JP6118065B2 - Water-cooled air conditioning system and operation control method thereof - Google Patents
Water-cooled air conditioning system and operation control method thereof Download PDFInfo
- Publication number
- JP6118065B2 JP6118065B2 JP2012230395A JP2012230395A JP6118065B2 JP 6118065 B2 JP6118065 B2 JP 6118065B2 JP 2012230395 A JP2012230395 A JP 2012230395A JP 2012230395 A JP2012230395 A JP 2012230395A JP 6118065 B2 JP6118065 B2 JP 6118065B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- heat
- heat storage
- operation mode
- header
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Air Conditioning Control Device (AREA)
Description
本発明は水冷式空調システムに係り、特に、中・小規模建物の空調システムとして好適な水冷式空調システムに関する。 The present invention relates to a water-cooled air-conditioning system, and more particularly to a water-cooled air-conditioning system suitable as an air-conditioning system for small and medium-sized buildings.
図6を参照して、従来の水冷式空調システム100は、往水ヘッダー101と還水ヘッダー102とをバイパス配管103で結び、熱源機104、往水ヘッダー101及び還水ヘッダー102間を結ぶ一次冷水循環回路105と、往水ヘッダー101、各空調機104及び還水ヘッダー102間を結ぶ二次冷水循環回路106と、により構成され、熱源機104で製造した冷水を二次冷水循環回路106側に供給する。この場合、空調機104側の冷房負荷が小さい場合には、バイパス配管103側に冷水を循環させて熱源機104は出口温度一定(例えば7℃)制御により運転される。
Referring to FIG. 6, the conventional water-cooled
このような空調システムにおいては、一般に負荷率50%以下の部分負荷での運転が全運転時間の約70%以上を占めている。このため、この間の運転効率低下を防止するため、大規模建物の空調システムでは、低負荷運転対応として熱源機の台数制御、部分負荷効率の高い熱源機の採用、搬送系の変流量化、蓄熱システム導入による負荷平準化などが行われている(例えば特許文献1)。 In such an air conditioning system, operation at a partial load with a load factor of 50% or less generally occupies about 70% or more of the total operation time. For this reason, in order to prevent a decrease in operating efficiency during this period, in large-scale building air conditioning systems, the control of the number of heat source units for low-load operation, the adoption of heat source units with high partial load efficiency, the variable flow rate of the transport system, heat storage Load leveling by system introduction is performed (for example, Patent Document 1).
しかしながら、中・小規模の空調システムにおいては、熱源機の台数制御は熱負荷が小さいため適用が制限される。また上記負荷平準化には空調システムの大幅変更を伴うため、採用が困難である。このような理由により、中・小規模の空調システムにおいては、低負荷時における運転効率低下に対してほとんど対策が取られていない実状がある。
本発明は上記課題を解決するためのものであって、大幅なシステム変更を要することなく、低負荷時の運転効率低下を回避可能な水冷式空調システム技術を提供するものである。
However, in medium and small-scale air conditioning systems, application of the control of the number of heat source units is limited because the heat load is small. Moreover, since the load leveling involves a significant change in the air conditioning system, it is difficult to adopt. For these reasons, there are cases in which medium and small-scale air conditioning systems have hardly taken measures against a decrease in operating efficiency at low loads.
The present invention is for solving the above-described problems, and provides a water-cooled air conditioning system technology that can avoid a decrease in operating efficiency at low loads without requiring a significant system change.
