JP5975253B2 - Air conditioning operation control system - Google Patents

Air conditioning operation control system Download PDF

Info

Publication number
JP5975253B2
JP5975253B2 JP2011274338A JP2011274338A JP5975253B2 JP 5975253 B2 JP5975253 B2 JP 5975253B2 JP 2011274338 A JP2011274338 A JP 2011274338A JP 2011274338 A JP2011274338 A JP 2011274338A JP 5975253 B2 JP5975253 B2 JP 5975253B2
Authority
JP
Japan
Prior art keywords
heat storage
air conditioning
heat
heat source
conditioning operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011274338A
Other languages
Japanese (ja)
Other versions
JP2013124819A (en
Inventor
義和 片平
義和 片平
俊一 中本
俊一 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2011274338A priority Critical patent/JP5975253B2/en
Publication of JP2013124819A publication Critical patent/JP2013124819A/en
Application granted granted Critical
Publication of JP5975253B2 publication Critical patent/JP5975253B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は蓄熱式空調設備を対象とする空調運転制御システムに関する。   The present invention relates to an air conditioning operation control system for a regenerative air conditioning facility.

周知のように、蓄熱槽を備えた蓄熱式空調設備は、夜間等の低負荷時に蓄熱槽に対する蓄熱運転を行っておき、昼間等の高負荷時に蓄熱槽の保有蓄熱を利用することを基本とするものであって、全体として効率的な運転が可能であって省エネルギーに寄与し得るものであるので、建物や工場等の冷暖房設備として古くより広く普及しているが、最近ではたとえば特許文献1に示されるように外気条件や建物の使用状況等を学習し予測して最適運転を行うための高度の制御システムについての提案もなされている。   As is well known, heat storage air conditioning equipment equipped with a heat storage tank is based on the fact that the heat storage operation is performed on the heat storage tank at low loads such as at night, and the heat storage tank's stored heat storage is used at high loads such as during the daytime. Since it can be efficiently operated as a whole and can contribute to energy saving, it has been widely used as an air conditioning facility for buildings, factories, and the like. As shown in Fig. 2, there is also a proposal for an advanced control system for learning and predicting outside air conditions, building use conditions, etc. and performing optimum operation.

特開2006−78009号公報JP 2006-78009 A

上記のような制御システムは蓄熱式空調設備を効率的に運転するうえで有効ではあるが、複雑なソフトウエアとハードウエアを必要とする高度かつ高価なシステムであるので、一般的な蓄熱式空調設備に導入することはコスト的に困難な場合もあって広く普及するに至っていない。   Although the control system as described above is effective in efficiently operating the regenerative air conditioning equipment, it is a sophisticated and expensive system that requires complex software and hardware. Introducing it into equipment has been difficult to achieve because it may be difficult in terms of cost.

上記事情に鑑み、本発明は蓄熱式空調設備を効率的に運転することを可能とする簡易にして有効適切な空調運転制御システムを提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a simple and effective air conditioning operation control system that enables efficient operation of a regenerative air conditioning facility.

本発明は、蓄熱式空調設備を対象とする空調運転制御システムであって、空調運転時間
内において蓄熱槽の保有蓄熱を利用しつつ複数台の熱源機の台数制御により負荷に応じた
空調運転を行う空調運転モードと、空調運転時間外において前記熱源機により前記蓄熱槽
に対する蓄熱運転を行う蓄熱運転モードとを設定し、前記空調運転モードにおいては、前
記蓄熱槽の保有蓄熱を優先して利用しつつその時点の負荷に応じて前記熱源機の台数制御
を行う負荷流量優先モードと、前記空調運転モードの終了時において前記蓄熱槽の保有残
熱量がほぼゼロとなるように保有残熱量の維持を優先して前記熱源機の台数制御を行う残
蓄熱量優先モードを設定可能とし、前記蓄熱運転モードの暖房時、及び前記空調運転モードにおいて、前記複数台の熱源機を全負荷運転しつつ前記複数台の熱源機の台数制御を行い、前記複数台の熱源機の運転停止順序を前記熱源機の台数制御の都度変更することを特徴とする。
また、本発明において、各熱源機の台数制御に際しての増段あるいは減段には一定時間の間隔を確保することが好ましい。
The present invention is an air conditioning operation control system for a regenerative air conditioning facility, and performs air conditioning operation according to the load by controlling the number of heat source units while using the stored heat storage in the heat storage tank within the air conditioning operation time. An air conditioning operation mode to be performed and a heat storage operation mode in which the heat storage device performs a heat storage operation with respect to the heat storage tank outside the air conditioning operation time. In the air conditioning operation mode, the heat storage tank has priority to use the stored heat storage. However, the load flow priority mode for controlling the number of the heat source units according to the load at that time, and maintaining the retained heat amount so that the retained heat amount of the heat storage tank becomes almost zero at the end of the air conditioning operation mode. preferentially to enable setting the residual heat storage amount priority mode for controlling the number of the heat source apparatus, the heating of the thermal storage operation mode, and in the air-conditioning operation mode, said plurality of heat sources The performed count control of the plurality of heat source apparatuses while full load operation, and changes the operation stop order of the plurality of heat source apparatuses each of units control of the heat source apparatus.
Moreover, in this invention, it is preferable to ensure the fixed time space | interval for the stage increase or decrease in the number control of each heat source machine.

本発明の空調運転制御システムでは、空調運転モードによる運転に際して、負荷に応じて熱源機の台数制御を行う負荷流量優先モードと、蓄熱槽の保有残熱量の維持を優先して熱源機の台数制御を行う残蓄熱量優先モードを設定することにより、各熱源機を高効率で全負荷運転することが可能であり、かつ空調運転モードの終了時において蓄熱槽の保有蓄熱量を有効に使い切るような制御が可能であって、最も効率的な空調運転が可能となる。
また、本発明の空調運転制御システムは複雑なソフトウエアやハードウエア、制御機構を必要としない簡略にして安価なシステムであって、一般の蓄熱式空調設備全般に広く適用可能である。
In the air conditioning operation control system of the present invention, when operating in the air conditioning operation mode, the load flow rate priority mode for controlling the number of heat source units according to the load, and the number control of the heat source units giving priority to the maintenance of the remaining heat amount of the heat storage tank. It is possible to operate each heat source unit at full load with high efficiency by setting the remaining heat storage priority mode to perform the operation, and to effectively use up the stored heat storage in the heat storage tank at the end of the air conditioning operation mode. Control is possible and the most efficient air conditioning operation is possible.
The air-conditioning operation control system of the present invention is a simple and inexpensive system that does not require complicated software, hardware, and a control mechanism, and can be widely applied to general heat storage type air-conditioning equipment in general.

本発明の空調運転制御システムの実施形態を示すもので、空調設備の概略構成と冷房時における蓄熱運転モードによる運転状況を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS The embodiment of the air-conditioning operation control system of this invention is shown, and is a figure which shows the driving | running state by the thermal storage operation mode at the time of the schematic structure of an air-conditioning installation and air_conditioning | cooling. 同、冷房時における空調運転モード(負荷流量優先モードおよび残蓄熱量優先モード)による運転状況を示す図である。It is a figure which shows the driving | running state by the air-conditioning driving | operation mode (load flow priority mode and residual heat storage priority mode) at the time of cooling. 同、暖房時における蓄熱運転モードによる運転状況を示す図である。It is a figure which shows the driving | running condition by the thermal storage operation mode at the time of heating. 同、暖房時における空調運転モード(負荷流量優先モードおよび残蓄熱量優先モード)による運転状況を示す図である。It is a figure which shows the driving | running state by the air-conditioning operation mode (load flow rate priority mode and residual heat storage priority mode) at the time of heating. 同、空調運転モードにおける負荷流量優先モードについての説明図である。It is explanatory drawing about the load flow rate priority mode in air-conditioning operation mode. 同、空調運転モードにおける残蓄熱量優先モードについての説明図である。It is explanatory drawing about the remaining heat amount priority mode in air-conditioning operation mode. 同、冷房時における熱源機の運転スケジュールの一例を示す図である。It is a figure which shows an example of the operation schedule of the heat source machine at the time of cooling.

以下、図面を参照して本発明の実施形態について説明する。
図1〜図4は本実施形態の空調運転システムの適用対象である蓄熱式空調設備の概略構成とその運転状況をモード別に模式的に示す図である(図1〜図4では各モードで稼働している要素のみに符号を付して太線で示している)。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 4 are diagrams schematically showing a schematic configuration of the heat storage type air conditioning equipment to which the air conditioning operation system of the present embodiment is applied and its operation status according to modes (in FIGS. 1 to 4, operation is performed in each mode). Only the elements that are marked are marked with bold lines).

本実施形態の蓄熱式空調設備は、図1〜図4に示すように、複数台(図示例では全4台)の熱源機1と蓄熱槽2を備えたものであって、図示例の場合は熱源機1として1台の冷房専用熱源機としてのターボ冷凍機1a(図ではR-1としている)と、3台の冷暖房兼用熱源機としてのHPチラー1b(空気熱源ヒートポンプ式チリングユニット。図ではCR-1-1、CR-1-2、CR-1-3としている)を採用しており、蓄熱槽2としては縦型容器の形式のものを採用している。   As shown in FIGS. 1 to 4, the heat storage type air conditioner of the present embodiment includes a plurality of (four in the illustrated example) heat source units 1 and heat storage tanks 2. Is a turbo chiller 1a (indicated as R-1 in the figure) as a cooling-only heat source unit as the heat source unit 1, and an HP chiller 1b (air heat source heat pump type chilling unit as a cooling / heating heat source unit). In this case, CR-1-1, CR-1-2, and CR-1-3 are used, and the heat storage tank 2 is a vertical container.

なお、図中の符号3はサプライヘッダ、4はリタンヘッダ、5は1次ポンプ(ターボ冷凍機1a用の冷水1次ポンプ5a、およびHPチラー1b用の冷温水1次ポンプ5b)、6は2次ポンプであり、それらの全体で各熱源機1と蓄熱槽2と空調機等の負荷7との間にわたって冷温水(冷房時においては冷水、暖房時においては温水)を循環させるための配管系が構成されている。
勿論、この配管系の要所には、流量や圧力、水温その他の状況を刻々と検知するための各種のセンサ類や制御弁、配管経路を切り換えるための切替弁やバイパス管その他の付属器具類、付属機器類およびその全体を自動制御するための制御系が当然に設けられているが、それらの要素については一部を除いて図示を省略している。
In the figure, reference numeral 3 is a supply header, 4 is a return header, 5 is a primary pump (a cold water primary pump 5a for the turbo chiller 1a, and a cold / hot water primary pump 5b for the HP chiller 1b), and 6 is 2. A piping system for circulating cold / hot water (cold water at the time of cooling and hot water at the time of heating) between the heat source units 1, the heat storage tank 2, and the load 7 such as an air conditioner as a whole. Is configured.
Of course, there are various sensors and control valves for detecting the flow rate, pressure, water temperature and other conditions every moment, and switching valves, bypass pipes and other accessories for switching the piping route. Of course, an accessory device and a control system for automatically controlling the entire device are provided, but illustration of these elements is omitted except for a part thereof.

本実施形態の空調設備では、図1〜図4に示しているように、冷房時における冷水温度を往き水温7℃〜還り水温17℃に設定し、暖房時における温水温度を往き水温50℃〜還り水温40℃に設定したうえで、通常の蓄熱式空調設備の場合と同様に、冷房時と暖房時で図中のバルブ操作により蓄熱槽2への配管経路を切り換えるとともに、冷房時および暖房時のいずれにおいても空調運転時間外(一般には夜間〜深夜の非稼働時間帯とされる)において蓄熱槽2に対して蓄熱するための蓄熱運転を行い、空調運転時間内(一般には昼間の稼働時間帯とされる)には蓄熱槽2の保有蓄熱を利用しつつ負荷に応じて各熱源機1を運転するための空調運転を行うことを基本とする。   In the air conditioning equipment of this embodiment, as shown in FIGS. 1 to 4, the cold water temperature at the time of cooling is set to the forward water temperature 7 ° C. to the return water temperature 17 ° C., and the hot water temperature at the time of heating is set to the forward water temperature 50 ° C. After the return water temperature is set to 40 ° C., the piping path to the heat storage tank 2 is switched by the valve operation in the figure during cooling and heating, as in the case of normal heat storage air conditioning equipment, and during cooling and heating In any of the above, heat storage operation is performed to store heat in the heat storage tank 2 outside the air-conditioning operation time (generally in the non-operating time zone from night to midnight), and within the air-conditioning operation time (generally daytime operation time) Basically, the air conditioning operation for operating each heat source unit 1 according to the load is performed while using the stored heat storage of the heat storage tank 2.

具体的には、図1に示すように、冷房時における夜間(たとえば図示例では22:00〜8:00)には、ターボ冷凍機1aから冷水を供給することにより、その時点で蓄熱槽2内が保有している17℃の冷水を7℃の冷水に置換して蓄熱水2全体に7℃の冷水を満水状態で貯留するための「蓄熱運転モード」による運転を行う。
また、図2に示すように、冷房時における昼間(たとえば図示例では8:00〜22:00)には、蓄熱槽2が保有している7℃の冷水を各負荷7に供給する(これにより蓄熱槽2内は17℃の冷水に置換されていく)とともに、負荷に応じて熱源機1(ターボ冷凍機1a及び/又はHPチラー1b)を台数制御により運転してそれにより調製した7℃の冷水を各負荷7に対して直接供給するための「空調運転モード」による運転を行う。
Specifically, as shown in FIG. 1, at the time of cooling (for example, 22:00 to 8:00 in the illustrated example), cold water is supplied from the turbo chiller 1a, and the heat storage tank 2 at that time is supplied. The operation is performed in the “heat storage operation mode” for replacing the cold water of 17 ° C. held by the inside with the cold water of 7 ° C. and storing the cold water of 7 ° C. in the full heat storage water 2 in a full state.
In addition, as shown in FIG. 2, during the daytime during cooling (for example, 8:00 to 22:00 in the illustrated example), 7 ° C. cold water held in the heat storage tank 2 is supplied to each load 7 (this The inside of the heat storage tank 2 is replaced with cold water of 17 ° C.) and 7 ° C. prepared by operating the heat source unit 1 (turbo refrigerator 1a and / or HP chiller 1b) according to the load by controlling the number of units. The operation in the “air conditioning operation mode” for directly supplying the cold water to each load 7 is performed.

一方、図3に示すように、暖房房時における夜間(たとえば図示例では冷房時と同じく22:00〜8:00)には、HPチラー1bから蓄熱槽2に温水を供給することにより、その時点で蓄熱槽2内が保有している40℃の温水を50℃の温水に置換して蓄熱槽2全体に50℃の温水を満水状態で貯留するための「蓄熱運転モード」による運転を行う。
また、図4に示すように、暖房時における昼間(たとえば図示例では冷房時と同じく8:00〜22:00)には、蓄熱槽2が保有している50℃の温水を各負荷7に供給する(これにより蓄熱槽2内は40℃の温水に置換されていく)とともに、負荷に応じてHPチラー1bを台数制御により運転してそれにより調製した50℃の温水を各負荷7に対して直接供給するための「空調運転モード」による運転を行う。
On the other hand, as shown in FIG. 3, by supplying hot water from the HP chiller 1b to the heat storage tank 2 at night time during heating (for example, 22:00 to 8:00 as in the case of cooling), At the time, the 40 ° C. warm water held in the heat storage tank 2 is replaced with the 50 ° C. warm water, and the operation in the “heat storage operation mode” for storing the 50 ° C. warm water in the full state in the entire heat storage tank 2 is performed. .
In addition, as shown in FIG. 4, during the daytime during heating (for example, in the illustrated example, from 8:00 to 22:00 as in cooling), hot water of 50 ° C. held in the heat storage tank 2 is supplied to each load 7. Supplying this (the inside of the heat storage tank 2 is replaced with 40 ° C. warm water), and the HP chiller 1b is operated by unit control according to the load, and 50 ° C. hot water prepared thereby is supplied to each load 7. Operation in “air-conditioning operation mode” for direct supply.

なお、上記の「蓄熱運転モード」においては、その終了時点で蓄熱完了となるように熱源機1の運転を制御するが、その蓄熱運転を高効率で行うためには各熱源機1を可及的に全負荷運転として低効率での部分負荷運転(低負荷運転)を回避することが好ましい。
そのためには、冷房時においては図1に示したように1台のターボ冷凍機1aを全負荷運転としてその運転時間を制御すれば良い。また、暖房時においては図3に示したように各HPチラー1bを全負荷運転しつつ必要に応じて台数制御を行えば良く、その際には各HPチラー1bの発停順序を適宜のローテーションプログラムによりその都度変更すると良い。
In the above-mentioned “heat storage operation mode”, the operation of the heat source unit 1 is controlled so that the heat storage is completed at the end of the operation, but in order to perform the heat storage operation with high efficiency, each heat source unit 1 is possible. Therefore, it is preferable to avoid partial load operation (low load operation) with low efficiency as full load operation.
For that purpose, at the time of cooling, as shown in FIG. 1, one turbo refrigerator 1a may be operated at full load to control the operation time. Further, during heating, as shown in FIG. 3, the number of chillers 1b may be controlled as necessary while operating each HP chiller 1b at full load. In this case, the start / stop order of each HP chiller 1b is appropriately rotated. It is good to change each time by the program.

上記のように、本発明では空調運転時間外に「蓄熱運転モード」による運転を行い、空調運転時間内には「空調運転モード」による運転を行うことを基本としたうえで、冷房時および暖房時における上記の「空調運転モード」の際にはさらに「負荷流量優先モード」と「残蓄熱量優先モード」のいずれかを選択的に設定可能としている。
具体的には、図2および図4に示しているように、冷房時および暖房時のいずれにおいても、「空調運転モード」によって運転を行う8:00〜22:00の時間帯のうち、相対的に高負荷である時間帯(たとえば図示例では8:00〜15:00の間)は「負荷流量優先モード」による運転を行い、相対的に低負荷となるそれ以外の時間帯(たとえば図示例では15:00〜22:00の間)は「残蓄熱量優先モード」による運転を行う。
As described above, in the present invention, the operation in the “heat storage operation mode” is performed outside the air conditioning operation time, and the operation in the “air conditioning operation mode” is performed within the air conditioning operation time. At the time of the “air conditioning operation mode” at the time, either “load flow priority mode” or “residual heat storage priority mode” can be selectively set.
Specifically, as shown in FIG. 2 and FIG. 4, the relative time out of the time zone from 8:00 to 22:00 in which the operation is performed according to the “air-conditioning operation mode” at both the cooling time and the heating time. During periods of high load (for example, between 8:00 and 15:00 in the illustrated example), operation is performed in the “load flow priority mode” and other periods of relatively low load (for example, FIG. In the example shown, between 15:00 and 22:00), the operation in the “remaining heat storage priority mode” is performed.

本発明における「負荷流量優先モード」とは、図5に示すように蓄熱槽2の保有蓄熱を優先して利用するとともに、負荷増大に応じて各熱源機1を順次増段し負荷減少に応じて各熱源機1を順次減段していくように、各熱源機1の台数制御を行うものである。   In the present invention, the “load flow priority mode” means that the stored heat in the heat storage tank 2 is used preferentially as shown in FIG. Thus, the number of heat source devices 1 is controlled so that the heat source devices 1 are stepped down sequentially.

この「負荷流量優先モード」の具体例としては、冷房時においてはたとえば図5(a)に示しているように、負荷流量が2045L/minまでは保有蓄熱水のみによる冷房運転として各熱源機は運転せず、負荷流量が2045L/minとなった時点でターボ冷凍機1aを運転し、負荷流量が2578L/minとなった時点で3台のHPチラー1bのうちのいずれか1台を運転し、負荷流量が3111L/minとなった時点で2台目のHPチラー1bを運転し、負荷流量が3644L/minとなった時点で3台目のHPチラー1bを運転し、その状態がフル冷房運転状態となる。
逆に、上記のフル冷房運転状態から負荷が減少していく場合には、負荷流量が3111L/minとなった時点でいずれか1台のHPチラー1bを停止し、負荷流量が2578L/minとなった時点で2台目のHPチラー1bを停止し、負荷流量が2045L/minとなった時点で3台目のHPチラー1bを停止し、負荷流量が1512L/minとなった時点でターボ冷凍機1aも停止して蓄熱水のみによる冷房運転とする。
As a specific example of the “load flow rate priority mode”, as shown in FIG. 5A, for example, as shown in FIG. 5A, each heat source unit is operated as a cooling operation using only the stored stored water until the load flow rate is 2045 L / min. The turbo chiller 1a is operated when the load flow rate becomes 2045L / min without operating, and any one of the three HP chillers 1b is operated when the load flow rate becomes 2578L / min. When the load flow rate becomes 3111L / min, the second HP chiller 1b is operated, and when the load flow rate becomes 3644L / min, the third HP chiller 1b is operated. It becomes a driving state.
Conversely, when the load decreases from the above-mentioned full cooling operation state, when one of the load flow rates reaches 3111 L / min, one of the HP chillers 1b is stopped and the load flow rate becomes 2578 L / min. At that time, the second HP chiller 1b is stopped. When the load flow rate reaches 2045L / min, the third HP chiller 1b is stopped. When the load flow rate reaches 1512L / min, turbo refrigeration is performed. The machine 1a is also stopped and the cooling operation using only the heat storage water is performed.

同様に、暖房時においては、たとえば図5(b)に示しているように、負荷流量が1066L/minまでは保有蓄熱水のみによる暖房運転として各熱源機1は運転せず、負荷流量が1066L/minとなった時点で3台のHPチラー1bのうちのいずれか1台を運転し、負荷流量が1599L/minとなった時点で2台目のHPチラー1bを運転し、負荷流量が2132L/minとなった時点で3台目のHPチラー1bを運転し、その状態がフル暖房運転状態となる。
逆に、上記のフル暖房運転状態から負荷が減少していく場合には、負荷流量が1599L/minとなった時点でいずれか1台のHPチラー1bを停止し、負荷流量が1066L/minとなった時点で2台目のHPチラー1bを停止し、負荷流量が533L/minとなった時点で3台目のHPチラー1bも停止して蓄熱水のみによる暖房運転とする。
Similarly, at the time of heating, for example, as shown in FIG. 5B, until the load flow rate is 1066 L / min, each heat source unit 1 is not operated as a heating operation using only the stored heat storage water, and the load flow rate is 1066 L. When one of the three HP chillers 1b is operated at the time of reaching / min, the second HP chiller 1b is operated at a load flow rate of 1599L / min, and the load flow is 2132L. When the time reaches / min, the third HP chiller 1b is operated, and the state becomes the full heating operation state.
Conversely, when the load decreases from the above-mentioned full heating operation state, when one of the load flow rates reaches 1599 L / min, one of the HP chillers 1b is stopped and the load flow rate becomes 1066 L / min. At that time, the second HP chiller 1b is stopped, and when the load flow rate becomes 533 L / min, the third HP chiller 1b is also stopped to perform the heating operation using only the heat storage water.

一方、本発明における「残蓄熱量優先モード」とは、「空調運転モード」の終了時において蓄熱槽2の保有残熱量がほぼゼロとなるように、その時点での保有残熱量を目標値に維持することを優先して熱源機1の台数制御を行うものである。
すなわち、蓄熱槽2の残蓄熱量は「空調運転モード」中に漸次減少していき、その終了時点でゼロとなることが好ましいことから、各時点での残蓄熱量を適切に維持するようにその時点での残蓄熱量と蓄熱目標とを刻々と比較してそれを補償するように熱源機1の台数制御を行う。具体的には、図6に示すように蓄熱目標と現在蓄熱量との差が大きい場合には所定台数の各熱源機1を運転し、その差が小さくなるにつれて各熱源機1を順次減段していくような台数制御を行えば良い。
On the other hand, the “remaining heat storage amount priority mode” in the present invention means that the retained heat amount at that time is set to a target value so that the retained heat amount in the heat storage tank 2 becomes substantially zero at the end of the “air conditioning operation mode”. The number of heat source units 1 is controlled with priority given to maintenance.
That is, since the remaining heat storage amount of the heat storage tank 2 gradually decreases during the “air-conditioning operation mode” and is preferably zero at the end of the heat storage tank 2, the remaining heat storage amount at each time point is appropriately maintained. The number of heat source devices 1 is controlled so that the remaining heat storage amount and the heat storage target at that time are compared and compensated for each moment. Specifically, as shown in FIG. 6, when the difference between the heat storage target and the current heat storage amount is large, a predetermined number of each heat source unit 1 is operated, and each heat source unit 1 is gradually reduced as the difference decreases. It is sufficient to control the number of units.

なお、上記の「負荷流量優先モード」および「残蓄熱量優先モード」のいずれにおいても、「蓄熱運転モード」の場合と同様に、各熱源機1をいずれも可及的に全負荷運転することとして低効率での部分負荷運転(低負荷運転)を回避することが好ましい。
また、3台のHPチラー1bの運転停止順序はローテーションプログラムによりその都度変更することが好ましい。
さらに、各熱源機1の台数制御に際しての増段あるいは減段は、負荷の安定を保つために一定時間(たとえば15分程度)の間隔を確保することとして、短時間で頻繁な増段や減段を繰り返すことを制限することが好ましい。
同様に、各熱源機1の発停を短時間で頻繁に繰り返すことは好ましくないので、停止後には一定時間(たとえば15分程度)が経過するまでは再起動を制限することが好ましい。
In both the “load flow priority mode” and the “remaining heat storage priority mode”, the heat source units 1 are all fully loaded as much as possible as in the “heat storage operation mode”. It is preferable to avoid partial load operation (low load operation) with low efficiency.
Moreover, it is preferable to change the operation stop order of the three HP chillers 1b each time by the rotation program.
Further, the increase or decrease of the number of heat source units 1 when controlling the number of the heat source units 1 ensures frequent intervals in a short time by securing an interval of a certain time (for example, about 15 minutes) in order to keep the load stable. It is preferred to limit the repetition of steps.
Similarly, since it is not preferable to frequently start and stop each heat source unit 1 in a short time, it is preferable to limit restart until a certain time (for example, about 15 minutes) elapses after the stop.

本実施形態の運転制御システムにより運転を行う場合における各熱源機1の具体的な運転スケジュールの一例を図7に示す。
図示例の場合には、22:00〜8:00の時間帯において「蓄熱運転モード」によりターボ冷凍機1aを全負荷運転して蓄熱運転を行うが、4:30頃には蓄熱完了となり、8:00からの「空調運転モード」による運転に備える。
8:00には「負荷流量優先モード」による運転が開始されて、当初は保有蓄熱水のみにより運転され、それ以降は保有蓄熱水を利用しつつ負荷に応じてその不足分を補うように各熱源機1が台数制御される(図示例では9:00にターボ冷凍機1aの全負荷運転が開始され、10:30頃に3台のHPチラー1bの全負荷運転が開始された状況を示している)。
15:00以降は「残蓄熱量優先モード」に移行し、図示例ではその時点で2台のHPチラー1bがまず停止し、さらに1台のHPチラー1bが停止し、18:00にはターボ冷凍機1aも停止してそれ移行は保有蓄熱水のみによる運転となり、20:00には蓄熱水を使い切って「空調運転モード」(「残蓄熱量優先モード」)による運転が停止し、22:00からの「蓄熱運転モード」による運転開始に備える。
FIG. 7 shows an example of a specific operation schedule of each heat source machine 1 when the operation is performed by the operation control system of the present embodiment.
In the case of the illustrated example, in the time zone from 22:00 to 8:00, the thermal storage operation is performed by operating the turbo refrigerator 1a at full load by the “thermal storage operation mode”. Prepare for operation in “air-conditioning operation mode” from 8:00.
At 8:00, operation in the `` load flow priority mode '' was started, and it was initially operated using only the stored heat storage water. After that, each of the stored heat storage water was used to compensate for the shortage according to the load. The number of heat source units 1 is controlled (in the example shown, the full-load operation of the turbo chiller 1a is started at 9:00, and the full-load operation of three HP chillers 1b is started at around 10:30. ing).
After 15:00, it shifts to the “Residual heat storage priority mode”. In the example shown in the figure, two HP chillers 1b first stop, and then one HP chiller 1b stops. Refrigerator 1a is also stopped, and the transition is to run only with the stored heat storage water. At 20:00, the heat storage water is used up and the operation in “air-conditioning operation mode” (“residual heat storage priority mode”) is stopped. Prepare for the start of operation in “heat storage operation mode” from 00.

以上で説明したように、本発明によれば「空調運転モード」による運転に際して「負荷流量優先モード」と「残蓄熱量優先モード」とを設定し、それぞれのモードにおいて各熱源機1を全負荷運転することにより最も効率的かつ最適な運転が可能となる。   As described above, according to the present invention, the “load flow priority mode” and the “remaining heat amount priority mode” are set during the operation in the “air-conditioning operation mode”, and each heat source unit 1 is fully loaded in each mode. By operating, the most efficient and optimal operation is possible.

すなわち、従来一般のこの種の制御システムでは、上記の「負荷流量優先モード」に相当するような運転を行うことなく、残蓄熱量が所定量以下となった時点でそれを補償することを優先して直ちに熱源機の運転を行っており、しかもその運転が部分負荷運転(低負荷運転)として頻繁に繰り返されるので、それに起因して運転効率の低下が不可避である。
また、熱源機がそのような部分負荷運転されることにより還り水温が設計値から外れてしまい(たとえば冷房時においては還り温度が設計値の17℃まで上昇せずに14℃程度となってしまう)、したがって適切な設計温度差10degを維持できなくなり、その結果、蓄熱槽2において明確な温度成層が形成されなくなって蓄熱効率が低下してしまうばかりでなく、残蓄熱量も正確に計測することができなくなるといった様々な問題も生じている。
That is, in this type of conventional control system, priority is given to compensation when the remaining heat storage amount becomes a predetermined amount or less without performing an operation corresponding to the above-described “load flow priority mode”. Thus, the heat source machine is immediately operated, and the operation is frequently repeated as a partial load operation (low load operation), and hence the operation efficiency is inevitably lowered.
Further, when the heat source machine is operated in such a partial load, the return water temperature deviates from the design value (for example, during cooling, the return temperature does not increase to the design value of 17 ° C., but becomes about 14 ° C. ) Therefore, it is impossible to maintain an appropriate design temperature difference of 10 deg. As a result, a clear temperature stratification is not formed in the heat storage tank 2 and the heat storage efficiency is lowered, and the remaining heat storage amount is accurately measured. Various problems such as being unable to do so have also occurred.

それに対し、本発明では上記の「負荷流量優先モード」の設定により残蓄熱量の維持を敢えて制限する時間帯を設定し、そのモードにおいては一定の負荷が発生するまでは熱源機1を一切運転せずに保有蓄熱水を利用することのみで運転を行うこととして、ある一定の負荷が発生した段階ではじめていずれかの熱源機1を全負荷運転することとし、かつ負荷増大に伴って所望台数の熱源機1をそれぞれ全負荷運転しつつ台数制御を行うこととする。
これにより、各熱源機1をいずれも高効率で運転することが可能となるし、往還の水温差も設計どうりの10degを確実に維持可能であるから、蓄熱槽2における温度成層が乱れたり蓄熱効率の低下も防止でき、以上のことから全体として優れた高効率運転が可能であって省エネルギーおよびランニングコスト削減に大きく寄与し得るものである。
On the other hand, in the present invention, a time zone in which the remaining heat storage amount is intentionally restricted is set by setting the “load flow priority mode”, and the heat source unit 1 is operated at all until a certain load is generated in that mode. It is assumed that the operation is performed only by using the stored heat storage water without any operation. One of the heat source units 1 is operated at full load only when a certain load is generated, and the desired number of units is increased as the load increases. The number control is performed while operating each of the heat source devices 1 at full load.
As a result, each heat source unit 1 can be operated with high efficiency, and the water temperature difference between the return and return can be maintained at 10 deg as designed, so that the temperature stratification in the heat storage tank 2 is disturbed. A decrease in heat storage efficiency can also be prevented, and as a result, excellent high-efficiency operation is possible as a whole, which can greatly contribute to energy saving and running cost reduction.

勿論、上記の「負荷流量優先モード」の後段で通常のように「残蓄熱量優先モード」による運転を行うことにより、「空調運転モード」の終了時点までに保有蓄熱量の全てを有効に使い切って残蓄熱量をゼロとすることが可能である。
しかも本発明の運転制御システムは、そのような最適制御を行うために複雑高度なソフトウエアやハードウエア、制御機構を必要としない簡略かつ安価なシステムとして構築できるものであり、一般的な蓄熱式空調設備全般に対して広く適用可能なものである。
Of course, by operating in the “remaining heat storage amount priority mode” as usual after the above “load flow priority mode”, all of the stored heat storage amount is effectively used up to the end of the “air conditioning operation mode”. Thus, the remaining heat storage can be made zero.
Moreover, the operation control system of the present invention can be constructed as a simple and inexpensive system that does not require complicated advanced software, hardware, and control mechanisms in order to perform such optimal control. It can be widely applied to air conditioning equipment in general.

以上で本発明の実施形態について説明したが、上記実施形態はあくまで好適な一例であって本発明は上記実施形態に限定されるものでは勿論なく、上記実施形態として例示した蓄熱式空調設備の全体構成、各熱源機および蓄熱槽の形式や台数、水温や流量、各モードの時間帯の設定、「負荷流量優先モード」から「残蓄熱量優先モード」に切り換えるタイミングの設定その他の諸条件や仕様については、本発明を適用する対象の建物や構造物の用途や稼働状況、実際の冷暖房負荷の変動状況その他の状況を考慮したうえで、本発明の要旨を逸脱しない範囲内で任意に変更可能であることはいうまでもない。   Although the embodiment of the present invention has been described above, the above embodiment is merely a preferred example, and the present invention is not limited to the above embodiment, and the entire regenerative air conditioning facility exemplified as the above embodiment. Configuration, type and number of heat source units and heat storage tanks, water temperature and flow rate, time zone setting for each mode, timing setting for switching from "load flow priority mode" to "residual heat storage priority mode", and other conditions and specifications Can be arbitrarily changed without departing from the scope of the present invention, taking into consideration the usage and operating conditions of the buildings and structures to which the present invention is applied, actual fluctuations in the heating and cooling load, and other conditions. Needless to say.

1 熱源機
1a ターボ冷凍機
1b HPチラー(空気熱源ヒートポンプ式チリングユニット)
2 蓄熱槽
3 サプライヘッダ
4 リタンヘッダ
5 1次ポンプ
5a 冷水1次ポンプ(ターボ冷凍機用)
5b 冷温水1次ポンプ(HPチラー用)
6 2次ポンプ
7 負荷(空調機等)
1 Heat source machine 1a Turbo refrigerator 1b HP chiller (Air heat source heat pump chilling unit)
2 Heat storage tank 3 Supply header 4 Ritan header 5 Primary pump 5a Cold water primary pump (for turbo refrigerator)
5b Cold / hot water primary pump (for HP chiller)
6 Secondary pump 7 Load (air conditioner, etc.)

Claims (2)

蓄熱式空調設備を対象とする空調運転制御システムであって、
空調運転時間内において蓄熱槽の保有蓄熱を利用しつつ複数台の熱源機の台数制御により負荷に応じた空調運転を行う空調運転モードと、
空調運転時間外において前記熱源機により前記蓄熱槽に対する蓄熱運転を行う蓄熱運転モードとを設定し、
前記空調運転モードにおいては、前記蓄熱槽の保有蓄熱を優先して利用しつつその時点の負荷に応じて前記熱源機の台数制御を行う負荷流量優先モードと、前記空調運転モードの終了時において前記蓄熱槽の保有残熱量がほぼゼロとなるように保有残熱量の維持を優先して前記熱源機の台数制御を行う残蓄熱量優先モードを設定可能とし、
前記蓄熱運転モードの暖房時、及び前記空調運転モードにおいて、前記複数台の熱源機を全負荷運転しつつ前記複数台の熱源機の台数制御を行い、
前記複数台の熱源機の運転停止順序を前記熱源機の台数制御の都度変更することを特徴とする空調運転制御システム。
An air-conditioning operation control system for a regenerative air conditioner,
An air conditioning operation mode in which the air conditioning operation according to the load is performed by controlling the number of heat source units while using the stored heat storage in the heat storage tank within the air conditioning operation time,
Set a heat storage operation mode for performing a heat storage operation for the heat storage tank by the heat source machine outside the air conditioning operation time,
In the air conditioning operation mode, the load flow priority mode for controlling the number of the heat source units according to the load at that time while preferentially using the stored heat stored in the heat storage tank, and at the end of the air conditioning operation mode, It is possible to set a residual heat quantity priority mode in which the number of the heat source units is controlled in preference to the maintenance of the retained residual heat quantity so that the retained residual heat quantity of the heat storage tank becomes almost zero,
In heating in the heat storage operation mode and in the air conditioning operation mode, performing the number control of the plurality of heat source units while operating the plurality of heat source units at full load,
An air conditioning operation control system, wherein the operation stop order of the plurality of heat source units is changed every time the number of heat source units is controlled.
前記熱源機の台数制御に際しての増段あるいは減段には一定時間の間隔を確保することを特徴とする請求項1記載の空調運転制御システム。   The air-conditioning operation control system according to claim 1, wherein a certain time interval is secured for the increase or decrease in the number control of the heat source units.
JP2011274338A 2011-12-15 2011-12-15 Air conditioning operation control system Active JP5975253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011274338A JP5975253B2 (en) 2011-12-15 2011-12-15 Air conditioning operation control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011274338A JP5975253B2 (en) 2011-12-15 2011-12-15 Air conditioning operation control system

Publications (2)

Publication Number Publication Date
JP2013124819A JP2013124819A (en) 2013-06-24
JP5975253B2 true JP5975253B2 (en) 2016-08-23

Family

ID=48776175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011274338A Active JP5975253B2 (en) 2011-12-15 2011-12-15 Air conditioning operation control system

Country Status (1)

Country Link
JP (1) JP5975253B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6118065B2 (en) * 2012-10-18 2017-04-19 公立大学法人名古屋市立大学 Water-cooled air conditioning system and operation control method thereof
JP6417155B2 (en) * 2014-09-02 2018-10-31 新日本空調株式会社 Heat source equipment with heat storage tank and operation control method thereof
JP6566916B2 (en) * 2016-07-27 2019-08-28 三菱電機ビルテクノサービス株式会社 Air conditioning system and operation control method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3306612B2 (en) * 1995-03-24 2002-07-24 株式会社山武 How to control the number of operating heat source units
JP3327445B2 (en) * 1995-08-02 2002-09-24 株式会社エヌ・ティ・ティ ファシリティーズ Operation control device and operation control method for heat storage air conditioning system
JP3583869B2 (en) * 1996-08-19 2004-11-04 株式会社エヌ・ティ・ティ ファシリティーズ Thermal storage air conditioning system device and its control method
JP2004144411A (en) * 2002-10-25 2004-05-20 Ebara Corp Air conditioning equipment
JP4838776B2 (en) * 2007-07-24 2011-12-14 株式会社山武 Heat source control device and heat source control method

Also Published As

Publication number Publication date
JP2013124819A (en) 2013-06-24

Similar Documents

Publication Publication Date Title
WO2015098158A1 (en) Cold hydrogen supply station and hydrogen-cooling device
JP5583897B2 (en) Cooling tower and heat source system
JP5975253B2 (en) Air conditioning operation control system
WO2015162798A1 (en) Heat pump chilling system and control method therefor
JP2017101881A (en) Refrigerating air conditioner, controlling device and computer program
JP5489046B2 (en) Heat source equipment control system
KR20120007610A (en) Package type pump module and air conditioning and heating system therefor
JP5875925B2 (en) Thermal storage system and thermal storage method for thermal storage system
JP2012007835A (en) Air conditioner group controller and air conditioning system
JP5286479B2 (en) Cold water circulation system
JP5140341B2 (en) Heat source control device and heat source control method
JP6098994B2 (en) Heat pump hot water supply system
JP2009063190A (en) Heat medium supply system and modification method of heat medium supply system
JP6415378B2 (en) Air conditioning system
JP5195696B2 (en) Cold water circulation system
JP5937034B2 (en) Operation control method for cold / hot water supply system
JP5806555B2 (en) Heat source machine control device and heat source machine control method
JP2008039370A (en) Refrigerator
JP6257993B2 (en) Refrigeration system and method for controlling the number of refrigeration systems
WO2015001976A1 (en) Heat source system
JP7205916B2 (en) Free cooling chiller and its operation method
KR200395419Y1 (en) Improved Heating and Cooling System
JP5404945B2 (en) Heat medium supply system renovation method
JP2008241231A (en) Energy-saving air-conditioning control system
JP2001227780A (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160706

R150 Certificate of patent or registration of utility model

Ref document number: 5975253

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150