JP5583897B2 - Cooling tower and heat source system - Google Patents

Cooling tower and heat source system Download PDF

Info

Publication number
JP5583897B2
JP5583897B2 JP2008226494A JP2008226494A JP5583897B2 JP 5583897 B2 JP5583897 B2 JP 5583897B2 JP 2008226494 A JP2008226494 A JP 2008226494A JP 2008226494 A JP2008226494 A JP 2008226494A JP 5583897 B2 JP5583897 B2 JP 5583897B2
Authority
JP
Japan
Prior art keywords
cooling water
temperature
fan
frequency
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008226494A
Other languages
Japanese (ja)
Other versions
JP2010060204A (en
Inventor
元巳 稲垣
那加博 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2008226494A priority Critical patent/JP5583897B2/en
Publication of JP2010060204A publication Critical patent/JP2010060204A/en
Application granted granted Critical
Publication of JP5583897B2 publication Critical patent/JP5583897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、冷却塔及び熱源機システムに係り、特に、冷却塔のファンの回転周波数の制御技術に関する。   The present invention relates to a cooling tower and a heat source apparatus system, and more particularly to a technique for controlling a rotation frequency of a cooling tower fan.

例えば吸収式冷温水機などの熱源機で熱負荷を冷却して高温になった冷却水は、配管を介して冷却塔へ導かれ、冷却塔で冷却された後再び配管を介して熱源機の熱負荷に循環供給される。冷却塔は、熱源機から導かれた高温の冷却水をケーシング内に散布し、冷却塔に設けられたファンにより蒸発潜熱で冷却するものとして知られている。   For example, the cooling water heated to a high temperature by cooling the heat load with a heat source machine such as an absorption chiller / heater is led to the cooling tower through a pipe, cooled by the cooling tower, and then again through the pipe. Circulated to the heat load. The cooling tower is known as one in which high-temperature cooling water guided from a heat source device is sprayed in a casing and cooled by latent heat of vaporization by a fan provided in the cooling tower.

ところで、近年の省エネルギー要求に対応すべく、熱源機と冷却塔からなる熱源機システムの省エネルギー研究がなされており、熱源機自体の効率向上はある程度なされてきた。   By the way, in order to respond to recent energy-saving requirements, energy-saving research on a heat-source unit system including a heat-source unit and a cooling tower has been conducted, and the efficiency of the heat-source unit itself has been improved to some extent.

しかし、熱源機自体の省エネルギー化だけでは不十分であり、例えば冷却水を熱源機と冷却塔との間で搬送するポンプや冷却塔に用いられるファンの動力の効率向上が求められている。   However, it is not sufficient to save the energy of the heat source unit itself. For example, it is required to improve the efficiency of the power of a fan used for a pump or a cooling tower that transports cooling water between the heat source unit and the cooling tower.

この点、特許文献1に記載されているように、冷却塔で冷却された冷却水の温度を検出し、この検出温度に応じて冷却塔のファンの回転数をインバータで周波数可変に制御することによりファンの効率を高めることが知られている。   In this regard, as described in Patent Document 1, the temperature of the cooling water cooled by the cooling tower is detected, and the number of rotations of the cooling tower fan is controlled by the inverter in a variable manner according to the detected temperature. It is known to increase fan efficiency.

すなわち、従来は冷却水温度がある設定温度(例えば27℃)以上になったらファンを100%の周波数で駆動し、ある設定温度(例えば24.5℃)以下になったらファンを停止する、いわゆるオン−オフ制御であったので、ファンの起動及び停止が頻繁に発生してファン効率の観点から好ましくなかった。これに対して、特許文献1では、検出温度が下限設定温度(例えば24.5℃)と上限設定温度(例えば27℃)との間にあるときは、検出温度に1対1に対応してほぼ比例するように設定された周波数でファンを駆動することにより、ファンの起動及び停止の回数を低減することができるとされている。   That is, conventionally, the fan is driven at a frequency of 100% when the cooling water temperature becomes a certain set temperature (for example, 27 ° C.) or more, and the fan is stopped when the cooling water temperature becomes a certain set temperature (for example, 24.5 ° C.) or less. Since it was on-off control, the fan was frequently started and stopped, which was not preferable from the viewpoint of fan efficiency. On the other hand, in Patent Document 1, when the detected temperature is between the lower limit set temperature (for example, 24.5 ° C.) and the upper limit set temperature (for example, 27 ° C.), the detected temperature has a one-to-one correspondence. It is said that the number of times the fan is started and stopped can be reduced by driving the fan at a frequency set to be approximately proportional.

特開平5−340690号公報JP-A-5-340690

ところで、特許文献1に記載されているような従来のファンの周波数制御技術は、熱源機の冷房負荷を考慮してファン周波数の適正化を図ることについては配慮されていない。   By the way, the conventional fan frequency control technique described in Patent Document 1 does not consider the optimization of the fan frequency in consideration of the cooling load of the heat source device.

すなわち、特許文献1に記載されている技術は、冷却水の検出温度とファン周波数との対応関係が固定されて設定されているため、熱源機の冷房負荷にかかわらず固定された対応関係に基づいた周波数でファンが駆動される。   That is, the technique described in Patent Document 1 is based on a fixed correspondence relationship regardless of the cooling load of the heat source unit because the correspondence relationship between the detected temperature of the cooling water and the fan frequency is fixed. The fan is driven at a different frequency.

しかしながら、熱源機の冷房負荷が変動する場合、必ずしも検出温度に対応して定められている周波数が適切なものになるとは限らない。例えば熱源機の冷房負荷が変動して小さくなった場合、適切な周波数より高い周波数でファンが駆動されることとなり、省エネルギーの観点から好ましくないし、過冷却により冷却水温度が下がり目標温度に適切に制御されないおそれがある。   However, when the cooling load of the heat source device fluctuates, the frequency determined corresponding to the detected temperature is not always appropriate. For example, when the cooling load of the heat source device fluctuates and becomes small, the fan is driven at a frequency higher than the appropriate frequency, which is not preferable from the viewpoint of energy saving. May not be controlled.

そこで、本発明は、熱源機の冷房負荷を考慮してファンの周波数制御の適正化を図ることを課題とする。   Accordingly, an object of the present invention is to optimize the frequency control of the fan in consideration of the cooling load of the heat source device.

本発明の冷却塔は、熱負荷から戻される高温の冷却水を空気中に散布し、ファンの回転に伴う空気の通流による蒸発潜熱で冷却水を冷却して再び熱負荷に循環供給するとともに、冷却された冷却水の温度を検出して、あらかじめ設定された冷却水の検出温度とファンの周波数との対応関係に基づいてファンの周波数を制御する制御手段を備えて構成される。   The cooling tower of the present invention sprays high-temperature cooling water returned from the heat load into the air, cools the cooling water with latent heat of vaporization caused by the air flow accompanying the rotation of the fan, and circulates and supplies it again to the heat load. The control unit is configured to detect the temperature of the cooled cooling water and control the frequency of the fan based on the correspondence relationship between the preset detection temperature of the cooling water and the frequency of the fan.

特に、制御手段は、熱源機の冷房負荷を検出して、この検出された負荷に応じて冷却水の検出温度とファンの周波数との対応関係を補正することを特徴としている。   In particular, the control means is characterized by detecting the cooling load of the heat source device and correcting the correspondence relationship between the detected temperature of the cooling water and the frequency of the fan in accordance with the detected load.

これによれば、熱源機の冷房負荷が変動する場合に、この変動に追従して冷却水の検出温度とファンの周波数との対応関係を適切なものに補正することができる。   According to this, when the cooling load of the heat source device fluctuates, the correspondence between the detected temperature of the cooling water and the frequency of the fan can be corrected to an appropriate one following the variation.

具体的には、制御手段は、検出された負荷が小さくなるにつれて冷却水の検出温度に対応して設定されているファンの周波数の少なくとも一部を小さく補正する。つまり、熱源機の負荷が変動して小さくなる場合は、高負荷の場合に比べて低めの周波数でファンを駆動して冷却水の冷却能力を下げるのが好ましい。これによれば、実際の負荷より大きな負荷に対応した高い周波数でファンを駆動することを抑制して省エネルギー化を図ることができ、かつ冷却水の過冷却を抑制して冷却水温度を目標温度に適切に制御することができる。一方、検出された負荷が大きくなれば冷却水の検出温度に対応して設定されているファンの周波数を大きく補正して冷却能力を上げることにより、冷却水を適切に冷却する。   Specifically, the control means corrects at least a part of the frequency of the fan set corresponding to the detected temperature of the cooling water as the detected load decreases. That is, when the load of the heat source device fluctuates and becomes smaller, it is preferable to drive the fan at a lower frequency than in the case of a high load to lower the cooling capacity of the cooling water. According to this, it is possible to save energy by suppressing driving of the fan at a high frequency corresponding to a load larger than the actual load, and to suppress the cooling water overcooling and to set the cooling water temperature to the target temperature. Can be controlled appropriately. On the other hand, if the detected load increases, the cooling water is appropriately cooled by increasing the cooling capacity by largely correcting the frequency of the fan set corresponding to the detected temperature of the cooling water.

また、制御手段は、冷却水の検出温度とあらかじめ設定された冷却水の目標温度との偏差に比例してファンの周波数を制御する、いわゆるP制御を行うよう構成することができる。この場合は、検出された負荷に応じて制御の比例ゲインを変更すればよい。具体的には、検出された負荷が小さくなるにつれて比例ゲインを小さくする。この比例ゲインは、各偏差成分項と冷却水温度が目標温度になっているときの操作量の両方にかかるものとする。   In addition, the control means can be configured to perform so-called P control that controls the frequency of the fan in proportion to the deviation between the detected temperature of the cooling water and a preset target temperature of the cooling water. In this case, the proportional gain of control may be changed according to the detected load. Specifically, the proportional gain is decreased as the detected load decreases. This proportional gain is applied to both the deviation component term and the manipulated variable when the cooling water temperature is the target temperature.

つまり、比例ゲインを変更することにより上述と同様に、冷却水の検出温度に対応するファンの周波数を補正することができるので、熱源機の負荷に応じた適切な周波数でファンを駆動することができる。   That is, since the frequency of the fan corresponding to the detected temperature of the cooling water can be corrected by changing the proportional gain, the fan can be driven at an appropriate frequency according to the load of the heat source unit. it can.

また、いわゆるP制御のみならず、冷却された冷却水の検出温度と目標温度との偏差と、偏差の積分成分と、偏差の微分成分とに比例してファンの周波数を制御するいわゆるPID制御において、検出された負荷に応じて比例ゲインを変更してもよい。   In addition to so-called P control, in so-called PID control that controls the fan frequency in proportion to the deviation between the detected temperature of the cooled cooling water and the target temperature, the integral component of the deviation, and the differential component of the deviation. The proportional gain may be changed according to the detected load.

また、熱源機を吸収式冷温水機で構成する場合、制御手段は、熱源機の冷房負荷として、吸収式冷温水機の冷房負荷から戻される流体の温度、或いは吸収式冷温水機の再生器への入熱量を検出することができる。   In the case where the heat source device is composed of an absorption chiller / heater, the control means is a cooling load of the heat source device, the temperature of the fluid returned from the cooling load of the absorption chiller / heater, or the regenerator of the absorption chiller / heater The amount of heat input to can be detected.

また、制御手段は、冷却水の検出温度が、あらかじめ設定された時間以上継続して、冷却水の検出温度の上昇にともないファンの周波数が設定上限周波数になる高温閾値温度より高い場合、目標温度を高くすることができる。つまり、ある時間以上継続して冷却水温度が高温閾値温度より高いということは、熱源機の負荷が高く、かつ冷却水の目標温度に対する検出温度の偏差が大きい状態を示しており、ファンを継続して設定上限周波数で駆動し続けることは省エネルギーの観点から好ましくない。そこで、この場合は目標温度を高くする、言い換えれば現在の冷却水温度に目標温度を近づけることにより、冷却水の目標温度と検出温度との偏差を小さくしてファンの周波数を低減させ、その結果、省エネルギー化を図ることができる。   Further, the control means continues the target temperature when the detected temperature of the cooling water continues for a preset time or longer and the fan frequency is higher than the high temperature threshold temperature at which the detected upper limit frequency is reached as the detected temperature of the cooling water rises. Can be high. In other words, the fact that the cooling water temperature is higher than the high temperature threshold temperature for a certain period of time indicates that the load of the heat source unit is high and the deviation of the detected temperature from the target temperature of the cooling water is large, and the fan is continued. Thus, it is not preferable to continue driving at the set upper limit frequency from the viewpoint of energy saving. Therefore, in this case, the target temperature is increased, in other words, the target temperature is brought closer to the current cooling water temperature, thereby reducing the deviation between the target temperature of the cooling water and the detected temperature, thereby reducing the fan frequency. , Energy saving can be achieved.

一方、冷却水の検出温度が、あらかじめ設定された時間以上継続して、冷却水の検出温度が下降してファンの周波数がファンを停止させる場合を除く設定下限周波数になる低温閾値温度より低い場合、目標温度を低くすることができる。この場合も上述と同様に冷却水の目標温度に対する検出温度の偏差が大きい状態を示しているので、目標温度を低くして偏差を小さくすることにより、ファンの周波数を低減させてファンの発停を極力避けることにより冷却水が安定するので、システム全体として省エネルギー化を図ることができる。   On the other hand, when the detected temperature of the cooling water continues for a preset time or longer and the detected temperature of the cooling water drops and the fan frequency is lower than the low temperature threshold temperature that is the set lower limit frequency except when the fan is stopped The target temperature can be lowered. In this case as well, the deviation of the detected temperature with respect to the target temperature of the cooling water is large as described above. Therefore, by lowering the target temperature and reducing the deviation, the fan frequency is reduced and the fan starts and stops. Since the cooling water is stabilized by avoiding as much as possible, the entire system can save energy.

また、熱源機と、冷却塔と、熱源機の熱負荷から戻される高温の冷却水を冷却塔へ導く配管と、冷却塔で冷却された冷却水を熱源機の熱負荷へ導く配管とを備えて構成される熱源機システムにおいて、上述の冷却塔ファンの周波数制御を採用することができる。   Also, a heat source unit, a cooling tower, a pipe for guiding the high-temperature cooling water returned from the heat load of the heat source unit to the cooling tower, and a pipe for guiding the cooling water cooled by the cooling tower to the heat load of the heat source unit are provided. In the heat source system configured as described above, the frequency control of the cooling tower fan described above can be employed.

本発明によれば、熱源機の冷房負荷を考慮してファンの周波数制御を行って省エネルギー化を図ることができる。   According to the present invention, energy saving can be achieved by controlling the frequency of the fan in consideration of the cooling load of the heat source device.

以下、本発明を適用してなる冷却塔及び熱源機システムの実施形態を説明する。図1は、本実施形態の熱源機システムの全体構成を示す図である。図1に示すように熱源機システム100は、冷却塔10と、熱源機20と、冷却水配管30とを備えて構成されている。   Hereinafter, embodiments of a cooling tower and a heat source system to which the present invention is applied will be described. FIG. 1 is a diagram illustrating an overall configuration of a heat source apparatus system according to the present embodiment. As shown in FIG. 1, the heat source apparatus system 100 includes a cooling tower 10, a heat source apparatus 20, and a cooling water pipe 30.

冷却塔10は、筒状のケーシング11を備え、ケーシング11の下部の側面に空気流入口12が形成され、底部に冷却水の水槽13が設けられている。空気流入口12はルーバ状に形成されている。また、空気流入口12の位置よりも上方のケーシング11内に充填材14が収容され、充填材14の上方に、冷却水の散水ノズル15が配設されている。   The cooling tower 10 includes a cylindrical casing 11, an air inlet 12 is formed on the lower side surface of the casing 11, and a cooling water tank 13 is provided at the bottom. The air inlet 12 is formed in a louver shape. A filler 14 is accommodated in the casing 11 above the position of the air inlet 12, and a cooling water sprinkling nozzle 15 is disposed above the filler 14.

また、ケーシング11の頂部に開口16が設けられ、その開口16には固定具17によってファンモータ18が固定されるとともに、ファンモータ18の回転軸にはファン19が固定されている。なお、冷却塔10の水槽13への冷却水の補給水は、図示しないボールタップ等を有する給水口から供給される。   An opening 16 is provided at the top of the casing 11. A fan motor 18 is fixed to the opening 16 by a fixture 17, and a fan 19 is fixed to the rotation shaft of the fan motor 18. In addition, the replenishment water of the cooling water to the water tank 13 of the cooling tower 10 is supplied from a water supply port having a ball tap or the like (not shown).

冷却水配管30は、往管31及び復管32から構成される。往管31には、冷却塔10から熱源機20のほうへ向けて順に冷却水ポンプ33と逆止弁34が配置されている。冷却水ポンプ33の吸引口は水槽13の底部近傍に連通されている。冷却水ポンプ33の吐出口は逆止弁34を介して熱源機20の熱負荷と熱交換可能な図示していない熱交換器に連結されている。往管31の逆止弁34と図示していない熱交換器との間(熱源機20の入口部)には、冷却水温度センサー51が設けられており、この冷却水温度センサー51の出力信号は、後述する運転制御装置50に入力される。   The cooling water pipe 30 includes an outgoing pipe 31 and a return pipe 32. In the outgoing pipe 31, a cooling water pump 33 and a check valve 34 are arranged in order from the cooling tower 10 toward the heat source unit 20. The suction port of the cooling water pump 33 communicates with the vicinity of the bottom of the water tank 13. The discharge port of the cooling water pump 33 is connected via a check valve 34 to a heat exchanger (not shown) that can exchange heat with the heat load of the heat source unit 20. A cooling water temperature sensor 51 is provided between the check valve 34 of the outgoing pipe 31 and a heat exchanger (not shown) (inlet part of the heat source unit 20). An output signal of the cooling water temperature sensor 51 is provided. Is input to an operation control device 50 described later.

復管32には電動三方弁41と、この電動三方弁41がバイパス指令で開放したときに復管32の冷却水を水槽13に導くバイパス配管42が設けられている。   The return pipe 32 is provided with an electric three-way valve 41 and a bypass pipe 42 that guides cooling water of the return pipe 32 to the water tank 13 when the electric three-way valve 41 is opened by a bypass command.

運転制御装置50は、制御装置53とインバータ装置55とを備えて構成される。制御装置53は、冷却水温度センサー51の検出温度信号及び後述するガス流量センサーによる検出ガス流量に応じてあらかじめ設定されている周波数でファンモータ18及びファン19を回転駆動させる周波数信号を形成してインバータ装置55に与える。   The operation control device 50 includes a control device 53 and an inverter device 55. The control device 53 forms a frequency signal for rotating the fan motor 18 and the fan 19 at a frequency set in advance according to a temperature signal detected by the cooling water temperature sensor 51 and a gas flow rate detected by a gas flow rate sensor described later. This is given to the inverter device 55.

また、制御装置53は、冷却水温度センサー51からの検出温度信号を基にバイパス指令信号を形成して電動三方弁41に与えて冷却水をバイパスさせる。例えば、冷却水の検出温度が下限設定温度(例えば24℃)以下になると、電動三方弁41を切り替えて、熱源機20からの戻り冷却水を直接冷却塔10の水槽13へ落下させることにより、冷却水が過冷却されることを防止する。   Further, the control device 53 forms a bypass command signal based on the detected temperature signal from the cooling water temperature sensor 51 and gives it to the electric three-way valve 41 to bypass the cooling water. For example, when the detected temperature of the cooling water is lower than the lower limit set temperature (for example, 24 ° C.), the electric three-way valve 41 is switched to drop the return cooling water from the heat source unit 20 directly into the water tank 13 of the cooling tower 10. Prevents cooling water from being overcooled.

なお、本実施形態においては説明の便宜上、制御装置53は冷却塔10及び熱源機20とは独立して設けているが、冷却塔10に付属して設けて冷却塔10の1構成要素とすることもできるし、或いは熱源機20に付属して設けて熱源機システム100の1構成要素とすることもできる。   In the present embodiment, for convenience of explanation, the control device 53 is provided independently of the cooling tower 10 and the heat source unit 20, but is provided attached to the cooling tower 10 as one component of the cooling tower 10. Alternatively, it can be attached to the heat source unit 20 and can be a component of the heat source unit system 100.

また、本実施形態の熱源機20は吸収式冷温水機で構成されている。図1に示すように、熱源機20である吸収式冷温水機は、再生器60、分離器61、凝縮器62、蒸発器63、及び吸収器64などを配管接続して吸収冷凍サイクルを形成して構成されている。冷却塔10で冷却された冷却水は、吸収器64及び凝縮器62などを通流して吸収式冷温水機の冷媒と熱交換して高温になった後、再び冷却塔10に戻されるようになっている。   Moreover, the heat source machine 20 of this embodiment is comprised with the absorption-type cold / hot water machine. As shown in FIG. 1, an absorption chiller / heater that is a heat source device 20 forms a absorption refrigeration cycle by connecting a regenerator 60, a separator 61, a condenser 62, an evaporator 63, an absorber 64, and the like. Configured. The cooling water cooled by the cooling tower 10 flows through the absorber 64 and the condenser 62 and exchanges heat with the refrigerant of the absorption chiller / heater so as to be returned to the cooling tower 10 again. It has become.

また、本実施形態の特徴構成として、吸収式冷温水機の冷房負荷(以下、適宜単に吸収式冷温水器の負荷という)を検出するために再生器60への入熱量を検出するガス流量センサー65が設けられており、このガス流量センサー65で検出された信号が制御装置53に入力されるようになっている。   In addition, as a characteristic configuration of the present embodiment, a gas flow rate sensor that detects the amount of heat input to the regenerator 60 in order to detect the cooling load of the absorption chiller / heater (hereinafter simply referred to simply as the load of the absorption chiller / heater). 65 is provided, and a signal detected by the gas flow sensor 65 is input to the control device 53.

バーナの燃焼熱を利用して駆動される直焚き型吸収式冷温水機では本実施形態のように再生器60への入熱量としてガス流量を検出すればよい。一方、排熱を利用して駆動される排熱型吸収式冷温水機を採用する場合、排熱の入熱量を検出するセンサーを用いればよい。また、吸収式冷温水機の負荷を検出するために、吸収式冷温水機の負荷から戻される例えば冷水などの流体の温度を検出してもよい。   In the direct-fired absorption chiller / heater driven using the combustion heat of the burner, the gas flow rate may be detected as the amount of heat input to the regenerator 60 as in this embodiment. On the other hand, when adopting an exhaust heat type absorption chiller / heater driven using exhaust heat, a sensor for detecting the amount of heat input of exhaust heat may be used. Moreover, in order to detect the load of an absorption-type cold / hot water machine, you may detect the temperature of fluids, such as cold water, returned from the load of an absorption-type cold / hot water machine.

なお、熱源機20は吸収式冷温水機に限らず、冷却塔10で冷却された冷却水を用いて熱負荷を冷却する必要があるような機器を採用することができる。この場合も、熱源機20の冷房負荷を検出するセンサー等を適宜設けて、検出された信号を制御装置53に入力するよう構成することができる。   Note that the heat source device 20 is not limited to the absorption chiller / heater, but may be a device that needs to cool the heat load using the cooling water cooled by the cooling tower 10. Also in this case, a sensor or the like that detects the cooling load of the heat source device 20 can be provided as appropriate, and the detected signal can be input to the control device 53.

図2は、制御装置53の詳細構成を示すブロック図である。図2に示す制御装置53は、中央処理装置531と、記憶装置532と、入力信号部533と、出力信号部534などから構成されている。制御装置53は、冷却塔10の運転開始にともなって動作を開始するようになっている。すると、中央処理装置531は、記憶装置532に記憶されているプログラムに基づいて動作し、冷却水温度センサー51及びガス流量センサー65から入力信号部533を介して取り込まれたデータに応じて、あらかじめ設定されている周波数でファンモータ18及びファン19を回転駆動させる周波数信号を形成して、出力信号部534を介してインバータ装置55に供給できるように構成されている。   FIG. 2 is a block diagram showing a detailed configuration of the control device 53. The control device 53 shown in FIG. 2 includes a central processing unit 531, a storage device 532, an input signal unit 533, an output signal unit 534, and the like. The control device 53 starts to operate as the cooling tower 10 starts operating. Then, the central processing unit 531 operates based on the program stored in the storage device 532, and in advance according to the data fetched from the cooling water temperature sensor 51 and the gas flow rate sensor 65 via the input signal unit 533. A frequency signal for rotationally driving the fan motor 18 and the fan 19 at a set frequency is formed and can be supplied to the inverter device 55 via the output signal unit 534.

ところで、このような熱源機システム100では、従来、冷却水の冷却水温度センサー51による検出温度が下限設定温度と上限設定温度との間の目標温度に保たれるようにファン19の回転周波数が制御される。例えば、目標温度より検出温度が高くなればファンの周波数を高く、検出温度が低くなればファンの周波数を低くするように、検出温度に比例するようにファン周波数を設定して、検出温度に対応する周波数でファン19を駆動することが知られている。   By the way, in such a heat source system 100, conventionally, the rotation frequency of the fan 19 is set so that the temperature detected by the cooling water temperature sensor 51 of the cooling water is maintained at a target temperature between the lower limit set temperature and the upper limit set temperature. Be controlled. For example, the fan frequency is set to be proportional to the detected temperature so that the fan frequency is increased when the detected temperature is higher than the target temperature, and the fan frequency is decreased when the detected temperature is lower. It is known to drive the fan 19 at a frequency of

ところが、このような従来技術では、熱源機20の冷房負荷を考慮してファン19の周波数の適正化を図ることについては配慮されていない。   However, in such a conventional technique, consideration is not given to optimizing the frequency of the fan 19 in consideration of the cooling load of the heat source device 20.

すなわち、従来技術では、単に冷却水温度を検出して、あらかじめ固定して設けられた冷却水の検出温度とファン周波数との対応関係に基づいてファンの周波数を制御している。このため、熱源機20の冷房負荷にかかわらず固定された対応関係に基づいた周波数でファン19が駆動される。   That is, in the prior art, the cooling water temperature is simply detected, and the fan frequency is controlled based on the correspondence between the cooling water detection temperature fixed in advance and the fan frequency. For this reason, the fan 19 is driven at a frequency based on the fixed correspondence regardless of the cooling load of the heat source device 20.

しかしながら、熱源機20の冷房負荷が変動する場合、必ずしも検出温度に対応して定められている周波数が適切なものになるとは限らない。例えば熱源機20の冷房負荷が変動して小さくなった場合、適切な周波数より高い周波数でファンが駆動されることとなり、省エネルギーの観点から好ましくないし、過冷却により冷却水温度が下がり目標温度に適切に制御されないおそれがある。   However, when the cooling load of the heat source device 20 fluctuates, the frequency determined corresponding to the detected temperature is not always appropriate. For example, when the cooling load of the heat source device 20 is fluctuated and becomes small, the fan is driven at a frequency higher than an appropriate frequency, which is not preferable from the viewpoint of energy saving. There is a risk of being out of control.

本実施形態の熱源機システム100及び冷却塔10は、このような問題に対応すべくなされたものである。以下、本実施形態の熱源機システム100及び冷却塔10の特徴部である制御装置53のファンの周波数制御内容について実施例ごとに詳細を説明する。   The heat source machine system 100 and the cooling tower 10 of this embodiment are made to cope with such a problem. Hereinafter, the frequency control contents of the fan of the control device 53 that is a characteristic part of the heat source apparatus system 100 and the cooling tower 10 of the present embodiment will be described in detail for each example.

本実施例の制御装置53は、あらかじめ設定された冷却水の目標温度(以下、適宜Mpという)と冷却水の検出温度(以下、適宜CTIという)との偏差、偏差の積分、及び偏差の微分の3つの要素に比例していわゆるPID制御によりファン19の周波数制御を行なう。   The control device 53 of the present embodiment includes a deviation between a preset target temperature of cooling water (hereinafter referred to as Mp as appropriate) and a detected temperature of cooling water (hereinafter referred to as CTI as appropriate), an integral of deviation, and a differential of deviation. The frequency of the fan 19 is controlled by so-called PID control in proportion to these three elements.

PID基本制御式は以下の(数1)で表される。
(数1)
m(nTs)=K×(1/100)×(P成分項+I成分項+D成分項+Mo)
数1式における各成分項は以下の(数2)〜(数4)で表される。
(数2)
P成分項=(1/P)×e(nTs)×100
(数3)
I成分項=(1/P)×(Ts/Ti)×Σe(iTs)×100
(数4)
D成分項=(1/P)×(Td/a×Ts)×{e(nTs)−e((n−a)Ts)}×100
ここで、数1〜数4式における変数は以下の通りである。
m(nTs):n番目の出力、K:比例ゲイン(全操作量)、P:比例帯(比例操作範囲)、e(nTs):n番目の偏差(目標温度との差)、Ts:サンプリング時間(s)、Ti:積分時間(s)、Td:微分時間(s)、a×Ts:微分周期(s)、e((n−a)Ts):(n−a)番目の出力、Mo:目標温度での操作量(%)
なお、Moは、熱源機のある特定の負荷時の代表値(例えば50%など)である。
The PID basic control expression is expressed by the following (Equation 1).
(Equation 1)
m (nTs) = K × (1/100) × (P component term + I component term + D component term + Mo)
Each component term in Equation 1 is expressed by the following (Equation 2) to (Equation 4).
(Equation 2)
P component term = (1 / P) × e (nTs) × 100
(Equation 3)
I component term = (1 / P) × (Ts / Ti) × Σe (iTs) × 100
(Equation 4)
D component term = (1 / P) × (Td / a × Ts) × {e (nTs) −e ((n−a) Ts)} × 100
Here, the variables in Equations 1 to 4 are as follows.
m (nTs): n-th output, K: proportional gain (total manipulated variable), P: proportional band (proportional operation range), e (nTs): n-th deviation (difference from target temperature), Ts: sampling Time (s), Ti: integration time (s), Td: derivative time (s), a × Ts: derivative period (s), e ((na) Ts): (na) th output, Mo: Amount of operation at target temperature (%)
Mo is a representative value (for example, 50%) at a specific load of the heat source device.

例えば、Mpを28℃に設定したとすると、Mp:28℃に対する現在のCTIの偏差がP成分項(比例成分)となるため、偏差が大きくなればP成分項が大きくなる。I成分項(積分成分)は、Mp:28℃と現在のCTIの偏差を、一定の間隔で継続的に積分しているため、目標温度から離れている時間が長ければ長いほど、偏差が大きければ大きいほどI成分項は大きくなる。D成分項(微分成分)は外乱などによる急変動に対応するための成分であり、この急変動に対して是正するような出力をなすものである。   For example, assuming that Mp is set to 28 ° C., the deviation of the current CTI with respect to Mp: 28 ° C. becomes the P component term (proportional component), so that the P component term increases as the deviation increases. Since the I component term (integral component) continuously integrates the deviation between Mp: 28 ° C. and the current CTI at regular intervals, the deviation increases as the time away from the target temperature increases. The larger the value, the larger the I component term. The D component term (differential component) is a component for dealing with a sudden fluctuation due to a disturbance or the like, and makes an output for correcting the sudden fluctuation.

制御装置53は、再生器60の燃焼信号が入った時点からPID制御の演算を開始し、制御周期ごとに入力されるCTIと数1式に基づいてファン19の周波数を順次演算して出力し、燃焼停止により演算を停止する。このようなPID制御によれば、目標温度をピンポイントで設定することが可能となり、外乱に対する追従性が向上する。   The control device 53 starts calculation of PID control from the point of time when the combustion signal of the regenerator 60 is input, and sequentially calculates and outputs the frequency of the fan 19 based on CTI and Formula 1 input every control cycle. The calculation is stopped by stopping the combustion. According to such PID control, it is possible to set the target temperature pinpoint, and the followability to disturbance is improved.

また、これに加えて本実施例の特徴として、制御装置53にはガス流量センサー65で検出された再生器60へのガス流量、言い換えれば吸収式冷温水機の負荷に相関する再生器60への入熱量(或いは再生器60の燃焼量、インプット)が入力される。制御装置53は、検出された吸収式冷温水機の負荷に応じて上述の式1における制御の比例ゲイン(K)を変更する。この点について、図3を用いて説明する。   In addition to this, as a feature of the present embodiment, the control device 53 has the gas flow rate to the regenerator 60 detected by the gas flow rate sensor 65, in other words, to the regenerator 60 correlated with the load of the absorption chiller / heater. Heat input amount (or combustion amount of regenerator 60, input) is input. The control device 53 changes the proportional gain (K) of the control in the above equation 1 according to the detected load of the absorption chiller / heater. This point will be described with reference to FIG.

図3は、本実施例の制御装置53の冷却水の検出温度とファン19の周波数との対応関係を示す図である。図3において、横軸は冷却水温度センサー51で検出された冷却水入口温度(℃)(以下、適宜CTIという)であり、縦軸はファン19の周波数の定格を100%とした割合を示している。なお、図3は冷却水の目標温度と検出温度との偏差に比例してファン19の周波数を制御する、いわゆる比例制御(P制御)の内容を示す図である。   FIG. 3 is a diagram illustrating a correspondence relationship between the detected temperature of the cooling water of the control device 53 of the present embodiment and the frequency of the fan 19. In FIG. 3, the horizontal axis represents the cooling water inlet temperature (° C.) (hereinafter referred to as CTI as appropriate) detected by the cooling water temperature sensor 51, and the vertical axis represents the ratio when the frequency rating of the fan 19 is 100%. ing. FIG. 3 is a diagram showing the content of so-called proportional control (P control) in which the frequency of the fan 19 is controlled in proportion to the deviation between the target temperature of the cooling water and the detected temperature.

図3に示すように、CTIが24℃より低い場合はファン19をOFFする。CTIが24℃未満から上昇して25℃になったら、ファン19を起動して50%の周波数で駆動するとともに、CTIが25℃〜26℃の間は一律に50%の周波数で駆動する。   As shown in FIG. 3, when the CTI is lower than 24 ° C., the fan 19 is turned off. When the CTI rises from less than 24 ° C. to 25 ° C., the fan 19 is activated and driven at a frequency of 50%, and when the CTI is between 25 ° C. and 26 ° C., it is uniformly driven at a frequency of 50%.

一方、CTIが26℃以上になると、吸収式冷温水機の負荷に相関する再生器60への入熱量(再生器60の燃焼量、インプット)が100%の場合と25%の場合のそれぞれで、冷却水の検出温度とファン19の周波数との対応関係が異なっている。すなわち、再生器60への入熱量に応じて上述の式1における制御の比例ゲイン(K)の値を変更することにより、図3に示すように冷却水の検出温度とファン19の周波数との対応関係が変更される。   On the other hand, when the CTI is 26 ° C. or higher, the heat input to the regenerator 60 (combustion amount of the regenerator 60, input) correlated with the load of the absorption chiller / heater is 100% and 25%, respectively. The correspondence relationship between the detected temperature of the cooling water and the frequency of the fan 19 is different. That is, by changing the value of the proportional gain (K) of the control in the above equation 1 according to the heat input to the regenerator 60, the detected temperature of the cooling water and the frequency of the fan 19 are changed as shown in FIG. Correspondence is changed.

より具体的には、再生器60への入熱量が小さくなるにつれて比例ゲインを小さくし、大きくなるにつれて比例ゲインを大きくする。この比例ゲインは、数1式に示すように、各成分項とMoの両方にかかるものであるから、例えば再生器60への入熱量が100%のときを基準に考えると、入熱量が小さくなるにつれて冷却水の検出温度に対するファン19の周波数が全体的に低くなり、傾きがなだらかになる。   More specifically, the proportional gain is decreased as the amount of heat input to the regenerator 60 is decreased, and is increased as the amount of heat input is increased. Since this proportional gain is applied to both the component term and Mo as shown in Equation 1, for example, when the heat input to the regenerator 60 is 100%, the heat input is small. As a result, the frequency of the fan 19 with respect to the detected temperature of the cooling water decreases as a whole, and the inclination becomes gentle.

なお、図3は再生器60への入熱量が100%と25%の場合を代表的に記載するものであり、その他、入熱量に対応した冷却水の検出温度とファン19の周波数との対応関係が適宜決定される。   3 representatively shows the case where the heat input to the regenerator 60 is 100% and 25%. In addition, the correspondence between the detected temperature of the cooling water corresponding to the heat input and the frequency of the fan 19 is shown. The relationship is determined as appropriate.

このように、本実施例によれば、吸収式冷温水機の負荷が変動する場合に、この変動に追従して冷却水の検出温度とファン19の周波数との対応関係を適切なものに補正することができる。   Thus, according to the present embodiment, when the load of the absorption chiller / heater varies, the correspondence between the detected temperature of the cooling water and the frequency of the fan 19 is corrected to an appropriate one following the variation. can do.

すなわち、熱源機の負荷が変動して小さくなる場合は、高負荷の場合に比べて低めの周波数でファン19を駆動して冷却水の冷却能力を下げるのが好ましい。本実施例によれば、実際の負荷より大きな負荷に対応した高い周波数でファン19を駆動することを抑制して省エネルギー化を図ることができ、かつ冷却水の過冷却を抑制して冷却水温度を目標温度に適切に制御することができる。   That is, when the load of the heat source device fluctuates and becomes smaller, it is preferable to drive the fan 19 at a lower frequency than in the case of a high load to lower the cooling capacity of the cooling water. According to the present embodiment, it is possible to save energy by suppressing driving of the fan 19 at a high frequency corresponding to a load larger than the actual load, and it is possible to suppress cooling water overcooling to reduce the cooling water temperature. Can be appropriately controlled to the target temperature.

一方、検出された負荷が大きくなれば冷却水の検出温度に対応して設定されているファンの周波数を大きく補正して冷却能力を上げることにより、冷却水を適切に冷却することができる。また、比例ゲインを用いて出力値を補正することにより、外乱に対して予測的な動きとなるため冷却水の温度制御の安定性が向上する。   On the other hand, if the detected load increases, the cooling water can be appropriately cooled by increasing the cooling capacity by largely correcting the frequency of the fan set corresponding to the detected temperature of the cooling water. Further, by correcting the output value using the proportional gain, the behavior of the cooling water is improved because of a predictive movement against the disturbance.

なお、本実施例はPID制御を基本制御としているが、これに限らず、例えばP制御、或いはPI制御を基本制御とすることができる。また、このような制御関数を用いることなく、例えば冷却水の検出温度に対応するファン19の周波数が設定されたテーブルを、再生器60への入熱量ごとに複数設けておき、再生器60への入熱量とCTIに応じたファン19の周波数を複数のテーブルから選択するようにしてもよい。   In this embodiment, PID control is used as basic control. However, the present invention is not limited to this. For example, P control or PI control can be used as basic control. Further, without using such a control function, for example, a plurality of tables in which the frequency of the fan 19 corresponding to the detected temperature of the cooling water is set are provided for each amount of heat input to the regenerator 60, and the regenerator 60 is provided. The frequency of the fan 19 according to the heat input amount and the CTI may be selected from a plurality of tables.

本実施例は、第1実施例の制御に加えて、CTIに基づいて目標温度(Mp)を適宜変更する制御を行い、省エネルギー化を図る実施例である。第1実施例と同様の部分については説明を省略する。   In the present embodiment, in addition to the control of the first embodiment, control for appropriately changing the target temperature (Mp) based on CTI is performed to save energy. A description of the same parts as in the first embodiment will be omitted.

制御装置53は、CTIが、あらかじめ設定された時間以上継続して高温閾値温度(30℃)より高い場合、目標温度(Mp:28℃)を例えば29℃へと1℃高くする。   When the CTI is continuously higher than the high temperature threshold temperature (30 ° C.) for a predetermined time or longer, the control device 53 increases the target temperature (Mp: 28 ° C.) by 1 ° C. to 29 ° C., for example.

これは、吸収式冷温水機の負荷に応じて目標温度(Mp)を可変にするものである。つまり、ある時間以上継続して冷却水温度が高温閾値温度より高いということは、吸収式冷温水機の負荷が高く、冷却水の目標温度に対する検出温度の偏差が大きい状態を示している。ファン19を継続して設定上限周波数で駆動し続けることは省エネルギーの観点から好ましくない。そこで、この場合は目標温度を高くして、現在の冷却水温度に目標温度を近づけることにより、冷却水の目標温度と検出温度との偏差を小さくしてファンの周波数を低減させ、その結果、省エネルギー化を図ることができる。   This makes the target temperature (Mp) variable according to the load of the absorption chiller / heater. That is, the fact that the cooling water temperature is higher than the high temperature threshold temperature continuously for a certain time or more indicates that the load of the absorption chiller / heater is high and the deviation of the detected temperature from the target temperature of the cooling water is large. It is not preferable from the viewpoint of energy saving to continue driving the fan 19 at the set upper limit frequency. Therefore, in this case, by increasing the target temperature and bringing the target temperature closer to the current cooling water temperature, the deviation between the target temperature of the cooling water and the detected temperature is reduced, thereby reducing the fan frequency. Energy saving can be achieved.

一方、制御装置53は、CTIが、あらかじめ設定された時間以上継続して低温閾値温度(26℃)より低い場合、目標温度を28℃から27℃へ1℃低くする。   On the other hand, when the CTI is continuously lower than the low temperature threshold temperature (26 ° C.) for a preset time, the control device 53 decreases the target temperature by 1 ° C. from 28 ° C. to 27 ° C.

この場合は、吸収式冷温水機の負荷が小さく、冷却水の目標温度に対する検出温度の偏差が大きい状態を示している。そこで上述と同様に、目標温度を低くして偏差を小さくすることにより、ファン19の周波数を低減させてファン19の発停を極力避けることにより冷却水が安定するので、システム全体として省エネルギー化を図ることができる。   In this case, the load of the absorption chiller / heater is small, and the deviation of the detected temperature with respect to the target temperature of the cooling water is large. Therefore, as described above, by reducing the target temperature and reducing the deviation, the cooling water is stabilized by reducing the frequency of the fan 19 and avoiding the start and stop of the fan 19 as much as possible. Can be planned.

本実施形態の熱源機システムの全体構成を示す図である。It is a figure showing the whole heat source machine system composition of this embodiment. 制御装置の詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of a control apparatus. 本実施形態の熱源機システム及び冷却塔における制御装置の冷却水の検出温度とファンの周波数との対応関係を示す図である。It is a figure which shows the correspondence of the detected temperature of the cooling water of the control apparatus in the heat-source equipment system of this embodiment, and a cooling tower, and the frequency of a fan.

符号の説明Explanation of symbols

10 冷却塔
11 ケーシング
12 空気流入口
14 充填材
15 散水ノズル
16 開口
18 ファンモータ
19 ファン
20 熱源機
30 冷却水配管
31 往管
32 復管
50 運転制御装置
51 冷却水温度センサー
53 制御装置
55 インバータ装置
60 再生器
65 ガス流量センサー
100 熱源機システム
DESCRIPTION OF SYMBOLS 10 Cooling tower 11 Casing 12 Air inlet 14 Filling material 15 Sprinkling nozzle 16 Opening 18 Fan motor 19 Fan 20 Heat source machine 30 Cooling water piping 31 Outward pipe 32 Return pipe 50 Operation control apparatus 51 Cooling water temperature sensor 53 Control apparatus 55 Inverter apparatus 60 Regenerator 65 Gas Flow Sensor 100 Heat Source System

Claims (6)

冷却塔と、熱源機の熱負荷から戻される高温の冷却水を前記冷却塔へ導く配管と、前記冷却塔で冷却された冷却水を前記熱源機の熱負荷へ導く配管とを備えて構成される熱源機システムに用いられ、
前記熱源機の熱負荷から戻される高温の前記冷却水を空気中に散布し、ファンの回転に伴う空気の通流による蒸発潜熱で前記冷却水を冷却して再び前記熱源機の熱負荷に循環供給するとともに、前記冷却された冷却水の温度を検出して、あらかじめ設定された前記冷却水の検出温度と前記ファンの周波数との対応関係に基づいて前記ファンの周波数を制御する制御手段を備えてなる冷却塔において、
前記熱源機は吸収式冷温水機であり、
前記制御手段は、前記熱源機の冷房負荷として、前記吸収式冷温水機の冷房負荷から戻される流体の温度、或いは前記吸収式冷温水機の再生器への入熱量を検出し、前記冷房負荷から戻される流体の温度或いは前記入熱量に基づいて前記熱源機の冷房負荷を検出し、該検出された負荷に応じて前記冷却水の検出温度と前記ファンの周波数との対応関係を補正し、前記検出された負荷が小さくなるにつれて前記冷却水の検出温度に対応して設定されている前記ファンの周波数の少なくとも一部を小さく補正することを特徴とする冷却塔。
A cooling tower, a pipe for guiding the high-temperature cooling water returned from the heat load of the heat source unit to the cooling tower, and a pipe for leading the cooling water cooled by the cooling tower to the heat load of the heat source unit. Used in the heat source system
The high-temperature cooling water returned from the heat load of the heat source device is dispersed in the air, and the cooling water is cooled by the latent heat of vaporization caused by the air flow accompanying the rotation of the fan, and is circulated again to the heat load of the heat source device. And a control means for detecting the temperature of the cooled cooling water and controlling the frequency of the fan based on a correspondence relationship between a preset detection temperature of the cooling water and the frequency of the fan. In the cooling tower
The heat source machine is an absorption chiller / heater,
The control means detects, as the cooling load of the heat source device, the temperature of the fluid returned from the cooling load of the absorption chiller / heater, or the amount of heat input to the regenerator of the absorption chiller / heater, and the cooling load Detecting the cooling load of the heat source unit based on the temperature of the fluid returned from or the amount of heat input, correcting the correspondence between the detected temperature of the cooling water and the frequency of the fan according to the detected load, As the detected load decreases, at least a part of the fan frequency set corresponding to the detected temperature of the cooling water is corrected to be smaller.
前記制御手段は、該検出された負荷に応じて前記冷却水の検出温度と前記ファンの周波数との対応関係を補正し、前記冷却水の検出温度とあらかじめ設定された前記冷却水の目標温度との偏差に比例して前記ファンの周波数を制御し、前記検出された負荷が小さくなるにつれて前記冷却水の検出温度に対応して設定されている前記ファンの周波数の少なくとも一部を小さく補正し、前記冷却水の検出温度が、あらかじめ設定された時間以上継続して、前記冷却水の検出温度の上昇にともない前記ファンの周波数が設定上限周波数になる高温閾値温度より高い場合、前記目標温度を高くすることを特徴とする請求項1に記載の冷却塔。   The control means corrects the correspondence between the detected temperature of the cooling water and the frequency of the fan according to the detected load, and sets the detected temperature of the cooling water and a preset target temperature of the cooling water. The frequency of the fan is controlled in proportion to the deviation, and at least a part of the fan frequency set corresponding to the detected temperature of the cooling water is corrected to be smaller as the detected load becomes smaller, When the detected temperature of the cooling water continues for a preset time or longer and the frequency of the fan is higher than a high temperature threshold temperature that becomes a set upper limit frequency as the detected temperature of the cooling water increases, the target temperature is increased. The cooling tower according to claim 1, wherein: 前記制御手段は、該検出された負荷に応じて前記冷却水の検出温度と前記ファンの周波数との対応関係を補正し、前記冷却水の検出温度とあらかじめ設定された前記冷却水の目標温度との偏差に比例して前記ファンの周波数を制御し、前記検出された負荷が小さくなるにつれて前記冷却水の検出温度に対応して設定されている前記ファンの周波数の少なくとも一部を小さく補正し、前記冷却水の検出温度が、あらかじめ設定された時間以上継続して、前記冷却水の検出温度が下降して前記ファンの周波数がファンを停止させる場合を除く設定下限周波数になる低温閾値温度より低い場合、前記目標温度を低くすることを特徴とする請求項1に記載の冷却塔。   The control means corrects the correspondence between the detected temperature of the cooling water and the frequency of the fan according to the detected load, and sets the detected temperature of the cooling water and a preset target temperature of the cooling water. The frequency of the fan is controlled in proportion to the deviation, and at least a part of the fan frequency set corresponding to the detected temperature of the cooling water is corrected to be smaller as the detected load becomes smaller, The detected temperature of the cooling water continues for a preset time or more, and the detected temperature of the cooling water decreases and the frequency of the fan is lower than a low temperature threshold temperature that becomes a set lower limit frequency except when the fan is stopped. The cooling tower according to claim 1, wherein the target temperature is lowered. 前記制御手段は、該検出された負荷に応じて前記冷却水の検出温度と前記ファンの周波数との対応関係を補正し、前記冷却水の検出温度とあらかじめ設定された前記冷却水の目標温度との偏差に比例して前記ファンの周波数を制御し、前記検出された負荷が小さくなるにつれて前記冷却水の検出温度に対応して設定されている前記ファンの周波数の少なくとも一部を小さく補正し、
前記制御手段は、前記冷却された冷却水の検出温度と前記目標温度との偏差と、前記偏差の積分成分と、前記偏差の微分成分とに比例して前記ファンの周波数を制御することを特徴とする請求項1に記載の冷却塔。
The control means corrects the correspondence between the detected temperature of the cooling water and the frequency of the fan according to the detected load, and sets the detected temperature of the cooling water and a preset target temperature of the cooling water. The frequency of the fan is controlled in proportion to the deviation, and at least a part of the fan frequency set corresponding to the detected temperature of the cooling water is corrected to be smaller as the detected load becomes smaller,
The control means controls the frequency of the fan in proportion to a deviation between a detected temperature of the cooled cooling water and the target temperature, an integral component of the deviation, and a differential component of the deviation. The cooling tower according to claim 1.
前記制御手段は、前記冷却水の検出温度とあらかじめ設定された前記冷却水の目標温度との偏差に比例して前記ファンの周波数を制御し、
前記検出された負荷に応じて前記制御の比例ゲインを変更する請求項1乃至4の何れか1つに記載の冷却塔。
The control means controls the frequency of the fan in proportion to a deviation between the detected temperature of the cooling water and a preset target temperature of the cooling water,
The cooling tower according to any one of claims 1 to 4, wherein a proportional gain of the control is changed according to the detected load.
前記制御手段は、前記検出された負荷が小さくなるにつれて前記比例ゲインを小さくする請求項5の冷却塔。   6. The cooling tower according to claim 5, wherein the control means decreases the proportional gain as the detected load decreases.
JP2008226494A 2008-09-03 2008-09-03 Cooling tower and heat source system Active JP5583897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008226494A JP5583897B2 (en) 2008-09-03 2008-09-03 Cooling tower and heat source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226494A JP5583897B2 (en) 2008-09-03 2008-09-03 Cooling tower and heat source system

Publications (2)

Publication Number Publication Date
JP2010060204A JP2010060204A (en) 2010-03-18
JP5583897B2 true JP5583897B2 (en) 2014-09-03

Family

ID=42187199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226494A Active JP5583897B2 (en) 2008-09-03 2008-09-03 Cooling tower and heat source system

Country Status (1)

Country Link
JP (1) JP5583897B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5371583B2 (en) * 2009-07-02 2013-12-18 アズビル株式会社 air conditioner
JP5806530B2 (en) * 2011-07-07 2015-11-10 株式会社日立製作所 Cooling system
JP5849593B2 (en) * 2011-10-12 2016-01-27 Jfeスチール株式会社 Automatic cleaning equipment for cooling tower
WO2014167912A1 (en) * 2013-04-08 2014-10-16 富士電機株式会社 Device for controlling cooling system
JP7360234B2 (en) * 2016-08-25 2023-10-12 高砂熱学工業株式会社 Air conditioning system control device, control method, control program, and air conditioning system
CN109782823B (en) * 2017-11-13 2021-05-04 株洲中车时代电气股份有限公司 Temperature control system and method for rail transit equipment test bench
JP7000189B2 (en) * 2018-02-08 2022-01-19 東京瓦斯株式会社 Cooling system
CN109855238B (en) * 2019-02-27 2020-10-20 四川泰立智汇科技有限公司 Central air conditioner modeling and energy efficiency optimization method and device
CN114199071B (en) * 2021-10-29 2024-04-12 深圳市富能新能源科技有限公司 Control method of refrigerating system, electronic equipment and computer readable storage medium
CN114857735B (en) * 2022-04-13 2023-01-10 清华大学 Air-conditioning air-water system control method, device and equipment without electric water regulating valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2768501B2 (en) * 1989-06-26 1998-06-25 三井化学株式会社 Cooling tower temperature control
JPH05340690A (en) * 1992-06-05 1993-12-21 Yazaki Corp Cooling tower and cooling capacity control method
JP2994251B2 (en) * 1995-08-28 1999-12-27 リンナイ株式会社 Absorption cooling system
JP4167856B2 (en) * 2002-06-28 2008-10-22 株式会社日立製作所 Absorption chiller / heater
JP4398360B2 (en) * 2004-12-28 2010-01-13 川重冷熱工業株式会社 Cooling water temperature control method for absorption chiller / heater
JP2006214597A (en) * 2005-02-01 2006-08-17 Hitachi Zosen Corp Regenerator in ammonia absorption type refrigerator

Also Published As

Publication number Publication date
JP2010060204A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5583897B2 (en) Cooling tower and heat source system
JP5264365B2 (en) Cooling tower and heat source system
KR101222331B1 (en) Heat-pump hot water apparatus
JP5657110B2 (en) Temperature control system and air conditioning system
JP2017036875A (en) Air conditioner and operation method of the same
US9897338B2 (en) Coordinated air-side control of HVAC system
JP2007315695A (en) Cold and hot water control method for cold and heat source machine, and air conditioning system using it
JP2010156478A (en) Thermal load processing system and heat source system
JP6413713B2 (en) Snow and ice air conditioning system
JP6363428B2 (en) Heat medium circulation system
JP5455338B2 (en) Cooling tower and heat source system
JP7205916B2 (en) Free cooling chiller and its operation method
JP5088783B2 (en) Energy-saving control operation method and apparatus for vapor absorption refrigerator
JP2017009269A (en) Air conditioning system
JP2006275492A (en) Air conditioning installation and its control method, as well as refrigerating machine operation number control device
JP6024726B2 (en) External control device
JP2007263462A (en) Absorption refrigerating machine
JP5264366B2 (en) Cooling tower and heat source system
JP2017003181A (en) Air conditioning system and program for air conditioning system
JP6400978B2 (en) Heat medium circulation system
JP4112868B2 (en) Air conditioning system
JP2021092369A (en) Free cooling chiller integrated operation method and system
JP2010133598A (en) Heat pump type water heater
JP2016161235A (en) Refrigeration cycle device
JP5940608B2 (en) Heat medium circulation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120926

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140717

R150 Certificate of patent or registration of utility model

Ref document number: 5583897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250