本発明は以下の内容をその要旨とする。すなわち、本発明に係る水冷式空調システムは、
(1)熱源機(2a)で製造した冷水を、往水ヘッダー(6)及び還水ヘッダー(2f)を介して1以上の空調機(4)に循環供給する水冷式空調システムにおいて、
空調機(4)を迂回して、往水ヘッダー(6)と還水ヘッダー(2f)とを結ぶ空調機バイパス配管(2g)と、
空調機バイパス配管(2g)経路内に潜熱蓄熱材を充填した蓄放熱装置(5)と、
を備えて成り、かつ、
熱源機(2a)、往水ヘッダー(6)、空調機(4)及び還水ヘッダー(2f)間を結ぶ回路を用いて、冷水を蓄放熱装置(5)側に供給することなく、空調機(4)側に供給する通常運転モードと、
熱源機(2a)、往水ヘッダー(6)、蓄放熱装置(5)及び還水ヘッダー(2f)間を結ぶ回路を用いて、冷水の少なくとも一部を蓄放熱装置(5)側に循環供給する蓄熱運転モードと、
往水ヘッダー(6)、空調機(4)、還水ヘッダー(2f)及び蓄放熱装置(5)間を結ぶ回路を用いて、蓄熱運転モード中に蓄放熱装置(5)に蓄熱した冷熱を、空調機(4)に循環供給する放熱運転モードと、
を適宜、運転切り替え可能に構成したしたことを特徴とする。
The gist of the present invention is as follows. That is, the water-cooled air conditioning system according to the present invention is
(1) In the water-cooled air conditioning system that circulates cold water produced by the heat source unit (2a) to one or more air conditioners (4) through the outgoing header (6) and the return water header (2f),
An air conditioner bypass pipe (2g) that bypasses the air conditioner (4) and connects the outgoing water header (6) and the return water header (2f);
An air storage unit (5) having a latent heat storage material filled in the air-conditioner bypass pipe (2g) path;
And comprising
Without using the circuit connecting the heat source machine (2a), the outgoing water header (6), the air conditioner (4), and the return water header (2f), the air conditioner can be used without supplying cold water to the heat storage and heat dissipation device (5) side. (4) normal operation mode supplied to the side,
Using a circuit connecting the heat source machine (2a), the outgoing water header (6), the heat storage and heat dissipation device (5), and the return water header (2f), at least a part of the cold water is circulated and supplied to the heat storage and heat dissipation device (5) side. Thermal storage operation mode to
Using the circuit connecting the incoming water header (6), the air conditioner (4), the return water header (2f), and the heat storage and heat dissipation device (5), the cold energy stored in the heat storage and heat dissipation device (5) during the heat storage operation mode is obtained. , A heat dissipation operation mode for circulating supply to the air conditioner (4),
Is configured so that operation can be switched as appropriate.
(2)上記発明において、前記蓄放熱装置を迂回する蓄放熱装置バイパス配管(31)を、さらに備え、
かつ、前記放熱運転モードにおいて、前記蓄放熱装置出の冷水に、還水ヘッダーに戻る還水を混合可能に構成したことを特徴とする。
(2) In the above invention, further comprising a heat storage and heat dissipation device bypass pipe (31) that bypasses the heat storage and heat dissipation device,
And in the said thermal radiation operation mode, it comprised so that the return water which returns to a return water header could be mixed with the cold water from the said heat storage and heat dissipation apparatus, It was characterized by the above-mentioned.
また、本発明に係る水冷式空調システムの運転制御方法は、
(3)上記水冷式空調システムにおいて、前記空調機側の冷房負荷に対応して、前記蓄放熱装置出の冷水と還水との還水割合を制御することを特徴とする。
In addition, the operation control method of the water-cooled air conditioning system according to the present invention includes:
(3) The water-cooled air conditioning system is characterized in that a return water ratio between cold water and return water from the heat storage and heat dissipation device is controlled in accordance with a cooling load on the air conditioner side.
本発明によれば、大幅なシステム変更を伴うことなく簡易な設備追加により低冷房負荷時の運転効率低下を回避できるという効果がある。
さらに、大幅なシステム変更を必要としないため、既存建物の約9割を占める中・小規模建物の空調システムについても採用が容易であり、我が国の省エネ推進の要請に応えることができる。
According to the present invention, there is an effect that it is possible to avoid a decrease in operation efficiency at the time of a low cooling load by adding a simple facility without a significant system change.
Furthermore, since no major system changes are required, it is easy to adopt air conditioning systems for medium and small-sized buildings, which account for about 90% of existing buildings, and can meet Japan's demand for energy conservation promotion.
以下、本発明に係る空調システムの実施形態について、図1(a)乃至5(c)を参照してさらに詳細に説明する。各図において同一構成には同一符号を用いて示し、重複説明を省略する。なお、本発明の範囲は特許請求の範囲記載のものであって、以下の実施形態に限定されないことはいうまでもない。 Hereinafter, an embodiment of an air-conditioning system according to the present invention will be described in more detail with reference to FIGS. 1 (a) to 5 (c). In the drawings, the same components are denoted by the same reference numerals, and redundant description is omitted. Needless to say, the scope of the present invention is described in the claims and is not limited to the following embodiments.
<第一の実施形態>
図1(a)を参照して、空調システム1は、一次側冷水循環系統2と二次側冷水循環系統3とにより構成されている。
一次側冷水循環系統2は、冷水発生源である熱源機2aと、熱源機2aで作られた冷水を往水ヘッダーユニット6に供給する熱源機出口配管2cと、配管2c経路内に介装される二方弁2hと、還水ヘッダー2fからの還水を熱源機2aに戻す熱源機入口配管2dと、両ヘッダー間を直接結ぶバイパス配管2gと、により構成されている。往水ヘッダーユニット6は、一次側往水ヘッダー2e、二次側往水ヘッダー3e及び二次側循環ポンプ3gにより構成されている。バイパス配管2g経路内には、蓄放熱装置5が介装されている。また、熱源機入口配管2d経路内には、一次側循環ポンプ2bが介装されている。詳細図示を省略するが、空調機4は熱交換器、送風機を備えたAHU(Air Handling Unit)もしくはFCU(Fan Coil Unit)であり、冷水と室内空気を熱交換させて冷風を空調対象室内に供給可能に構成されている。
なお、一次側循環ポンプ2bは熱源機2aの下流、熱源機出口配管2c側に配置してもよい。
<First embodiment>
Referring to FIG. 1A, an
The primary side cold
In addition, you may arrange | position the primary
図1(b)を参照して、蓄放熱装置5は外側容器5b、断熱層5cの内側に小球状の潜熱蓄熱材5aが充填された構成を備えている。潜熱蓄熱材5aとしては、パラフィン系潜熱蓄熱材等を用いることができる。
With reference to FIG.1 (b), the thermal storage /
二次側冷水循環系統3は、往水ヘッダーユニット6と、往水配管3aと、分岐配管3cと、還水配管3bと、分岐配管3c経路内に介装される空調機4と、二方弁3dと、を主要構成として備えている。なお詳細図示を省略するが、二次側冷水循環系統3には複数の二次側冷水循環系統3’が含まれる。
往水ヘッダー2eと還水ヘッダー2f間には、ヘッダー間の差圧(Pr)を計測できる差圧センサS1が設置されており、Prが一定値になるよう二次側循環ポンプ3gを制御するように構成されている。
なお、二次側の要求水量が1台目の循環ポンプ3gの下限水量を下回るケースを想定して、一次側往水ヘッダー2e、二次側往水ヘッダー3e間をバイパスする配管を持つ場合がある。
The secondary-side chilled
A differential pressure sensor S1 capable of measuring a differential pressure (Pr) between the headers is installed between the
In addition, assuming a case where the required amount of water on the secondary side is lower than the lower limit amount of water of the first circulating
水冷式空調システム1は以上のように構成されており、次に図1(c)乃至1(e)を参照して、本実施形態における空調機側への冷水供給の制御フローについて順次説明する。なお、以下のフローでは制御の安定化を考慮して、各ステップは所定の時間間隔で行われるものとする。また、本実施形態の制御指令は、不図示の制御部により実行される。以下のフローにおいて、各運転条件下における二方弁2h、循環ポンプ2bの作動状態は表1の通りである。
The water-cooled
制御開始時において、熱源機2aは出口温度一定(例えば7℃)制御により運転されている。一次側循環ポンプ2bは運転状態、二方弁2hは開状態にあるものとする。また、二次側循環ポンプ3gは、ヘッダー間差圧(Pr)を一定値に維持するよう制御を行っている。この状態における冷水循環は、図1(c)太線に示す通りである。
At the start of the control, the
その後、例えば空調機4の冷房需要の低下により、制御弁3dの開度が小又は全閉になることにより、二次側循環ポンプ3gによる循環水量が減少する。一方、1次側循環ポンプ2bによる循環水量は変化しないため、その水量差分はバイパス配管2g側に供給され、その分の冷熱がバイパス配管2g経路内に設置された蓄放熱装置5に蓄熱されることになる。この状態における冷水循環は、図1(d)太線の通りとなる。
Thereafter, for example, due to a decrease in cooling demand of the
この状態から、さらにヘッダー間差圧(Pr)が予め設定された最小値(P_min)を下回った場合には、空調機側の冷房負荷がさらに小さいと判定され、熱源機2a及び一次側循環ポンプ2bを停止し、二方弁2hを閉鎖する。これにより、冷水循環は図1(e)の通りとなり、蓄放熱装置5からの放熱により空調機4の冷房が行われることとなる。
From this state, if the inter-header differential pressure (Pr) is lower than the preset minimum value (P_min), it is determined that the cooling load on the air conditioner side is further smaller, and the
その後、ヘッダー間差圧(Pr)が最小値(P_min)を超えるに至った場合には二方弁2iを開放し、熱源機2a及び一次側循環ポンプ2bの運転を再開する。
なお、本実施形態では熱源機運転から蓄放熱装置5の放熱運転への切り替えをヘッダー間差圧(Pr)により制御する例を示したが、冷凍機の負荷率や、循環水量の変化、蓄放熱装置5内の潜熱蓄熱材の蓄熱状態(例えば内部温度)により判定する態様とすることもできる。
Thereafter, when the inter-header differential pressure (Pr) exceeds the minimum value (P_min), the two-way valve 2i is opened, and the operation of the
In the present embodiment, an example in which switching from the heat source machine operation to the heat radiation operation of the heat storage and
また、熱源機2a及び一次循環ポンプ2bが、故障又は保守点検などで停止する場合も、上記と同様に、二方弁2hを閉鎖することで、蓄放熱装置5に蓄熱された熱の放熱により、空調機4の冷房を行うことが可能となる。
In addition, even when the
<第二の実施形態>
さらに本発明の他の実施形態について説明する。本実施形態は、蓄放熱装置5による放熱時に一次側循環ポンプを利用し、かつ、放熱時に負荷に応じて還水を混合して送水温度を調整し、放熱運転の長時間化を図る形態に関する。
<Second Embodiment>
Further, another embodiment of the present invention will be described. The present embodiment relates to a mode in which a primary circulation pump is used during heat radiation by the heat storage and
図2(a)を参照して、本実施形態に係る水冷式空調システム30の構成が上述の水冷式空調システム1と異なる点は、一次側循環ポンプ36が熱源機出口配管2c側に介装されていることである。また、熱源機出口配管2cとバイパス配管2gとを結ぶ循環ポンプバイパス配管37が設けられている。さらに、蓄放熱装置5をバイパスして還水ヘッダー2fとバイパス配管37とを結ぶ蓄放熱装置バイパス配管31が設けられている。さらに、熱源機2aと往水ヘッダー2eを結ぶ配管経路内には二方弁32、33、35及び三方弁34が介装されている。なお、水冷式空調システム1の配管2c経路内に介装されているバイパス二方弁2hは設けられていない。
その他の構成は水冷式空調システム1と同様であるので、重複説明を省略する。
Referring to FIG. 2A, the configuration of the water-cooled
The other configuration is the same as that of the water-cooled
次に、水冷式空調システム30の蓄熱運転モード及び放熱運転モードにおける冷水循環の態様について説明する。なお、通常運転モードにおける冷水循環流路は上述の各実施形態と同様であるので、重複説明を省略する。
各運転条件下における制御弁、循環ポンプの作動制御は表2の通りである。
Next, the aspect of the cold water circulation in the heat storage operation mode and the heat radiation operation mode of the water-cooled
Table 2 shows the operation control of the control valve and the circulation pump under each operation condition.
上表の弁制御により、蓄熱運転モード、放熱運転モードにおける冷水循環はそれぞれ図2(b)、図2(c)の循環流路となり、水冷式空調システム1と同様の通常運転、蓄熱運転、放熱運転が行われる。
Due to the valve control in the above table, the chilled water circulation in the heat storage operation mode and the heat radiation operation mode becomes the circulation flow path of FIG. 2 (b) and FIG. 2 (c), respectively. A heat dissipation operation is performed.
<第三の実施形態>
さらに本発明の他の実施形態について説明する。本実施形態は放熱運転モードに二次側循環ポンプを利用し、かつ、放熱時に負荷に応じて還水を混合して放熱運転の長時間化を図る形態に関し、特に熱源機故障等の緊急時の空調確保を可能とする態様である。
<Third embodiment>
Further, another embodiment of the present invention will be described. The present embodiment relates to a mode in which a secondary circulation pump is used for the heat radiation operation mode and the return water is mixed according to the load at the time of heat radiation to extend the heat radiation operation, particularly in an emergency such as a heat source machine failure. This is an aspect that enables air conditioning to be secured.
図3(a)を参照して、本実施形態に係る水冷式空調システム40の構成が上述の水冷式空調システム1と異なる点は、蓄放熱装置5をバイパスして還水ヘッダー2fと往水ヘッダー2eとを結ぶ還水バイパス配管43が設けられていることである。また、還水バイパス配管43とバイパス配管2gの合流点には三方弁41が介装されている。さらに、往水ヘッダー2e出口近傍には温度センサS41が配設されている。その他の構成は水冷式空調システム1と同様であるので、重複説明を省略する。
Referring to FIG. 3A, the configuration of the water-cooled
次に、水冷式空調システム40の通常運転モード、蓄熱運転モード及び放熱運転モードにおける冷水循環の態様について説明する。各運転条件下における制御弁、循環ポンプの作動制御は表3の通りである。
Next, the aspect of the cold water circulation in the normal operation mode, the heat storage operation mode, and the heat radiation operation mode of the water-cooled
上表の弁制御により、蓄熱運転モード、放熱運転モードにおける冷水循環はそれぞれ図3(b)、図3(c)の循環流路となる。放熱運転モードにおいて、蓄放熱装置5からの出の冷水(例えば7℃)と還水バイパス配管43を介する再循環冷水(例えば12℃)を空調機4の運転に支障のない範囲で混合し、空調機4側に供給するため、冷房能力は減少するものの、放熱運転モード時間の長時間化が可能となる。
By the valve control shown in the above table, the chilled water circulation in the heat storage operation mode and the heat radiation operation mode becomes the circulation flow paths of FIGS. 3B and 3C, respectively. In the heat radiation operation mode, cold water (eg, 7 ° C.) discharged from the heat storage /
<第四の実施形態>
さらに本発明の他の実施形態について説明する。本実施形態は、システム全体の冷水循環を循環ポンプ2bのみで行う形態に関する。
<Fourth embodiment>
Further, another embodiment of the present invention will be described. The present embodiment relates to a mode in which the cold water circulation of the entire system is performed only by the
図4(a)を参照して、本実施形態に係る水冷式空調システム50の構成が水冷式空調システム1と異なる点は、二次側冷水循環系統3において往水ヘッダー57が二次側往水ヘッダー、二次側循環ポンプ、配管3fを備えていないことである。
また、バイパス配管2gと熱源機入口配管2dを結ぶ配管51、熱源機2aをバイパスする配管52が設置されている。さらに、バイパス配管2gには二方弁53が、配管51には二方弁54が、配管52には二方弁55が、それぞれ介装されていることである。その他の構成は水冷式空調システム1と同様であるので、重複説明を省略する。
Referring to FIG. 4A, the configuration of the water-cooled
A
次に、水冷式空調システム50の蓄熱運転モード及び放熱運転モードにおける冷水循環の態様について説明する。
各運転条件下における制御弁、循環ポンプの作動制御は表4の通りである。
Next, the aspect of the cold water circulation in the heat storage operation mode and the heat radiation operation mode of the water-cooled
Table 4 shows the operation control of the control valve and the circulation pump under each operation condition.
上表の弁制御により、蓄熱運転モード、放熱運転モードにおける冷水循環はそれぞれ図4(b)、図4(c)の循環流路となり、上述の各実施形態と同様の通常運転、蓄熱運転、放熱運転が行われる。 Due to the valve control in the above table, the chilled water circulation in the heat storage operation mode and the heat radiation operation mode becomes the circulation flow path of FIG. 4 (b) and FIG. 4 (c), respectively. A heat dissipation operation is performed.
<第五の実施形態>
さらに本発明の他の実施形態について説明する。本実施形態は、放熱運転モード時に冷房負荷に応じて還水を適宜、往水に混合することにより、放熱運転の長時間化を図る態様に係る。
<Fifth embodiment>
Further, another embodiment of the present invention will be described. The present embodiment relates to a mode in which the heat radiation operation is extended for a long time by appropriately mixing the return water with the outgoing water according to the cooling load in the heat radiation operation mode.
図5(a)を参照して、本実施形態に係る水冷式空調システム60の構成が上記の水冷式空調50と異なる点は、熱源機入口配管2dと配管51とを接続するバイパス配管61と、両配管の合流点に三方弁62と、が設置されていることである。
その他の構成は水冷式空調システム60と同様であるので、重複説明を省略する。
With reference to FIG. 5A, the configuration of the water-cooled
The other configuration is the same as that of the water-cooled
次に、水冷式空調システム60の各運転モードにおける冷水循環の態様について説明する。各運転条件下における制御弁、循環ポンプの作動制御は表5の通りである。
Next, the aspect of the cold water circulation in each operation mode of the water cooling type
上表の弁制御により、蓄熱運転モード、放熱運転モードにおける冷水循環はそれぞれ図5(b)、図5(c)の循環流路となり、水冷式空調システム1と同様の通常運転、蓄熱運転、放熱運転が行われる。
By the valve control in the above table, the chilled water circulation in the heat storage operation mode and the heat radiation operation mode becomes the circulation flow path of FIG. 5 (b) and FIG. 5 (c), respectively. A heat dissipation operation is performed.
本発明は、熱源、冷媒、建築構造等の種類を問わず、水冷式空調システムに広く適用可能である。 The present invention is widely applicable to water-cooled air conditioning systems regardless of the type of heat source, refrigerant, building structure, and the like.
1、30、40、50、60・・・・水冷式空調システム
2・・・・一次側冷水循環系統
2a・・・熱源機
2b・・・一次側循環ポンプ
2e、57・・・往水ヘッダー
2f・・・還水ヘッダー
2g・・・空調バイパス配管
3・・・・二次側冷水循環系統
4・・・・空調機
5・・・・蓄放熱装置
6・・・・往水ヘッダーユニット
2h、32、33、35、42、53〜56、63〜65・・・・二方弁
34、41、62・・・・三方弁
S1・・・・差圧センサ
S31、S41、S71・・・・温度センサ
1, 30, 40, 50, 60 ··· Water-cooled
Claims (3)
空調機(4)を迂回して、往水ヘッダー(6)と還水ヘッダー(2f)とを結ぶ空調機バイパス配管(2g)と、
空調機バイパス配管(2g)経路内に潜熱蓄熱材を充填した蓄放熱装置(5)と、
を備えて成り、かつ、
熱源機(2a)、往水ヘッダー(6)、空調機(4)及び還水ヘッダー(2f)間を結ぶ回路を用いて、冷水を蓄放熱装置(5)側に供給することなく、空調機(4)側に供給する通常運転モードと、
空調機側の冷房需要が低下したときに、熱源機(2a)、往水ヘッダー(6)、蓄放熱装置(5)及び還水ヘッダー(2f)間を結ぶ回路を用いて、冷水の少なくとも一部を蓄放熱装置(5)側に循環供給する蓄熱運転モードと、
空調機側の冷房需要がさらに低下したときに、往水ヘッダー(6)、空調機(4)、還水ヘッダー(2f)及び蓄放熱装置(5)間を結ぶ回路を用いて、蓄熱運転モード中に蓄放熱装置(5)に蓄熱した冷熱を、空調機(4)に循環供給する放熱運転モードと、
を適宜、運転切り替え可能に構成したことを特徴とする水冷式空調システム。 In the water-cooled air conditioning system that circulates cold water produced by the heat source device (2a) to one or more air conditioners (4) through the outgoing header (6) and the return water header (2f),
An air conditioner bypass pipe (2g) that bypasses the air conditioner (4) and connects the outgoing water header (6) and the return water header (2f);
An air storage unit (5) having a latent heat storage material filled in the air-conditioner bypass pipe (2g) path;
And comprising
Without using the circuit connecting the heat source machine (2a), the outgoing water header (6), the air conditioner (4), and the return water header (2f), the air conditioner can be used without supplying cold water to the heat storage and heat dissipation device (5) side. (4) normal operation mode supplied to the side,
When the cooling demand on the air conditioner side decreases, at least one of the cold water is used by using a circuit connecting the heat source unit (2a), the forward water header (6), the heat storage / radiation device (5), and the return water header (2f). A heat storage operation mode in which a part is circulated and supplied to the heat storage and dissipation device (5) side,
When the cooling demand on the air conditioner side further declines, a heat storage operation mode is established using a circuit connecting between the incoming water header (6), the air conditioner (4), the return water header (2f), and the heat storage and heat dissipation device (5). A heat radiation operation mode in which the cold energy stored in the heat storage and heat dissipation device (5) is circulated and supplied to the air conditioner (4);
A water-cooled air conditioning system characterized in that the operation can be appropriately switched.
かつ、前記放熱運転モードにおいて、前記蓄放熱装置出の冷水に、還水ヘッダーに戻る還水を混合可能に構成したことを特徴とする請求項1に記載の水冷式空調システム。 The heat storage and heat dissipation device bypass pipe (31) that bypasses the heat storage and heat dissipation device is further provided,
The water-cooled air conditioning system according to claim 1, wherein in the heat radiation operation mode, the return water returning to the return water header can be mixed with the cold water discharged from the heat storage and heat dissipation device.
前記空調機側の冷房負荷に対応して、前記通常運転モード、前記蓄熱運転モード又は前記放熱運転モードを適宜切り替えることにより、低冷房負荷時における運転効率向上を図ることを特徴とする水冷式空調システムの運転制御方法。
The water-cooled air conditioning system according to claim 1 or 2 ,
A water-cooled air conditioner that improves operation efficiency at low cooling loads by appropriately switching the normal operation mode, the heat storage operation mode, or the heat dissipation operation mode in accordance with the cooling load on the air conditioner side. System operation control method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012230395A JP6118065B2 (en) | 2012-10-18 | 2012-10-18 | Water-cooled air conditioning system and operation control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012230395A JP6118065B2 (en) | 2012-10-18 | 2012-10-18 | Water-cooled air conditioning system and operation control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014081167A JP2014081167A (en) | 2014-05-08 |
JP6118065B2 true JP6118065B2 (en) | 2017-04-19 |
Family
ID=50785504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012230395A Active JP6118065B2 (en) | 2012-10-18 | 2012-10-18 | Water-cooled air conditioning system and operation control method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6118065B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6417155B2 (en) * | 2014-09-02 | 2018-10-31 | 新日本空調株式会社 | Heat source equipment with heat storage tank and operation control method thereof |
WO2018105732A1 (en) * | 2016-12-08 | 2018-06-14 | 株式会社Nttファシリティーズ | Heat medium circulation system and coolant circulation system |
JP7100423B2 (en) * | 2016-12-08 | 2022-07-13 | 株式会社Nttファシリティーズ | Cold water circulation system |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60196559A (en) * | 1984-03-19 | 1985-10-05 | 三菱商事株式会社 | Air conditioner for computer chamber |
JPH0719543A (en) * | 1993-06-30 | 1995-01-20 | Nippon Koei Co Ltd | Water-based regenerative type cooling/heating apparatus |
US5381860A (en) * | 1993-09-28 | 1995-01-17 | Dirrecktor Tes Systems, Inc. | Thermal energy storage system for a cool water air conditioning system |
JP3270272B2 (en) * | 1994-11-21 | 2002-04-02 | 高砂熱学工業株式会社 | Control system for heat source system for air conditioning |
JPH109643A (en) * | 1996-06-21 | 1998-01-16 | N T T Facilities:Kk | Heat storage type air conditioning system and operation for the same |
JPH1082537A (en) * | 1996-09-09 | 1998-03-31 | Fuji Electric Co Ltd | Heat accumulating device |
JP2001227780A (en) * | 2000-02-15 | 2001-08-24 | Sanken Setsubi Kogyo Co Ltd | Air conditioning system |
JP3365997B2 (en) * | 2000-09-18 | 2003-01-14 | ダイダン株式会社 | Primary / secondary pump type heat source variable flow system |
JP2002228230A (en) * | 2001-02-06 | 2002-08-14 | Hitachi Plant Eng & Constr Co Ltd | Heat radiating operation method of heat storage facility |
JP5001098B2 (en) * | 2007-09-06 | 2012-08-15 | アズビル株式会社 | Heat source control device and heat source control method |
JP5472900B2 (en) * | 2009-06-01 | 2014-04-16 | 株式会社竹中工務店 | Heat source system for air conditioning with heat storage tank |
JP5492713B2 (en) * | 2010-09-09 | 2014-05-14 | アズビル株式会社 | Water supply temperature control apparatus and method |
JP5492712B2 (en) * | 2010-09-09 | 2014-05-14 | アズビル株式会社 | Water supply temperature control apparatus and method |
JP5975253B2 (en) * | 2011-12-15 | 2016-08-23 | 清水建設株式会社 | Air conditioning operation control system |
-
2012
- 2012-10-18 JP JP2012230395A patent/JP6118065B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014081167A (en) | 2014-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110325804B (en) | System and method for controlling a refrigeration system | |
US9765977B2 (en) | Heat-accumulating hot-water-supplying air conditioner | |
US20150075199A1 (en) | Air-Conditioning/Hot-Water Supply System | |
JP5570618B2 (en) | Air conditioner | |
US10451305B2 (en) | Air-conditioning apparatus | |
JP2006292313A (en) | Geothermal unit | |
US10429102B2 (en) | Two phase loop distributed HVACandR system | |
JP2014206330A (en) | Chiller device | |
JP6118065B2 (en) | Water-cooled air conditioning system and operation control method thereof | |
JP5875925B2 (en) | Thermal storage system and thermal storage method for thermal storage system | |
JP2015215117A (en) | Heat pump type air cooling device | |
JP5312616B2 (en) | Air conditioner | |
CN208653007U (en) | Refrigeration equipment | |
JP2006010137A (en) | Heat pump system | |
JP2012117780A (en) | Cooling device | |
JP2008224155A (en) | Ice heat storage type heat source machine device and its control method | |
JP5584052B2 (en) | High efficiency heat transfer device in air conditioning system | |
JP6002444B2 (en) | Water-cooled air conditioning system | |
KR101215014B1 (en) | Geothermal cooling and heating apparatus | |
JP2009109086A (en) | Air conditioning system | |
JP2006084084A (en) | Air conditioner and its operation method | |
JP2000111105A (en) | Air-conditioning system for office building | |
KR101370276B1 (en) | Heat pump system | |
JP2014194301A (en) | Air conditioning system and air conditioning system operation method | |
WO2023007700A1 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150728 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160524 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170110 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170228 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170321 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170324 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6118065 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |