JP5264366B2 - Cooling tower and heat source system - Google Patents

Cooling tower and heat source system Download PDF

Info

Publication number
JP5264366B2
JP5264366B2 JP2008211780A JP2008211780A JP5264366B2 JP 5264366 B2 JP5264366 B2 JP 5264366B2 JP 2008211780 A JP2008211780 A JP 2008211780A JP 2008211780 A JP2008211780 A JP 2008211780A JP 5264366 B2 JP5264366 B2 JP 5264366B2
Authority
JP
Japan
Prior art keywords
frequency
fan
cooling water
temperature
switched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008211780A
Other languages
Japanese (ja)
Other versions
JP2010048448A (en
Inventor
元巳 稲垣
那加博 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Original Assignee
Yazaki Energy System Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp filed Critical Yazaki Energy System Corp
Priority to JP2008211780A priority Critical patent/JP5264366B2/en
Publication of JP2010048448A publication Critical patent/JP2010048448A/en
Application granted granted Critical
Publication of JP5264366B2 publication Critical patent/JP5264366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To stably hold a cooling water temperature within a target temperature range, while restraining a fan frequency from being switched frequently. <P>SOLUTION: This cooling tower sprays a high temperature of cooling water returned from a heat load into air, and cools the cooling water by evaporation latent heat due to air flow in accompaniment to rotation of the fan, to be circulation-supplied again to the heat load, and is provided with a control means for controlling a rotation speed of the fan by a plurality of stages of frequencies, in response to a detected temperature of the cooled cooling temperature. The control means switches the frequency of the fan in each of a lower limit value (25&deg;C) and an upper limit value (28&deg;C), to hold the cooling water temperature CTI within the preset target temperature range (25&deg;-28&deg;C) of the cooling water. The frequency of the fan is switched stepwise in a higher temperature side and a lower temperature side than the target temperature range, to prevent the frequencies of the fan from being switched at once in the plurality of stages. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、冷却塔及び熱源機システムに係り、特に、冷却塔のファンの回転周波数の制御技術に関する。   The present invention relates to a cooling tower and a heat source apparatus system, and more particularly to a technique for controlling a rotation frequency of a cooling tower fan.

例えば吸収式冷温水機などの熱源機で熱負荷を冷却して高温になった冷却水は、配管を介して冷却塔へ導かれ、冷却塔で冷却された後再び配管を介して熱源機の熱負荷に循環供給される。冷却塔は、熱源機から導かれた高温の冷却水をケーシング内に散布し、冷却塔に設けられたファンにより蒸発潜熱で冷却するものとして知られている。   For example, the cooling water heated to a high temperature by cooling the heat load with a heat source machine such as an absorption chiller / heater is led to the cooling tower through a pipe, cooled by the cooling tower, and then again through the pipe. Circulated to the heat load. The cooling tower is known as one in which high-temperature cooling water guided from a heat source device is sprayed in a casing and cooled by latent heat of vaporization by a fan provided in the cooling tower.

ところで、近年の省エネルギー要求に対応すべく、熱源機と冷却塔からなる熱源機システムの省エネルギー研究がなされており、熱源機自体の効率向上はある程度なされてきた。   By the way, in order to respond to recent energy-saving requirements, energy-saving research on a heat-source unit system including a heat-source unit and a cooling tower has been conducted, and the efficiency of the heat-source unit itself has been improved to some extent.

しかし、熱源機自体の省エネルギー化だけでは不十分であり、例えば冷却水を熱源機と冷却塔との間で搬送するポンプや冷却塔に用いられるファンの動力の効率向上が求められている。   However, it is not sufficient to save the energy of the heat source unit itself. For example, it is required to improve the efficiency of the power of a fan used for a pump or a cooling tower that transports cooling water between the heat source unit and the cooling tower.

この点、特許文献1に記載されているように、冷却塔で冷却された冷却水の温度を検出し、この検出温度に応じて冷却塔のファンの回転数をインバータで周波数可変に制御することによりファンの効率を高めることが知られている。   In this regard, as described in Patent Document 1, the temperature of the cooling water cooled by the cooling tower is detected, and the number of rotations of the cooling tower fan is controlled by the inverter in a variable manner according to the detected temperature. It is known to increase fan efficiency.

すなわち、従来は冷却水温度がある設定温度(例えば27℃)以上になったらファンを100%の周波数で駆動し、ある設定温度(例えば24.5℃)以下になったらファンを停止する、いわゆるオン−オフ制御であったので、ファンの起動及び停止が頻繁に発生してファン効率の観点から好ましくなかった。これに対して、特許文献1では、検出温度が下限設定温度(例えば24.5℃)と上限設定温度(例えば27℃)との間にあるときは、検出温度に1対1に対応してほぼ比例するように設定された周波数でファンを駆動することにより、ファンの起動及び停止の回数を低減することができるとされている。   That is, conventionally, the fan is driven at a frequency of 100% when the cooling water temperature becomes a certain set temperature (for example, 27 ° C.) or more, and the fan is stopped when the temperature becomes a certain set temperature (for example, 24.5 ° C.) or less. Since it was on-off control, the fan was frequently started and stopped, which was not preferable from the viewpoint of fan efficiency. On the other hand, in Patent Document 1, when the detected temperature is between the lower limit set temperature (for example, 24.5 ° C.) and the upper limit set temperature (for example, 27 ° C.), the detected temperature has a one-to-one correspondence. It is said that the number of times the fan is started and stopped can be reduced by driving the fan at a frequency set to be approximately proportional.

特開平5−340690号公報JP-A-5-340690

しかしながら、特許文献1に記載されているように、検出温度にほぼ比例するように設定されている周波数でファンを駆動すると、冷却水の温度変化に対してファンの周波数が敏感に変化することにより冷却水温度がハンチングして安定しないおそれがある。   However, as described in Patent Document 1, when the fan is driven at a frequency set to be approximately proportional to the detected temperature, the fan frequency changes sensitively to the temperature change of the cooling water. Cooling water temperature may be hunting and not stable.

この点、複数段の設定周波数のそれぞれに対して一定の温度幅をもたせて、これを階段状に連続させて段階的にファン周波数を制御することにより、検出温度がある一定の温度域にあるときには周波数が変化しないので、冷却水温度をある程度安定させることができると考えられる。   In this respect, the detected temperature is in a certain temperature range by giving a constant temperature width to each of the set frequencies of the plurality of stages and controlling the fan frequency in a stepwise manner by continuing this stepwise. Since the frequency sometimes does not change, it is considered that the cooling water temperature can be stabilized to some extent.

ところで、ファン周波数の頻繁な切り替えを抑制するためには、複数段の設定周波数のそれぞれにおける温度幅を広げることが望ましいが、これには限界がある。例えば冷却水温度を目標温度範囲内に保つべく、目標温度範囲の下限値と上限値との間の範囲を各設定周波数における温度幅として設定すると、各設定周波数において同じ温度で周波数が切り替えられることとなるので、複数段にわたる周波数切り替えが一度に行なわれる場合が生じて好ましくない。   By the way, in order to suppress frequent switching of the fan frequency, it is desirable to widen the temperature range at each of the plurality of setting frequencies, but this has a limit. For example, if the range between the lower limit value and upper limit value of the target temperature range is set as the temperature width at each set frequency in order to keep the cooling water temperature within the target temperature range, the frequency can be switched at the same temperature at each set frequency. Therefore, a case where frequency switching over a plurality of stages is performed at a time is not preferable.

そこで、本発明は、ファン周波数の頻繁な切り替えを抑制しつつ冷却水温度を目標温度範囲内に安定して保つことを課題とする。   Accordingly, an object of the present invention is to stably keep the cooling water temperature within the target temperature range while suppressing frequent switching of the fan frequency.

本発明の冷却塔は、熱負荷から戻される高温の冷却水を空気中に散布し、ファンの回転に伴う空気の通流による蒸発潜熱で冷却水を冷却して再び熱負荷に循環供給するとともに、冷却された冷却水の検出温度に応じてファンの回転数を複数段の周波数で段階制御する制御手段を備えて構成される。   The cooling tower of the present invention sprays high-temperature cooling water returned from the heat load into the air, cools the cooling water with latent heat of vaporization caused by the air flow accompanying the rotation of the fan, and circulates and supplies it again to the heat load. The control unit is configured to control the rotational speed of the fan at a plurality of stages according to the detected temperature of the cooled cooling water.

制御手段は、前記ファンが駆動されている状態で、前記冷却水の検出温度が上昇してあらかじめ設定された目標温度範囲の上限値に達したときに前記ファンの周波数を一段高い周波数に切り替え、さらに前記冷却水の検出温度が前記上限値以上の高温側に上昇したときは、前記冷却水の検出温度の上昇に対応して前記ファンの周波数を段階的に高く切り替える。 The control means switches the fan frequency to a higher frequency when the detected temperature of the cooling water rises and reaches an upper limit value of a preset target temperature range with the fan being driven, Further, when the detected temperature of the cooling water rises to a high temperature side that is equal to or higher than the upper limit value, the frequency of the fan is switched higher stepwise in response to the rise in the detected temperature of the cooling water.

一方、前記冷却水の検出温度が、前記目標温度範囲の前記上限値以上の高温側から下降したときは、前記目標温度範囲の下限値に達するまでは前記ファンの周波数を切り替えず、前記目標温度範囲の下限値に達したときに前記ファンの周波数を一段低い周波数に切り替え、さらに前記冷却水の検出温度が前記下限値以下の低温側に下降したときは、前記冷却水の検出温度の下降に対応して前記ファンの周波数を段階的に低く切り替えることを特徴としている。 On the other hand, when the detected temperature of the cooling water falls from the high temperature side that is equal to or higher than the upper limit value of the target temperature range, the frequency of the fan is not switched until the lower limit value of the target temperature range is reached. When the lower limit of the range is reached, the frequency of the fan is switched to a lower frequency, and when the detected temperature of the cooling water falls to a low temperature lower than the lower limit, the detected temperature of the cooling water is lowered. Correspondingly, the frequency of the fan is switched low in a stepwise manner .

すなわち、複数段の各周波数において、冷却水の目標温度範囲の下限値から上限値までの温度幅を持たせることにより冷却水の温度の変動によるファン周波数の切り替え頻度を低減させることができる。これに加えて、複数段の各周波数において、目標温度範囲の下限値及び上限値でファンの周波数の切り替えが行なわれるようにしているので、冷却水温度を目標温度範囲内に安定して保つことができる。   That is, by providing a temperature range from the lower limit value to the upper limit value of the target temperature range of the cooling water at each frequency of the plurality of stages, it is possible to reduce the frequency of switching the fan frequency due to the temperature variation of the cooling water. In addition to this, since the fan frequency is switched at the lower limit value and the upper limit value of the target temperature range at each frequency of the plurality of stages, the cooling water temperature should be kept stable within the target temperature range. Can do.

さらに、複数段の各周波数において、目標温度範囲の下限値及び上限値でファンの周波数の切り替えが行なわれるようにしているにも関わらず、例えば上限値での周波数の切り替えは周波数を一段低く切り替えた後に冷却水温度が上昇した場合にしか行なわれないというように条件を付けているので、複数段にわたる周波数切り替えが一度に行なわれることが回避される。その結果、ファン周波数の頻繁な切り替えを抑制しつつ冷却水温度を目標温度範囲内に安定して保つことができる。   Furthermore, although the frequency of the fan is switched at the lower limit value and the upper limit value of the target temperature range at each frequency of the plurality of stages, for example, switching the frequency at the upper limit value switches the frequency one step lower. Since the condition is set such that the switching is performed only when the cooling water temperature rises thereafter, frequency switching over a plurality of stages can be avoided. As a result, it is possible to stably keep the cooling water temperature within the target temperature range while suppressing frequent switching of the fan frequency.

この場合において、制御手段は、ファンの周波数を設定上限周波数から一段低い周波数に切り替える設定温度を、冷却水の目標温度範囲の下限値よりも高温側へ設定することができる。   In this case, the control means can set the set temperature for switching the frequency of the fan from the set upper limit frequency to a frequency one step lower than the lower limit value of the target temperature range of the cooling water.

つまり、ファンの周波数が設定上限周波数になっているときは、熱源機の負荷が高負荷であることを示しており、検出温度がファンの周波数を設定上限周波数から一段下の周波数へ切り替える温度まで低下するのに時間がかかる。そこで、ファンの周波数を設定上限周波数から一段下の周波数へ切り替える設定温度を例外的に目標温度範囲の下限値よりも高温側へシフトさせて設定することにより、検出温度が下降してきたときにはなるべく早く周波数を一段下に切り替えてファンを低い動力で駆動することができる。その結果、ファンを設定上限周波数で駆動させ続けるという状態を極力回避することができ、省エネルギー化を図ることができる。   In other words, when the fan frequency is at the set upper limit frequency, it indicates that the load of the heat source unit is high, and the detected temperature is until the temperature at which the fan frequency is switched from the set upper limit frequency to the next lower frequency. It takes time to drop. Therefore, by setting the set temperature that switches the fan frequency from the set upper limit frequency to a frequency that is one step lower than the lower limit value of the target temperature range as an exception, the set temperature is set as early as possible when the detected temperature falls. The fan can be driven with low power by switching the frequency one step down. As a result, the state where the fan is continuously driven at the set upper limit frequency can be avoided as much as possible, and energy saving can be achieved.

また、熱源機と、上述の冷却塔と、熱源機の熱負荷から戻される高温の冷却水を冷却塔へ導く配管と、冷却塔で冷却された冷却水を熱源機の熱負荷へ導く配管とを備えて熱源機システムを構成することができる。   Also, a heat source unit, the above-described cooling tower, a pipe for guiding the high-temperature cooling water returned from the heat load of the heat source unit to the cooling tower, and a pipe for leading the cooling water cooled by the cooling tower to the heat load of the heat source unit The heat source machine system can be configured.

本発明によれば、ファン周波数の頻繁な切り替えを抑制しつつ冷却水温度を目標温度範囲内に安定して保つことができる。   According to the present invention, the cooling water temperature can be stably maintained within the target temperature range while suppressing frequent switching of the fan frequency.

以下、本発明を適用してなる冷却塔及び熱源機システムの実施形態を説明する。図1は、本実施形態の熱源機システムの全体構成を示す図である。図1に示すように熱源機システム100は、冷却塔10と、熱源機20と、冷却水配管30とを備えて構成されている。熱源機20は例えば吸収式冷温水器など、冷却塔で冷却された冷却水を用いて熱負荷を冷却する必要があるような機器である。   Hereinafter, embodiments of a cooling tower and a heat source system to which the present invention is applied will be described. FIG. 1 is a diagram illustrating an overall configuration of a heat source apparatus system according to the present embodiment. As shown in FIG. 1, the heat source apparatus system 100 includes a cooling tower 10, a heat source apparatus 20, and a cooling water pipe 30. The heat source device 20 is a device that needs to cool a heat load using cooling water cooled by a cooling tower, such as an absorption chiller / heater.

冷却塔10は、筒状のケーシング11を備え、ケーシング11の下部の側面に空気流入口12が形成され、底部に冷却水の水槽13が設けられている。空気流入口12はルーバ状に形成されている。また、空気流入口12の位置よりも上方のケーシング11内に充填材14が収容され、充填材14の上方に、冷却水の散水ノズル15が配設されている。   The cooling tower 10 includes a cylindrical casing 11, an air inlet 12 is formed on the lower side surface of the casing 11, and a cooling water tank 13 is provided at the bottom. The air inlet 12 is formed in a louver shape. A filler 14 is accommodated in the casing 11 above the position of the air inlet 12, and a cooling water sprinkling nozzle 15 is disposed above the filler 14.

また、ケーシング11の頂部に開口16が設けられ、その開口16には固定具17によってファンモータ18が固定されるとともに、ファンモータ18の回転軸にはファン19が固定されている。なお、冷却塔10の水槽13への冷却水の補給水は、図示しないボールタップ等を有する給水口から供給される。   An opening 16 is provided at the top of the casing 11. A fan motor 18 is fixed to the opening 16 by a fixture 17, and a fan 19 is fixed to the rotation shaft of the fan motor 18. In addition, the replenishment water of the cooling water to the water tank 13 of the cooling tower 10 is supplied from the water supply port which has a ball tap etc. which are not shown in figure.

冷却水配管30は、往管31及び復管32から構成される。往管31には、冷却塔10から熱源機20のほうへ向けて順に冷却水ポンプ33と逆止弁34が配置されている。冷却水ポンプ33の吸引口は水槽13の底部近傍に連通されている。冷却水ポンプ33の吐出口は逆止弁34を介して熱源機20の熱負荷と熱交換可能な図示していない熱交換器に連結されている。往管31の逆止弁34と図示していない熱交換器との間(熱源機20の入口部)には、冷却水温度センサー51が設けられており、この冷却水温度センサー51の出力信号は、後述する運転制御装置50に入力される。   The cooling water pipe 30 includes an outgoing pipe 31 and a return pipe 32. In the outgoing pipe 31, a cooling water pump 33 and a check valve 34 are arranged in order from the cooling tower 10 toward the heat source unit 20. The suction port of the cooling water pump 33 communicates with the vicinity of the bottom of the water tank 13. The discharge port of the cooling water pump 33 is connected via a check valve 34 to a heat exchanger (not shown) that can exchange heat with the heat load of the heat source unit 20. A cooling water temperature sensor 51 is provided between the check valve 34 of the outgoing pipe 31 and a heat exchanger (not shown) (inlet part of the heat source unit 20). An output signal of the cooling water temperature sensor 51 is provided. Is input to an operation control device 50 described later.

復管32には電動三方弁41と、この電動三方弁41がバイパス指令で開放したときに復管32の冷却水を水槽13に導くバイパス配管42が設けられている。   The return pipe 32 is provided with an electric three-way valve 41 and a bypass pipe 42 that guides cooling water of the return pipe 32 to the water tank 13 when the electric three-way valve 41 is opened by a bypass command.

運転制御装置50は、制御装置53とインバータ装置55とを備えて構成される。制御装置53は、冷却水温度センサー51の検出温度信号に応じてあらかじめ設定されている周波数でファンモータ18及びファン19を回転駆動させる周波数信号を形成してインバータ装置55に与える。   The operation control device 50 includes a control device 53 and an inverter device 55. The control device 53 forms a frequency signal for rotationally driving the fan motor 18 and the fan 19 at a frequency set in advance according to the temperature signal detected by the cooling water temperature sensor 51, and gives it to the inverter device 55.

また、制御装置53は、冷却水温度センサー51からの検出温度信号を基にバイパス指令信号を形成して電動三方弁41に与えて冷却水をバイパスさせる。例えば、冷却水の検出温度が下限設定温度(例えば24℃)以下になると、電動三方弁41を切り替えて、熱源機20からの戻り冷却水を直接冷却塔10の水槽13へ落下させることにより、冷却水が過冷却されることを防止する。   Further, the control device 53 forms a bypass command signal based on the detected temperature signal from the cooling water temperature sensor 51 and gives it to the electric three-way valve 41 to bypass the cooling water. For example, when the detected temperature of the cooling water is lower than the lower limit set temperature (for example, 24 ° C.), the electric three-way valve 41 is switched to drop the return cooling water from the heat source unit 20 directly into the water tank 13 of the cooling tower 10. Prevents cooling water from being overcooled.

なお、本実施形態においては説明の便宜上、制御装置53は冷却塔10及び熱源機20とは独立して設けているが、冷却塔10に付属して設けて冷却塔10の1構成要素とすることもできるし、或いは熱源機20に付属して設けて熱源機システム100の1構成要素とすることもできる。   In the present embodiment, for convenience of explanation, the control device 53 is provided independently of the cooling tower 10 and the heat source unit 20, but is provided attached to the cooling tower 10 as one component of the cooling tower 10. Alternatively, it can be attached to the heat source unit 20 and can be a component of the heat source unit system 100.

図2は、制御装置53の詳細構成を示すブロック図である。図2に示す制御装置53は、中央処理装置531と、記憶装置532と、入力信号部533と、出力信号部534などから構成されている。制御装置53は、冷却塔10の運転開始にともなって動作を開始するようになっている。すると、中央処理装置531は、記憶装置532に記憶されているプログラムに基づいて動作し、冷却水温度センサー51から入力信号部533を介して取り込まれたデータに応じて、あらかじめ設定されている周波数でファンモータ18及びファン19を回転駆動させる周波数信号を形成して、出力信号部534を介してインバータ装置55に供給できるように構成されている。   FIG. 2 is a block diagram showing a detailed configuration of the control device 53. The control device 53 shown in FIG. 2 includes a central processing unit 531, a storage device 532, an input signal unit 533, an output signal unit 534, and the like. The control device 53 starts to operate as the cooling tower 10 starts operating. Then, the central processing unit 531 operates based on the program stored in the storage device 532, and the frequency set in advance according to the data fetched from the cooling water temperature sensor 51 via the input signal unit 533. Thus, a frequency signal for rotationally driving the fan motor 18 and the fan 19 can be formed and supplied to the inverter device 55 via the output signal unit 534.

このように構成される熱源機システム100では、従来、冷却水の冷却水温度センサー51による検出温度が下限設定温度(例えば24.5℃)と上限設定温度(例えば27℃)との間の設定温度に保たれるようにファン19の回転周波数が制御される。例えば、設定温度より検出温度が高くなればファンの周波数を高く、検出温度が低くなればファンの周波数を低くするように、検出温度に比例するようにファン周波数を設定して、検出温度に対応する周波数でファン19を駆動することが知られている。   In the heat source apparatus system 100 configured as described above, the temperature detected by the cooling water temperature sensor 51 of the cooling water is conventionally set between the lower limit set temperature (for example, 24.5 ° C.) and the upper limit set temperature (for example, 27 ° C.). The rotational frequency of the fan 19 is controlled so that the temperature is maintained. For example, the fan frequency is set to be proportional to the detected temperature so that the fan frequency is increased when the detected temperature is higher than the set temperature, and the fan frequency is decreased when the detected temperature is lower. It is known to drive the fan 19 at a frequency of

ところが、このような従来技術では、冷却水の温度変化に対してファン19の周波数が敏感に変化することにより、冷却水温度がハンチングして安定しないおそれがある。   However, in such a conventional technique, the frequency of the fan 19 changes sensitively to the temperature change of the cooling water, so that the cooling water temperature may be hunted and unstable.

この点、複数段の設定周波数のそれぞれに対して一定の温度幅をもたせて、これを階段状に連続させて段階的にファン周波数を制御することにより、検出温度がある一定の温度域にあるときには周波数が変化しないので、冷却水温度をある程度安定させることができると考えられる。   In this respect, the detected temperature is in a certain temperature range by giving a constant temperature width to each of the set frequencies of the plurality of stages and controlling the fan frequency in a stepwise manner by continuing this stepwise. Since the frequency sometimes does not change, it is considered that the cooling water temperature can be stabilized to some extent.

しかしながら、ファン周波数の頻繁な切り替えを抑制しつつ冷却水温度を目標温度範囲内に安定して保つためには、複数段の設定周波数のそれぞれにおける温度幅を広げることが望ましいが、これには限界がある。例えば冷却水温度の目標温度範囲の下限値と上限値との間を各設定周波数の温度幅として設定すると、各設定周波数において同じ温度で周波数が切り替えられることとなるので、複数段にわたる周波数切り替えが一度に行なわれる場合が生じて好ましくない。   However, in order to keep the cooling water temperature stable within the target temperature range while suppressing frequent switching of the fan frequency, it is desirable to widen the temperature range at each of the multiple set frequencies. There is. For example, if the temperature range of each set frequency is set between the lower limit value and the upper limit value of the target temperature range of the cooling water temperature, the frequency can be switched at the same temperature at each set frequency. The case where it is performed at once occurs is not preferable.

本実施形態の熱源機システム100及び冷却塔10は、このような問題に対応すべくなされたものである。以下、本実施形態の熱源機システム100及び冷却塔10の特徴部である制御装置53のファンの周波数制御内容について実施例ごとに詳細を説明する。   The heat source machine system 100 and the cooling tower 10 of this embodiment are made to cope with such a problem. Hereinafter, the frequency control contents of the fan of the control device 53 that is a characteristic part of the heat source apparatus system 100 and the cooling tower 10 of the present embodiment will be described in detail for each example.

図3は、本実施形態の熱源機システム100及び冷却塔10における制御装置53の第1実施例のファンの周波数制御内容を示す図である。図3において、横軸は冷却水温度センサー51で検出された冷却水入口温度(℃)(以下、適宜CTIという)であり、縦軸はファン19の周波数の定格を100%とした割合を示している。   FIG. 3 is a diagram showing the frequency control contents of the fan of the first example of the control device 53 in the heat source apparatus system 100 and the cooling tower 10 of the present embodiment. In FIG. 3, the horizontal axis represents the cooling water inlet temperature (° C.) (hereinafter referred to as CTI as appropriate) detected by the cooling water temperature sensor 51, and the vertical axis represents the ratio when the frequency rating of the fan 19 is 100%. ing.

図3における各矢印はそれぞれCTIに対応してファン19の周波数を一段高く或いは低く切り替える制御内容を示しており、周波数の切り替えがなされた後は、各矢印が指し示す制御ライン上の制御条件で次の周波数切り替えが行なわれる。例えばファン19が70%の周波数で駆動されている状態でCTIが28℃未満から28℃まで上昇した場合、矢印にしたがってファン19の周波数は80%へと切り替えられ、その後は矢印が指し示す制御ライン上のCTIが25℃まで下降するか或いは29℃まで上昇するかという制御条件を満たしたら周波数の切り替えが行なわれる。   Each arrow in FIG. 3 indicates a control content for switching the frequency of the fan 19 higher or lower corresponding to the CTI. After the frequency is switched, the control condition on the control line indicated by each arrow Frequency switching is performed. For example, when the CTI increases from less than 28 ° C. to 28 ° C. while the fan 19 is driven at a frequency of 70%, the frequency of the fan 19 is switched to 80% according to the arrow, and thereafter the control line indicated by the arrow. When the control condition of whether the above CTI falls to 25 ° C. or rises to 29 ° C. is satisfied, the frequency is switched.

なお、ファン19の周波数80%及び90%をまたいでそれぞれ2本の制御ラインが示されているが、これは説明の便宜上の理由で80%及び90%からずらされているもので、実際には、80%及び90%上にそれぞれ2本の制御ラインがあるものとする。   In addition, although two control lines are shown across the frequencies of the fan 19 at 80% and 90%, respectively, this is shifted from 80% and 90% for convenience of explanation. Are assumed to have two control lines on 80% and 90%, respectively.

まず、図3に示すように、本実施例の制御装置53のファン周波数の制御は、冷却水の検出温度に対して、ファン19をOFFするか、或いは70%,80%,90%,100%のいずれかの周波数で回転駆動するようになっている。なお、本実施例ではファン19の周波数を4段階に切り替える場合を例に説明するが、それ以外の段数でファン19の周波数を設定してもよい。また、冷却水入口温度の設定値やファン19の周波数の設定値は適宜変更して用いることができる。   First, as shown in FIG. 3, the control of the fan frequency of the control device 53 of this embodiment is performed by turning off the fan 19 or 70%, 80%, 90%, 100 with respect to the detected temperature of the cooling water. It is designed to be driven to rotate at any frequency of%. In this embodiment, the case where the frequency of the fan 19 is switched to four stages will be described as an example. However, the frequency of the fan 19 may be set with other stages. Further, the set value of the cooling water inlet temperature and the set value of the frequency of the fan 19 can be appropriately changed and used.

また、本実施例の制御装置53のファン周波数の制御は、複数段の周波数設定における各段で、一定の温度幅をもたせて、これを階段状に連続させて段階的にファン19の周波数を切り替えるよう構成されている。   In addition, the control of the fan frequency of the control device 53 of the present embodiment is such that a certain temperature range is provided at each stage in a plurality of stages of frequency setting, and the fan 19 frequency is increased stepwise. It is configured to switch.

より具体的に、本実施例では、冷却水の目標温度が25℃〜28℃にあらかじめ設定されており、ファン19をOFF状態から70%周波数に切り替える場合は例外として、いずれの設定周波数においても目標温度範囲内では周波数が切り替わらないようになっている。言い換えれば、複数段の周波数設定における各段で、25℃〜28℃という温度幅をもたせている。   More specifically, in this embodiment, the target temperature of the cooling water is set in advance to 25 ° C. to 28 ° C., and the fan 19 is switched from the OFF state to the 70% frequency with the exception of any set frequency. The frequency is not switched within the target temperature range. In other words, a temperature range of 25 ° C. to 28 ° C. is provided at each stage in the frequency setting of a plurality of stages.

本実施例の制御装置53のファン周波数の制御の動作の一例を示すと、例えばファン19を70%周波数で駆動している状態でCTIが28℃未満から28℃まで上昇したら、ファン19の周波数は80%へと切り替えられる。この状態でさらにCTIが29℃まで上昇したらファン19の周波数は90%へと切り替えられる。この状態でさらにCTIが30℃まで上昇したらファン19の周波数は100%へと切り替えられる。   An example of the operation of controlling the fan frequency of the control device 53 of the present embodiment will be described. For example, if the CTI rises from less than 28 ° C. to 28 ° C. while the fan 19 is driven at 70% frequency, the frequency of the fan 19 is increased. Is switched to 80%. If the CTI further increases to 29 ° C. in this state, the frequency of the fan 19 is switched to 90%. If the CTI further rises to 30 ° C. in this state, the frequency of the fan 19 is switched to 100%.

すなわち、ファン19の周波数を一段高い周波数に切り替えた後のCTIの上昇に対応して、冷却水の目標温度範囲の上限値(28℃)以上の高温側でファンの周波数が段階的に高く切り替えられるようになっている。   That is, in response to an increase in CTI after the frequency of the fan 19 is switched to a higher frequency, the fan frequency is switched in a stepwise manner on the high temperature side that is equal to or higher than the upper limit (28 ° C.) of the target temperature range of the cooling water. It is supposed to be.

また、例えばファン19を70%周波数で駆動している状態でCTIが28℃未満から28℃まで上昇してファン19の周波数が80%へと切り替えられた状態でCTIが25℃まで下降した場合、ファン19の周波数は70%へと切り替えられる。同様に、ファン19の周波数が80%から90%、90%から100%へと切り替えられた状態でCTIが25℃まで下降した場合も、ファン19の周波数はそれぞれ80%,90%へと切り替えられる。   For example, when the CTI rises from less than 28 ° C. to 28 ° C. while the fan 19 is driven at a frequency of 70% and the frequency of the fan 19 is switched to 80%, the CTI falls to 25 ° C. The frequency of the fan 19 is switched to 70%. Similarly, when the CTI drops to 25 ° C. while the frequency of the fan 19 is switched from 80% to 90% and from 90% to 100%, the frequency of the fan 19 is switched to 80% and 90%, respectively. It is done.

すなわち、ファン19の周波数を一段高い周波数に切り替えた後CTIが冷却水の目標温度範囲の下限値(25℃)まで下降した場合には、ファン19の周波数が一段低い周波数に切り替えられるようになっている。なお、ファン19を70%で駆動している状態からOFFする場合は例外として除かれており、CTIが25℃まで下降してもファン19をOFFされず、23℃まで下降してはじめてOFFされる。   That is, after the frequency of the fan 19 is switched to a higher frequency, when the CTI falls to the lower limit value (25 ° C.) of the target temperature range of the cooling water, the frequency of the fan 19 can be switched to a lower frequency. ing. It should be noted that the case where the fan 19 is driven off at 70% is excluded as an exception, and the fan 19 is not turned off even when the CTI is lowered to 25 ° C., and is turned off only after the temperature is lowered to 23 ° C. The

一方、例えばファン19を100%周波数で駆動している状態でCTIが25℃より高い状態から25℃まで下降したら、ファン19の周波数は90%へと切り替えられる。この状態でさらにCTIが下降したらファン19の周波数は80%,70%,OFFへと順次切り替えられる。   On the other hand, for example, when the CTI is lowered from 25 ° C. to 25 ° C. while the fan 19 is driven at 100% frequency, the frequency of the fan 19 is switched to 90%. If the CTI further decreases in this state, the frequency of the fan 19 is sequentially switched to 80%, 70%, and OFF.

すなわち、ファン19の周波数を一段低い周波数に切り替えた後のCTIの下降に対応して、冷却水の目標温度範囲の下限値(25℃)以下の低温側でファン19の周波数が段階的に低く切り替えられるようになっている。   That is, the frequency of the fan 19 is gradually decreased on the low temperature side below the lower limit (25 ° C.) of the target temperature range of the cooling water in response to the decrease in CTI after the frequency of the fan 19 is switched to a lower frequency. It can be switched.

また、例えばファン19を100%周波数で駆動している状態でCTIが25℃より高い状態から25℃まで下降してファン19の周波数が90%へと切り替えられた状態でCTIが28℃まで上昇した場合、ファン19の周波数は100%へと切り替えられる。同様に、ファン19の周波数が90%から80%、80%から70%へと切り替えられた状態でCTIが28℃まで上昇した場合も、ファン19の周波数はそれぞれ90%,80%へと切り替えられる。   Further, for example, when the fan 19 is driven at a 100% frequency, the CTI increases from 25 ° C. to 25 ° C. and the frequency of the fan 19 is switched to 90%, and the CTI increases to 28 ° C. In this case, the frequency of the fan 19 is switched to 100%. Similarly, when the CTI rises to 28 ° C. while the frequency of the fan 19 is switched from 90% to 80% and from 80% to 70%, the frequency of the fan 19 is switched to 90% and 80%, respectively. It is done.

すなわち、ファン19の周波数を一段低い周波数に切り替えた後CTIが冷却水の目標温度範囲の上限値(28℃)まで上昇した場合には、ファン19の周波数が一段高い周波数に切り替えられるようになっている。なお、ファン19がOFFの状態から周波数を70%へ切り替える場合は例外として除かれており、CTIが26℃まで上昇した時点でファン19の周波数は70%へと切り替えられる。   That is, when the CTI rises to the upper limit (28 ° C.) of the target temperature range of the cooling water after the frequency of the fan 19 is switched to a lower frequency, the frequency of the fan 19 can be switched to a higher frequency. ing. Note that the case where the frequency is switched to 70% from the state where the fan 19 is OFF is excluded as an exception. When the CTI rises to 26 ° C., the frequency of the fan 19 is switched to 70%.

以上のように、本実施例の制御装置53のファン周波数の制御は、CTI28℃においてファン19の周波数を70%から80%,80%から90%,90%から100%へと切り替える段階が存在し、CTI25℃においてファン19の周波数を100%から90%,90%から80%,80%から70%へと切り替える段階が存在する。   As described above, the control of the fan frequency of the control device 53 of the present embodiment has a stage of switching the frequency of the fan 19 from 70% to 80%, from 80% to 90%, and from 90% to 100% at CTI 28 ° C. However, there is a step of switching the frequency of the fan 19 from 100% to 90%, from 90% to 80%, and from 80% to 70% at CTI 25 ° C.

これによれば、複数段の各周波数において、冷却水の目標温度範囲の下限値から上限値までの温度幅を持たせているので、冷却水の温度の変動に対するファン19の周波数の切り替えを低減することができる。   According to this, since the temperature range from the lower limit value to the upper limit value of the target temperature range of the cooling water is provided at each frequency of the plurality of stages, switching of the frequency of the fan 19 with respect to the fluctuation of the cooling water temperature is reduced. can do.

また、複数段の各周波数において、目標温度範囲の下限値及び上限値でファン19の周波数の切り替えが行なわれるようにしているので、冷却水温度を目標温度範囲内に保つようにファン19の周波数制御が行われる。   Further, since the frequency of the fan 19 is switched at the lower limit value and the upper limit value of the target temperature range at each of the multiple stages of frequencies, the frequency of the fan 19 is maintained so as to keep the cooling water temperature within the target temperature range. Control is performed.

これに加えて、複数段の各周波数において、目標温度範囲の下限値及び上限値でファン19の周波数の切り替えが行なわれるようにしているにも関わらず、これらは例えば目標温度範囲の上限値でのファン19の周波数の切り替えはファン19の周波数を一段低く切り替えた後にCTIが上限値まで上昇した場合にしか行なわれない。言い換えれば、目標温度範囲の下限値及び上限値でファン19の周波数の切り替えは条件付きで行なわれる制御である。これにより、一度に2段階或いはそれ以上の段階の周波数の切り替えが行なわれるのが回避されるようになっている。   In addition, although the frequency of the fan 19 is switched at the lower limit value and the upper limit value of the target temperature range at each frequency of the plurality of stages, these are, for example, the upper limit value of the target temperature range. The frequency of the fan 19 is switched only when the CTI rises to the upper limit value after the frequency of the fan 19 is switched one step lower. In other words, the switching of the frequency of the fan 19 between the lower limit value and the upper limit value of the target temperature range is a conditionally controlled control. As a result, switching of frequencies at two or more stages at a time is avoided.

図4は、本実施形態の熱源機システム100及び冷却塔10における制御装置53の第2実施例のファンの周波数制御内容を示す図である。   FIG. 4 is a diagram showing the frequency control contents of the fan of the second example of the control device 53 in the heat source apparatus system 100 and the cooling tower 10 of the present embodiment.

本実施例は、ファン19の周波数を設定上限周波数(100%)から一段低い周波数(90%)に切り替える設定温度を変更する点、この変更に伴ってファン19の周波数を一段下げた後さらにCTIが下降した場合における周波数を低く切り替える温度条件を変更する点、及びファン19の周波数が100%から90%に切り替えられた後における周波数を100%へ切り替える温度条件を変更する点が第1実施例と異なるものである。第1実施例と同様の部分については説明を省略する。   In the present embodiment, the set temperature for switching the frequency of the fan 19 from the set upper limit frequency (100%) to the lower frequency (90%) is changed, and the CTI is further lowered after the frequency of the fan 19 is further lowered by this change. The first embodiment is that the temperature condition for switching the frequency to a low level when the air pressure decreases is changed, and the temperature condition for switching the frequency to 100% after the frequency of the fan 19 is switched from 100% to 90%. Is different. A description of the same parts as in the first embodiment will be omitted.

図4に示すように、本実施例は、ファン19の周波数を設定上限周波数(100%)から一段低い周波数(90%)に切り替える設定温度を、冷却水の目標温度範囲の下限値(25℃)よりも高温側の26℃へ設定している。また、ファン19の周波数が90%に一段下げられた後さらにCTIが下降した場合におけるファン19の周波数を低く切り替える設定温度を25℃へ設定している。また、ファン19の周波数が80%に一段下げられた後さらにCTIが下降した場合におけるファン19の周波数を低く切り替える設定温度を24℃へ設定している。さらに、ファン19の周波数が100%から90%に切り替えられた後CTIが上昇した場合におけるファン19の周波数を100%へ切り替える設定温度を29℃に設定している。   As shown in FIG. 4, in this embodiment, the set temperature for switching the frequency of the fan 19 from the set upper limit frequency (100%) to the lower frequency (90%) is set to the lower limit value (25 ° C.) of the target temperature range of the cooling water. ) Is set to 26 ° C. on the higher temperature side. In addition, the set temperature for switching the frequency of the fan 19 low when the CTI further decreases after the frequency of the fan 19 is lowered to 90% is set to 25 ° C. Further, the set temperature at which the frequency of the fan 19 is switched low when the CTI further decreases after the frequency of the fan 19 is lowered to 80% is set to 24 ° C. Further, the set temperature for switching the frequency of the fan 19 to 100% when the CTI increases after the frequency of the fan 19 is switched from 100% to 90% is set to 29 ° C.

すなわち、ファン19を定格の100%の周波数で駆動しているということは、熱源機20の負荷が高負荷であることがわかる。熱源機20が高負荷の場合、CTIは低下し難いが、低下し始めたときにはなるべく早めにファン19の周波数を上限周波数(100%)から一段下の周波数(90%)へ切り替えるのが好ましい。そこで、ファン19を定格の100%の周波数で駆動しているときには、ファン19の周波数を上限周波数(100%)から一段下の周波数(90%)へ切り替えるCTIの設定温度を25℃から26℃にシフトさせている。   That is, the fact that the fan 19 is driven at a frequency of 100% of the rating indicates that the load of the heat source device 20 is high. When the heat source device 20 has a high load, the CTI is unlikely to decrease, but when it begins to decrease, it is preferable to switch the frequency of the fan 19 from the upper limit frequency (100%) to the next lower frequency (90%) as soon as possible. Therefore, when the fan 19 is driven at a rated frequency of 100%, the CTI set temperature for switching the frequency of the fan 19 from the upper limit frequency (100%) to the next lower frequency (90%) is 25 ° C. to 26 ° C. It is shifted to.

これによれば、見かけ上のCTIの目標温度を高めに設定することにより、CTIが下降してきたときにより早く周波数を一段下に切り替えてファン19を低い動力で駆動することができる。その結果、ファンを設定上限周波数(100%)で駆動させ続けるという状態を極力回避することができ、省エネルギーを図ることができる。   According to this, by setting the apparent target temperature of the CTI to be higher, the frequency can be switched to a lower stage earlier when the CTI is lowered, and the fan 19 can be driven with low power. As a result, it is possible to avoid the state where the fan is continuously driven at the set upper limit frequency (100%) as much as possible, and energy saving can be achieved.

また、本実施例によれば、ファン19の周波数を定格周波数より低い70%,80%,90%で駆動して省エネルギー化を図りながら、冷却水温度を目標温度範囲内の25℃〜28℃に入るようにファン19の周波数制御をすることが可能となる。   Further, according to the present embodiment, the cooling water temperature is set within the target temperature range of 25 ° C. to 28 ° C. while saving energy by driving the frequency of the fan 19 at 70%, 80%, 90% lower than the rated frequency. It becomes possible to control the frequency of the fan 19 so as to enter.

本実施形態の熱源機システムの全体構成を示す図である。It is a figure showing the whole heat source machine system composition of this embodiment. 制御装置の詳細構成を示すブロック図である。It is a block diagram which shows the detailed structure of a control apparatus. 本実施形態の熱源機システム及び冷却塔における制御装置の第1実施例のファンの周波数制御内容を示す図である。It is a figure which shows the frequency control content of the fan of the 1st Example of the control apparatus in the heat-source equipment system and cooling tower of this embodiment. 本実施形態の熱源機システム及び冷却塔における制御装置の第2実施例のファンの周波数制御内容を示す図である。It is a figure which shows the frequency control content of the fan of 2nd Example of the control apparatus in the heat-source equipment system and cooling tower of this embodiment.

符号の説明Explanation of symbols

10 冷却塔
11 ケーシング
12 空気流入口
14 充填材
15 散水ノズル
16 開口
18 ファンモータ
19 ファン
20 熱源機
30 冷却水配管
31 往管
32 復管
50 運転制御装置
51 冷却水温度センサー
53 制御装置
55 インバータ装置
100 熱源機システム
DESCRIPTION OF SYMBOLS 10 Cooling tower 11 Casing 12 Air inlet 14 Filling material 15 Sprinkling nozzle 16 Opening 18 Fan motor 19 Fan 20 Heat source machine 30 Cooling water piping 31 Outward pipe 32 Return pipe 50 Operation control apparatus 51 Cooling water temperature sensor 53 Control apparatus 55 Inverter apparatus 100 heat source system

Claims (3)

熱負荷から戻される高温の冷却水を空気中に散布し、ファンの回転に伴う空気の通流による蒸発潜熱で前記冷却水を冷却して再び前記熱負荷に循環供給するとともに、前記冷却された冷却水の検出温度に応じて前記ファンの回転数を複数段の周波数で段階制御する制御手段を備えてなる冷却塔において、
前記制御手段は、前記ファンが駆動されている状態で、前記冷却水の検出温度が上昇してあらかじめ設定された目標温度範囲の上限値に達したときに前記ファンの周波数を一段高い周波数に切り替え、さらに前記冷却水の検出温度が前記上限値以上の高温側に上昇したときは、前記冷却水の検出温度の上昇に対応して前記ファンの周波数を段階的に高く切り替え、
前記冷却水の検出温度が、前記目標温度範囲の前記上限値以上の高温側から下降したときは、前記目標温度範囲の下限値に達するまでは前記ファンの周波数を切り替えず、前記目標温度範囲の下限値に達したときに前記ファンの周波数を一段低い周波数に切り替え、さらに前記冷却水の検出温度が前記下限値以下の低温側に下降したときは、前記冷却水の検出温度の下降に対応して前記ファンの周波数を段階的に低く切り替えることを特徴とする冷却塔。
The high-temperature cooling water returned from the heat load is dispersed in the air, the cooling water is cooled by the latent heat of vaporization caused by the air flow accompanying the rotation of the fan, and is circulated again to the heat load. In the cooling tower comprising a control means for controlling the rotational speed of the fan at a plurality of stages according to the detected temperature of the cooling water,
The control means switches the frequency of the fan to a higher frequency when the detected temperature of the cooling water rises and reaches an upper limit value of a preset target temperature range with the fan being driven. Furthermore, when the detected temperature of the cooling water rises to a high temperature side that is equal to or higher than the upper limit value, the frequency of the fan is switched stepwise in response to an increase in the detected temperature of the cooling water,
When the detected temperature of the cooling water falls from a high temperature side that is equal to or higher than the upper limit value of the target temperature range, the frequency of the fan is not switched until the lower limit value of the target temperature range is reached, When the lower limit value is reached, the frequency of the fan is switched to a lower frequency, and when the detected temperature of the cooling water falls to a low temperature lower than the lower limit value, this corresponds to a decrease in the detected temperature of the cooling water. The cooling tower is characterized by switching the frequency of the fan in a stepwise manner .
前記制御手段は、前記ファンの周波数をあらかじめ設定された上限周波数から一段低い周波数に切り替える前記冷却水の検出温度の設定温度を、前記冷却水の目標温度範囲の下限値よりも高温側へ設定してなる請求項1の冷却塔。 Said control means, the set temperature of the detected temperature of the cooling water switched to one step lower frequencies the frequency of the fan from a preset upper limit frequency, and set to the high temperature side than the lower limit of the target temperature range of the cooling water cooling tower of claim 1 comprising Te. 熱源機と、請求項1又は2の冷却塔と、前記熱源機の熱負荷から戻される高温の冷却水を前記冷却塔へ導く配管と、前記冷却塔で冷却された冷却水を前記熱源機の熱負荷へ導く配管とを備えて構成される熱源機システム。   A heat source unit, a cooling tower according to claim 1 or 2, a pipe for guiding high-temperature cooling water returned from a heat load of the heat source unit to the cooling tower, and cooling water cooled by the cooling tower of the heat source unit A heat source system configured with piping leading to a heat load.
JP2008211780A 2008-08-20 2008-08-20 Cooling tower and heat source system Active JP5264366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211780A JP5264366B2 (en) 2008-08-20 2008-08-20 Cooling tower and heat source system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211780A JP5264366B2 (en) 2008-08-20 2008-08-20 Cooling tower and heat source system

Publications (2)

Publication Number Publication Date
JP2010048448A JP2010048448A (en) 2010-03-04
JP5264366B2 true JP5264366B2 (en) 2013-08-14

Family

ID=42065680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211780A Active JP5264366B2 (en) 2008-08-20 2008-08-20 Cooling tower and heat source system

Country Status (1)

Country Link
JP (1) JP5264366B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091728A (en) * 2016-06-03 2016-11-09 西安工程大学 The step cooling down water with composite construction prepares cooling tower

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106839806A (en) * 2017-01-23 2017-06-13 泉州泉港璟冠信息科技有限公司 A kind of heat-exchanger rig for industrial cooling tower
CN106556262B (en) * 2017-01-23 2018-06-08 南安市达腾商务服务有限公司 A kind of heavy duty detergent industry cooling equipment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0395343A (en) * 1989-09-07 1991-04-19 Daikin Ind Ltd Operating controller for air conditioner
JPH05340690A (en) * 1992-06-05 1993-12-21 Yazaki Corp Cooling tower and cooling capacity control method
JP2007170236A (en) * 2005-12-20 2007-07-05 Denso Corp Engine cooling device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106091728A (en) * 2016-06-03 2016-11-09 西安工程大学 The step cooling down water with composite construction prepares cooling tower
CN106091728B (en) * 2016-06-03 2018-05-15 西安工程大学 Step cooling down water with composite construction prepares cooling tower

Also Published As

Publication number Publication date
JP2010048448A (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP5264365B2 (en) Cooling tower and heat source system
WO2017126580A1 (en) Cold hydrogen supply station and hydrogen cooling device
KR900005983B1 (en) Method and control system for limiting the load palced on a refrigeration system a recycle start
JP2006522312A (en) Transport refrigeration system
JP2017036875A (en) Air conditioner and operation method of the same
US20120128507A1 (en) Cooling arrangement and method of operation for a fan control
JPWO2005033597A1 (en) Auger ice machine
JP5583897B2 (en) Cooling tower and heat source system
JP2010190553A (en) Cooling system for electronic apparatus
JP5264366B2 (en) Cooling tower and heat source system
JPH05340690A (en) Cooling tower and cooling capacity control method
JP2010060236A (en) Heat pump type hot water supply device
JP2011179757A (en) Cooling device and method of controlling the same
JP2009264715A (en) Heat pump hot water system
JP5455338B2 (en) Cooling tower and heat source system
JP2011027312A (en) Air conditioning system
JP2009264718A (en) Heat pump hot water system
JP2005337709A (en) Water heater
JP2009192088A (en) Cooling system
JP4816089B2 (en) Heat pump water heater
JP2005016947A (en) Heat pump water heater
JP2007113897A (en) Heat pump type water heater
JP2010133598A (en) Heat pump type water heater
JP2009121704A (en) Heat pump type water heater
JP2007240070A (en) Operation control method of air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120926

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5264366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250