30) 내부의 고온 브라인이 토출되고, 이 토출된 고온의 브라인은 제 1삼방 밸브(40)를 통해 냉동기(50) 측으로 공급된다. 그리고 이 공급된 고온의 브라인은 냉동기(50)와 열교환되면서 저온 상태로 변화되는 것이며, 이 저온의 브라인은 제 2삼방 밸브(60)를 통해 축열조(30) 내부로 유입되는 식으로 연속 반복적으로 행해짐으로써 상기 축열조(30) 내부의 아이스 캡슐에 대한 제빙이 이루어지게 되는 것이다.When the brine pump 20 on the brine circulation path 10 is operated during the cold storage, the high temperature brine inside the heat storage tank 30 is discharged, and the discharged high temperature brine is directed to the freezer 50 through the first three-way valve 40. Supplied. The supplied high temperature brine is changed to a low temperature state by heat exchange with the refrigerator 50, and this low temperature brine is continuously and repeatedly performed in the heat storage tank 30 through the second three-way valve 60. As a result, ice making is performed on the ice capsule in the heat storage tank 30.

그러나, 우리나라를 포함하여 4계절이 뚜렷한 지역에서는 통상 봄(5월 내지 6월) 및 가을(9월 내지 10월)에 요구되는 냉방 부하가 약 40% 이하로 낮아지는 데, 브라인을 공급하기 위한 브라인 펌프는 냉동기의 수두와, 열교환기의 수두를 합산하고, 이를 반영하여 용량을 산정한 후 냉방 부하 용량의 크고 작음에 관계없이 100% 용량으로 가동되어 부하에 일정 유량을 공급하게 되므로 불필요한 동력 및 에너지 낭비 또는 손실이 발생하는 문제점이 있었다. 예를 들어 냉방기의 수두가 10m, 열교환기의 수두가 10m이며, 유량이 1000lpm인 경우 용량은 20㎾/h이며, 이를 24시간 동작시키는 경우 480㎾/h가 소모된다.However, in four distinct regions, including Korea, the cooling load required for spring (May-June) and autumn (September-October) is lowered to about 40% or less. The brine pump sums the head of the refrigerator and the head of the heat exchanger, calculates the capacity by reflecting this, and operates the 100% capacity regardless of the large or small cooling load capacity to supply a certain flow rate to the load. There was a problem that waste or loss of energy occurs. For example, if the head of the air conditioner is 10m, the head of the heat exchanger is 10m, and the flow rate is 1000lpm, the capacity is 20 kW / h, and when it is operated for 24 hours, 480 kW / h is consumed.

또한, 이러한 종래의 빙축열 냉방시스템은 냉동기가 축냉방시 모두 냉동기를 통과하기 때문에 냉동기 내부의 오일이 동결되는 것을 막도록 내부의 오일 히터를 축냉방시 항시 동작시키고, 제 2삼방밸브의 누수를 별도로 감시하여 누수 발생시 열교환기의 순환 펌프를 동작시켜 동파를 방지하기 때문에 추가적으로 불필요한 동력 및 에너지 낭비 또는 손실이 발생하는 문제점이 있었다.In addition, the conventional ice heat storage cooling system operates the oil heater at all times during the cooling of the refrigerant to prevent the oil inside the freezer from freezing because the freezer passes all the freezers during the cooling of the air. There was a problem in that unnecessary power and energy wastage or loss was generated because it prevents freezing by operating the circulation pump of the heat exchanger when a leak occurs by monitoring.

본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 축열조를 중심으로 냉방기측과 열교환기측으로 축냉 폐회로와, 방냉 폐회로를 각각 형성하고, 각각의 폐회로에 냉방기와 열교환기의 부하 용량에 맞게 산정된 축냉 펌프와 방냉 펌프를 설치하여 축냉 시에는 축냉 펌프만을 방냉, 즉 냉방 시에는 방냉 펌프만을 동작시킴으로써 불필요한 동력 및 에너지 낭비 또는 손실이 발생하는 것을 방지하도록 하는 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템을 제공하는데 그 목적이 있다.The present invention is to solve the above problems, and to form a heat-cooled closed circuit and the air-cooled closed circuit to the air conditioner side and the heat exchanger side around the heat storage tank, respectively, and to calculate the load capacity of the air conditioner and the heat exchanger in each closed circuit An energy-saving ice heat storage system is provided by separating the axial and air-cooled pumps by installing a pump and an air-cooled pump to prevent cooling of only the cold-cooled pump when the air is cooled, that is, by operating only the air-cooled pump when cooling. The purpose is to provide.

또한, 본 발명은 방냉 펌프에 인버터를 적용하여 냉방 부하에 따라 냉매의 유량을 조절함으로써 불필요한 동력 및 에너지 낭비 또는 손실을 막고, 효율 향상 및 운전비 저감 효과를 달성할 수 있도록 하는 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템을 제공하는데 다른 목적이 있다.In addition, the present invention by applying an inverter to the cooling pump to adjust the flow rate of the refrigerant in accordance with the cooling load to prevent unnecessary power and energy waste or loss, to separate the axial and cooling pump to achieve the effect of improving efficiency and operating cost reduction Another purpose is to provide an energy-saving ice heat storage system.

또, 본 발명은 방냉 시에는 브라인이 냉동기로 유입되는 것을 차단함으로써 냉동기의 오일 히터가 불필요하게 작동되어 불필요한 동력 및 에너지 낭비 또는 손실을 막도록 하는 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템을 제공하는데 또 다른 목적이 있다.In addition, the present invention provides an energy-saving ice heat storage system that separates the axial and air-cooling pump to prevent the brine from flowing into the freezer during cooling, thereby unnecessary operation of the oil heater of the freezer to prevent unnecessary power and energy waste or loss. There is another purpose.

또, 본 발명은 방냉 시에는 냉방 부하가 축열조의 성능을 초과하는 경우 축냉 펌프와 냉동기를 동작시키되, 방냉 펌프를 인버터 펌프로 적용하여 냉방 부하에 따라 냉매의 유량을 조절함으로써 냉방 부하에 따라 효과적으로 대응할 수 있도록 하는 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템을 제공하는데 또 다른 목적이 있다.In addition, when the cooling load exceeds the performance of the heat storage tank during the cooling, the present invention operates the storage cooling pump and the freezer, and by applying the cooling pump as an inverter pump to adjust the flow rate of the refrigerant according to the cooling load to effectively respond to the cooling load. It is another object to provide an energy-saving ice heat storage system that separates an axial cooling pump.

상기와 같은 목적을 달성하기 위한 본 발명의 특징은,Features of the present invention for achieving the above object,

심야전력을 이용하여 빙축열을 저장하는 축열조와; 냉각탑과, 냉방수펌프를 구비하여 냉동 폐회로를 구성하는 냉동기와; 브라인과 냉방수를 열교환시켜 냉방수를 냉각시키고, 냉방수 순환회로 상에 상기 냉방수의 온도를 측정하는 온도 센서를 구비하는 열교환기와; 상기 축열조와 냉동기를 상호 연결하는 축냉 폐회로와; 상기 축냉 폐회로에 설치되어 브라인을 순환시키는 축냉 펌프와; 상기 축열조와 열교환기를 상호 연결하는 방냉 폐회로와; 상기 방냉 폐회로에 설치되어 브라인을 순환시키고, 인버터 펌프인 방냉 펌프; 및 축냉시 상기 축냉 펌프를 온시키고, 상기 방냉 펌프를 오프시켜 상기 축냉 폐회로를 통해 상기 축열조에 축냉을 수행하고, 방냉시 상기 축냉 펌프를 오프시키고, 상기 방냉 펌프를 온시켜 상기 방냉 폐회로를 통해 상기 축열조에 축냉된 열에너지를 상기 열교환기에서 열교환시켜 냉방을 수행하되, 상기 온도 센서로부터 냉방수의 온도를 측정하여 냉방수 온도가 기준 온도보다 낮은 경우 상기 방냉 펌프만을 동작시켜 상기 방냉 펌프의 유량을 제어하여 냉방 부하에 대응되도록 제어하고, 상기 온도 센서로부터 냉방수의 온도를 측정하여 냉방수 온도가 기준 온도보다 높은 경우 상기 방냉 펌프 및 상기 축냉 펌프를 모두 동작시킨 상태에서 상기 방냉 펌프의 유량을 제어하여 냉방 부하에 대응되도록 제어하는 컨트롤러를 포함하는 것을 특징으로 한다.A heat storage tank for storing ice heat storage by using midnight electric power; A refrigerator having a cooling tower and a cooling water pump to configure a refrigeration closed circuit; A heat exchanger having a temperature sensor that exchanges brine and cooling water to cool the cooling water, and measures a temperature of the cooling water on a cooling water circulation circuit; A heat storage closed circuit interconnecting the heat storage tank and the refrigerator; A cold storage pump installed in the cold storage closed circuit to circulate the brine; An anti-cooling closed circuit interconnecting the heat storage tank and the heat exchanger; An anti-cooling pump installed in the anti-cooling closed circuit to circulate the brine and being an inverter pump; And turning on the accumulator pump when accumulating cold, turning off the refrigeration pump to perform the refrigeration in the heat storage tank through the accumulator closed circuit, turning off the accumulator pump when cooling, and turning on the refrigeration pump to turn on the refrigeration pump Cooling is performed by heat-exchanging the heat energy stored in the heat storage tank in the heat exchanger, and by measuring the temperature of the cooling water from the temperature sensor, when the cooling water temperature is lower than the reference temperature, only the cooling pump is operated to control the flow rate of the cooling pump. By controlling the cooling load, and measuring the temperature of the cooling water from the temperature sensor, and when the cooling water temperature is higher than the reference temperature, the flow rate of the cooling pump is controlled by operating both the cooling pump and the storage pump. It characterized in that it comprises a controller for controlling to correspond to the cooling load .

삭제delete

삭제delete

삭제delete

상기와 같이 구성되는 본 발명인 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템에 따르면, 축열조를 중심으로 냉방기측과 열교환기측으로 축냉 폐회로와, 방냉 폐회로를 각각 형성하고, 각각의 폐회로에 냉방기와 열교환기의 부하 용량에 맞게 산정된 축냉 펌프와 방냉 펌프를 설치하여 축냉 시에는 축냉 펌프만을 방냉, 즉 냉방 시에는 방냉 펌프만을 동작시킴으로써 불필요한 동력 및 에너지 낭비 또는 손실이 발생하는 것을 방지할 수 있다.According to the energy-saving ice heat storage system which separates the axial-cooling pump of the present invention comprised as mentioned above, a cold-cooled closed circuit and an air-cooled closed circuit are formed in a cooler side and a heat exchanger side centering on a heat storage tank, respectively, and a cooler and a heat exchanger in each closed circuit It is possible to prevent unnecessary power and energy waste or loss by installing only the cold storage pump for cooling, ie, cooling only the cold storage pump during cooling, by installing a storage cooling pump and an anti-cooling pump calculated according to the load capacity.

또한, 본 발명에 따르면 방냉 펌프를 인버터 펌프로 적용하여 냉방 부하에 따라 냉매의 유량을 조절함으로써 불필요한 동력 및 에너지 낭비 또는 손실을 막고, 효율 향상 및 운전비 저감 효과를 달성할 수 있다.In addition, according to the present invention, by applying the air-cooling pump as an inverter pump to adjust the flow rate of the refrigerant in accordance with the cooling load to prevent unnecessary power and energy waste or loss, it is possible to achieve an efficiency improvement and operation cost reduction effect.

또, 본 발명에 따르면 방냉 시에는 브라인이 냉동기로 유입되는 것을 차단함으로써 냉동기의 오일 히터가 불필요하게 작동되어 불필요한 동력 및 에너지 낭비 또는 손실을 막을 수 있다.In addition, according to the present invention by blocking the brine flow into the freezer during cooling, the oil heater of the freezer is operated unnecessarily to prevent unnecessary power and energy waste or loss.

또, 본 발명에 따르면 방냉 시에는 냉방 부하가 축열조의 성능을 초과하는 경우 축냉 펌프와 냉동기를 동작시키되, 방냉 펌프에 적용된 인버터를 이용하여 냉방 부하에 따라 냉매의 유량을 조절함으로써 냉방 부하에 따라 효과적으로 대응할 수 있다.In addition, according to the present invention, when the cooling load exceeds the performance of the heat storage tank during cooling, the storage pump and the refrigerator are operated, and the flow rate of the refrigerant is effectively controlled according to the cooling load by using an inverter applied to the cooling pump. It can respond.

도 1은 일반적인 빙축열 냉방시스템을 나타낸 계통도이다.
도 2는 본 발명에 따른 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템의 구성을 개략적으로 나타낸 계통도이다.
도 3a 내지 도 3c는 본 발명에 따른 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템의 동작을 설명하기 위한 설명도이다.
1 is a system diagram showing a general ice heat storage cooling system.
Figure 2 is a schematic diagram showing the configuration of the energy-saving ice heat storage system separated from the axial cooling pump according to the present invention.
3A to 3C are explanatory diagrams for explaining the operation of the energy-saving ice heat storage system in which the axial cooling pump is separated.

이하, 본 발명에 따른 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템의 구성을 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings, the configuration of the energy-saving ice heat storage system separated from the axial-cooling pump according to the present invention will be described in detail.

하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. The following terms are defined in consideration of the functions of the present invention, and may be changed according to the intentions or customs of the user, the operator, and the like. Therefore, the definition should be based on the contents throughout this specification.

도 2는 본 발명에 따른 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템의 구성을 개략적으로 나타낸 계통도이다.Figure 2 is a schematic diagram showing the configuration of the energy-saving ice heat storage system separated from the axial cooling pump according to the present invention.

도 2를 참조하면, 본 발명에 따른 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템(100)은 축열조(110)와, 냉동기(120)와, 열교환기(130)와, 축냉 폐회로(140)와, 축냉 펌프(150)와, 방냉 폐회로(160)와, 방냉 펌프(170) 및 컨트롤러(180)로 구성된다.Referring to Figure 2, the energy-saving ice heat storage system 100 is separated from the storage and cooling pump according to the present invention is the heat storage tank 110, the refrigerator 120, the heat exchanger 130, the cold storage closed circuit 140 and And a cold storage pump 150, a cold storage closed circuit 160, a cold storage pump 170, and a controller 180.

먼저, 축열조(110)는 통상의 구조로서 내부에 아이스캡슐이 마련되어 유입되는 브라인에 의해 아이스캡슐이 냉각되어 빙축열을 저장한다.First, the heat storage tank 110 has an ice capsule provided by the brine which is provided inside the ice capsule as a conventional structure to store the ice heat storage.

그리고, 냉동기(120)는 통상의 구조로 냉각탑(121)과, 냉방수펌프(123)를 구비하여 냉각 폐회로(125)를 구성한다.In addition, the refrigerator 120 includes a cooling tower 121 and a cooling water pump 123 having a normal structure to configure the cooling closed circuit 125.

또한, 열교환기(130)는 통상의 구조로 브라인과 냉방수 순환회로(131)를 통해 순환되는 냉방수를 열교환시켜 냉방수를 냉각시킨다. 여기에서, 열교환기(130)의 냉방수 순환회로(131) 상에는 냉방수의 온도를 측정하는 온도 센서(133)를 더 구비하고, 냉방수를 순환시키는 냉방수 순환 펌프(135)가 구비된다.In addition, the heat exchanger 130 heats the cooling water circulated through the brine and the cooling water circulation circuit 131 in a conventional structure to cool the cooling water. Here, the cooling water circulation circuit 131 of the heat exchanger 130 is further provided with a temperature sensor 133 for measuring the temperature of the cooling water, the cooling water circulation pump 135 for circulating the cooling water is provided.

또, 축냉 폐회로(140)는 축열조(110)와 냉동기(120)를 상호 연결하여 브라인을 축열조(110)와 냉동기(120)로 순환시킨다.In addition, the heat storage closed circuit 140 connects the heat storage tank 110 and the freezer 120 to circulate the brine to the heat storage tank 110 and the freezer 120.

한편, 축냉 펌프(150)는 축냉 폐회로(140)에 설치되고, 하기에서 설명할 컨트롤러(180)의 제어에 따라 온/오프되고, 냉방 부하에 따라 출력이 조절되어 브라인을 순환시킨다. 여기에서, 축냉 펌프(150)는 냉동기(120)의 수두값과 브라인 유량에 따라 용량이 결정된다.On the other hand, the cold storage pump 150 is installed in the cold storage closed circuit 140, on / off under the control of the controller 180 to be described later, the output is adjusted according to the cooling load to circulate the brine. Here, the capacity of the cold storage pump 150 is determined according to the head value of the refrigerator 120 and the brine flow rate.

그리고, 방냉 폐회로(160)는 축열조(110)와 열교환기(130)를 상호 연결하여 브라인을 축열조(110)와 열교환기(130)로 순환시킨다.In addition, the anti-cooling closed circuit 160 circulates the brine to the heat storage tank 110 and the heat exchanger 130 by interconnecting the heat storage tank 110 and the heat exchanger 130.

또한, 방냉 펌프(170)는 인버터 펌프로서 방냉 폐회로(160)에 설치되어 컨트롤러(180)의 제어에 따라 온/오프되어 브라인을 순환시킨다. 여기에서, 방냉 펌프(170)는 열교환기(130)의 수두값과 브라인 유량에 따라 용량이 결정되며, 방냉 펌프(170)와 축냉 펌프(150)의 용량의 합은 냉방 최대 피크치에 해당되는 값을 갖는 것이 바람직하다.In addition, the anti-cooling pump 170 is installed in the air-cooled closed circuit 160 as an inverter pump and turned on / off under the control of the controller 180 to circulate the brine. Herein, the capacity of the air-cooled pump 170 is determined according to the head value of the heat exchanger 130 and the brine flow rate, and the sum of the capacity of the air-cooled pump 170 and the heat storage pump 150 corresponds to a cooling maximum peak value. It is preferable to have.

또, 컨트롤러(180)는 축냉시 축냉 펌프(150)를 온시키고, 방냉 펌프(170)를 오프시켜 축냉 폐회로(140)를 통해 축열조에 축냉을 수행하고, 방냉시 축냉 펌프(150)를 오프시키고, 방냉 펌프(170)를 온시켜 방냉 폐회로(160)를 통해 축열조(110)에 축냉된 열에너지를 열교환기(130)에서 열교환시켜 냉방을 수행한다. 여기에서, 컨트롤러(180)는 방냉시 온도 센서(133)로부터 냉방수의 온도를 측정하여 냉방수 온도가 기준 온도(예를 들어, 7℃)보다 낮은 경우 방냉 펌프(170)만을 동작시켜 방냉 펌프(170)의 유량을 제어하여 냉방 부하에 대응되도록 제어하고, 온도 센서(133)로부터 냉방수의 온도를 측정하여 냉방수 온도가 기준 온도보다 높은 경우 방냉 펌프(170) 및 축냉 펌프(150)를 모두 동작시킨 상태에서 방냉 펌프(170)의 유량을 제어하여 냉방 부하에 대응되도록 제어한다.
In addition, the controller 180 turns on the cold storage pump 150 at the time of cold storage, turns off the cold storage pump 170 to perform cold storage in the heat storage tank through the cold storage closed circuit 140, and turns off the cold storage pump 150 at the time of cold storage. In addition, the cooling pump 170 is turned on to heat the heat energy stored in the heat storage tank 110 through the heat-cooling closed circuit 160 in the heat exchanger 130 to perform cooling. Here, the controller 180 measures the temperature of the cooling water from the temperature sensor 133 at the time of cooling, and when only the cooling water temperature is lower than the reference temperature (for example, 7 ℃) by operating only the cooling pump 170 to cool the cooling pump By controlling the flow rate of the 170 to control the cooling load, and measures the temperature of the cooling water from the temperature sensor 133, when the cooling water temperature is higher than the reference temperature, the air-cooling pump 170 and the storage cooling pump 150 The flow rate of the anti-cooling pump 170 is controlled in a state in which all are operated to control to correspond to a cooling load.

이하, 본 발명에 따른 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템의 동작을 첨부된 도면을 참조하여 상세하게 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings, the operation of the energy-saving ice heat storage system separating the axial cooling pump according to the present invention will be described in detail.

도 3a 내지 도 3c는 본 발명에 따른 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템의 동작을 설명하기 위한 설명도이다.3A to 3C are explanatory diagrams for explaining the operation of the energy-saving ice heat storage system in which the axial cooling pump is separated.

《축냉》<< cold storage >>

도 3a에 도시된 바와 같이 축냉 폐회로(140)에 설치된 축냉 펌프(150)가 컨트롤러(180)의 제어에 따라 동작되면 축열조(110) 내부의 고온 브라인이 축냉 폐회로(140)를 경유하여 작동중의 냉동기(120) 측으로 공급된다. 그리고 이 공급된 고온의 브라인은 냉동기(120)와 열교환되면서 저온 상태로 변화되는 것이며, 이 저온의 브라인은 다시 축냉 폐회로(140)를 통해 축열조(110)로 유입된다. 상기와 같이 브라인이 연속 냉동기(120)를 순환함으로써 상기 축열조(110) 내부의 아이스 캡슐에 대한 제빙이 이루어지게 되는 것이다. 이때, 방냉 펌프(170)는 미동작되기 때문에 축열조(110)의 브라인은 축냉 폐회로(140)만을 순환하게 된다.
As shown in FIG. 3A, when the cold storage pump 150 installed in the cold storage closed circuit 140 is operated under the control of the controller 180, the high temperature brine inside the heat storage tank 110 is operating via the cold storage closed circuit 140. It is supplied to the refrigerator 120 side. The supplied high temperature brine is changed to a low temperature state by heat exchange with the refrigerator 120, and the low temperature brine is introduced into the heat storage tank 110 through the cold storage closed circuit 140 again. As described above, the brine is circulated through the continuous freezer 120 so that ice making of the ice capsule in the heat storage tank 110 is performed. At this time, since the anti-cooling pump 170 is inoperative, the brine of the heat storage tank 110 circulates only the heat storage closed circuit 140.

《방냉》<< air conditioner >>

도 3b에 도시된 바와 같이 방냉 폐회로(160)에 설치된 방냉 펌프(170)가 컨트롤러(180)의 제어에 따라 동작되면 축열조(110) 내부의 저온 브라인이 방냉 폐회로(160)를 경유하여 열교환기(130) 측으로 공급된다. 그리고 이 공급된 저온의 브라인은 열교환기(130)를 경유하는 냉방수와 열교환되면서 고온 상태로 변화되는 것이며, 이 고온의 브라인은 다시 축냉 폐회로(140)를 통해 축열조(110)로 유입되어 저온의 브라인으로 변화된다.As shown in FIG. 3B, when the air-cooling pump 170 installed in the air-cooled closed circuit 160 is operated under the control of the controller 180, the low temperature brine inside the heat storage tank 110 passes through the air-cooled closed circuit 160. 130) is supplied to the side. And the supplied low temperature brine is changed to a high temperature state by heat exchange with the cooling water passing through the heat exchanger 130, the high temperature brine is introduced into the heat storage tank 110 through the cold storage closed circuit 140 again and the low temperature Is changed to brine.

한편, 컨트롤러(180)는 방냉시 온도 센서(133)로부터 냉방수의 온도를 측정하여 냉방수 온도가 기준 온도(예를 들어, 7℃)보다 낮은 경우에는 방냉 펌프(170)만을 동작시키되 방냉 펌프(170)의 유량을 제어하여 냉방 부하에 대응되도록 한다.
On the other hand, the controller 180 measures the temperature of the cooling water from the temperature sensor 133 at the time of cooling, when the cooling water temperature is lower than the reference temperature (for example, 7 ℃) to operate only the air-cooling pump 170, but the air-cooling pump The flow rate of 170 is controlled to correspond to the cooling load.

반대로, 컨트롤러(180)는 온도 센서(133)로부터 냉방수의 온도를 측정하여 냉방수 온도가 기준 온도보다 높은 경우 방냉 펌프(170) 및 축냉 펌프(150)를 모두 동작시킨다.On the contrary, the controller 180 measures the temperature of the cooling water from the temperature sensor 133 and operates both the cooling pump 170 and the storage cooling pump 150 when the cooling water temperature is higher than the reference temperature.

그러면, 축냉 폐회로(140)를 통해 열교환기(130) 측에서 배출되는 고온의 브라인이 냉동기(120)에서 냉각되어 축열조(110)에 저장된 저온의 브라인과 함께 방냉 폐회로(160)를 통해 열교환기(130) 측으로 전달된다.Then, the hot brine discharged from the heat exchanger 130 side through the cold storage closed circuit 140 is cooled in the freezer 120 and stored together with the low temperature brine stored in the heat storage tank 110. 130) to the side.

열교환기(130)에서 방냉 폐회로(160)를 통해 배출되는 고온의 브라인은 축냉 폐회로(140)를 통해 냉동기(120)로 일부가 유입되고, 나머지 일부가 축열조(110)로 유입되어 냉각된 후 방냉 폐회로(160)를 통해 다시 열교환기(130) 측으로 배출되어 연속 순환된다.The high temperature brine discharged from the heat exchanger 130 through the anti-cooling closed circuit 160 is partially introduced into the freezer 120 through the cold storage closed circuit 140, and the other part is cooled by being introduced into the heat storage tank 110 and cooled. It is discharged to the heat exchanger 130 again through the closed circuit 160 and continuously circulated.

이때, 컨트롤러(180)는 방냉 펌프(170)의 유량을 제어하여 냉방 부하에 대응되도록 한다.At this time, the controller 180 controls the flow rate of the anti-cooling pump 170 to correspond to the cooling load.

본 발명은 다양하게 변형될 수 있고 여러 가지 형태를 취할 수 있으며 상기 발명의 상세한 설명에서는 그에 따른 특별한 실시 예에 대해서만 기술하였다. 하지만 본 발명은 상세한 설명에서 언급되는 특별한 형태로 한정되는 것이 아닌 것으로 이해되어야 하며, 오히려 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.As those skilled in the art would realize, the described embodiments may be modified in various ways, all without departing from the spirit or scope of the present invention. It is to be understood, however, that the present invention is not limited to the specific forms referred to in the description, but rather includes all modifications, equivalents, and substitutions within the spirit and scope of the invention as defined by the appended claims. Should be.

30, 110 : 축열조 50, 120 : 냉동기
70, 130 : 열교환기 140 : 축냉 폐회로
150 : 축냉 펌프 160 : 방냉 폐회로
170 : 방냉 펌프 180 : 컨트롤러
30, 110: heat storage tank 50, 120: freezer
70, 130: heat exchanger 140: cold storage closed circuit
150: cold storage pump 160: air-cooled closed circuit
170: cooling pump 180: controller

Claims (4)

심야전력을 이용하여 빙축열을 저장하는 축열조와;
냉각탑과, 냉방수펌프를 구비하여 냉동 폐회로를 구성하는 냉동기와;
브라인과 냉방수를 열교환시켜 냉방수를 냉각시키고, 냉방수 순환회로 상에 상기 냉방수의 온도를 측정하는 온도 센서를 구비하는 열교환기와;
상기 축열조와 냉동기를 상호 연결하는 축냉 폐회로와;
상기 축냉 폐회로에 설치되어 브라인을 순환시키는 축냉 펌프와;
상기 축열조와 열교환기를 상호 연결하는 방냉 폐회로와;
상기 방냉 폐회로에 설치되어 브라인을 순환시키고, 인버터 펌프인 방냉 펌프; 및
축냉시 상기 축냉 펌프를 온시키고, 상기 방냉 펌프를 오프시켜 상기 축냉 폐회로를 통해 상기 축열조에 축냉을 수행하고, 방냉시 상기 축냉 펌프를 오프시키고, 상기 방냉 펌프를 온시켜 상기 방냉 폐회로를 통해 상기 축열조에 축냉된 열에너지를 상기 열교환기에서 열교환시켜 냉방을 수행하되, 상기 온도 센서로부터 냉방수의 온도를 측정하여 냉방수 온도가 기준 온도보다 낮은 경우 상기 방냉 펌프만을 동작시켜 상기 방냉 펌프의 유량을 제어하여 냉방 부하에 대응되도록 제어하고, 상기 온도 센서로부터 냉방수의 온도를 측정하여 냉방수 온도가 기준 온도보다 높은 경우 상기 방냉 펌프 및 상기 축냉 펌프를 모두 동작시킨 상태에서 상기 방냉 펌프의 유량을 제어하여 냉방 부하에 대응되도록 제어하는 컨트롤러를 포함하는 것을 특징으로 하는 축·방냉 펌프를 분리한 에너지 절약형 빙축열 시스템.
A heat storage tank for storing ice heat storage by using midnight electric power;
A refrigerator having a cooling tower and a cooling water pump to configure a refrigeration closed circuit;
A heat exchanger having a temperature sensor that exchanges brine and cooling water to cool the cooling water, and measures a temperature of the cooling water on a cooling water circulation circuit;
A heat storage closed circuit interconnecting the heat storage tank and the refrigerator;
A cold storage pump installed in the cold storage closed circuit to circulate the brine;
An anti-cooling closed circuit interconnecting the heat storage tank and the heat exchanger;
An anti-cooling pump installed in the anti-cooling closed circuit to circulate the brine, and being an inverter pump; And
When accumulating, the storage pump is turned on, the cooling pump is turned off to perform the cooling operation of the heat storage tank through the closed cooling circuit, and when cooling, the storage pump is turned off, and the cooling pump is turned on to turn on the cooling tank. By cooling the heat energy stored in the heat exchanger in the heat exchanger to perform cooling, by measuring the temperature of the cooling water from the temperature sensor, when the cooling water temperature is lower than the reference temperature only by operating the cooling pump to control the flow rate of the cooling pump Control to correspond to a cooling load, and measure the temperature of the cooling water from the temperature sensor and when the cooling water temperature is higher than the reference temperature, the cooling of the cooling pump by controlling the flow rate of the cooling pump in the state in which both the cooling pump and the storage pump It characterized in that it comprises a controller for controlling to correspond to the load ·-Cooling pump energy-saving, remove the ice storage system.
삭제delete 삭제delete 삭제delete
KR1020100063481A 2010-07-01 2010-07-01 Energy-saving ice thermal storage system for separating cold charge and discharge pump KR101001293B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100063481A KR101001293B1 (en) 2010-07-01 2010-07-01 Energy-saving ice thermal storage system for separating cold charge and discharge pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100063481A KR101001293B1 (en) 2010-07-01 2010-07-01 Energy-saving ice thermal storage system for separating cold charge and discharge pump

Publications (1)

Publication Number Publication Date
KR101001293B1 true KR101001293B1 (en) 2010-12-14

Family

ID=43512894

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100063481A KR101001293B1 (en) 2010-07-01 2010-07-01 Energy-saving ice thermal storage system for separating cold charge and discharge pump

Country Status (1)

Country Link
KR (1) KR101001293B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101701999B1 (en) * 2016-07-04 2017-02-02 강한기 Ice thermal storage system for operating refrigerated showcase and storage
KR101750410B1 (en) * 2016-11-30 2017-06-23 주식회사 티이애플리케이션 Ice thermal storage system
CN108518779A (en) * 2018-05-17 2018-09-11 中机十院国际工程有限公司 Fluid state ice heat pump system
CN109140633A (en) * 2018-09-29 2019-01-04 王工 Water cold accumulation device
KR20220104337A (en) 2021-01-18 2022-07-26 주식회사 이에스티 Remote cold storage system with separate PCM module and refrigerator for refrigerated vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205609A (en) 1999-01-18 2000-07-28 Hitachi Air Conditioning System Co Ltd Ice heat storage unit
JP2000266368A (en) * 1999-03-16 2000-09-29 Hitachi Air Conditioning System Co Ltd Air-conditioner system
JP2000310433A (en) 1999-04-27 2000-11-07 Kazutaro Oyabu Ice storage air conditioning system
KR100346016B1 (en) 1999-11-06 2002-08-01 한국과학기술연구원 Heat accumulation type cooling and heating combined system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000205609A (en) 1999-01-18 2000-07-28 Hitachi Air Conditioning System Co Ltd Ice heat storage unit
JP2000266368A (en) * 1999-03-16 2000-09-29 Hitachi Air Conditioning System Co Ltd Air-conditioner system
JP2000310433A (en) 1999-04-27 2000-11-07 Kazutaro Oyabu Ice storage air conditioning system
KR100346016B1 (en) 1999-11-06 2002-08-01 한국과학기술연구원 Heat accumulation type cooling and heating combined system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101701999B1 (en) * 2016-07-04 2017-02-02 강한기 Ice thermal storage system for operating refrigerated showcase and storage
KR101750410B1 (en) * 2016-11-30 2017-06-23 주식회사 티이애플리케이션 Ice thermal storage system
CN108518779A (en) * 2018-05-17 2018-09-11 中机十院国际工程有限公司 Fluid state ice heat pump system
CN108518779B (en) * 2018-05-17 2023-08-29 中机十院国际工程有限公司 Fluid ice heat pump system
CN109140633A (en) * 2018-09-29 2019-01-04 王工 Water cold accumulation device
KR20220104337A (en) 2021-01-18 2022-07-26 주식회사 이에스티 Remote cold storage system with separate PCM module and refrigerator for refrigerated vehicle

Similar Documents

Publication Publication Date Title
JP6857883B2 (en) Geothermal utilization system and geothermal utilization method
US9568235B2 (en) Thermal energy storage in a chiller system
JP5327308B2 (en) Hot water supply air conditioning system
JP5121747B2 (en) Geothermal heat pump device
KR101001293B1 (en) Energy-saving ice thermal storage system for separating cold charge and discharge pump
JP2008014563A (en) Cold storage type air conditioning system
JP4311924B2 (en) Cooling heat source equipment using free cooling
JP2013083439A (en) Hot water supply air conditioning system
KR101052465B1 (en) A dual type heat pump system using heat transfer and refrigerants
JP6344015B2 (en) Hot water system
JP2010085009A (en) Air conditioning method, air conditioning system and method of controlling air conditioning system
JP6415378B2 (en) Air conditioning system
JP4854399B2 (en) Cold water production system
JP2006017440A (en) Heat pump air conditioner
JP4464114B2 (en) Thermal storage device and thermal storage control method
KR200395419Y1 (en) Improved Heating and Cooling System
KR20070009872A (en) Electric generation air condition system and the control method for the same
KR101701999B1 (en) Ice thermal storage system for operating refrigerated showcase and storage
CN210153993U (en) Double-opening and double-closing single-working-condition ice-storage refrigeration air-conditioning system
CN113790541B (en) Refrigeration system, control method and refrigeration equipment
KR20140112928A (en) Two stage heat pump cooling and heating apparatus using air heat source
JP2013076509A (en) Hot-water-supply and air-conditioning system
CN209515909U (en) Energy-saving battery heat management system
JP2009186115A (en) Refrigerating cycle device
JP2013152045A (en) Cooling device and cooling system

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131206

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141203

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151029

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161205

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180316

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20190611

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20191231

Year of fee payment: 10