JP4464114B2 - Thermal storage device and thermal storage control method - Google Patents

Thermal storage device and thermal storage control method Download PDF

Info

Publication number
JP4464114B2
JP4464114B2 JP2003396984A JP2003396984A JP4464114B2 JP 4464114 B2 JP4464114 B2 JP 4464114B2 JP 2003396984 A JP2003396984 A JP 2003396984A JP 2003396984 A JP2003396984 A JP 2003396984A JP 4464114 B2 JP4464114 B2 JP 4464114B2
Authority
JP
Japan
Prior art keywords
temperature
heat storage
tank
refrigerant liquid
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003396984A
Other languages
Japanese (ja)
Other versions
JP2005156050A (en
Inventor
恵輔 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Electronics Corp
Original Assignee
NEC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Electronics Corp filed Critical NEC Electronics Corp
Priority to JP2003396984A priority Critical patent/JP4464114B2/en
Publication of JP2005156050A publication Critical patent/JP2005156050A/en
Application granted granted Critical
Publication of JP4464114B2 publication Critical patent/JP4464114B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

本発明は、ビルや工場などの建物を対象とした空調(冷房)システムなどに好適な冷熱用の蓄熱装置及びその蓄熱装置の蓄熱制御方法に関するものである。   The present invention relates to a heat storage device for cooling suitable for an air conditioning (cooling) system for buildings such as buildings and factories, and a heat storage control method for the heat storage device.

近年、ビルや工場などの建物を対象とした冷房システムの一つとして、夜間の電力を利用して冷熱を生成し、その生成した冷熱を蓄熱槽に貯蔵し、その貯蔵した冷熱を昼間に利用して冷房を行う蓄熱装置がある。従来の蓄熱装置は、冷水を蓄熱槽に貯蔵する水蓄熱方式が採用されていたが、この冷水を氷として貯蔵することで蓄熱槽の容積が1/6〜1/8程度に小さくできることから、近年では氷蓄熱方式が採用されている。以下に、図8〜図10を参照しながら従来の氷蓄熱方式の蓄熱装置の構成について説明する。なお、図8は、従来の氷蓄熱装置の概略構成を示す図であり、図9は、図8に示す冷水槽(10)の詳細な内部構成を示す図であり、図10は、図8に示す氷蓄熱槽(20)の詳細な内部構成を示す図である。   In recent years, as one of the cooling systems for buildings such as buildings and factories, cold energy is generated using electric power at night, the generated cold energy is stored in a heat storage tank, and the stored cold energy is used in the daytime. There is a heat storage device that performs cooling. Since the conventional heat storage device has adopted a water heat storage system for storing cold water in a heat storage tank, the volume of the heat storage tank can be reduced to about 1/6 to 1/8 by storing this cold water as ice, In recent years, an ice heat storage system has been adopted. Below, the structure of the conventional heat storage apparatus of an ice heat storage system is demonstrated, referring FIGS. 8-10. 8 is a diagram showing a schematic configuration of a conventional ice heat storage device, FIG. 9 is a diagram showing a detailed internal configuration of the cold water tank (10) shown in FIG. 8, and FIG. It is a figure which shows the detailed internal structure of the ice thermal storage tank (20) shown in FIG.

氷蓄熱方式の蓄熱装置は、図8に示すように、冷水槽(10)と、氷蓄熱槽(20)と、を有して構成されており、冷水槽(10)は更に、高温槽(11)と、中間槽(12)と、低温槽(13)と、に区分して構成されている。   As shown in FIG. 8, the ice heat storage type heat storage device includes a cold water tank (10) and an ice heat storage tank (20). The cold water tank (10) further includes a high temperature tank ( 11), an intermediate tank (12), and a low temperature tank (13).

高温槽(11)は、15℃の水を保有する冷水槽であり、低温槽(13)は、5℃の水を保有する冷水槽であり、中間槽(12)は高温槽(11)と低温槽(13)との中間の温度の水を保有する冷水槽である。なお、中間槽(12)は、図9に示すように、複数の槽に区分して構成されている。なお、図8に示す空調機などの熱負荷(50)の熱容量よりも水冷却機(40)の熱容量が大きい場合(熱負荷の熱容量<水冷却機の熱容量)は、冷水槽(10)の水は低温の水の割合が多くなる(蓄熱)。また、空調機などの熱負荷(50)の熱容量よりも水冷却機(40)の熱容量が小さい場合(熱負荷の熱容量>水冷却機の熱容量)は、冷水槽(10)の水は高温の水の割合が多くなる(放熱)。   The high temperature tank (11) is a cold water tank holding 15 ° C. water, the low temperature tank (13) is a cold water tank holding 5 ° C. water, and the intermediate tank (12) is a high temperature tank (11). It is a cold water tank which holds the water of intermediate temperature with a low temperature tank (13). In addition, as shown in FIG. 9, the intermediate tank (12) is divided into a plurality of tanks. In addition, when the heat capacity of the water cooler (40) is larger than the heat capacity of the heat load (50) of the air conditioner or the like shown in FIG. 8 (heat capacity of heat load <heat capacity of the water cooler), Water has a higher proportion of cold water (heat storage). Moreover, when the heat capacity of the water cooler (40) is smaller than the heat capacity of the heat load (50) of an air conditioner or the like (heat capacity of heat load> heat capacity of the water cooler), the water in the cold water tank (10) is hot. The proportion of water increases (heat dissipation).

氷蓄熱槽(20)は、氷を製氷し、冷熱を貯蔵する槽であり、図10に示すように、複数の槽に区分して構成されている。   The ice heat storage tank (20) is a tank for making ice and storing cold heat, and is divided into a plurality of tanks as shown in FIG.

次に、図11、図12を参照しながら、上記構成からなる蓄熱装置の制御動作について、蓄熱運転時と放熱運転時とに区分して説明する。   Next, with reference to FIGS. 11 and 12, the control operation of the heat storage device configured as described above will be described by dividing it into a heat storage operation and a heat radiation operation.

(蓄熱運転時における制御動作)
まず、図11を参照しながら、蓄熱運転時における蓄熱装置の制御動作について説明する。蓄熱運転時は、冷熱負荷(建物内の冷房)が停止している深夜の時間帯に行われる制御動作であり、電気料金の安価な夜間電力を利用して行われる。
(Control action during heat storage operation)
First, the control operation of the heat storage device during the heat storage operation will be described with reference to FIG. The heat storage operation is a control operation performed at midnight when the cooling load (cooling in the building) is stopped, and is performed using nighttime electric power with a low electricity bill.

まず、蓄熱運転時は、循環ポンプ(1)と循環ポンプ(2)とを停止させ、循環パイプ(100)と循環パイプ(200)とによる送水を停止する。そして、ブライン冷凍機(30)とブライン循環ポンプ(31)とを運転させる。これにより、ブライン循環ポンプ(31)によりマイナス温度に冷却された低温のブラインが、図11に示すように循環することになり、氷蓄熱槽(20)に組み込まれた熱交換機(32)の周囲に氷が製氷され、この氷を氷蓄熱槽(20)内に蓄氷することになる。また、水冷却機(40)と循環ポンプ(3)とを運転させて、高温槽(11)の保有する15℃の水を循環パイプ(300)を通じて水冷却機(40)に送水し、水冷却機(40)で5℃の水に冷却する。そして、5℃に冷却した水を低温槽(13)に送水し、低温槽(13)で5℃の水を貯蔵することになる。   First, at the time of heat storage operation, the circulation pump (1) and the circulation pump (2) are stopped, and water supply by the circulation pipe (100) and the circulation pipe (200) is stopped. Then, the brine refrigerator (30) and the brine circulation pump (31) are operated. As a result, the low-temperature brine cooled to a negative temperature by the brine circulation pump (31) circulates as shown in FIG. 11, and around the heat exchanger (32) incorporated in the ice heat storage tank (20). Ice is made into ice, and this ice is stored in the ice heat storage tank (20). Further, the water cooler (40) and the circulation pump (3) are operated, and the 15 ° C. water held in the high-temperature tank (11) is sent to the water cooler (40) through the circulation pipe (300). Cool to 5 ° C. water with chiller (40). And the water cooled to 5 degreeC is sent to a low temperature tank (13), and 5 degreeC water is stored in a low temperature tank (13).

(放熱運転時における制御動作)
次に、図12を参照しながら、放熱運転時における蓄熱装置の制御動作について説明する。放熱運転時は、空調機などの熱負荷(50)を使用する昼間の時間帯に行われ、夜間時に氷蓄熱槽(20)で蓄氷した冷熱を放熱して熱負荷に供給する低温槽(13)の保有する水を冷却することになる。
(Control action during heat radiation operation)
Next, the control operation of the heat storage device during the heat radiation operation will be described with reference to FIG. During the heat dissipation operation, it is performed during the daytime when the heat load (50) such as an air conditioner is used, and the low-temperature tank that radiates the cold stored in the ice heat storage tank (20) at night and supplies it to the heat load ( The water held in 13) is cooled.

まず、放熱運転時は、図12に示すように、循環ポンプ(1)と循環ポンプ(2)とを運転させ、低温槽(13)の保有する5℃の水を循環パイプ(100)を通じて空調機などの熱負荷(50)に送水する。そして、空調機などの熱負荷(50)において、循環パイプ(100)を通じて送水された5℃の水が15℃の水に熱変換され、高温槽(11)へと送水されることになる。また、高温槽(11)の保有する15℃の水を循環パイプ(200)を通じて氷蓄熱槽(20)に送水し、氷蓄熱槽(20)に組み込まれた熱交換機(32)の周囲に製氷された氷を徐々に溶かし、5℃の冷却水として低温槽(13)に供給することになる。なお、放熱運転時には、氷蓄熱槽(20)と低温槽(13)との間に設けられた温度測定器(70)の水温検出値を基に循環パイプ(200)の具備する水制御弁(60)の弁開度を調整し、循環パイプ(200)を通じて氷蓄熱槽(20)に送水する一部の水をバイパスし冷水バイパス管(61)に分流することで、低温槽(13)に供給する冷水を5℃に設定することになる。また、高温槽(11)の保有する15℃の水を用いて氷蓄熱槽(20)内の氷を溶かしていることから、氷蓄熱槽(20)内の氷が溶け終わった後の水の温度は15℃となる。   First, during the heat radiation operation, as shown in FIG. 12, the circulation pump (1) and the circulation pump (2) are operated, and the 5 ° C. water held in the low temperature tank (13) is air-conditioned through the circulation pipe (100). Water is supplied to a thermal load (50) such as a machine. And in heat load (50), such as an air conditioner, 5 degreeC water sent through the circulation pipe (100) is thermally converted into 15 degreeC water, and water is sent to a high temperature tank (11). Further, 15 ° C. water held in the high-temperature tank (11) is supplied to the ice heat storage tank (20) through the circulation pipe (200), and the ice is made around the heat exchanger (32) incorporated in the ice heat storage tank (20). The formed ice is gradually melted and supplied to the low-temperature tank (13) as 5 ° C. cooling water. During the heat radiation operation, the water control valve (200) provided in the circulation pipe (200) is based on the detected water temperature of the temperature measuring device (70) provided between the ice heat storage tank (20) and the low temperature tank (13). 60) by adjusting the valve opening and bypassing a part of the water sent to the ice heat storage tank (20) through the circulation pipe (200) and diverting it to the cold water bypass pipe (61), The cold water to be supplied is set to 5 ° C. Moreover, since the ice in the ice heat storage tank (20) is melted using 15 ° C. water held in the high temperature tank (11), the water after the ice in the ice heat storage tank (20) is completely melted. The temperature will be 15 ° C.

このように、従来の蓄熱装置は、夜間の安価な電力を使用してブライン冷凍機(30)を運転し、氷蓄熱槽(20)の保有する15℃の水から氷を製造し、昼間に、その製造した氷を高温槽(11)の保有する15℃の水を用いて溶かしながら冷房などに用いていたことになる。   Thus, the conventional heat storage device operates the brine refrigerator (30) using cheap electric power at night, manufactures ice from the 15 ° C. water held in the ice heat storage tank (20), and is used in the daytime. Thus, the produced ice was used for cooling or the like while being melted using 15 ° C. water held in the high-temperature tank (11).

なお、本発明より先に出願された技術文献として、氷より氷点が高い重水を利用して、氷蓄熱温度に至るまでの消費エネルギーを減らして、氷蓄熱システムの効率を向上させる氷蓄熱システムがある。この氷蓄熱システムは、冷凍機により氷蓄熱槽内に氷を作り、該氷を融解しながら熱交換装置によって熱を作り出すようにした氷蓄熱システムにおいて、前記氷蓄熱槽内に重水を収容して重水の氷を作り、該重水の氷から前記熱の取り出しを行うことを特徴とするものである(例えば、特許文献1参照)。
特開平4−55643号公報
In addition, as a technical document filed earlier than the present invention, there is an ice heat storage system that uses heavy water having a freezing point higher than ice and reduces the energy consumed until reaching the ice heat storage temperature, thereby improving the efficiency of the ice heat storage system. is there. This ice heat storage system is an ice heat storage system in which ice is produced in an ice heat storage tank by a refrigerator and heat is generated by a heat exchange device while melting the ice, and heavy water is contained in the ice heat storage tank. Heavy water ice is made and the heat is extracted from the heavy water ice (for example, see Patent Document 1).
JP-A-4-55643

しかしながら、図8に示す従来の蓄熱装置の具備する氷蓄熱槽(20)のブライン冷凍機(30)は、冷水槽(10)の水冷却機(40)と比べると効率が悪く、消費電力が大きくなることが懸念されており、氷蓄熱槽内に氷を製造する際の消費電力の削減を図る必要がある。また、特許文献1のように、氷蓄熱槽内に重水を収容して重水の氷を作り、該重水の氷から熱の取り出しを行うことでも氷蓄熱温度に至るまでの消費エネルギーを減らして、消費電力を削減することは可能であるが、図8に示す既存の蓄熱装置をそのまま利用して消費電力の削減を図ることが設備費用の面でも好ましいと考えられる。   However, the brine refrigerator (30) of the ice heat storage tank (20) included in the conventional heat storage apparatus shown in FIG. 8 is less efficient and consumes less power than the water cooler (40) of the cold water tank (10). There is concern about the increase in size, and it is necessary to reduce power consumption when manufacturing ice in the ice heat storage tank. Also, as in Patent Document 1, heavy water is stored in an ice heat storage tank to make heavy water ice, and energy consumption until reaching the ice heat storage temperature is reduced by taking out heat from the heavy water ice, Although it is possible to reduce power consumption, it is considered preferable from the viewpoint of facility cost to reduce power consumption by using the existing heat storage device shown in FIG. 8 as it is.

本発明は上記事情に鑑みてなされたものであり、既存の蓄熱装置を利用しつつ、更なる消費電力の削減を可能とする蓄熱装置及び蓄熱制御方法を提供することを目的とするものである。   This invention is made | formed in view of the said situation, and it aims at providing the thermal storage apparatus and the thermal storage control method which enable further reduction of power consumption, utilizing the existing thermal storage apparatus. .

かかる目的を達成するために本発明は以下の特徴を有する。   In order to achieve this object, the present invention has the following features.

本発明にかかる蓄熱装置は、冷媒液を保有する冷媒液槽と蓄熱槽とを有し、前記冷媒液槽は高温槽と低温槽とに少なくとも区分されており、前記高温槽の保有する高温冷媒液の温度は前記低温槽の保有する低温冷媒液の温度よりも高い蓄熱装置であって、蓄熱運転時は、前記低温槽の保有する低温冷媒液を前記蓄熱槽に供給し、該供給した低温冷媒液を前記蓄熱槽内において冷却し凝固体を生成し、放熱運転時は、前記高温槽の保有する高温冷媒液を前記蓄熱槽に供給し、前記蓄熱槽内において生成した前記凝固体を溶かして低温冷媒液を生成し、該生成した低温冷媒液を前記低温槽に供給し、前記低温槽に供給された低温冷媒液を、冷熱需要側となる冷熱負荷に供給し熱交換を行い、熱交換によって生成された高温冷媒液を前記高温槽に供給する制御手段と、蓄熱槽内に、前記蓄熱槽の保有する前記冷媒液の温度を検知する検知手段と、を有し、前記制御手段は、前記低温槽の保有する低温冷媒液を前記蓄熱槽に供給する処理を開始した後に、前記検知手段が検知した前記蓄熱槽内の前記冷媒液の温度が、前記低温冷媒液の温度になった場合に、前記蓄熱槽に供給された前記低温冷媒液を前記蓄熱槽内において冷却して凝固体を生成することを特徴とする。 The heat storage device according to the present invention includes a refrigerant liquid tank and a heat storage tank that hold a refrigerant liquid, and the refrigerant liquid tank is at least divided into a high-temperature tank and a low-temperature tank, and the high-temperature refrigerant that the high-temperature tank holds. The temperature of the liquid is a heat storage device higher than the temperature of the low-temperature refrigerant liquid held by the low-temperature tank, and during the heat storage operation, the low-temperature refrigerant liquid held by the low-temperature tank is supplied to the heat storage tank, and the supplied low temperature The refrigerant liquid is cooled in the heat storage tank to generate a solidified body, and during the heat radiation operation, the high-temperature refrigerant liquid held by the high-temperature tank is supplied to the heat storage tank, and the solidified body generated in the heat storage tank is melted. The low-temperature refrigerant liquid is generated, the generated low-temperature refrigerant liquid is supplied to the low-temperature tank, the low-temperature refrigerant liquid supplied to the low-temperature tank is supplied to a cold load on the cold demand side, and heat exchange is performed. The high-temperature refrigerant liquid generated by the exchange is supplied to the high-temperature tank. And control means for, in the thermal storage tank includes a detecting means for detecting a temperature of the refrigerant liquid held by the heat storage tank, the control means, the heat storage tank low temperature refrigerant liquid held in the cryostat The low-temperature refrigerant liquid supplied to the heat storage tank when the temperature of the refrigerant liquid in the heat storage tank detected by the detection means becomes the temperature of the low-temperature refrigerant liquid after starting the process of supplying to the heat storage tank Is cooled in the heat storage tank to produce a solidified body .

本発明にかかる蓄熱制御方法は、冷媒液を保有する冷媒液槽と蓄熱槽とを有し、前記冷媒液槽は高温槽と低温槽とに少なくとも区分されており、前記高温槽の保有する高温冷媒液の温度は前記低温槽の保有する低温冷媒液の温度よりも高い蓄熱装置で行う蓄熱制御方法であって、蓄熱運転時に、前記低温槽の保有する低温冷媒液を前記蓄熱槽に供給し、該供給した低温冷媒液を前記蓄熱槽内において冷却し凝固体を生成して冷熱を蓄積する蓄熱工程と、放熱運転時に、前記高温槽の保有する高温冷媒液を前記蓄熱槽に供給し、前記蓄熱槽内において生成した前記凝固体を溶かして低温冷媒液を生成し、該生成した低温冷媒液を前記低温槽に供給し、前記低温槽に供給された低温冷媒液を、冷熱需要側となる冷熱負荷に供給し熱交換を行い、熱交換によって生成された高温冷媒液を前記高温槽に供給する放熱工程と、を有し、前記蓄熱工程は、前記低温槽の保有する低温冷媒液を前記蓄熱槽に供給する処理を開始した後に、前記蓄熱槽内の前記冷媒液の温度が、前記低温冷媒液の温度になった場合に、前記蓄熱槽に供給された前記低温冷媒液を前記蓄熱槽内において冷却して凝固体を生成することを特徴とする。 The heat storage control method according to the present invention includes a refrigerant liquid tank and a heat storage tank that hold a refrigerant liquid, and the refrigerant liquid tank is at least divided into a high-temperature tank and a low-temperature tank, and the high-temperature tank has a high temperature. The temperature of the refrigerant liquid is a heat storage control method that is performed by a heat storage device that is higher than the temperature of the low-temperature refrigerant liquid held by the low-temperature tank, and supplies the low-temperature refrigerant liquid held by the low-temperature tank to the heat storage tank during heat storage operation. A cooling process in which the supplied low-temperature refrigerant liquid is cooled in the heat storage tank to generate a solidified body to accumulate cold heat, and during the heat radiation operation, the high-temperature refrigerant liquid held by the high-temperature tank is supplied to the heat storage tank, The solidified body generated in the heat storage tank is melted to generate a low-temperature refrigerant liquid, the generated low-temperature refrigerant liquid is supplied to the low-temperature tank, and the low-temperature refrigerant liquid supplied to the low-temperature tank is Heat supply to the cold load Have a, a radiator supplying to said hot bath hot refrigerant liquid generated by conversion, the thermal storage process, the low-temperature refrigerant liquid held in the cryostat after starting the processing to be supplied to the heat storage tank, When the temperature of the refrigerant liquid in the heat storage tank reaches the temperature of the low-temperature refrigerant liquid, the low-temperature refrigerant liquid supplied to the heat storage tank is cooled in the heat storage tank to generate a solidified body. It is characterized by.

本発明の蓄熱装置及び蓄熱方法によれば、冷媒液を凝固させる際に、従来の蓄熱装置及び方法に比べて低温の冷媒液から凝固させることとなり、より少ないエネルギーで冷熱を蓄積することができる。   According to the heat storage device and the heat storage method of the present invention, when the refrigerant liquid is solidified, it is solidified from the refrigerant liquid at a temperature lower than that of the conventional heat storage apparatus and method, and cold energy can be accumulated with less energy. .

以下において、冷媒液を水として説明するが、必ずしもこれに限られるものではない。蓄熱装置や熱負荷の動作温度により、適切な物質を冷媒液として選択することができる。尚、冷媒液を水として説明するために、以下において、冷媒液槽を冷水槽と、蓄熱槽を氷蓄熱槽と、冷却機を水冷却機と、高温冷媒液を高温冷水と、低温冷媒液を低温冷水と、凝固体を氷と表記する。   Hereinafter, the refrigerant liquid will be described as water, but is not necessarily limited thereto. An appropriate substance can be selected as the refrigerant liquid depending on the operating temperature of the heat storage device and the heat load. In order to describe the refrigerant liquid as water, in the following, the refrigerant liquid tank is a cold water tank, the heat storage tank is an ice heat storage tank, the cooler is a water cooler, the high temperature refrigerant liquid is high temperature cold water, and the low temperature refrigerant liquid. Is expressed as low-temperature cold water and the solidified body as ice.

本発明にかかる蓄熱装置は、氷蓄熱槽(20)の水を高温槽(11)に送水するための循環ポンプ(4)及び循環パイプ(400)を氷蓄熱槽(20)と高温槽(11)との間に新たに設け、ブライン冷凍機(30)とブライン循環ポンプ(31)とを運転させて氷蓄熱槽(20)において氷を生成する前に、循環ポンプ(4)を運転させて、氷蓄熱槽(20)の保有する15℃の水を循環パイプ(400)を通じて高温槽(11)へ送水し、低温槽(13)の保有する5℃の水を氷蓄熱槽(20)に流入させることを特徴とするものである。これにより、氷蓄熱槽(20)の保有する水は5℃の水に変換されることになり、5℃の水に変換された時点で、循環ポンプ(4)を停止させ、ブライン冷凍機(30)とブライン循環ポンプ(31)とを運転させて氷蓄熱槽(20)において氷を生成することで、従来、効率の悪いブライン冷凍機(30)を運転して15℃の水から氷を生成していた処理を、5℃の水から氷を生成することになるため、15℃の水を5℃の水に冷却するまでの消費電力を削減することが可能となる。   The heat storage device according to the present invention includes a circulation pump (4) and a circulation pipe (400) for supplying water from an ice heat storage tank (20) to a high temperature tank (11). ), And before operating the brine refrigerator (30) and the brine circulation pump (31) to generate ice in the ice storage tank (20), operate the circulation pump (4). Water of 15 ° C held in the ice heat storage tank (20) is sent to the high temperature tank (11) through the circulation pipe (400), and water of 5 ° C held in the low temperature tank (13) is transferred to the ice heat storage tank (20). It is made to flow in. As a result, the water stored in the ice heat storage tank (20) is converted to 5 ° C water. When the water is converted to 5 ° C water, the circulation pump (4) is stopped, and the brine refrigerator ( 30) and the brine circulation pump (31) are operated to generate ice in the ice heat storage tank (20), so that conventionally, an inefficient brine refrigerator (30) is operated to generate ice from 15 ° C. water. Since the generated treatment is to generate ice from 5 ° C. water, it is possible to reduce power consumption until the 15 ° C. water is cooled to 5 ° C. water.

以下、添付図面を参照しながら、本発明にかかる蓄熱装置について説明する。
まず、図1を参照しながら、本発明にかかる蓄熱装置の構成について説明する。
Hereinafter, a heat storage device according to the present invention will be described with reference to the accompanying drawings.
First, the configuration of the heat storage device according to the present invention will be described with reference to FIG.

本発明にかかる蓄熱装置は、冷水槽(10)と、氷蓄熱槽(20)と、を有して構成されている。   The heat storage device according to the present invention includes a cold water tank (10) and an ice heat storage tank (20).

冷水槽(10)は、蓄熱水槽とも称され、急激な熱負荷の変動に対応できるようにした水槽であり、15℃の水を保有する高温槽(11)と、5℃の水を保有する低温槽(13)と、高温槽(11)の保有する15℃の水と低温槽(13)の保有する5℃の水との中間の温度の水を保有する中間槽(12)と、に区分して構成されている。   The cold water tank (10) is also referred to as a heat storage water tank, and is a water tank adapted to cope with a rapid change in heat load, and has a high temperature tank (11) holding 15 ° C. water and 5 ° C. water. To the low temperature tank (13) and the intermediate tank (12) holding water at a temperature intermediate between 15 ° C. water held by the high temperature tank (11) and 5 ° C. water held by the low temperature tank (13). It is structured separately.

氷蓄熱槽(20)は、氷蓄熱槽(20)の保有する水を氷にして蓄氷し、その蓄氷した氷を用いて冷熱した水を低温槽(13)に供給するための水槽である。氷の融解熱量は80Kcal/kgなので、水の80倍の熱量を氷蓄熱槽(20)に蓄えることができることになる。なお、氷蓄熱槽(20)の保有する水を氷にするにはブライン冷凍機(30)を用いて行うことになり、ブライン冷凍機(30)でマイナス温度に冷却されたブラインがブライン循環ポンプ(31)により図3に示すように循環することになり、氷蓄熱槽(20)内に組み込まれた熱交換機(チューブ)(32)の周囲に氷が生成され、この氷を氷蓄熱槽(20)内に蓄氷することになる。なお、ブラインとは不凍液のことであり、0℃になっても凍らない液体である。   The ice heat storage tank (20) is a water tank for storing the ice stored in the ice heat storage tank (20) as ice and supplying the cold water using the ice stored in the ice to the low temperature tank (13). is there. Since the melting heat amount of ice is 80 Kcal / kg, the heat amount 80 times that of water can be stored in the ice heat storage tank (20). In addition, in order to make the water which an ice thermal storage tank (20) holds into ice, it will carry out using a brine refrigerator (30), and the brine cooled to minus temperature with the brine refrigerator (30) is a brine circulation pump. As shown in FIG. 3, it is circulated by (31), and ice is generated around the heat exchanger (tube) (32) incorporated in the ice heat storage tank (20). 20) The ice will be stored inside. Brine is an antifreeze liquid that does not freeze even when the temperature reaches 0 ° C.

また、本発明にかかる蓄熱装置は、低温槽(13)の保有する5℃の水を用いて空調機などの熱負荷(50)を使用するために、循環ポンプ(1)及び循環パイプ(100)が空調機などの熱負荷(50)を介して低温槽(13)と高温槽(11)との間に設けられている。   Moreover, in order to use heat load (50), such as an air conditioner, using the 5 degreeC water which a low-temperature tank (13) holds, the heat storage apparatus concerning this invention has a circulation pump (1) and a circulation pipe (100). ) Is provided between the low temperature tank (13) and the high temperature tank (11) via a heat load (50) such as an air conditioner.

また、高温槽(11)の保有する15℃の水を氷蓄熱槽(20)に送水するための循環ポンプ(2)及び循環パイプ(200)が高温槽(11)と氷蓄熱槽(20)との間に設けられている。また、循環パイプ(200)には、氷蓄熱槽(20)に送水する一部の水をバイパスし、冷水バイパス管(61)に分流させるための水制御弁(60)が設けられている。   In addition, the circulation pump (2) and the circulation pipe (200) for feeding water at 15 ° C. held in the high temperature tank (11) to the ice heat storage tank (20) include the high temperature tank (11) and the ice heat storage tank (20). Between. Further, the circulation pipe (200) is provided with a water control valve (60) for bypassing a part of the water supplied to the ice heat storage tank (20) and diverting it to the cold water bypass pipe (61).

また、高温槽(11)の保有する15℃の水を5℃の水に変換し低温槽(13)に送水するための水冷却機(40)と循環ポンプ(3)及び循環パイプ(300)とが高温槽(11)と低温槽(13)との間に設けられている。   Moreover, the water cooler (40), the circulation pump (3), and the circulation pipe (300) for converting 15 degreeC water which the high temperature tank (11) holds into 5 degreeC water, and sending water to a low temperature tank (13) Are provided between the high temperature tank (11) and the low temperature tank (13).

なお、本発明にかかる蓄熱装置は、氷蓄熱槽(20)の水を高温槽(11)に送水するための循環ポンプ(4)及び循環パイプ(400)を氷蓄熱槽(20)と高温槽(11)との間に新たに設け、ブライン冷凍機(30)とブライン循環ポンプ(31)とを運転させて氷蓄熱槽(20)において氷を生成する前に、循環ポンプ(4)を運転させて、氷蓄熱槽(20)の保有する15℃の水を循環パイプ(400)を通じて高温槽(11)へ送水し、低温槽(13)の保有する5℃の水を氷蓄熱槽(20)に流入させることになる。これにより、氷蓄熱槽(20)の水は5℃の水に変換されることになり、5℃の水に変換された時点で、循環ポンプ(4)を停止させ、ブライン冷凍機(30)とブライン循環ポンプ(31)とを運転させて氷蓄熱槽(20)において氷を生成することで、従来、効率の悪いブライン冷凍機(30)を運転して15℃の水から氷を生成していた処理を、5℃の水から氷を生成することになるため、15℃の水を5℃の水に冷却するまでの消費電力を削減することが可能となる。以下、図2〜図4を参照しながら本発明にかかる蓄熱装置の制御動作について、蓄熱運転時と放熱運転時とに区分して説明する。   The heat storage device according to the present invention includes an ice heat storage tank (20) and a high temperature tank for circulating pump (4) and circulation pipe (400) for feeding water from ice heat storage tank (20) to high temperature tank (11). (11) and the circulation pump (4) is operated before the brine refrigerator (30) and the brine circulation pump (31) are operated to generate ice in the ice heat storage tank (20). Then, 15 ° C. water held in the ice storage tank (20) is fed to the high temperature tank (11) through the circulation pipe (400), and 5 ° C. water held in the low temperature tank (13) is transferred to the ice storage tank (20 ). As a result, the water in the ice heat storage tank (20) is converted to 5 ° C. water, and when it is converted to 5 ° C. water, the circulation pump (4) is stopped and the brine refrigerator (30). And the brine circulation pump (31) are operated to generate ice in the ice heat storage tank (20), thereby conventionally operating the inefficient brine refrigerator (30) to generate ice from 15 ° C. water. Since the ice treatment is generated from the 5 ° C. water, the power consumption until the 15 ° C. water is cooled to 5 ° C. water can be reduced. Hereinafter, the control operation of the heat storage device according to the present invention will be described with reference to FIGS. 2 to 4 separately for the heat storage operation and the heat radiation operation.

(蓄熱運転時における制御動作)
まず、図2、図3を参照しながら、蓄熱運転時における蓄熱装置の制御動作について説明する。蓄熱運転時は、冷熱負荷(建物内の冷房)が停止している深夜の時間帯に行われる制御動作であり、電気料金の安価な夜間電力を利用して行われる。
(Control action during heat storage operation)
First, the control operation of the heat storage device during the heat storage operation will be described with reference to FIGS. 2 and 3. The heat storage operation is a control operation performed at midnight when the cooling load (cooling in the building) is stopped, and is performed using nighttime electric power with a low electricity bill.

まず、蓄熱運転時は、循環ポンプ(1)と循環ポンプ(2)とを停止させる。そして、図2に示すように、循環ポンプ(3)と循環ポンプ(4)とを運転させ、高温槽(11)の保有する15℃の水を循環パイプ(300)を通じて水冷却機(40)に送水し、水冷却機(40)において15℃の水を5℃の水に冷却する。そして、その5℃に冷却した水を低温槽(13)に送水し、低温槽(13)において5℃の水を貯蔵することになる。また、氷蓄熱槽(20)の保有する15℃の水を循環パイプ(400)を通じて高温槽(11)に送水し、低温槽(13)の保有する5℃の水を氷蓄熱槽(20)に流入させて氷蓄熱槽(20)の保有する水を5℃の水に変換する。   First, during the heat storage operation, the circulation pump (1) and the circulation pump (2) are stopped. Then, as shown in FIG. 2, the circulation pump (3) and the circulation pump (4) are operated, and the water cooler (40) is supplied through the circulation pipe (300) to the 15 ° C. water held in the high-temperature tank (11). The water at 15 ° C. is cooled to 5 ° C. water in the water cooler (40). And the water cooled to 5 degreeC is sent to a low temperature tank (13), and 5 degreeC water is stored in a low temperature tank (13). Moreover, 15 degreeC water which an ice thermal storage tank (20) holds is sent to a high temperature tank (11) through a circulation pipe (400), and 5 degreeC water which a low temperature tank (13) holds is stored in an ice thermal storage tank (20). The water stored in the ice heat storage tank (20) is converted into 5 ° C. water.

次に、氷蓄熱槽(20)の保有する水が5℃に変換したと判定した場合に、ブライン冷凍機(30)とブライン循環ポンプ(31)とを運転させ、ブライン循環ポンプ(31)を通じて氷点下温度に冷却された低温のブラインが、図3に示すように循環することになり、氷蓄熱槽(20)に組み込まれた熱交換機(32)の周囲に氷が形成され、この氷を氷蓄熱槽(20)内に蓄積することになる。なお、氷蓄熱槽(20)には、温度測定器(71)が設けられており、この温度測定器(71)が検出した水温値により氷蓄熱槽(20)の保有する水が5℃の水に変換されたと判定した場合に、ブライン冷凍機(30)とブライン循環ポンプ(31)とを運転させることになる。   Next, when it is determined that the water stored in the ice heat storage tank (20) has been converted to 5 ° C., the brine refrigerator (30) and the brine circulation pump (31) are operated, and the brine circulation pump (31) is operated. The low-temperature brine cooled to below-freezing temperature circulates as shown in FIG. 3, and ice is formed around the heat exchanger (32) incorporated in the ice heat storage tank (20). It accumulates in the heat storage tank (20). The ice heat storage tank (20) is provided with a temperature measuring device (71), and the water stored in the ice heat storage tank (20) is 5 ° C. based on the water temperature value detected by the temperature measuring device (71). When it is determined that the water has been converted to water, the brine refrigerator (30) and the brine circulation pump (31) are operated.

(放熱運転時における制御動作)
次に、図4を参照しながら、放熱運転時における蓄熱装置の制御動作について説明する。放熱運転時は、空調機などの熱負荷(50)を使用する昼間の時間帯に行われ、夜間時に氷蓄熱槽(20)で氷として蓄えた冷熱を放熱して空調機などの熱負荷(50)に供給する低温槽(13)の保有する水を冷却することになる。
(Control action during heat radiation operation)
Next, the control operation of the heat storage device during the heat radiation operation will be described with reference to FIG. During the heat dissipation operation, it is performed during the daytime when the heat load (50) such as an air conditioner is used, and the heat stored as ice in the ice heat storage tank (20) is dissipated at night to dissipate the heat load ( 50), the water held in the low temperature tank (13) to be supplied is cooled.

まず、放熱運転時は、図4に示すように、循環ポンプ(1)と循環ポンプ(2)とを運転させ、低温槽(13)の保有する5℃の水を循環パイプ(100)を通じて空調機などの熱負荷(50)に送水する。そして、空調機などの熱負荷(50)において、循環パイプ(100)を通じて送水された5℃の水が15℃の水に熱変換され、高温槽(11)へと送水されることになる。また、高温槽(11)の保有する15℃の水を循環パイプ(200)を通じて氷蓄熱槽(20)に送水し、氷蓄熱槽(20)に組み込まれた熱交換機(32)の周囲に製氷された氷を徐々に溶かし、5℃の冷却水として低温槽(13)に供給することになる。なお、放熱運転時には、氷蓄熱槽(20)と低温槽(13)との間に設けられた温度測定器(70)が検出した水温値を基に水制御弁(60)の弁開度を調整し、循環パイプ(200)を通じて氷蓄熱槽(20)に送水する一部の水をバイパスし冷水バイパス管(61)に分流することで、低温槽(13)に供給する冷水を5℃に設定することになる。また、高温槽(11)の保有する15℃の水を用いて氷蓄熱槽(20)内の氷を溶かしていることから、氷蓄熱槽(20)内の氷が溶け終わった後の水の温度は15℃となる。   First, at the time of heat radiation operation, as shown in FIG. 4, the circulation pump (1) and the circulation pump (2) are operated, and 5 ° C. water held in the low temperature tank (13) is air-conditioned through the circulation pipe (100). Water is supplied to a thermal load (50) such as a machine. And in heat load (50), such as an air conditioner, 5 degreeC water sent through the circulation pipe (100) is thermally converted into 15 degreeC water, and water is sent to a high temperature tank (11). Further, 15 ° C. water held in the high-temperature tank (11) is supplied to the ice heat storage tank (20) through the circulation pipe (200), and the ice is made around the heat exchanger (32) incorporated in the ice heat storage tank (20). The formed ice is gradually melted and supplied to the low-temperature tank (13) as 5 ° C. cooling water. During the heat radiation operation, the valve opening degree of the water control valve (60) is determined based on the water temperature value detected by the temperature measuring device (70) provided between the ice heat storage tank (20) and the low temperature tank (13). Adjust the temperature of the cold water supplied to the low temperature tank (13) to 5 ° C by bypassing a part of the water that is sent to the ice heat storage tank (20) through the circulation pipe (200) and diverting it to the cold water bypass pipe (61). Will be set. Moreover, since the ice in the ice heat storage tank (20) is melted using 15 ° C. water held in the high temperature tank (11), the water after the ice in the ice heat storage tank (20) is completely melted. The temperature will be 15 ° C.

このように、本発明にかかる蓄熱装置は、蓄熱運転時において、高温槽(11)の保有する15℃の水を水冷却機(40)において5℃の水に冷却して低温槽(13)に送水する。そして、氷蓄熱槽(20)の保有する15℃の水を循環パイプ(400)を通じて高温槽(11)に送水し、低温槽(13)の保有する5℃の水を氷蓄熱槽(20)に流入させて氷蓄熱槽(20)の保有する水を5℃の水に変換する。そして、5℃の水に変換した時点で、循環ポンプ(4)を停止させ、ブライン冷凍機(30)とブライン循環ポンプ(31)とを運転させて氷蓄熱槽(20)において氷を生成する。この蓄熱運転時の制御により、従来効率の悪いブライン冷凍機(30)を運転して15℃の水から氷を生成していたところを、5℃の水から氷を生成することになるため、15℃の水を5℃に冷却するまでの消費電力を削減することが可能となる。   Thus, the heat storage device according to the present invention cools the 15 ° C. water held by the high temperature bath (11) to 5 ° C. water in the water cooler (40) during the heat storage operation, and cools the low temperature bath (13). Water. And 15 degreeC water which an ice thermal storage tank (20) holds is sent to a high temperature tank (11) through a circulation pipe (400), and 5 degreeC water which a low temperature tank (13) holds is stored in an ice thermal storage tank (20). The water stored in the ice heat storage tank (20) is converted into 5 ° C. water. When the water is converted to 5 ° C., the circulation pump (4) is stopped and the brine refrigerator (30) and the brine circulation pump (31) are operated to generate ice in the ice heat storage tank (20). . Due to the control during this heat storage operation, the brine refrigeration machine (30) with low efficiency is operated to generate ice from water at 15 ° C, so that ice is generated from water at 5 ° C. It is possible to reduce the power consumption until the 15 ° C. water is cooled to 5 ° C.

例えば、1000kgの水を15℃から5℃に冷却するために必要な冷熱は、1000×(15−5)÷3024=3.3(RT)である。この冷熱を発生させるために効率が1.3(kWh/RT)のブライン冷凍機を使用すると、1.3×3.3=4.29(kWh)の電力が必要である。本願発明によれば、この冷熱を比較的高効率の水冷却機により発生させていることになるので、水冷却機の効率を0.8(kWh/RT)とすると、0.8×3,3=2.64(kWh)の電力が必要であり、ブライン冷凍機を用いる場合に比べて4.29−2.64=1.65(kWh)の電力が削減できる。なお、RTとは、熱量の単位であり、1RT=3024kcalとなり(米RTの場合)、1Kwh/RTは、3024kcalの冷熱を発生させる際に必要な電力が1kWhであることを示す。   For example, the cooling heat necessary for cooling 1000 kg of water from 15 ° C. to 5 ° C. is 1000 × (15−5) ÷ 3024 = 3.3 (RT). If a brine refrigerator having an efficiency of 1.3 (kWh / RT) is used to generate this cold heat, 1.3 × 3.3 = 4.29 (kWh) of electric power is required. According to the present invention, since this cold heat is generated by a relatively high-efficiency water cooler, assuming that the efficiency of the water cooler is 0.8 (kWh / RT), 0.8 × 3 The power of 3 = 2.64 (kWh) is necessary, and the power of 4.29-2.64 = 1.65 (kWh) can be reduced as compared with the case where the brine refrigerator is used. Note that RT is a unit of heat, 1RT = 3024 kcal (in the case of US RT), and 1 Kwh / RT indicates that 1 kWh is necessary for generating 3024 kcal cold.

次に、第2の実施例について説明する。
第1の実施例は、図1に示すように、氷蓄熱槽(20)の水を高温槽(11)に送水するための循環ポンプ(4)及び循環パイプ(400)を氷蓄熱槽(20)と高温槽(11)との間に新たに設け、氷蓄熱槽(20)の保有する15℃の水を循環パイプ(400)を通じて高温槽(11)へ送水し、低温槽(13)の保有する5℃の水を氷蓄熱槽(20)に流入させることで、氷蓄熱槽(20)の水を5℃の水に変換してから、氷蓄熱槽(20)において氷を生成することとしたが、第2の実施例は、放熱運転時に高温槽(11)の保有する15℃の水を氷蓄熱槽(20)に送水する循環ポンプ(2)及び循環パイプ(200)を用いて、蓄熱運転時に氷蓄熱槽(20)の保有する水を高温槽(11)に流入させることで、低温槽(13)の保有する5℃の水を氷蓄熱槽(20)に流入させることとする。以下、図5〜図7を参照しながら第2の実施例における蓄熱装置の制御動作について、蓄熱運転時と放熱運転時とに区分して説明する。
Next, a second embodiment will be described.
In the first embodiment, as shown in FIG. 1, a circulation pump (4) and a circulation pipe (400) for feeding water from an ice heat storage tank (20) to a high temperature tank (11) are connected to an ice heat storage tank (20 ) And the high-temperature tank (11), 15 ° C. water held in the ice heat storage tank (20) is sent to the high-temperature tank (11) through the circulation pipe (400), and the low-temperature tank (13) Converting the water in the ice heat storage tank (20) to 5 ° C water by flowing the 5 ° C water held into the ice heat storage tank (20), and then generating ice in the ice heat storage tank (20). However, the second embodiment uses a circulation pump (2) and a circulation pipe (200) for supplying 15 ° C. water held in the high temperature tank (11) to the ice heat storage tank (20) during the heat radiation operation. In the heat storage operation, the water stored in the ice storage tank (20) is caused to flow into the high temperature tank (11), so that the low temperature tank (13) The 5 ° C. water held to be flowed into the ice heat storage tank (20). Hereinafter, the control operation of the heat storage device in the second embodiment will be described with reference to FIG. 5 to FIG. 7 separately for the heat storage operation and the heat radiation operation.

(蓄熱運転時における制御動作)
まず、図5、図6を参照しながら、第2の実施例における蓄熱運転時における蓄熱装置の制御動作について説明する。
(Control action during heat storage operation)
First, the control operation of the heat storage device during the heat storage operation in the second embodiment will be described with reference to FIGS. 5 and 6.

まず、蓄熱運転時は、循環ポンプ(1)を停止させ、送水制御を停止する。そして、図5に示すように、循環ポンプ(2)と循環ポンプ(3)とを運転させ、高温槽(11)の保有する15℃の水を循環パイプ(300)を通じて水冷却機(40)に送水し、水冷却機(40)において15℃の水を5℃の水に冷却する。そしてその冷却した5℃の水を低温槽(13)に送水し、低温槽(13)において5℃の水を貯蔵することになる。また、氷蓄熱槽(20)の保有する15℃の水を循環パイプ(200)を通じて高温槽(11)に送水し、低温槽(13)の保有する5℃の水を氷蓄熱槽(20)に流入させて氷蓄熱槽(20)の保有する水を5℃の水に変換する。このとき、水制御弁(60)の弁開度は冷水バイパス管(61)に分流しないように制御されている。   First, at the time of heat storage operation, the circulation pump (1) is stopped and water supply control is stopped. Then, as shown in FIG. 5, the circulation pump (2) and the circulation pump (3) are operated, and the water cooler (40) is supplied through the circulation pipe (300) to the 15 ° C. water held in the high-temperature tank (11). The water at 15 ° C. is cooled to 5 ° C. water in the water cooler (40). And the cooled 5 degreeC water is sent to a low temperature tank (13), and 5 degreeC water is stored in a low temperature tank (13). Moreover, 15 degreeC water which an ice thermal storage tank (20) holds is sent to a high temperature tank (11) through a circulation pipe (200), and 5 degreeC water which a low temperature tank (13) holds is stored in an ice thermal storage tank (20). The water stored in the ice heat storage tank (20) is converted into 5 ° C. water. At this time, the valve opening degree of the water control valve (60) is controlled so as not to divert to the cold water bypass pipe (61).

次に、氷蓄熱槽(20)の保有する水が5℃に変換されたと判定した場合に、ブライン冷凍機(30)とブライン循環ポンプ(31)とを運転させ、ブライン循環ポンプ(31)により氷点下温度に冷却された低温のブラインが、図6に示すように循環することになり、氷蓄熱槽(20)に組み込まれた熱交換機(32)の周囲に氷が形成され、この氷を氷蓄熱槽(20)内に蓄氷することになる。なお、氷蓄熱槽(20)には、温度測定器(71)が設けられており、この温度測定器(71)が検出した水温値により氷蓄熱槽(20)の保有する水が5℃に変換されたと判定した場合に、ブライン冷凍機(30)とブライン循環ポンプ(31)とを運転させることになる。   Next, when it is determined that the water stored in the ice heat storage tank (20) has been converted to 5 ° C., the brine refrigerator (30) and the brine circulation pump (31) are operated, and the brine circulation pump (31) The low-temperature brine cooled to below-freezing temperature circulates as shown in FIG. 6, and ice is formed around the heat exchanger (32) incorporated in the ice heat storage tank (20). Ice is stored in the heat storage tank (20). The ice heat storage tank (20) is provided with a temperature measuring device (71), and the water stored in the ice heat storage tank (20) is kept at 5 ° C by the water temperature value detected by the temperature measuring device (71). When it determines with having converted, a brine refrigerator (30) and a brine circulation pump (31) will be drive | operated.

(放熱運転時における制御動作)
次に、図7を参照しながら、放熱運転時における蓄熱装置の制御動作について説明する。
(Control action during heat radiation operation)
Next, the control operation of the heat storage device during the heat radiation operation will be described with reference to FIG.

まず、放熱運転時は、循環ポンプ(2)による水の送水方向を切り替えて、図7に示すように、循環ポンプ(1)と循環ポンプ(2)とを運転させ、低温槽(13)の保有する5℃の水を循環パイプ(100)を通じて空調機などの熱負荷(50)に送水する。そして、空調機などの熱負荷(50)において、循環パイプ(100)を通じて送水された5℃の水が15℃の水に変換され、高温槽(11)へと送水されることになる。また、高温槽(11)の保有する15℃の水を循環パイプ(200)を通じて氷蓄熱槽(20)に送水し、氷蓄熱槽(20)に組み込まれた熱交換機(32)の周囲に製氷された氷を徐々に溶かし、5℃の冷却水として低温槽(13)に供給することになる。   First, at the time of heat radiation operation, the direction of water supply by the circulation pump (2) is switched, and the circulation pump (1) and the circulation pump (2) are operated as shown in FIG. The 5 ° C. water held is sent to the heat load (50) such as an air conditioner through the circulation pipe (100). And in heat load (50), such as an air conditioner, 5 degreeC water sent through the circulation pipe (100) is converted into 15 degreeC water, and water is sent to a high temperature tank (11). Further, 15 ° C. water held in the high-temperature tank (11) is supplied to the ice heat storage tank (20) through the circulation pipe (200), and the ice is made around the heat exchanger (32) incorporated in the ice heat storage tank (20). The formed ice is gradually melted and supplied to the low-temperature tank (13) as 5 ° C. cooling water.

このように、第2の実施例における蓄熱装置は、放熱運転時と、蓄熱運転時と、で循環ポンプ(2)による水の送水方向を切り替えて、氷蓄熱槽(20)の保有する15℃の水を循環パイプ(200)を通じて高温槽(11)に送水し、低温槽(13)の保有する5℃の水を氷蓄熱槽(20)に流入させて氷蓄熱槽(20)の保有する水を5℃の水に変換してから、氷蓄熱槽(20)において氷を生成することで、効率の悪いブライン冷凍機(30)を運転して15℃の水から氷を生成していた制御を、5℃の水から氷を生成することになるため、15℃の水を5℃に冷却するまでの消費電力を削減することが可能となる。   As described above, the heat storage device in the second embodiment switches the water feeding direction by the circulation pump (2) between the heat radiation operation and the heat storage operation, and is held at 15 ° C. held in the ice heat storage tank (20). Water is sent to the high temperature tank (11) through the circulation pipe (200), and 5 ° C water held in the low temperature tank (13) is caused to flow into the ice heat storage tank (20) to be held in the ice heat storage tank (20). After converting the water to 5 ° C. water, ice was generated in the ice heat storage tank (20), and the inefficient brine refrigerator (30) was operated to generate ice from 15 ° C. water. Since control generates ice from 5 ° C. water, it is possible to reduce power consumption until the 15 ° C. water is cooled to 5 ° C.

次に、第3の実施例について説明する。
第1の実施例や、第2の実施例は、放熱運転時に、空調機などの熱負荷(50)を運転し、夜間等の蓄熱運転時に停止することとしたが、第3の実施例では、昼間の放熱運転時や、夜間の蓄熱運転時に関係なく、空調機などの熱負荷(50)を運転することとする。これは、事務所ビルなどでは、夜間に空調機などの熱負荷(50)を停止するが、工場などは、24時間運転を行うことが多いためである。また、水冷却機(40)も同様に、放熱運転時や、蓄熱運転時に関係なく運転することが可能である。また、水冷却機(40)の運転台数を夜間時に多く運転させ、昼間時に、少なく運転するように制御することも可能である。
Next, a third embodiment will be described.
In the first embodiment and the second embodiment, the heat load (50) such as an air conditioner is operated during the heat radiation operation, and is stopped during the heat storage operation such as at night. In the third embodiment, The heat load (50) such as an air conditioner is operated regardless of the heat dissipation operation during the daytime or the heat storage operation during the nighttime. This is because in an office building or the like, the heat load (50) such as an air conditioner is stopped at night, but a factory or the like often operates for 24 hours. Similarly, the water cooler (40) can be operated regardless of the heat dissipation operation or the heat storage operation. It is also possible to control the number of water coolers (40) to be operated more at night and to be less operated at daytime.

なお、上述する実施例は、本発明の好適な実施例であり、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。例えば、上記蓄熱装置を構成する循環ポンプ(1)及び循環パイプ(100)を複数設けることも可能であり、空調機などの熱負荷(50)に応じて運転台数を増減することも可能である。また、水冷却機(40)を複数台設けることも可能であり、目的に応じて運転台数を増減することは可能である。また、ブライン冷凍機(30)を複数台設けることも可能である。   The above-described embodiments are preferred embodiments of the present invention, and can be implemented in various forms without departing from the gist of the present invention. For example, it is possible to provide a plurality of circulation pumps (1) and circulation pipes (100) that constitute the heat storage device, and it is also possible to increase or decrease the number of operating units according to the heat load (50) such as an air conditioner. . It is also possible to provide a plurality of water coolers (40), and the number of operating units can be increased or decreased depending on the purpose. It is also possible to provide a plurality of brine refrigerators (30).

本発明にかかる蓄熱装置及び蓄熱制御方法は、ビルや工場などの建物を対象とした空調(冷房)システムなどに適用可能である。   The heat storage device and the heat storage control method according to the present invention can be applied to an air conditioning (cooling) system for buildings such as buildings and factories.

本発明にかかる第1の実施例における蓄熱装置の概略構成を示す図である。It is a figure which shows schematic structure of the thermal storage apparatus in 1st Example concerning this invention. 本発明にかかる第1の実施例における蓄熱装置の蓄熱運転時の制御動作を示す第1の図であり、ブライン冷凍機を運転する前の制御動作を示す図である。It is a 1st figure which shows the control action at the time of the thermal storage driving | operation of the thermal storage apparatus in 1st Example concerning this invention, and is a figure which shows the control action before driving | operating a brine refrigerator. 本発明にかかる第1の実施例における蓄熱装置の蓄熱運転時の制御動作を示す第2の図であり、ブライン冷凍機を運転した際の制御動作を示す図である。It is a 2nd figure which shows the control action at the time of the heat storage driving | operation of the heat storage apparatus in 1st Example concerning this invention, and is a figure which shows the control action at the time of driving a brine refrigerator. 本発明にかかる第1の実施例における蓄熱装置の放熱運転時の制御動作を示す図である。It is a figure which shows the control action at the time of the thermal radiation operation of the thermal storage apparatus in 1st Example concerning this invention. 本発明にかかる第2の実施例における蓄熱装置の蓄熱運転時の制御動作を示す第1の図であり、ブライン冷凍機を運転する前の制御動作を示す図である。It is a 1st figure which shows the control action at the time of the thermal storage driving | operation of the thermal storage apparatus in 2nd Example concerning this invention, and is a figure which shows the control action before driving a brine refrigerator. 本発明にかかる第2の実施例における蓄熱装置の蓄熱運転時の制御動作を示す第2の図であり、ブライン冷凍機を運転した際の制御動作を示す図である。It is a 2nd figure which shows the control action at the time of the heat storage driving | operation of the heat storage apparatus in 2nd Example concerning this invention, and is a figure which shows the control action at the time of drive | operating a brine refrigerator. 本発明にかかる第2の実施例における蓄熱装置の放熱運転時の制御動作を示す図である。It is a figure which shows the control action at the time of the thermal radiation driving | operation of the thermal storage apparatus in 2nd Example concerning this invention. 従来の蓄熱装置の概略構成を示す図である。It is a figure which shows schematic structure of the conventional heat storage apparatus. 従来の蓄熱装置の具備する中間槽の詳細な内部構成を示す図である。It is a figure which shows the detailed internal structure of the intermediate | middle tank which the conventional heat storage apparatus comprises. 従来の蓄熱装置の具備する氷蓄熱槽の詳細な内部構成を示す図である。It is a figure which shows the detailed internal structure of the ice thermal storage tank which the conventional heat storage apparatus comprises. 従来の蓄熱装置の蓄熱運転時の制御動作を示す図である。It is a figure which shows the control action at the time of the heat storage driving | operation of the conventional heat storage apparatus. 従来の蓄熱装置の放熱運転時の制御動作を示す図である。It is a figure which shows the control action at the time of the thermal radiation operation of the conventional heat storage apparatus.

符号の説明Explanation of symbols

1、2、3、4 循環ポンプ
10 冷水槽
11 高温槽
12 中間槽
13 低温槽
20 氷蓄熱槽
30 ブライン冷凍機
31 ブライン循環ポンプ
32 熱交換機
40 水冷却機
50 空調機などの熱負荷
60 水制御弁
61 冷水バイパス管
70、71 温度測定器
100、200、300、400 循環パイプ
1, 2, 3, 4 Circulation pump 10 Cold water tank 11 High temperature tank 12 Intermediate tank 13 Low temperature tank 20 Ice heat storage tank 30 Brine refrigerator 31 Brine circulation pump 32 Heat exchanger 40 Water cooler 50 Heat load of air conditioner 60 Water control Valve 61 Cold water bypass pipe 70, 71 Temperature measuring instrument 100, 200, 300, 400 Circulation pipe

Claims (8)

冷媒液を保有する冷媒液槽と蓄熱槽とを有し、前記冷媒液槽は高温槽と低温槽とに少なくとも区分されており、前記高温槽の保有する高温冷媒液の温度は前記低温槽の保有する低温冷媒液の温度よりも高い蓄熱装置であって、
蓄熱運転時は、
前記低温槽の保有する低温冷媒液を前記蓄熱槽に供給し、該供給した低温冷媒液を前記蓄熱槽内において冷却し凝固体を生成し、
放熱運転時は、
前記高温槽の保有する高温冷媒液を前記蓄熱槽に供給し、前記蓄熱槽内において生成した前記凝固体を溶かして低温冷媒液を生成し、該生成した低温冷媒液を前記低温槽に供給し、前記低温槽に供給された低温冷媒液を、冷熱需要側となる冷熱負荷に供給し熱交換を行い、熱交換によって生成された高温冷媒液を前記高温槽に供給する制御手段と、
前記蓄熱槽内に、前記蓄熱槽の保有する前記冷媒液の温度を検知する検知手段と、を有し、
前記制御手段は、
前記低温槽の保有する低温冷媒液を前記蓄熱槽に供給する処理を開始した後に、前記検知手段が検知した前記蓄熱槽内の前記冷媒液の温度が、前記低温冷媒液の温度になった場合に、前記蓄熱槽に供給された前記低温冷媒液を前記蓄熱槽内において冷却して凝固体を生成することを特徴とする蓄熱装置。
A refrigerant liquid tank and a heat storage tank that hold the refrigerant liquid, the refrigerant liquid tank is at least divided into a high-temperature tank and a low-temperature tank, and the temperature of the high-temperature refrigerant liquid that the high-temperature tank holds is the temperature of the low-temperature tank It is a heat storage device that is higher than the temperature of the low-temperature refrigerant liquid it owns,
During heat storage operation,
Supplying the low-temperature refrigerant liquid held in the low-temperature tank to the heat storage tank, and cooling the supplied low-temperature refrigerant liquid in the heat storage tank to generate a solidified body;
During heat dissipation operation,
The high-temperature refrigerant liquid held by the high-temperature tank is supplied to the heat storage tank, the solidified body generated in the heat storage tank is dissolved to generate a low-temperature refrigerant liquid, and the generated low-temperature refrigerant liquid is supplied to the low-temperature tank. the low-temperature refrigerant liquid supplied to the cryostat, performed by supplying a cooling load to be cold demand side heat exchanger, and control means for supplying a high temperature refrigerant liquid generated by heat exchange in the hot bath,
In the heat storage tank, having a detecting means for detecting the temperature of the refrigerant liquid held by the heat storage tank,
The control means includes
When the temperature of the refrigerant liquid in the heat storage tank detected by the detection means becomes the temperature of the low-temperature refrigerant liquid after starting the process of supplying the low-temperature refrigerant liquid held by the low-temperature tank to the heat storage tank In addition, the low-temperature refrigerant liquid supplied to the heat storage tank is cooled in the heat storage tank to generate a solidified body .
冷却機を有し、
前記制御手段は、
蓄熱運転時に前記冷却機を運転し、前記高温槽の保有する高温冷媒液を前記冷却機において冷却して低温冷媒液を生成し、該生成した低温冷媒液を前記低温槽に供給し、該供給された低温冷媒液を前記蓄熱槽に供給し、該供給した低温冷媒液を前記蓄熱槽内において冷却して凝固体を生成することを特徴とする請求項1記載の蓄熱装置。
Have a cooler,
The control means includes
The cooler is operated during a heat storage operation, the high-temperature refrigerant liquid held in the high-temperature tank is cooled in the cooler to generate a low-temperature refrigerant liquid, the generated low-temperature refrigerant liquid is supplied to the low-temperature tank, and the supply The heat storage device according to claim 1, wherein the supplied low-temperature refrigerant liquid is supplied to the heat storage tank, and the supplied low-temperature refrigerant liquid is cooled in the heat storage tank to generate a solidified body.
前記蓄熱槽の保有する冷媒液を前記高温槽に供給する第1の供給手段と、
前記高温槽の保有する高温冷媒液を前記蓄熱槽に供給する第2の供給手段と、を有し、
前記制御手段は、
蓄熱運転時に、前記第1の供給手段により、前記蓄熱槽の保有する冷媒液を前記高温槽に供給し、前記低温槽の保有する低温冷媒液を前記蓄熱槽に供給し、該供給した低温冷媒液を前記蓄熱槽内において冷却して凝固体を生成し、
放熱運転時に、前記第2の供給手段により、前記高温槽の保有する高温冷媒液を前記蓄熱槽に供給し、前記蓄熱槽内において生成した前記凝固体を溶かして低温冷媒液を生成し、該生成した低温冷媒液を前記低温槽に供給することを特徴とする請求項1または2記載の蓄熱装置。
First supply means for supplying the high-temperature tank with the refrigerant liquid held by the heat storage tank;
A second supply means for supplying the high-temperature refrigerant liquid held by the high-temperature tank to the heat storage tank;
The control means includes
During the heat storage operation, the first supply means supplies the refrigerant liquid held by the heat storage tank to the high temperature tank, supplies the low temperature refrigerant liquid held by the low temperature tank to the heat storage tank, and supplies the supplied low temperature refrigerant. The liquid is cooled in the heat storage tank to produce a solidified body,
During the heat radiation operation, the second supply means supplies the high-temperature refrigerant liquid held in the high-temperature tank to the heat storage tank, dissolves the solidified body generated in the heat storage tank, and generates a low-temperature refrigerant liquid, The heat storage device according to claim 1 or 2, wherein the generated low-temperature refrigerant liquid is supplied to the low-temperature tank.
前記高温槽の保有する高温冷媒液を前記蓄熱槽に供給すること及び前記蓄熱槽の保有する冷媒液を前記高温槽に供給することの両方を行うことができる供給手段を有し、
前記制御手段は、
蓄熱運転時に、前記供給手段により、前記蓄熱槽の保有する冷媒液を前記高温槽に供給し、前記低温槽の低温冷媒液を前記蓄熱槽に供給し、該供給した低温冷媒液を前記蓄熱槽内において冷却して凝固体を生成し、
放熱運転時に、前記供給手段により、前記高温槽の保有する高温冷媒液を前記蓄熱槽に供給し、前記蓄熱槽内において生成した前記凝固体を溶かして低温冷媒液を生成し、該生成した低温冷媒液を前記低温槽に供給することを特徴とする請求項1または2記載の蓄熱装置。
Supply means capable of both supplying the high-temperature refrigerant liquid held by the high-temperature tank to the heat storage tank and supplying the refrigerant liquid held by the heat storage tank to the high-temperature tank;
The control means includes
During the heat storage operation, the supply means supplies the refrigerant liquid held by the heat storage tank to the high temperature tank, supplies the low temperature refrigerant liquid of the low temperature tank to the heat storage tank, and supplies the supplied low temperature refrigerant liquid to the heat storage tank. Cooling inside to produce a solidified body,
During the heat radiation operation, the supply means supplies the high-temperature refrigerant liquid held in the high-temperature tank to the heat storage tank, dissolves the solidified body generated in the heat storage tank, generates a low-temperature refrigerant liquid, and the generated low-temperature refrigerant liquid The heat storage device according to claim 1, wherein a refrigerant liquid is supplied to the low-temperature tank.
前記冷媒液は水であることを特徴とする請求項1から請求項の何れか一項に記載の蓄熱装置。 The heat storage device according to any one of claims 1 to 4 , wherein the refrigerant liquid is water. 冷媒液を保有する冷媒液槽と蓄熱槽とを有し、前記冷媒液槽は高温槽と低温槽とに少なくとも区分されており、前記高温槽の保有する高温冷媒液の温度は前記低温槽の保有する低温冷媒液の温度よりも高い蓄熱装置で行う蓄熱制御方法であって、
蓄熱運転時に、前記低温槽の保有する低温冷媒液を前記蓄熱槽に供給し、該供給した低温冷媒液を前記蓄熱槽内において冷却し凝固体を生成して冷熱を蓄積する蓄熱工程と、
放熱運転時に、前記高温槽の保有する高温冷媒液を前記蓄熱槽に供給し、前記蓄熱槽内において生成した前記凝固体を溶かして低温冷媒液を生成し、該生成した低温冷媒液を前記低温槽に供給し、前記低温槽に供給された低温冷媒液を、冷熱需要側となる冷熱負荷に供給し熱交換を行い、熱交換によって生成された高温冷媒液を前記高温槽に供給する放熱工程と、を有し、
前記蓄熱工程は、
前記低温槽の保有する低温冷媒液を前記蓄熱槽に供給する処理を開始した後に、前記蓄熱槽内の前記冷媒液の温度が、前記低温冷媒液の温度になった場合に、前記蓄熱槽に供給された前記低温冷媒液を前記蓄熱槽内において冷却して凝固体を生成することを特徴とする蓄熱制御方法。
A refrigerant liquid tank that holds the refrigerant liquid and a heat storage tank, wherein the refrigerant liquid tank is at least divided into a high temperature tank and a low temperature tank, and the temperature of the high temperature refrigerant liquid that the high temperature tank holds is the temperature of the low temperature tank A heat storage control method that is performed by a heat storage device that is higher than the temperature of the low-temperature refrigerant liquid that it holds,
A heat storage step of supplying a low-temperature refrigerant liquid held in the low-temperature tank to the heat storage tank, cooling the supplied low-temperature refrigerant liquid in the heat storage tank to generate a solidified body, and accumulating cold heat during a heat storage operation;
During the heat radiation operation, the high-temperature refrigerant liquid held in the high-temperature tank is supplied to the heat storage tank, the solidified body generated in the heat storage tank is melted to generate a low-temperature refrigerant liquid, and the generated low-temperature refrigerant liquid is A heat dissipation step of supplying the high-temperature refrigerant liquid generated by the heat exchange to the tank, supplying the low-temperature refrigerant liquid supplied to the low-temperature tank to the cold load on the cold demand side to perform heat exchange and, the possess,
The heat storage step
After starting the process of supplying the low-temperature refrigerant liquid held by the low-temperature tank to the heat storage tank, when the temperature of the refrigerant liquid in the heat storage tank becomes the temperature of the low-temperature refrigerant liquid, the heat storage tank A heat storage control method , wherein the supplied low-temperature refrigerant liquid is cooled in the heat storage tank to generate a solidified body .
前記蓄熱槽の保有する冷媒液を前記高温槽に供給する第1の供給手段と、
前記高温槽の保有する高温冷媒液を前記蓄熱槽に供給する第2の供給手段と、を有し、
前記蓄熱工程は、
前記第1の供給手段により、前記蓄熱槽の保有する冷媒液を前記高温槽に供給し、前記低温槽の保有する低温冷媒液を前記蓄熱槽に供給し、該供給した低温冷媒液を前記蓄熱槽内において冷却して凝固体を生成し、
前記放熱工程は、
前記第2の供給手段により、前記高温槽の保有する高温冷媒液を前記蓄熱槽に供給し、前記蓄熱槽内において生成した前記凝固体を溶かして低温冷媒液を生成し、該生成した低温冷媒液を前記低温槽に供給することを特徴とする請求項記載の蓄熱制御方法。
First supply means for supplying the high-temperature tank with the refrigerant liquid held by the heat storage tank;
A second supply means for supplying the high-temperature refrigerant liquid held by the high-temperature tank to the heat storage tank;
The heat storage step
The first supply means supplies the refrigerant liquid held by the heat storage tank to the high temperature tank, supplies the low temperature refrigerant liquid held by the low temperature tank to the heat storage tank, and supplies the supplied low temperature refrigerant liquid to the heat storage tank. Cool in the tank to produce a solidified body,
The heat dissipation step
The second supply means supplies the high-temperature refrigerant liquid held in the high-temperature tank to the heat storage tank, dissolves the solidified body generated in the heat storage tank, generates a low-temperature refrigerant liquid, and the generated low-temperature refrigerant The heat storage control method according to claim 6 , wherein a liquid is supplied to the low-temperature tank.
前記高温槽の保有する高温冷媒液を前記蓄熱槽に供給すること及び前記蓄熱槽の保有する冷媒液を前記高温槽に供給することの両方を行うことができる供給手段を有し、
前記蓄熱工程は、
前記供給手段により、前記蓄熱槽の保有する冷媒液を前記高温槽に供給し、前記低温槽の低温冷媒液を前記蓄熱槽に供給し、該供給した低温冷媒液を前記蓄熱槽内において冷却して凝固体を生成し、
前記放熱工程は、
前記供給手段により、前記高温槽の保有する高温冷媒液を前記蓄熱槽に供給し、前記蓄熱槽内において生成した前記凝固体を溶かして低温冷媒液を生成し、該生成した低温冷媒液を前記低温槽に供給することを特徴とする請求項記載の蓄熱制御方法。
Supply means capable of both supplying the high-temperature refrigerant liquid held by the high-temperature tank to the heat storage tank and supplying the refrigerant liquid held by the heat storage tank to the high-temperature tank;
The heat storage step
The supply means supplies the refrigerant liquid held in the heat storage tank to the high temperature tank, supplies the low temperature refrigerant liquid of the low temperature tank to the heat storage tank, and cools the supplied low temperature refrigerant liquid in the heat storage tank. To produce a solidified body
The heat dissipation step
By the supply means, the high-temperature refrigerant liquid held in the high-temperature tank is supplied to the heat storage tank, the solidified body generated in the heat storage tank is dissolved to generate a low-temperature refrigerant liquid, and the generated low-temperature refrigerant liquid is The heat storage control method according to claim 6 , wherein the heat storage control method is supplied to a low-temperature tank.
JP2003396984A 2003-11-27 2003-11-27 Thermal storage device and thermal storage control method Expired - Fee Related JP4464114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003396984A JP4464114B2 (en) 2003-11-27 2003-11-27 Thermal storage device and thermal storage control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003396984A JP4464114B2 (en) 2003-11-27 2003-11-27 Thermal storage device and thermal storage control method

Publications (2)

Publication Number Publication Date
JP2005156050A JP2005156050A (en) 2005-06-16
JP4464114B2 true JP4464114B2 (en) 2010-05-19

Family

ID=34722270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003396984A Expired - Fee Related JP4464114B2 (en) 2003-11-27 2003-11-27 Thermal storage device and thermal storage control method

Country Status (1)

Country Link
JP (1) JP4464114B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4964439B2 (en) * 2005-08-09 2012-06-27 高砂熱学工業株式会社 Operation method of heat storage enhancement system by cooling coil
JP2011247506A (en) * 2010-05-27 2011-12-08 Fujikura Ltd Cooling system for data center
US9271429B2 (en) 2010-04-12 2016-02-23 Fujikura Ltd. Cooling device, cooling system, and auxiliary cooling device for datacenter
CN102338433A (en) * 2010-07-26 2012-02-01 浙江耀能科技有限公司 Reservoir structure for storing energy by utilizing off-peak electricity
CN116624948B (en) * 2023-07-24 2023-11-17 江苏友奥电器有限公司 Ice cold-storage mobile air conditioner

Also Published As

Publication number Publication date
JP2005156050A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
EP2766668B1 (en) Thermal energy storage in a chiller system
US6474089B1 (en) Natural air-conditioning system for a car
CN100419349C (en) Refrigeration system
CN108461868B (en) Automobile heat management system and automobile
US20170184314A1 (en) Heat pump heating system
JP5121747B2 (en) Geothermal heat pump device
CN102549348A (en) Hot water storage-type hot water supply system and method for operating same
US10794278B2 (en) Compressed air storage power generation device
JP3975218B2 (en) Plastic molding machine cooling system
KR20150081090A (en) Thermal storage air-conditioning system using a different phase change materials.
JP4464114B2 (en) Thermal storage device and thermal storage control method
KR101001293B1 (en) Energy-saving ice thermal storage system for separating cold charge and discharge pump
KR101198816B1 (en) Cooling system for hybrid electric vehicles
JP6415378B2 (en) Air conditioning system
CN110762890A (en) Refrigerating unit with cold and hot recovery function
JP4369331B2 (en) Supercooled water dynamic ice storage tank
JP2000111198A (en) Composite heat pump device and air conditioning device using the same
KR200395419Y1 (en) Improved Heating and Cooling System
JP6089670B2 (en) Hot water system
WO2015001976A1 (en) Heat source system
JP3304265B2 (en) Operation control method of ice storage type air conditioner
JP6132821B2 (en) Absorption refrigeration system
CN218702613U (en) Thermal management system and electric vehicle
CN212657919U (en) Low temperature processing system
JP2551817B2 (en) Refrigeration system using ice heat storage

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees