JP2004036957A - Method of controlling flow rate of cooling water in absorption chiller and heater - Google Patents

Method of controlling flow rate of cooling water in absorption chiller and heater Download PDF

Info

Publication number
JP2004036957A
JP2004036957A JP2002192791A JP2002192791A JP2004036957A JP 2004036957 A JP2004036957 A JP 2004036957A JP 2002192791 A JP2002192791 A JP 2002192791A JP 2002192791 A JP2002192791 A JP 2002192791A JP 2004036957 A JP2004036957 A JP 2004036957A
Authority
JP
Japan
Prior art keywords
cooling water
flow rate
temperature
chiller
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002192791A
Other languages
Japanese (ja)
Other versions
JP4074955B2 (en
Inventor
Hiroshi Uematsu
植松 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2002192791A priority Critical patent/JP4074955B2/en
Publication of JP2004036957A publication Critical patent/JP2004036957A/en
Application granted granted Critical
Publication of JP4074955B2 publication Critical patent/JP4074955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the cost for motive power while securing high stability in operation of the absorption chiller and heater. <P>SOLUTION: In a method of controlling an absorption chiller and heater having a procedure for starting and stopping a fan of a cooling tower of the cooling water in accordance with the rise and fall of an inlet temperature of the chiller and heater of the cooling water, a control target of an outlet temperature of the chiller and heater of the cooling water is determined within a temperature range having a certain width of less than the planned cooling water outlet temperature in a rated operation, an outlet temperature T<SB>CO</SB>of the chiller and heater of the cooling water is moving average deviations of the cooling water outlet temperature of the past t<SB>m</SB>minutes, a flow rate of the cooling water is reduced in a case when the outlet temperature T<SB>CO</SB>of the chiller and heater is less than a predetermined temperature range, the flow rate of the cooling water is increased when the outlet temperature T<SB>CO</SB>is over the predetermined temperature range, and the flow rate of the cooling water is kept as it is when the outlet temperature T<SB>CO</SB>is within the predetermined temperature range. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、吸収冷温水機の冷却水流量制御方法に関する。
【0002】
【従来の技術】
吸収冷温水機においては、冷温水負荷の変動に対応して冷却水流量を変化させる冷却水変流量システムが採用されている。図2に、冷却水変流量システムの構成を示し、図4に冷却水変流量システムの従来の制御のフローチャートを示す。
【0003】
図示のコントローラーには、冷却水の冷温水機入口温度TCI、冷温水機出口温度TCO及び高温再生器(HGE)内の溶液温度Tを示す信号が入力され、冷却水の冷温水機出口温度TCOが目標温度Tとなるようにインバータにより冷却水ポンプの回転数を制御し、冷却水流量を変化させる。また、図4に示すように、高温再生器内の溶液温度Tが予め設定された上限温度Tを超えて上昇した場合には、冷却水の流量を定格最大流量(100%流量)に戻す保護制御が行われる。
【0004】
吸収式冷凍機の冷却水の冷温水機出口温度に基いて冷却水流量を変化させる制御方法については、例えば、特開平8−159596号公報、特開2001−66011号公報に示された例がある。
【0005】
【発明が解決しようとする課題】
しかし、上記変流量制御と独立して、図5に示すように、冷温水機の制御として、冷却水の冷温水機入口温度に基いて冷却塔ファンのモータを発停させ、冷却水温度が下がりすぎることを防止している。すなわち、冷却水の冷温水機入口温度が予め設定された温度Tまで低下すると冷却塔ファンが停止され、冷却塔ファンが停止されると、冷却水の冷温水機入口温度は次第に上昇する。これに伴なって冷却水の冷温水機出口温度も上昇する。冷却水の冷温水機出口温度が予め設定された制御目標温度Tを超えると、前記変流量制御により、冷却水ポンプの回転数が上昇し、冷却水流量が増加する。また、冷却水の冷温水機入口温度が予め設定された温度Tを超えると、冷却塔ファンが起動され、冷却水の冷温水機入口温度は低下し始める。
【0006】
このように、冷却塔ファンの発停に伴なう冷却水温度の変動により、冷却水流量が安定しない。
【0007】
図6に、上記従来の制御における、冷却水の冷温水機入口温度、冷温水機出口温度及び冷却水流量の変動例を示す。図示のように、冷却水出口温度の変動に伴なって冷却水流量が変動し、冷却水流量を変動させることで、冷却水の冷温水機出口温度の変動幅を抑制している。この結果、冷却水流量の増加が生じ、冷却水ポンプの動力コストが嵩むという問題がある。
【0008】
本発明の目的は、吸収冷温水機の運転の良好な安定性を確保しつつ、動力コストを低減するにある。
【0009】
【課題を解決するための手段】
本発明は、上記目的を達成するために、冷却水の冷温水機入口温度の高低に応じて冷却水の冷却塔のファンを発停する手順を有してなる吸収冷温水機の制御方法であって、冷却水の冷温水機出口温度TCOを過去t分間の移動平均値とし、冷温水機出口温度TCOが予め設定した目標温度範囲未満の場合は冷却水流量を減少させ、冷温水機出口温度TCOが予め設定した目標温度範囲を超えている場合は冷却水流量を増加させ、冷温水機出口温度TCOが予め設定した目標温度範囲内にあるときは、そのときの冷却水流量を維持することを特徴とする。前記目標温度範囲は、定格運転時の計画冷却水出口温度以下の、ある幅を持つ温度範囲とする。
【0010】
上記のように制御することにより、冷却塔ファンの発停に起因する冷却水温度変動による冷却水流量の変動を低減することが可能になる。したがって、冷却水流量を増加させる回数が少なくなり、運転の良好な安定性を確保しつつ、動力コストを低減する効果がある。
【0011】
冷却水量の増減の割合は、定格流量の何%分を増減するかを予め設定しておくのが望ましい。
【0012】
また、前記冷温水機出口温度TCOが前記温度範囲に達していないときは、そのときの冷却水流量が予め設定した最小流量(定格最大流量のA%)を超えているかどうかを判定し、A%を超えているとき、冷却水流量を減少させ、A%以下の時はそのときの冷却水流量を維持するのが望ましい。
【0013】
また、前記冷温水機出口温度TCOと前記温度範囲の比較を行う前に、吸収冷温水機の高温再生器内の溶液温度Tを検出し、検出された溶液温度Tを予め定められた溶液温度の制御目標値Tと比較し、検出した溶液温度Tが前記温度Tを超えているときは、冷温水機出口温度TCOの値に関わりなく、冷却水流量を定格最大流量に設定し、検出した溶液温度Tが前記温度T以下のときは、前記冷温水機出口温度TCOと前記温度範囲の比較以降の手順を実行するのが望ましい。
【0014】
さらに、溶液温度Tが制御目標値T以下のとき、前記冷温水機出口温度TCOと前記温度範囲を比較する前に、前回の流量変更からの経過時間と予め設定された時間tを比較し、経過時間が前記時間t以上のとき、前記冷温水機出口温度TCOと前記温度範囲の比較以降の手順を実行し、経過時間が前記時間t未満のとき、冷却水流量をそのままとするのが望ましい。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照して説明する。
【0016】
図2に本発明が適用される吸収冷温水装置の全体構成を示し、図1に、本発明の実施の形態に係る冷却水流量制御のフローチャートを示す。図示のフローチャートは、吸収冷温水機の冷房運転時の冷却水流量制御(冷却水変流量制御)の制御手順を示している。
【0017】
図2に示す吸収冷温水装置は、高温再生器HGE2を内装した吸収冷温水機1と、この吸収冷温水機の冷却水出口に接続された冷却水戻り管路11と、この冷却水戻り管路11の下流端に冷却水入り口を接続して配置され、ファンモータM3で駆動されるファンを備えた冷却塔4と、この冷却塔4の冷却水出口と前記吸収冷温水機1の冷却水入口を接続し、インバータ6で回転数制御される冷却水ポンプ7を介装した冷却水入り側管路12と、前記冷却水戻り管路11の吸収冷温水機の冷却水出口位置における冷却水温度(冷温水機出口温度TCO)を検出して出力する温度センサ8と、前記冷却水入り側管路12の吸収冷温水機の冷却水入口位置における冷却水温度(冷温水機入口温度TCi)を検出して出力する温度センサ9と、前記高温再生器2内の溶液温度Tを検出して出力する温度センサ10と、これら温度センサ8,9,10に接続され、これら温度センサの出力に基いて前記インバータ6及び前記ファンモータM3を制御するコントローラ5と、を含んで構成されている。
【0018】
前記各温度センサは、1分間隔で検出値を出力し、コントローラ5のメモリに格納される。各温度センサは連続的にアナログ信号を出力し、コントローラ5が1分間隔でサンプリングしてそのデータをコントローラのメモリに格納する構成でもよい。
【0019】
なお、前記コントローラ5は、高温再生器2内の溶液温度Tが予め設定された上限温度Tを超えて上昇した場合には、冷温水機出口温度TCOの値に関係なく、冷却水の流量を定格最大流量(100%流量)に戻す制御を行うように構成されている。前記コントローラ5は、また、冷却水の冷温水機出口温度と無関係に、冷却水の冷温水機入口温度が予め設定された温度Tまで低下すると冷却塔ファンを停止し、冷却水の冷温水機入口温度が予め設定された温度Tを超えると、冷却塔ファンを起動するように構成されている。
【0020】
上記構成の装置に本発明を適用した場合の制御手順の例を図1を参照して説明する。なお、図1に▲1▼で示した手順1は、手順の繰り返しを表示するためので、特定の動作を意味するものではない。
【0021】
冷房運転中、コントローラは所定の時間間隔(本実施の形態では、1分間隔)で、入力される高温再生器内の溶液温度Tを予め設定された上限温度Tと比較し、いずれが大きいかを判定する(手順2)。つまり、図1に示す制御サイクルは1分間隔で実行される。
【0022】
検出された溶液温度Tが予め設定された上限温度Tよりも大きい場合、手順3に進み、コントローラは、保護制御として、インバータを介して冷却水ポンプの回転数を冷却水流量が定格最大流量(100%流量)になる回転数に設定する。冷却水ポンプの回転数が設定されたら、手順1に戻り、上記手順を繰り返す。
【0023】
検出された溶液温度Tが予め設定された上限温度T以下の場合、手順4に進み、コントローラは、前回冷却水流量が変更されてからの経過時間が、予め設定されているt分以上かどうかを判定する。経過時間が、予め設定されているt分以上になっていない場合、手順5に進み、冷却水流量はそのままとして手順1に戻り、上記手順を繰り返す。手順4におけるt分は、制御キャンセル時間ともいうべきもので、冷却水温度変化の応答遅れにより、流量変動信号が連続して発信されるのを避けるために設定される。どのくらいに長さに設定するかは、冷却水系統の保有水量によって判断すればよいが、本実施の形態では15分に設定した。
【0024】
経過時間が、予め設定されているt分以上になっている場合、手順6に進み、冷温水機出口温度TCOを、予め設定されている目標温度範囲T〜T(T<T)と比較する。T、Tは次の方針によって設定した。Tは機器設計上の定格運転時における冷却水入口温度以下の任意の温度、Tは同様に定格運転時における冷却水出口温度以下の任意の温度とした。例えば、本実施の形態では、定格運転時における冷却水入口温度32℃に対してTは32℃、定格運転時における冷却水出口温度37.5℃に対してTは34℃に設定した。
【0025】
本制御は、低負荷運転、あるいは低外気温等で冷却水温度が低くなり冷却水流量が設計流量(定格最大流量=100%)を下回っても機器運転に悪影響がない状態において、冷却水流量を低減させるものである。このため、定格(設計)条件にさらに若干の余裕をとった条件下で作動するように、T、Tを設定する。
【0026】
コントローラは、冷却水の冷温水機出口温度の過去t分間の移動平均値を冷温水機出口温度TCOとする。本実施の形態では、t分を15分とし、過去15分間の1分ごとの検出値、すなわち15点の検出値の平均を冷温水機出口温度TCOとする。温度検出間隔は1分ごとなので、この冷温水機出口温度TCOも、1分ごとに算出される。
【0027】
手順6での比較の結果、T≦TCO≦T、すなわち、TCOの値が目標温度範囲内と判定された場合、手順7に進み、冷却水流量はそのままとして手順1に戻り、上記手順を繰り返す。
【0028】
比較の結果、T<TCO、すなわち、TCOの値が目標温度範囲を超えていると判定された場合、手順8に進み、コントローラは、冷却水流量が予め設定された割合(定格最大流量のX%、本実施の形態では10%)増加するように、インバータを介して冷却水ポンプの回転数を増加させる。冷却水ポンプの回転数が設定されたら、手順1に戻り、上記手順を繰り返す。
【0029】
比較の結果、TCO<T、すなわち、TCOの値が目標温度範囲に達していないと判定された場合、手順9に進み、コントローラは、その時点での冷却水流量が予め設定した最小流量(本実施の形態では定格最大流量の50%)を超えているかどうかを、そのときの回転数(インバータへの指示信号もしくは図示されていない回転数発信機の信号)に基いて判定する。冷却水流量が定格流量の50%以下の場合、冷却水流量はそのままとして手順1に戻り、上記手順を繰り返す。冷却水流量が定格流量の50%を超えている場合、手順10に進み、コントローラは、冷却水流量が予め設定された割合(定格最大流量のX%)減少するように、インバータを介して冷却水ポンプの回転数を減少させる。冷却水ポンプの回転数が設定されたら、手順1に戻り、上記手順を繰り返す。
【0030】
なお、本実施の形態では、流量制御範囲が定格最大流量の50〜100%であり、X%刻みで流量を減少させていくので、最低でも(50+X)%の流量がないと、それからX%減少させることができない。したがって、上述のように、冷却水流量が定格流量の50%を超えているかどうかを判断し、50%を超えているのが確認されてから、流量減少の処理を行う。
【0031】
流量が50+α(0<α<X)%のときにX%の流量減少処理を行った場合、自動的にα%の流量減少処理を行うようにコントローラを構成しておけばよい。
【0032】
冷却水流量増減の単位X%の設定に当っては、次の点を考慮して設定した。
【0033】
まず、変動量が大きすぎる場合、制御が安定しない。変動量が小さすぎる場合、制御は安定するが、流量減少が遅く、省エネルギ効果が少なくなる。また、流量増加が必要な場合にも応答が遅く、Tによる保護制御が働いてしまう。本実施の形態ではこれらの点を考慮してX%を10%に設定したが、プラントの大きさや特性に応じて、設定するのが望ましい。
【0034】
図3に、横軸に経過時間を、縦軸に冷却水温度と冷却水流量をとって、上記変流量制御を適用した場合の冷却水流量と冷却水温度の変化の状態を、模式的に示した。
【0035】
図示されているように、冷却水入口温度Tで冷却塔ファンが起動され、それに伴なって冷却水入口温度及び冷却水出口温度が低下し始める。冷却塔ファンの運転により冷却水入口温度がTに低下すると冷却塔ファンが停止され、それに伴なって冷却水入口温度及び冷却水出口温度が上昇し始めている。
【0036】
図では、冷却水出口温度がTを超えて上昇しているが、冷却水流量は一定のままとなっている。これは、Tと比較する冷温水機出口温度TCOとして過去15分間の移動平均値を採用しているため、冷温水機出口温度TCOはTを超えていないためである。一方、冷温水機出口温度TCOがTを超える前に、冷却水入口温度が次第に上昇してTに達し、冷却塔ファンが起動される。この結果、冷却水入口温度および冷却水出口温度は低下し始め、冷温水機出口温度TCOも低下する。すなわち、冷却水出口温度が上昇、低下する間、冷温水機出口温度TCOはTを超えることがなく、冷却水流量の増加は指示されない。したがって、冷却水流量の増加がない分、動力コストが節約される。
【0037】
冷却塔ファンの発停により生じる冷却水出口温度の変動幅自体は図6に示す従来技術に比べて大きくなっている。しかし、冷却水の冷温水機出口温度の基準温度(制御目標値)を、上側制御温度Tと下側制御温度Tの間という幅を持った温度範囲として設定し、冷却水出口温度の過去tm分間(本実施の形態では15分間)の移動平均値を、制御入力となる冷温水機出口温度TCOとして用いるとともに、上側制御温度Tを定格運転時の冷却水出口温度計画値より低く設定することで、冷却水系には余裕がある。したがって、機器に影響がない温度範囲で冷却水温度が変動はするものの、冷却水量を低めで安定させ、ポンプ動力コストが低減される効果がある。
【0038】
本実施の形態によれば、上述のように、冷却水出口温度の過去tm分間の移動平均値を、制御入力に用いる冷却水出口温度TCOとすることで、冷却塔ファンの発停により生じる冷却水温度変動に起因する冷却水流量の変動を抑制することができ、吸収冷温水機の運転の良好な安定性を確保しつつ冷却水量を低めで安定させ、ポンプ動力コストを低減することが可能になった。
【0039】
【発明の効果】
本発明によれば、冷却水流量を低めで安定させ、吸収冷温水機の運転の良好な安定性を確保しつつ動力コストを低減することが可能になった。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る冷却水流量制御方法を示すフローチャートである。
【図2】本発明が適用される吸収冷温水装置の全体構成を示す系統図である。
【図3】本発明の実施の形態における冷却水温度と冷却水流量の変動の例を示す概念図である。
【図4】従来技術に係る冷却水流量制御方法を示すフローチャートである。
【図5】冷却塔ファンの制御を示す概念図である。
【図6】従来技術における冷却水温度と冷却水流量の変動の例を示す概念図である。
【符号の説明】
1 吸収冷温水機
2 高温再生器
3 ファンモータ
4 冷却塔
5 コントローラ
6 インバータ
7 冷却水ポンプ
8 温度センサ
9 温度センサ
10 温度センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooling water flow control method for an absorption chiller / heater.
[0002]
[Prior art]
BACKGROUND ART In an absorption chiller / heater, a cooling water variable flow rate system that changes a cooling water flow rate in response to a change in a cooling / heating water load is employed. FIG. 2 shows a configuration of a cooling water variable flow system, and FIG. 4 shows a flowchart of conventional control of the cooling water variable flow system.
[0003]
Signals indicating the cooling water chiller inlet temperature T CI , the chiller heater outlet temperature T CO, and the solution temperature TG in the high-temperature regenerator (HGE) are input to the illustrated controller. The number of revolutions of the cooling water pump is controlled by the inverter so that the outlet temperature TCO becomes the target temperature T, and the flow rate of the cooling water is changed. Further, as shown in FIG. 4, when elevated above the upper limit temperature T 1 of the solution temperature T G is set in advance in the hot regenerator, the flow rate of the cooling water to the rated maximum flow rate (100% flow) Return protection control is performed.
[0004]
Regarding a control method for changing the flow rate of the cooling water based on the outlet temperature of the cooling water of the absorption chiller, for example, examples disclosed in JP-A-8-159596 and JP-A-2001-66011 are disclosed. is there.
[0005]
[Problems to be solved by the invention]
However, independently of the above-mentioned variable flow control, as shown in FIG. 5, as the control of the chiller / heater, the motor of the cooling tower fan is started / stopped based on the inlet temperature of the chiller / heater, and the temperature of the coolant becomes lower. Prevents falling too much. That is, the cooling tower fan and chiller inlet temperature of the cooling water is lowered to temperature T 2 set in advance is stopped, the cooling tower fan is stopped, chiller inlet temperature of the cooling water gradually increases. Accompanying this, the outlet temperature of the chiller / heater of the cooling water also increases. When the outlet temperature of the cooling water cooler / heater exceeds a preset control target temperature T, the rotational speed of the cooling water pump increases due to the variable flow rate control, and the flow rate of the cooling water increases. Also, when the chiller inlet temperature of the cooling water exceeds the temperature T 3 which is set in advance, cooling tower fan is activated, chiller inlet temperature of the cooling water starts to drop.
[0006]
As described above, the flow rate of the cooling water is not stabilized due to the fluctuation of the cooling water temperature accompanying the start / stop of the cooling tower fan.
[0007]
FIG. 6 shows a variation example of the cooling water hot / cold water inlet temperature, the cold water / hot water machine outlet temperature, and the cooling water flow rate in the conventional control. As shown in the figure, the cooling water flow rate fluctuates with the fluctuation of the cooling water outlet temperature, and the fluctuation width of the cooling water flow rate is suppressed, thereby suppressing the fluctuation width of the cooling water hot / cold water outlet temperature. As a result, there is a problem that the flow rate of the cooling water increases and the power cost of the cooling water pump increases.
[0008]
It is an object of the present invention to reduce power costs while ensuring good operation stability of an absorption chiller / heater.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for controlling an absorption chiller / heater having a procedure of starting and stopping a fan of a cooling water cooling tower in accordance with a level of a chiller / heater inlet temperature of cooling water. there are, a chiller heater outlet temperature T CO coolant to a moving average of past t m minutes, if chiller outlet temperature T CO is less than the target temperature range set in advance to reduce the cooling water flow rate, cold If the water outlet temperature TCO exceeds the preset target temperature range, the cooling water flow rate is increased, and if the chiller / hot water outlet temperature TCO is within the preset target temperature range, the cooling at that time is performed. It is characterized by maintaining the water flow rate. The target temperature range is a temperature range having a certain width that is equal to or lower than the planned cooling water outlet temperature during the rated operation.
[0010]
By controlling as described above, it is possible to reduce fluctuations in the flow rate of the cooling water due to fluctuations in the cooling water temperature caused by the start / stop of the cooling tower fan. Therefore, the number of times of increasing the flow rate of the cooling water is reduced, and there is an effect of reducing the power cost while ensuring good operation stability.
[0011]
It is desirable to set in advance what percentage of the rated flow rate should be increased or decreased for the cooling water amount.
[0012]
Also, when the chiller outlet temperature T CO has not reached the temperature range, it is determined whether it exceeds the minimum flow cooling water flow rate at that time preset (A% of the rated maximum flow rate), When it exceeds A%, it is desirable to reduce the cooling water flow rate, and when it is less than A%, it is desirable to maintain the cooling water flow rate at that time.
[0013]
Further, before comparing the chilled / hot water outlet temperature TCO with the temperature range, a solution temperature TG in the high temperature regenerator of the absorption chilled / hot water heater is detected, and the detected solution temperature TG is determined in advance. It was compared with the control target value T 1 of the solution temperature, when the detected solution temperature T G is greater than the temperature T 1 of, irrespective of the value of the chiller outlet temperature T CO, maximum rated cooling water flow set the flow, when the detected solution temperature T G is the temperature T 1 of less, it is desirable to perform the steps of the subsequent comparison of the temperature range and the chiller outlet temperature T CO.
[0014]
Further, when the solution temperature T G is below the control target value T 1, before comparing the said temperature range and the chiller outlet temperature T CO, the predetermined time t elapsed time from the previous flow rate change In comparison, when the elapsed time is equal to or longer than the time t, the procedure after the comparison between the chilled / hot water outlet temperature TCO and the temperature range is executed, and when the elapsed time is less than the time t, the cooling water flow rate is left as it is. It is desirable to do.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
FIG. 2 shows an overall configuration of an absorption chiller / heater to which the present invention is applied, and FIG. 1 shows a flowchart of cooling water flow control according to the embodiment of the present invention. The illustrated flowchart shows a control procedure of cooling water flow rate control (cooling water variable flow rate control) during the cooling operation of the absorption chiller / heater.
[0017]
The absorption chiller / heater shown in FIG. 2 includes an absorption chiller / heater 1 containing a high-temperature regenerator HGE2, a cooling water return pipe 11 connected to a cooling water outlet of the absorption chiller / heater, and a cooling water return pipe. A cooling tower 4 having a cooling water inlet connected to the downstream end of the passage 11 and having a fan driven by a fan motor M3; a cooling water outlet of the cooling tower 4 and a cooling water of the absorption chiller / heater 1; A cooling water pump-side pipe 12 having an inlet connected thereto and a rotation speed controlled by an inverter 6, and cooling water at a cooling water outlet position of the absorption chiller / heater of the cooling water return pipe 11. A temperature sensor 8 for detecting and outputting a temperature (cooler / hot water machine outlet temperature T CO ); and a cooling water temperature (cooler / hot water machine inlet temperature T CO ) at the coolant inlet position of the absorption cooler / heater in the cooling water inlet side pipe 12. A temperature sensor 9 for detecting and outputting Ci ). A temperature sensor 10 for detecting and outputting the solution temperature TG in the high-temperature regenerator 2, and connected to the temperature sensors 8, 9, and 10, based on the outputs of these temperature sensors, the inverter 6 and the fan motor M3 And a controller 5 for controlling.
[0018]
Each of the temperature sensors outputs a detection value at one-minute intervals, and is stored in the memory of the controller 5. Each temperature sensor may continuously output an analog signal, and the controller 5 may sample at one minute intervals and store the data in a memory of the controller.
[0019]
Incidentally, the controller 5, when raised above the upper limit temperature T 1 of the solution temperature T G is set in advance in the high-temperature regenerator 2, regardless of the value of chiller heater outlet temperature T CO, coolant Is controlled to return the flow rate to the rated maximum flow rate (100% flow rate). The controller 5 also stops the cooling tower fan when the cooling water chiller / water inlet temperature drops to a preset temperature T 2 irrespective of the cooling water chiller / heater outlet temperature. beyond the temperature T 3 of the machine inlet temperature is set in advance, is configured to start the cooling tower fan.
[0020]
An example of a control procedure when the present invention is applied to the apparatus having the above configuration will be described with reference to FIG. It should be noted that the procedure 1 shown by (1) in FIG. 1 is for displaying a repetition of the procedure, and does not mean a specific operation.
[0021]
During cooling operation, the controller (in this embodiment, one minute intervals) a predetermined time interval, compared to the upper limit temperature T 1 of a previously set the solution temperature T G in the high temperature generator to be input, either the It is determined whether it is larger (procedure 2). That is, the control cycle shown in FIG. 1 is executed at one-minute intervals.
[0022]
If the detected temperature of the solution T G is greater than the upper limit temperature T 1 of a preset, go to step 3, the controller, as a protective control, maximum rated cooling water flow rate is the rotational speed of the cooling water pump via the inverter The rotation speed is set to the flow rate (100% flow rate). When the number of rotations of the cooling water pump is set, the procedure returns to the procedure 1 and the above procedure is repeated.
[0023]
If the detected temperature of the solution T G is the upper limit temperature T 1 of less that is set in advance, go to step 4, the controller, the amount of time elapsed since the modified last cooling water flow rate, or t minutes which is set in advance Is determined. If the elapsed time is not equal to or longer than the preset time t, the procedure proceeds to step 5, returns to step 1 while keeping the cooling water flow rate, and repeats the above procedure. The time t in the procedure 4 is also referred to as a control cancellation time, and is set in order to avoid the continuous transmission of the flow rate fluctuation signal due to the response delay of the cooling water temperature change. The length may be determined based on the amount of water retained in the cooling water system. In the present embodiment, the length is set to 15 minutes.
[0024]
Elapsed time, if it is more than t minutes, which is set in advance, go to step 6, the chiller heater outlet temperature T CO, the target temperature range T 4 ~T 5 (T 4 which is set in advance <T 5 ) Compare with. T 4 and T 5 were set according to the following policy. T 4 was any temperature below the cooling water inlet temperature during rated operation of the equipment design, T 5 is any temperature below the cooling water outlet temperature during rated operation in the same manner. For example, in this embodiment, T 4 is set to 32 ° C. for a cooling water inlet temperature of 32 ° C. during rated operation, and T 5 is set to 34 ° C. for a cooling water outlet temperature of 37.5 ° C. during rated operation. .
[0025]
This control is performed under low load operation or when the cooling water temperature is low due to low outside air temperature and the cooling water flow rate falls below the design flow rate (rated maximum flow rate = 100%). Is to be reduced. For this reason, T 4 and T 5 are set so as to operate under a condition in which a margin is further provided for the rated (design) condition.
[0026]
Controller, the moving average value of the past t m min chiller heater outlet temperature of the cooling water and the chiller outlet temperature T CO. In this embodiment, the t m min to min 15, the detection value of every minute of the past 15 minutes, that is, the average of the detected values of the 15 points and chiller outlet temperature T CO. Since the temperature detection interval is a per minute, the chiller outlet temperature T CO is also calculated every minute.
[0027]
As a result of the comparison in step 6, when it is determined that T 4 ≦ T CO ≦ T 5 , that is, the value of T CO is within the target temperature range, the process proceeds to step 7 and returns to step 1 with the cooling water flow rate unchanged. Repeat the above procedure.
[0028]
As a result of the comparison, when it is determined that T 5 <T CO , that is, the value of T CO exceeds the target temperature range, the process proceeds to step 8, and the controller determines that the cooling water flow rate is a predetermined ratio (rated maximum value). The rotation speed of the cooling water pump is increased via the inverter so as to increase the flow rate by X% (10% in this embodiment). When the number of rotations of the cooling water pump is set, the procedure returns to the procedure 1 and the above procedure is repeated.
[0029]
As a result of the comparison, when it is determined that T CO <T 4 , that is, the value of T CO has not reached the target temperature range, the process proceeds to step 9 and the controller determines that the cooling water flow rate at that time is equal to or smaller than the preset minimum value. It is determined whether or not the flow rate (in this embodiment, 50% of the rated maximum flow rate) is exceeded, based on the rotational speed at that time (an instruction signal to the inverter or a signal from a rotational speed transmitter (not shown)). When the cooling water flow rate is 50% or less of the rated flow rate, the flow returns to the procedure 1 while keeping the cooling water flow rate as it is, and the above procedure is repeated. If the cooling water flow rate exceeds 50% of the rated flow rate, proceed to step 10 and the controller performs cooling through the inverter such that the cooling water flow rate is reduced by a preset rate (X% of the rated maximum flow rate). Reduce the speed of the water pump. When the number of rotations of the cooling water pump is set, the procedure returns to the procedure 1 and the above procedure is repeated.
[0030]
In this embodiment, the flow rate control range is 50 to 100% of the rated maximum flow rate, and the flow rate is reduced in steps of X%. Therefore, if there is no flow rate of at least (50 + X)%, then X% It cannot be reduced. Therefore, as described above, it is determined whether or not the cooling water flow rate exceeds 50% of the rated flow rate, and after it is confirmed that the cooling water flow rate exceeds 50%, the flow rate reduction processing is performed.
[0031]
If the flow rate reduction processing of X% is performed when the flow rate is 50 + α (0 <α <X)%, the controller may be configured to automatically perform the flow reduction processing of α%.
[0032]
The setting of the unit X% of the cooling water flow rate increase / decrease was set in consideration of the following points.
[0033]
First, if the fluctuation amount is too large, the control will not be stable. If the amount of fluctuation is too small, the control is stable, but the flow rate decreases slowly, and the energy saving effect is reduced. Also, when the flow rate needs to be increased, the response is slow, and the protection control by TG works. In the present embodiment, X% is set to 10% in consideration of these points. However, it is desirable to set X% according to the size and characteristics of the plant.
[0034]
In FIG. 3, the elapsed time is plotted on the horizontal axis, the cooling water temperature and the cooling water flow rate are plotted on the vertical axis, and the state of changes in the cooling water flow rate and the cooling water temperature when the variable flow rate control is applied is schematically shown. Indicated.
[0035]
As shown, the activated cooling tower fan with the cooling water inlet temperature T 3, it accompanied it with the cooling water inlet temperature and the cooling water outlet temperature begins to decrease. The cooling water inlet temperature by operation of the cooling tower fan cooling tower fan to decrease the T 2 is stopped, the cooling water inlet temperature and the cooling water outlet temperature it becomes accompanied has begun to rise.
[0036]
In the figure, the cooling water outlet temperature has risen beyond the T 5, the cooling water flow rate has a remains constant. This is because it uses the moving average for the past 15 minutes as chiller outlet temperature T CO to be compared with T 5, chiller outlet temperature T CO is because does not exceed T 5. On the other hand, before chiller outlet temperature T CO is more than T 5, it reaches the cooling water inlet temperature gradually rises and the T 3, the cooling tower fan is started. As a result, the cooling water inlet temperature and the cooling water outlet temperature begin to decrease, and the chiller / heater outlet temperature TCO also decreases. That is, the cooling water outlet temperature rises, while the drops, chiller outlet temperature T CO no higher than T 5, the increase of the cooling water flow rate is not indicated. Therefore, power costs are saved because there is no increase in the flow rate of cooling water.
[0037]
The fluctuation width of the cooling water outlet temperature itself caused by the start / stop of the cooling tower fan is larger than that of the prior art shown in FIG. However, the reference temperature of the chiller outlet temperature of the cooling water (control target value) is set as the temperature range having a width of between the upper control temperature T 5 and the lower control temperature T 4, the cooling water outlet temperature past tm minutes a moving average value of the (15 minutes in this embodiment), the use as a chiller outlet temperature T CO serving as a control input, the upper control temperature T 5 than the cooling water outlet temperature planned during rated operation By setting it low, the cooling water system has room. Therefore, although the temperature of the cooling water fluctuates in a temperature range that does not affect the equipment, there is an effect that the amount of the cooling water is stabilized at a low level and the cost for pump power is reduced.
[0038]
According to this embodiment, as described above, a moving average value of the past tm minutes the cooling water outlet temperature, by a cooling water outlet temperature T CO used in the control input, caused by start-stop of the cooling tower fan Fluctuations in the flow rate of cooling water caused by fluctuations in cooling water temperature can be suppressed, and the stable operation of the absorption chiller / heater can be ensured with a lower cooling water amount while maintaining good stability, thereby reducing pump power costs. It is now possible.
[0039]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it became possible to stabilize the flow rate of cooling water at a low level, and to reduce the power cost while ensuring good stability of the operation of the absorption chiller / heater.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a cooling water flow control method according to an embodiment of the present invention.
FIG. 2 is a system diagram showing an overall configuration of an absorption chiller / heater to which the present invention is applied.
FIG. 3 is a conceptual diagram illustrating an example of a change in a cooling water temperature and a cooling water flow rate according to the embodiment of the present invention.
FIG. 4 is a flowchart illustrating a cooling water flow control method according to the related art.
FIG. 5 is a conceptual diagram showing control of a cooling tower fan.
FIG. 6 is a conceptual diagram showing an example of a change in cooling water temperature and cooling water flow rate in a conventional technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Absorption chiller / heater 2 High temperature regenerator 3 Fan motor 4 Cooling tower 5 Controller 6 Inverter 7 Cooling water pump 8 Temperature sensor 9 Temperature sensor 10 Temperature sensor

Claims (5)

冷却水の冷温水機入口温度の高低に応じて冷却水の冷却塔のファンを発停する手順を有してなる吸収冷温水機の制御方法であって、
吸収冷温水機の冷却水出口温度を検出し、その過去t分間の移動平均値を算出して冷温水機出口温度TCOとし、この冷温水機出口温度TCOの制御基準値を定格運転時の計画冷却水出口温度以下の予め定めた温度範囲として設定し、算出した前記冷温水機出口温度TCOと前記温度範囲を比較し、前記冷温水機出口温度TCOが前記温度範囲を超えたとき冷却水流量を増加させ、前記冷温水機出口温度TCOが前記温度範囲に達していないとき冷却水流量を減少させ、冷温水機出口温度TCOが予め設定した前記温度範囲内にあるときは、そのときの冷却水流量を維持することを特徴とする吸収冷温水機の冷却水流量制御方法。
A method for controlling an absorption chiller / heater, comprising a procedure of starting and stopping a fan of a cooling water cooling tower in accordance with a level of a cooling water chiller / heater inlet temperature,
Detecting a cooling water outlet temperature of the absorption chiller heater, the calculating the moving average of the past t m min as a chiller outlet temperature T CO, rated operation the control reference value for the chiller outlet temperature T CO set as a predetermined temperature range of planning the cooling water outlet temperature following time, calculated as the chiller outlet temperature T CO comparing the temperature range, the chiller outlet temperature T CO exceeds said temperature range increasing the coolant flow rate when the said chiller outlet temperature T CO reduces the cooling water flow rate when it does not reach said temperature range is within the temperature range of chiller outlet temperature T CO is preset A method for controlling the flow rate of a cooling water in an absorption chiller / heater, wherein the cooling water flow rate at that time is maintained.
請求項1記載の吸収冷温水機の冷却水流量制御方法において、冷却水流量の増減を、それぞれ予め定格最大流量に対して定めた割合で行うことを特徴とする吸収冷温水機の冷却水流量制御方法。2. The cooling water flow rate of an absorption chiller / heater according to claim 1, wherein the flow rate of the cooling water is increased / decreased at a predetermined rate with respect to a rated maximum flow rate. Control method. 請求項1または2記載の吸収冷温水機の冷却水流量制御方法において、前記冷温水機出口温度TCOが前記温度範囲に達していないとき、そのときの冷却水流量が予め設定した最小流量(定格最大流量のA%)を超えているかどうかを判定し、A%を超えているとき、冷却水流量を減少させ、A%以下の時はそのときの冷却水流量を維持することを特徴とする吸収冷温水機の冷却水流量制御方法。In the cooling water flow rate control method according to claim 1 or 2 absorption chiller heater according, when the chiller outlet temperature T CO has not reached the temperature range, the minimum flow rate of the cooling water flow rate at that time preset ( (A% of the rated maximum flow rate) is determined, and when it exceeds A%, the cooling water flow rate is decreased, and when it is less than A%, the cooling water flow rate at that time is maintained. Cooling water flow control method for absorption chiller / heater. 請求項1〜3のうちのいずれか1項に記載の吸収冷温水機の冷却水流量制御方法において、吸収冷温水機の高温再生器内の溶液温度Tを検出し、検出された溶液温度Tを予め定められた溶液温度の制御目標値Tと比較し、溶液温度Tがこの制御目標値Tを超えているとき、前記冷温水機出口温度TCOの値に関わりなく、冷却水流量を定格最大流量に設定し、溶液温度Tがこの制御目標値T以下のとき、前記冷温水機出口温度TCOと前記温度範囲の比較以降の手順を実行することを特徴とする吸収冷温水機の冷却水流量制御方法。The cooling water flow control method for an absorption chiller / heater according to any one of claims 1 to 3, wherein a solution temperature TG in a high temperature regenerator of the absorption chiller / heater is detected, and the detected solution temperature is detected. compared with the control target value T 1 of the predetermined solution temperature T G, when the solution temperature T G is greater than the control target value T 1, regardless of the value of the chiller outlet temperature T CO, the cooling water flow rate is set to the rated maximum flow rate, when the solution temperature T G is below the control target value T 1, and characterized by the steps subsequent comparison of the temperature range and the chiller outlet temperature T CO Cooling water flow control method for absorption chiller / heater. 請求項4に記載の吸収冷温水機の冷却水流量制御方法において、溶液温度Tが制御目標値T以下のとき、前記冷温水機出口温度TCOと前記温度範囲を比較する前に、前回の流量変更からの経過時間と予め設定された時間tを比較し、経過時間が前記時間tを超えているとき、前記冷温水機出口温度TCOと前記温度範囲の比較以降の手順を実行し、経過時間が前記時間tを超えていないとき、冷却水流量をそのままとすることを特徴とする吸収冷温水機の冷却水流量制御方法。In the cooling water flow rate control method of the absorption chiller of claim 4, when the solution temperature T G is below the control target value T 1, before comparing the said temperature range and the chiller outlet temperature T CO, The elapsed time from the previous flow rate change is compared with a preset time t, and when the elapsed time exceeds the time t, the procedure after the comparison between the chilled / hot water outlet temperature TCO and the temperature range is executed. When the elapsed time does not exceed the time t, the cooling water flow rate is controlled as it is, wherein the cooling water flow rate is kept as it is.
JP2002192791A 2002-07-02 2002-07-02 Cooling water flow rate control method for absorption chiller water heater Expired - Fee Related JP4074955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002192791A JP4074955B2 (en) 2002-07-02 2002-07-02 Cooling water flow rate control method for absorption chiller water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002192791A JP4074955B2 (en) 2002-07-02 2002-07-02 Cooling water flow rate control method for absorption chiller water heater

Publications (2)

Publication Number Publication Date
JP2004036957A true JP2004036957A (en) 2004-02-05
JP4074955B2 JP4074955B2 (en) 2008-04-16

Family

ID=31701912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002192791A Expired - Fee Related JP4074955B2 (en) 2002-07-02 2002-07-02 Cooling water flow rate control method for absorption chiller water heater

Country Status (1)

Country Link
JP (1) JP4074955B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057991A (en) * 2004-07-23 2006-03-02 Kawasaki Thermal Engineering Co Ltd Absorptive freezer control method and absorptive freezer facility for controlling cooling water temperature in interlock with cooling load control operation
JP2010060166A (en) * 2008-09-01 2010-03-18 Yazaki Corp Cooling tower and heat source machine system
WO2012043178A1 (en) * 2010-09-30 2012-04-05 オリンパスメディカルシステムズ株式会社 Endoscope insertion-assisting system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057991A (en) * 2004-07-23 2006-03-02 Kawasaki Thermal Engineering Co Ltd Absorptive freezer control method and absorptive freezer facility for controlling cooling water temperature in interlock with cooling load control operation
JP4551233B2 (en) * 2004-07-23 2010-09-22 川重冷熱工業株式会社 Absorption-type refrigerator control method and absorption-type refrigerator installation for controlling cooling water temperature in conjunction with cooling load control operation
JP2010060166A (en) * 2008-09-01 2010-03-18 Yazaki Corp Cooling tower and heat source machine system
WO2012043178A1 (en) * 2010-09-30 2012-04-05 オリンパスメディカルシステムズ株式会社 Endoscope insertion-assisting system

Also Published As

Publication number Publication date
JP4074955B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
CN107062518B (en) Air conditioner control method and control device
CN103673391B (en) Carbon dioxide heat pump system and control method thereof
JP2007315695A (en) Cold and hot water control method for cold and heat source machine, and air conditioning system using it
JP2007240131A (en) Optimization control of heat source unit and accessory
JP6482826B2 (en) HEAT SOURCE SYSTEM, ITS CONTROL DEVICE, AND CONTROL METHOD
CN107367095B (en) Compressor power module temperature control method and control system
US20140343733A1 (en) Systems And Methods For Compressor Overspeed Control
JPH05340690A (en) Cooling tower and cooling capacity control method
CN111397077B (en) Temperature control method and device, storage medium and air conditioner
JP2003222396A (en) Heat pump type water heater
CN110887178A (en) Control method for heating shutdown of multi-split air conditioner, computer readable storage medium and air conditioner
JP4074955B2 (en) Cooling water flow rate control method for absorption chiller water heater
WO2024016815A1 (en) Mobile air conditioner and control method therefor
WO2022001534A1 (en) Heating control method and apparatus, air conditioner, and storage medium
CN111964208A (en) Heating indoor unit high-temperature-resistant control method and device, air conditioner and storage medium
CN112594902A (en) Control method and system of air conditioner
CN114427739A (en) Air conditioner control method and device under low-temperature refrigeration and fixed-frequency air conditioner
CN103671187A (en) Method for adaptive adjustment of real-time maximum allowable rotating speed of fan motor
JP2022077246A (en) Heat collection system
JP4178447B2 (en) Heat pump water heater
CN113048010B (en) Control method of superconducting fan
JP3087998B2 (en) Control system for absorption type cold / hot water generator
JPH11211193A (en) Controller for outdoor fan
KR0140569B1 (en) Cooling control method of air conditioner at rapid rise of room temperature
CN114837946B (en) Energy-saving two-stage spiral air compressor control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080116

R150 Certificate of patent or registration of utility model

Ref document number: 4074955

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees