JPH09236354A - Absorption type heat pump - Google Patents

Absorption type heat pump

Info

Publication number
JPH09236354A
JPH09236354A JP8041601A JP4160196A JPH09236354A JP H09236354 A JPH09236354 A JP H09236354A JP 8041601 A JP8041601 A JP 8041601A JP 4160196 A JP4160196 A JP 4160196A JP H09236354 A JPH09236354 A JP H09236354A
Authority
JP
Japan
Prior art keywords
temperature
expansion valve
target value
detecting means
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8041601A
Other languages
Japanese (ja)
Inventor
Koichi Takemura
晃一 竹村
Yasuhiro Kawamoto
恭宏 河本
Takahito Ishii
隆仁 石井
Masamitsu Kondo
正満 近藤
Takashi Sawada
敬 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8041601A priority Critical patent/JPH09236354A/en
Publication of JPH09236354A publication Critical patent/JPH09236354A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To permit the realizing of delicate control of the degree of opening in accordance with change in evaporating temperature, by a method wherein the opening degree of an expansion valve is controlled in accordance with the detecting temperature of an evaporating temperature detecting means. SOLUTION: A control means 24 stores the relation of opening degree of a valve in accordance with the detecting temperature of a temperature detecting means 23 or a relation that the opening degree of the valve is reduced in accordance with the rise of the temperature, and supplies a rotation signal to a pulse motor so as to provide the opening degree of the valve compatible to a detecting temperature at every proper sampling times. In this case, a needle is operated in accordance with a given rotation signal and the opening degree of the valve is changed. The control means 24 controls the opening degree of an electronic control expansion valve 9 in accordance with the detecting temperature of the temperature detecting means 23, whereby the range of evaporating temperature of refrigerant can be kept within the optimum range and the stabilization of a refrigerant cycle can be contrived.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒にアンモニ
ア、吸収剤にアンモニアを用いたアンモニア吸収式ヒー
トポンプシステムのうち、特に家庭用に用いる小型の装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ammonia absorption heat pump system using ammonia as a refrigerant and ammonia as an absorbent, and more particularly to a small-sized device for household use.

【0002】[0002]

【従来の技術】従来この種の吸収式ヒートポンプは、家
庭用のものはなく業務用であり、図11に冷房時のシス
テム図を示したように、発生器と精溜器とが一体に構成
された発生・精溜器50と、1次側に冷媒流路と2次側
に冷却水流路を備えた凝縮器51と、凝縮器冷媒流路5
1出口に設けられた冷媒タンク52と、過冷却器53
と、膨張弁54と、1次側に冷媒流路と2次側に冷水流
路を備えた蒸発器55と、溶液熱交換器56と、減圧弁
57と、1次側に冷媒流路と2次側に冷却水流路を備え
た吸収器58と、吸収器冷媒流路出口に設けられた濃溶
液タンク59と、溶液ポンプ60と、各要素部品を接続
する冷媒回路61と、前記凝縮器及び吸収器の2次側冷
却水流路を連結してなる冷却水回路62と、前記蒸発器
の2次側冷水回路を含む冷水回路63とから構成されて
いた。一般的に、一点鎖線で囲った部分が室外機に組み
込まれる。
2. Description of the Related Art Conventionally, this type of absorption heat pump is not for home use but for business use. As shown in the system diagram during cooling in FIG. 11, a generator and a rectifier are integrally formed. The generated / rectifier 50, the condenser 51 having a coolant passage on the primary side and the cooling water passage on the secondary side, and the condenser coolant passage 5
Refrigerant tank 52 provided at one outlet, and supercooler 53
An expansion valve 54, an evaporator 55 having a refrigerant channel on the primary side and a cold water channel on the secondary side, a solution heat exchanger 56, a pressure reducing valve 57, and a refrigerant channel on the primary side. An absorber 58 having a cooling water flow path on the secondary side, a concentrated solution tank 59 provided at the absorber refrigerant flow path outlet, a solution pump 60, a refrigerant circuit 61 connecting each component, and the condenser. And a cooling water circuit 62 formed by connecting the secondary cooling water flow paths of the absorber, and a cooling water circuit 63 including the secondary cooling water circuit of the evaporator. Generally, the portion surrounded by the alternate long and short dash line is incorporated in the outdoor unit.

【0003】上記構成において、冷房時には、冷水回路
63の冷水を冷水循環ポンプ64を用いて室内側放熱機
65に、そして冷却水回路62の温水を温水循環ポンプ
66を用いて室外機放熱器67に循環させる。また、暖
房時には、冷水回路63の冷水を室外側放熱機67に、
冷却水回路62の温水を室内機放熱器65に循環させ
る。冷房・暖房時の流路の切り換えは、例えば切り換え
弁を用いて行う。なお、図11においては、切り換え弁
は省略している。
In the above structure, during cooling, cold water in the cold water circuit 63 is used for the indoor radiator 65 by using the cold water circulation pump 64, and hot water in the cooling water circuit 62 is used for the outdoor unit radiator 67 using the hot water circulation pump 66. Circulate. Further, during heating, the cold water in the cold water circuit 63 is supplied to the outdoor radiator 67,
The warm water in the cooling water circuit 62 is circulated to the indoor unit radiator 65. Switching of the flow paths during cooling and heating is performed using, for example, a switching valve. The switching valve is omitted in FIG. 11.

【0004】ここで用いられる膨張弁は、一般的には、
単なるキャピラリーチューブで代用されており、その開
度は固定されていた。また、作動媒体としてフロンを用
いる電気圧縮式のヒートポンプの場合には、例えば、図
12に示したように、蒸発器68出口の冷媒温度を感温
筒69内の液体の体積変化により弁70に直結するベロ
ーズ71・押さえ棒72を動作させる温度式自動膨張弁
73や、圧力式自動膨張弁、等の温度・圧力の変化を機
械エネルギーに変換して動作する機械式のものが用いら
れていた。
The expansion valve used here is generally
It was replaced with a simple capillary tube, and its opening was fixed. Further, in the case of an electric compression type heat pump that uses Freon as the working medium, for example, as shown in FIG. 12, the refrigerant temperature at the outlet of the evaporator 68 is set in the valve 70 by the volume change of the liquid in the temperature sensitive tube 69. A mechanical automatic expansion valve 73 for operating the directly connected bellows 71 and the pressing rod 72, a pressure automatic expansion valve, and the like, which operate by converting temperature / pressure changes into mechanical energy, were used. .

【0005】[0005]

【発明が解決しようとする課題】しかしながら、キャピ
ラリーチューブを膨張弁として用いた場合には、いわゆ
る膨張弁としての開度は一定となるために、一般家庭で
要求される冷・暖房負荷(室内・外の温度、容量、等)
に対応した細かな能力制御を行うことができない。膨張
弁の開度は、当然の事ながら、最大能力に対応した冷媒
(ここで言う冷媒とはアンモニアを意味する)循環量を
確保する開度に設定されるが、小さい冷・暖房負荷では
その開度を変える必要があるからである。
However, when a capillary tube is used as an expansion valve, the opening as a so-called expansion valve is constant, so the cooling / heating load (indoor Outside temperature, capacity, etc.)
It is not possible to perform detailed ability control corresponding to. The opening of the expansion valve is, of course, set to an opening that ensures the circulation amount of the refrigerant (refrigerant here means ammonia) that corresponds to the maximum capacity, but with a small cooling / heating load This is because it is necessary to change the opening.

【0006】また、電気圧縮式に用いられている膨張弁
をそのままアンモニア吸収式ヒートポンプに用いる事は
できない。フロンに比べてアンモニアの蒸発潜熱は、約
10倍あり、同じ性能を出すのであれば約1/10の循
環量で済む。よって、弁を受ける弁座の形状を変える必
要があるとともに、細かな弁開度の制御が必要となる。
少しの弁開度の変化でも、アンモニアの場合には大きな
蒸発温度の変化をおこし、性能、及び動作に悪影響を与
えるからである。
Further, the expansion valve used in the electric compression type cannot be used as it is in the ammonia absorption heat pump. The latent heat of vaporization of ammonia is about 10 times that of chlorofluorocarbon, and a circulation amount of about 1/10 is sufficient if the same performance is obtained. Therefore, it is necessary to change the shape of the valve seat that receives the valve, and to finely control the valve opening.
This is because even a slight change in valve opening causes a large change in evaporation temperature in the case of ammonia, which adversely affects performance and operation.

【0007】[0007]

【課題を解決するための手段】本発明は上記課題を解決
するため、再生器と、精溜器と、凝縮器と、膨張弁と、
蒸発器の一次側と、吸収器と、溶液ポンプとを配管接続
してなる冷媒回路と、前記蒸発器の二次側に形成される
冷水循環回路と、前記凝縮器の二次側に形成される温水
循環回路と、前記蒸発器入り口の冷媒温度を検出する蒸
発温度検出手段と、前記蒸発温度検出手段の検出温度に
応じて前記電子制御膨張弁の開度を制御する制御手段を
有する構成としてある。
In order to solve the above problems, the present invention provides a regenerator, a rectifier, a condenser, an expansion valve,
A refrigerant circuit formed by pipe-connecting a primary side of an evaporator, an absorber, and a solution pump, a cold water circulation circuit formed on the secondary side of the evaporator, and a secondary side of the condenser. A hot water circulation circuit, an evaporation temperature detecting means for detecting the refrigerant temperature at the evaporator inlet, and a control means for controlling the opening degree of the electronically controlled expansion valve according to the temperature detected by the evaporation temperature detecting means. is there.

【0008】本発明は上記した構成によって、蒸発温度
検出手段が検出した温度に応じて、膨張弁の開度が制御
されるので、蒸発温度変化に応じてきめ細かな開度制御
が実現できる。
According to the present invention, since the opening degree of the expansion valve is controlled according to the temperature detected by the evaporation temperature detecting means, a fine opening degree control can be realized according to the change of the evaporation temperature.

【0009】[0009]

【発明の実施の形態】本発明の吸収式ヒートポンプは、
再生器と、精溜器と、凝縮器と、膨張弁と、蒸発器の一
次側と、吸収器と、溶液ポンプとを配管接続してなる冷
媒回路と、前記蒸発器の二次側に形成される冷水循環回
路と、前記凝縮器の二次側に形成される温水循環回路
と、前記蒸発器入り口の冷媒温度を検出する蒸発温度検
出手段と、前記蒸発温度検出手段の検出温度に応じて前
記電子制御膨張弁の開度を制御する制御手段を有する構
成としてあり、蒸発温度検出手段が検出した温度に応じ
て、膨張弁の開度が制御されるので、蒸発温度変化に応
じてきめ細かな開度制御が実現できる。
BEST MODE FOR CARRYING OUT THE INVENTION The absorption heat pump of the present invention comprises:
A regenerator, a rectifier, a condenser, an expansion valve, a primary side of an evaporator, a refrigerant circuit in which an absorber and a solution pump are connected by piping, and a secondary side of the evaporator. A cold water circulation circuit, a hot water circulation circuit formed on the secondary side of the condenser, an evaporation temperature detecting means for detecting a refrigerant temperature at the evaporator inlet, and a temperature detected by the evaporation temperature detecting means. Since the opening of the expansion valve is controlled according to the temperature detected by the evaporation temperature detecting means, the electronically controlled expansion valve has a control means for controlling the opening degree of the expansion valve. Opening control can be realized.

【0010】そして、制御手段は、蒸発温度の目標値を
設定する目標値設定手段と、蒸発温度検出手段の検出温
度が前記目標値設定手段の定める目標値と一致するよう
に前記電子制御膨張弁に電気信号を出力する出力設定手
段を有する構成とすることにより、冷媒の蒸発温度の目
標値を設定し、その目標値と一致するように電子制御膨
張弁の開度を制御することができる。
Then, the control means sets the target value of the evaporation temperature and the electronically controlled expansion valve so that the temperature detected by the evaporation temperature detecting means matches the target value set by the target value setting means. With the configuration having the output setting means for outputting the electric signal, the target value of the evaporation temperature of the refrigerant can be set, and the opening degree of the electronically controlled expansion valve can be controlled so as to match the target value.

【0011】また本発明の吸収式ヒートポンプは、再生
器と、精溜器と、凝縮器と、膨張弁と、蒸発器の一次側
と、吸収器と、溶液ポンプとを配管接続してなる冷媒回
路と、前記蒸発器の二次側に形成される冷水循環回路
と、前記凝縮器の二次側に形成される温水循環回路と、
前記蒸発器入り口の冷媒温度を検出する蒸発温度検出手
段と、前記冷水循環回路の冷水温度を検出する冷水温度
検出手段と、前記蒸発温度検出手段および前記冷水温度
検出手段の検出温度に応じて前記電子制御膨張弁の開度
を制御する制御手段を有する構成としてあり、蒸発温度
検出手段と冷水温度検出手段が検出する温度をもとに、
制御手段により電子制御膨張弁の開度を制御できる。
The absorption heat pump of the present invention is a refrigerant formed by connecting a regenerator, a rectifier, a condenser, an expansion valve, an evaporator primary side, an absorber and a solution pump through pipes. A circuit, a cold water circulation circuit formed on the secondary side of the evaporator, and a hot water circulation circuit formed on the secondary side of the condenser,
Evaporation temperature detecting means for detecting the refrigerant temperature at the evaporator inlet, cold water temperature detecting means for detecting the cold water temperature of the cold water circulation circuit, and the evaporating temperature detecting means and the cold water temperature detecting means according to the detected temperature It is configured to have a control means for controlling the opening degree of the electronically controlled expansion valve, and based on the temperatures detected by the evaporation temperature detecting means and the cold water temperature detecting means,
The opening of the electronically controlled expansion valve can be controlled by the control means.

【0012】そして、制御手段は冷水温度検出手段の検
出温度より予め定められた値だけ低い温度を目標値とし
て設定する目標値設定手段と、蒸発温度検出手段の検出
温度が前記目標値設定手段の定める目標値と一致するよ
うに電子膨張弁に電気信号を出力する出力設定手段を有
する構成とすることによって、冷水温度より所定の値だ
け低い温度に蒸発温度がなるように電子式膨張弁の開度
を制御することができる。
The control means sets a target value setting means for setting a temperature lower than the detection temperature of the chilled water temperature detection means by a predetermined value as a target value, and the detection temperature of the evaporation temperature detection means of the target value setting means. By providing the output setting means for outputting an electric signal to the electronic expansion valve so as to match the set target value, the electronic expansion valve is opened so that the evaporation temperature becomes a temperature lower by a predetermined value than the chilled water temperature. You can control the degree.

【0013】また本発明の吸収式ヒートポンプは、再生
器と、精溜器と、凝縮器と、膨張弁と、蒸発器の一次側
と、吸収器と、溶液ポンプとを配管接続してなる冷媒回
路と、前記蒸発器の二次側に形成される冷水循環回路
と、前記凝縮器の二次側に形成される温水循環回路と、
前記蒸発器入り口の冷媒温度を検出する蒸発温度検出手
段と、外気温を検出する外気温検出手段と、暖房時には
前記温水循環回路、冷房時には前記冷水循環回路により
室内空調を行うように切り替える切り替え手段と、暖房
時には前記蒸発温度検出手段および前記外気温検出手段
の検出温度に応じて前記電子制御膨張弁の開度を制御す
る制御手段を有する構成としてあり、室外温度検出手段
と蒸発温度検出手段が検出する温度をもとに、制御手段
により電子制御膨張弁の開度を制御できる。
The absorption heat pump of the present invention is a refrigerant formed by connecting a regenerator, a rectifier, a condenser, an expansion valve, a primary side of an evaporator, an absorber, and a solution pump by piping. A circuit, a cold water circulation circuit formed on the secondary side of the evaporator, and a hot water circulation circuit formed on the secondary side of the condenser,
Evaporation temperature detecting means for detecting the refrigerant temperature at the inlet of the evaporator, outside air temperature detecting means for detecting outside air temperature, and switching means for switching to perform indoor air conditioning by the hot water circulation circuit during heating and the cold water circulation circuit during cooling. In addition, during heating, there is provided a control means for controlling the opening degree of the electronically controlled expansion valve according to the temperatures detected by the evaporation temperature detecting means and the outside air temperature detecting means, and the outdoor temperature detecting means and the evaporation temperature detecting means are provided. The opening degree of the electronically controlled expansion valve can be controlled by the control means based on the detected temperature.

【0014】さらに、制御手段は外気温検出手段の検出
温度より予め定められた値だけ低い温度を目標値として
設定する目標値設定手段と、蒸発温度検出手段の検出温
度が前記目標値設定手段と一致するように電子膨張弁に
電気信号を出力する出力設定手段を有する構成とするこ
とによって、室外温度をもとに蒸発温度の目標値を設定
し、その目標値と蒸発温度が一致するように電子式膨張
弁の開度を制御することができる。
Further, the control means is a target value setting means for setting a temperature lower than the temperature detected by the outside air temperature detecting means by a predetermined value as a target value, and the detected temperature of the evaporation temperature detecting means is the target value setting means. By having a configuration having an output setting means for outputting an electric signal to the electronic expansion valve so as to match, the target value of the evaporation temperature is set based on the outdoor temperature, and the target value and the evaporation temperature are matched. The opening degree of the electronic expansion valve can be controlled.

【0015】また本発明の吸収式ヒートポンプは、膨張
弁の筺体内部に蒸発温度検出手段を組みんだ構成として
あるから、取扱いが容易になるとともに、正確な蒸発温
度を検出することができる。
Further, since the absorption heat pump of the present invention has a structure in which the evaporation temperature detecting means is assembled inside the housing of the expansion valve, it is easy to handle and the accurate evaporation temperature can be detected.

【0016】以下、本発明の実施例を図を用いて説明す
る。 (実施例1)図1において、ガス電磁弁1より供給され
たガスと、バーナファン2より供給された空気によりバ
ーナ3で加熱された冷媒の循環する冷媒回路4は、再生
器5、精溜器6、凝縮器7の一次側、過冷却器8の一次
側、電子制御膨張弁9、蒸発器10の1次側、過冷却器
8の2次側、吸収器11の1次側、溶液ポンプ12、溶
液熱交換器13の1次側を順次配管接続して構成され
る。また、精溜器6の下部、溶液熱交換器13の2次
側、減圧弁14、吸収器11の1次側を配管接続した経
路には精溜器6で冷媒ガスから分離された冷媒稀溶液の
流路が形成されている。蒸発器10で冷媒と熱交換し冷
却された冷水が循環する冷水循環回路15は、蒸発器1
0の2次側、第1循環ポンプ16、室内ファン17を備
えた室内熱交換器18を順次配管接続することにより構
成される。さらに、凝縮器7で冷媒と熱交換し暖められ
た温水が循環する温水循環回路19は、凝縮器7の2次
側、吸収器11の2次側、第2循環ポンプ20、室外放
熱ファン21を備えた室外熱交換器22を順次配管接続
することにより構成されている。そして前記蒸発器10
の1次側の入り口の配管に冷媒蒸発温度を検出する蒸発
温度検出手段23が備えられている。24は制御手段で
あり、蒸発温度検出手段23の検出温度に応じて電子制
御膨張弁9の開度を制御する。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) In FIG. 1, a gas circuit supplied from a gas solenoid valve 1 and a refrigerant circuit 4 in which a refrigerant heated by a burner 3 by air supplied from a burner fan 2 circulates is provided with a regenerator 5 and a rectifier. Vessel 6, primary side of condenser 7, primary side of subcooler 8, electronically controlled expansion valve 9, primary side of evaporator 10, secondary side of subcooler 8, primary side of absorber 11, solution The pump 12 and the solution heat exchanger 13 are constructed by sequentially connecting the primary sides of the pipes. In addition, in the path where the lower part of the rectifier 6, the secondary side of the solution heat exchanger 13, the pressure reducing valve 14, and the primary side of the absorber 11 are connected by piping, the refrigerant rarely separated from the refrigerant gas in the rectifier 6 is rare. A flow path for the solution is formed. The cold water circulation circuit 15 in which the cold water cooled by exchanging heat with the refrigerant in the evaporator 10 is circulated is
The secondary side of 0, the first circulation pump 16, and the indoor heat exchanger 18 including the indoor fan 17 are sequentially connected by piping. Furthermore, the hot water circulation circuit 19 in which the warm water that has exchanged heat with the refrigerant in the condenser 7 and circulates is circulated, and the secondary side of the condenser 7, the secondary side of the absorber 11, the second circulation pump 20, the outdoor heat radiation fan 21. It is configured by sequentially connecting the outdoor heat exchangers 22 each having a pipe. And the evaporator 10
An evaporating temperature detecting means 23 for detecting the evaporating temperature of the refrigerant is provided in the pipe at the inlet on the primary side. Reference numeral 24 is a control means, which controls the opening degree of the electronically controlled expansion valve 9 according to the temperature detected by the evaporation temperature detection means 23.

【0017】次に、上記構成における動作を説明する。
まず、冷媒回路4の動作を説明する。バーナ3により加
熱された冷媒蒸気は、精溜器6で純度の高い冷媒ガス
と、濃度の低い冷媒稀溶液とに分離される。精溜器6よ
り発生した冷媒ガスは凝縮器7の1次側に送られ、ここ
で、2次側の回路を流れる水と熱交換し凝縮液化され
る。液化された液冷媒は過冷却器8で冷却された後、電
子制御膨張弁9を通ることにより、減圧され断熱膨張作
用を受ける。減圧された液冷媒は蒸発器10の1次側に
送られ、ここで、2次側を通る水と熱交換することによ
り、蒸発し、ガス化される。ガス化した冷媒は過冷却器
8で加熱された吸収器11へ送られる。
Next, the operation of the above configuration will be described.
First, the operation of the refrigerant circuit 4 will be described. The refrigerant vapor heated by the burner 3 is separated in the rectifier 6 into a highly pure refrigerant gas and a low concentration dilute refrigerant solution. The refrigerant gas generated from the rectifier 6 is sent to the primary side of the condenser 7, where it is heat-exchanged with water flowing through the circuit on the secondary side to be condensed and liquefied. The liquefied liquid refrigerant is cooled by the subcooler 8 and then passed through the electronically controlled expansion valve 9 to be decompressed and adiabatically expanded. The depressurized liquid refrigerant is sent to the primary side of the evaporator 10, where it is heat-exchanged with water passing through the secondary side to be evaporated and gasified. The gasified refrigerant is sent to the absorber 11 heated by the supercooler 8.

【0018】一方、精溜器6で発生した冷媒稀溶液の方
は、溶液熱交換器13で冷却された後、減圧弁14を通
ることにより減圧され、吸収器11の1次側へ送られ
る。吸収器11の1次側では、冷媒ガスが冷媒稀溶液に
吸収され、冷媒稀溶液より濃度の高い冷媒濃溶液に変化
する。冷媒濃溶液は溶液ポンプ12により一部は溶液熱
交換器13で加熱された後、再生器5に送られる。ま
た、溶液ポンプ12は濃溶液の一部を精溜器6へ圧送す
る構成を取っている。
On the other hand, the dilute refrigerant solution generated in the rectifier 6 is cooled in the solution heat exchanger 13 and then reduced in pressure by passing through the pressure reducing valve 14 and sent to the primary side of the absorber 11. . On the primary side of the absorber 11, the refrigerant gas is absorbed by the refrigerant dilute solution and changes into a refrigerant concentrated solution having a higher concentration than the refrigerant dilute solution. The concentrated refrigerant solution is partially heated by the solution heat exchanger 13 by the solution pump 12 and then sent to the regenerator 5. Further, the solution pump 12 is configured to pump a part of the concentrated solution to the rectifier 6.

【0019】次に、冷水循環回路15の動作を説明す
る。蒸発器10の1次側の冷媒と熱交換し冷却された冷
水は第1循環ポンプ16により室内熱交換器18に圧送
され、ここで、室内空気と熱交換し冷房運転を行う。次
に、温水循環回路19の動作を説明する。凝縮器7の1
次側の冷媒および吸収器11の1次側冷媒と熱交換し加
熱された温水は第2循環ポンプ20で室外熱交換器22
へ圧送され、ここで、外気に熱を放出する。
Next, the operation of the cold water circulation circuit 15 will be described. The chilled water that has exchanged heat with the refrigerant on the primary side of the evaporator 10 and is cooled is pressure-fed to the indoor heat exchanger 18 by the first circulation pump 16, where it exchanges heat with the indoor air to perform the cooling operation. Next, the operation of the hot water circulation circuit 19 will be described. 1 of condenser 7
The hot water heated by exchanging heat with the refrigerant on the secondary side and the refrigerant on the primary side of the absorber 11 is heated by the second circulation pump 20 in the outdoor heat exchanger 22.
Pumped to where it releases heat to the atmosphere.

【0020】次に、図2を用いて電子制御膨張弁9の動
作を説明する。図2は電子制御膨張弁の断面図である。
9aは流路の絞り部9bの開度を制御するニードル、9
cはニードル9aを上下方向に動作させるパルスモータ
である。電子制御膨張弁9の内部を流れるアンモニアの
流量はパルスモータ9cで発生した回転力に対応して上
下するニードル9aによって制御されることになる。
Next, the operation of the electronically controlled expansion valve 9 will be described with reference to FIG. FIG. 2 is a sectional view of the electronically controlled expansion valve.
9a is a needle for controlling the opening of the narrowed portion 9b of the flow path, and 9
c is a pulse motor for moving the needle 9a in the vertical direction. The flow rate of ammonia flowing inside the electronically controlled expansion valve 9 is controlled by the needle 9a which moves up and down corresponding to the rotational force generated by the pulse motor 9c.

【0021】次に電子制御膨張弁9の開度と冷媒の蒸発
温度との関係について説明する。電子制御膨張弁9の開
度を大とすることにより蒸発器10に流入する冷媒流量
は増加するため、吸収器11の出口の濃溶液濃度が減少
し、その結果、蒸発器8と吸収器10を結ぶ低圧側ライ
ンの圧力が上昇する。そのため低圧側ラインの圧力上昇
に従って、冷媒の蒸発温度が上昇するように作用する。
逆に、電子制御膨張弁9の開度を小とすれば、冷媒の蒸
発温度は低下するように作用する。冷凍サイクルを安定
させるために蒸発温度が適正範囲に定められるように弁
開度を制御する必要がある。そこで、蒸発温度が高すぎ
る場合には弁開度を小として蒸発温度を低下させるよう
に、また、逆に蒸発温度が低すぎる場合には弁開度を大
として蒸発温度を上昇させるように制御すれば良い。
Next, the relationship between the opening degree of the electronically controlled expansion valve 9 and the evaporation temperature of the refrigerant will be described. Since the flow rate of the refrigerant flowing into the evaporator 10 is increased by increasing the opening degree of the electronically controlled expansion valve 9, the concentrated solution concentration at the outlet of the absorber 11 is decreased, and as a result, the evaporator 8 and the absorber 10 are reduced. The pressure of the low-pressure side line connecting the two rises. Therefore, as the pressure of the low-pressure side line increases, the evaporation temperature of the refrigerant increases.
On the contrary, if the opening degree of the electronically controlled expansion valve 9 is made small, the evaporation temperature of the refrigerant acts so as to decrease. In order to stabilize the refrigeration cycle, it is necessary to control the valve opening so that the evaporation temperature is set within an appropriate range. Therefore, when the evaporation temperature is too high, the valve opening is made small to decrease the evaporation temperature, and conversely, when the evaporation temperature is too low, the valve opening is made large and the evaporation temperature is increased. Just do it.

【0022】そこで、制御手段24では、蒸発温度検出
手段23の検出温度に応じた弁開度の関係、すなわち、
温度上昇に伴って弁開度を小とする関係を記憶してお
り、適当なサンプリング時間毎に検出した温度に対応し
た弁開度を与えるように、パルスモータ9cに回転信号
を供給する。ここで与えられた回転信号に応じてニード
ル9aが動作して弁開度が変化する。
Therefore, in the control means 24, the relation of the valve opening degree according to the temperature detected by the evaporation temperature detection means 23, that is,
The relationship in which the valve opening degree is reduced as the temperature rises is stored, and a rotation signal is supplied to the pulse motor 9c so as to provide the valve opening degree corresponding to the temperature detected at every appropriate sampling time. The needle 9a operates according to the rotation signal given here, and the valve opening changes.

【0023】上記の構成によれば、制御手段24が、蒸
発温度検出手段23の検出温度に応じて、電子制御膨張
弁9の開度を制御するので、冷媒の蒸発温度範囲を適正
範囲に保ち、冷媒サイクルの安定化を図ることができ
る。
According to the above construction, the control means 24 controls the opening degree of the electronically controlled expansion valve 9 in accordance with the temperature detected by the evaporation temperature detection means 23, so that the evaporation temperature range of the refrigerant is kept within a proper range. It is possible to stabilize the refrigerant cycle.

【0024】(実施例2)図3は本発明の実施例2の構
成図である。図3おいて実施例1と異なる制御手段24
に関して説明する。25は目標値設定手段であり、蒸発
器10入り口の冷媒温度の目標値を設定する。26は出
力設定手段であり目標値設定手段で定めた冷媒温度の目
標値と、蒸発温度検出手段23の検出温度が一致するよ
うに電子制御膨張弁9の弁開度を設定する。すなわち、
適当なサンプリング時間毎に蒸発温度検出手段23の検
出温度Tjを読み込み、目標値設定手段25で定めた目
標値Tsとの温度偏差ΔT=Ts−Tjにしたがって、
PI制御、PID制御等によって出力を設定する。例え
ば、PI制御を用いた場合には、実施例1で述べたと同
様に、蒸発温度Tjが上昇すれば弁開度を小とするよう
に作用させれば良いので、弁開度Sと温度偏差ΔTとの
関係式は数式1のようになる。
(Embodiment 2) FIG. 3 is a block diagram of Embodiment 2 of the present invention. In FIG. 3, control means 24 different from the first embodiment
Will be described. Reference numeral 25 is a target value setting means, which sets a target value of the refrigerant temperature at the inlet of the evaporator 10. Reference numeral 26 is an output setting means for setting the valve opening degree of the electronically controlled expansion valve 9 so that the target value of the refrigerant temperature determined by the target value setting means and the temperature detected by the evaporation temperature detection means 23 match. That is,
The detected temperature Tj of the evaporation temperature detecting means 23 is read at every appropriate sampling time, and according to the temperature deviation ΔT = Ts−Tj from the target value Ts determined by the target value setting means 25,
The output is set by PI control, PID control, or the like. For example, when the PI control is used, as in the first embodiment, the valve opening may be made smaller when the evaporation temperature Tj rises. The relational expression with ΔT is as shown in Expression 1.

【0025】 S=K1+K2×ΔT+K3×ΣΔT・・・・・・数式1 ここで、K1、K2、K3はそれぞれ正の定数である。S = K1 + K2 × ΔT + K3 × ΣΔT (Equation 1) Here, K1, K2, and K3 are positive constants.

【0026】上記の構成によれば、蒸発温度の目標値が
固定化される。例えば、冷房運転時には、蒸発器10の
2次側の出口の冷水温度を7℃前後に保つ方式が一般的
にとられているが、7℃の冷水と熱交換するためには、
蒸発器10の一次側の入口温度はこれより低い3〜4℃
前後に保たなければならない。したがって、目標値設定
手段25にこの温度が設定され、温度偏差が生じれば、
弁開度が変化して、常に一定温度が得られるように作用
する。
According to the above arrangement, the target value of the evaporation temperature is fixed. For example, during cooling operation, a system of keeping the cold water temperature at the outlet of the secondary side of the evaporator 10 at around 7 ° C is generally adopted, but in order to exchange heat with the cold water at 7 ° C,
The inlet temperature on the primary side of the evaporator 10 is lower than 3 to 4 ° C.
Must be kept back and forth. Therefore, if this temperature is set in the target value setting means 25 and a temperature deviation occurs,
The valve opening changes so that a constant temperature is always obtained.

【0027】(実施例3)図4は上記各実施例1、2に
用いる電子制御膨張弁7の例を示す。図4においては蒸
発温度検出手段23を電子制御膨張弁9の内部に組み込
んである。図4で、蒸発温度検出手段23は電子制御膨
張弁9内部の出口側流路に接触させており、膨張作用を
受けた直後の冷媒温度の検出が可能である。
(Third Embodiment) FIG. 4 shows an example of the electronically controlled expansion valve 7 used in the first and second embodiments. In FIG. 4, the evaporation temperature detecting means 23 is incorporated inside the electronically controlled expansion valve 9. In FIG. 4, the evaporation temperature detecting means 23 is in contact with the outlet side flow path inside the electronically controlled expansion valve 9, and the refrigerant temperature immediately after being subjected to the expansion action can be detected.

【0028】上記構成によれば、圧力損失、熱損失が極
めて少なくより正確な温度検出が可能となる。なお、こ
の電子制御膨張弁9は以下に述べる各実施例に用いても
よいものである。
With the above arrangement, pressure loss and heat loss are extremely small, and more accurate temperature detection is possible. The electronically controlled expansion valve 9 may be used in each of the embodiments described below.

【0029】(実施例4)図5において実施例1と異な
るのは、冷水循環回路15に冷水温度検出手段27を設
けた点と、制御手段27の構成である。冷水温度検出手
段25は蒸発器10の二次側出口の配管上に備えられい
る。制御手段24は、蒸発温度検出手段23および冷水
温度検出手段27の検出温度に応じて電子制御膨張弁9
の開度を設定する。すなわち、冷水循環回路15の冷水
負荷の大小を冷水温度により推定し、負荷情報を加味し
て電子制御膨張弁9の開度を設定する。負荷に見合った
冷凍能力を発揮するためには、負荷が大きくなるに従っ
て、冷媒循環量を増す必要がある。したがって、同一の
蒸発温度を得るためには、負荷が大きくなるに伴って、
電子制御膨張弁9の開度を大とする必要がある。冷水温
度が高ければ、負荷は大と判定できるので、冷水温度が
高く、蒸発温度が低い時には電子制御膨張弁9の開度は
大、逆に、冷水温度が低く、蒸発温度が高い時には電子
制御膨張弁9の開度は小とすれば良い。よって、制御手
段24は、蒸発温度検出手段23の検出温度と冷水温度
検出手段27の検出温度の組み合わせに対応する電子制
御膨張弁9の開度を記憶しており、適当なサンプリング
時間毎に読み込んだ、両方の温度に対応した出力を電子
制御膨張弁9に出力する。図6では、蒸発温度Tjをパ
ラメータとした、蒸発温度に対する電子制御膨張弁開度
の関係を示す。図6で、Teは冷水温度であり、Te1<
Te2<Te3の関係がある。
(Embodiment 4) FIG. 5 is different from Embodiment 1 in that the cold water circulation circuit 15 is provided with a cold water temperature detecting means 27 and the configuration of the control means 27. The cold water temperature detecting means 25 is provided on the pipe of the secondary outlet of the evaporator 10. The controller 24 controls the electronically controlled expansion valve 9 according to the temperatures detected by the evaporation temperature detector 23 and the cold water temperature detector 27.
Set the opening of. That is, the magnitude of the cold water load of the cold water circulation circuit 15 is estimated from the cold water temperature, and the opening degree of the electronically controlled expansion valve 9 is set in consideration of the load information. In order to exert the refrigerating capacity corresponding to the load, it is necessary to increase the refrigerant circulation amount as the load increases. Therefore, in order to obtain the same evaporation temperature, as the load increases,
It is necessary to increase the opening degree of the electronically controlled expansion valve 9. If the cold water temperature is high, it can be determined that the load is large. Therefore, when the cold water temperature is high and the evaporation temperature is low, the opening degree of the electronically controlled expansion valve 9 is large, and conversely, when the cold water temperature is low and the evaporation temperature is high, electronic control is performed. The opening degree of the expansion valve 9 may be small. Therefore, the control means 24 stores the opening degree of the electronically controlled expansion valve 9 corresponding to the combination of the detected temperature of the evaporation temperature detecting means 23 and the detected temperature of the cold water temperature detecting means 27, and reads it at every appropriate sampling time. However, the output corresponding to both temperatures is output to the electronically controlled expansion valve 9. FIG. 6 shows the relationship between the evaporation temperature and the electronically controlled expansion valve opening with the evaporation temperature Tj as a parameter. In FIG. 6, Te is the cold water temperature, and Te1 <
There is a relationship of Te2 <Te3.

【0030】上記構成によれば、冷水温度の変化に対応
して、適正な弁開度が得られるため、冷水負荷の変動に
影響を受けずに冷媒サイクルの安定化を図ることができ
る。
According to the above construction, since the proper valve opening can be obtained in response to the change of the cold water temperature, the refrigerant cycle can be stabilized without being affected by the change of the cold water load.

【0031】(実施例5)図7において、実施例4と異
なるのは、制御手段24の構成である。目標値設定手段
25は冷水温度検出手段27で検出された冷水温度Te
よりもT1だけ低い温度Ts=Te−T1を蒸発温度の
目標値として設定する。出力設定手段26は蒸発温度検
出手段23の検出温度が目標値Tsに一致するように電
子制御膨張弁8の弁開度を設定する。すなわち、適当な
サンプリング時間毎に蒸発温度検出手段23の検出温度
Tjと冷水温度検出手段25の検出温度を読み込み、目
標値設定手段25で定めた目標値Tsとの温度偏差ΔT
=Ts−Tjにしたがって、PI制御、PID制御等に
よって出力を設定する。例えば、PI制御を用いた場合
には、実施例2で述べた数式1と同様の形で制御式が表
現される。
(Fifth Embodiment) FIG. 7 is different from the fourth embodiment in the configuration of the control means 24. The target value setting means 25 uses the cold water temperature Te detected by the cold water temperature detecting means 27.
The temperature Ts = Te−T1 lower than the temperature T1 by T1 is set as the target value of the evaporation temperature. The output setting means 26 sets the valve opening degree of the electronically controlled expansion valve 8 so that the temperature detected by the evaporation temperature detecting means 23 matches the target value Ts. That is, the temperature deviation ΔT between the detected temperature Tj of the evaporation temperature detecting means 23 and the detected temperature of the cold water temperature detecting means 25 is read at every appropriate sampling time and the target value Ts determined by the target value setting means 25.
The output is set by PI control, PID control, etc. according to = Ts-Tj. For example, when the PI control is used, the control formula is expressed in the same form as the formula 1 described in the second embodiment.

【0032】上記の構成によれば、冷水負荷の変化に伴
って蒸発温度の目標値が変化する。したがって、冷水負
荷の変化時には、冷水循環回路と冷媒回路の温度バラン
スを保ちつつ、徐々に変化に追従するように作用するの
で、冷媒サイクルの安定化を図ることができる。
According to the above arrangement, the target value of the evaporation temperature changes with the change of the cold water load. Therefore, when the chilled water load changes, the chilled water circulation circuit and the refrigerant circuit act to gradually follow the changes while maintaining the temperature balance between the chilled water circulation circuit and the refrigerant circuit, so that the refrigerant cycle can be stabilized.

【0033】(実施例6)図8において実施例1と異な
るのは、第1切り替え弁29および第2切り替え弁30
を備えるとともに、これら切り換え弁の作用により、冷
房時には蒸発器10の2次側回路により室内空調し、暖
房時には、凝縮器8の2次側回路により室内空調を行う
ようにして、冷暖房可能とした点、室外熱交換器22に
外気温検出手段31を設けた点、および制御手段24の
構成である。
(Embodiment 6) The difference from Embodiment 1 in FIG. 8 is that the first switching valve 29 and the second switching valve 30 are different.
With the operation of these switching valves, indoor air conditioning is performed by the secondary side circuit of the evaporator 10 during cooling, and indoor air conditioning is performed by the secondary side circuit of the condenser 8 during heating, thus enabling cooling and heating. The point is that the outdoor heat exchanger 22 is provided with the outside air temperature detection means 31, and the control means 24 is configured.

【0034】暖房運転時には、凝縮器7の2次側で得ら
れた温水は第1切り替え弁29、第1循環ポンプ16を
通り、室内熱交換器18で室内空気と熱交換することに
より室内を暖房し、第2切り替え弁30を通り凝縮器7
へ還る。一方、蒸発器10の2次側で得られた冷水は第
1切り替え弁29、第2循環ポンプ20を通り、室外熱
交換器22で室外空気と熱交換を行った後、蒸発器10
へ還る。暖房運転時に、外気温は−10℃〜10℃程度
まで対応する必要があるが、ヒートポンプ運転を実現す
るためには、蒸発温度は−20℃〜0℃程度の範囲にわ
たって制御する必要がある。すなわち、外気温に見合っ
た高効率の暖房運転を行うには、外気温が低くなるに従
って、電子制御膨張弁の開度を小として、蒸発温度を下
げることが必要である。よって、外気温が高く、蒸発温
度が低い時には電子制御膨張弁9の開度は大、逆に、外
気温が低く、蒸発温度が高い時には電子制御膨張弁9の
開度は小とすれば良い。よって、制御手段24は、蒸発
温度検出手段23の検出温度と外気温検出手段31の検
出温度の組み合わせに対応する電子制御膨張弁9の開度
を記憶しており、適当なサンプリング時間毎に読み込ん
だ、両方の温度に対応した出力を電子制御膨張弁9に出
力する。図9では、外気温Toをパラメータとした蒸発
温度に対する電子制御膨張弁開度の関係を示す。図9
で、Toは外気温であり、To1<To2<To3の関係があ
る。
During the heating operation, the hot water obtained on the secondary side of the condenser 7 passes through the first switching valve 29 and the first circulation pump 16, and the indoor heat exchanger 18 exchanges heat with the indoor air to heat the room. It heats up and it passes through the 2nd switching valve 30 and the condenser 7
Return to. On the other hand, the cold water obtained on the secondary side of the evaporator 10 passes through the first switching valve 29 and the second circulation pump 20, and after exchanging heat with the outdoor air in the outdoor heat exchanger 22, the evaporator 10 is cooled.
Return to. During the heating operation, the outside air temperature needs to correspond to about −10 ° C. to 10 ° C., but in order to realize the heat pump operation, the evaporation temperature needs to be controlled over the range of about −20 ° C. to 0 ° C. That is, in order to perform a highly efficient heating operation commensurate with the outside air temperature, it is necessary to reduce the opening degree of the electronically controlled expansion valve and lower the evaporation temperature as the outside air temperature decreases. Therefore, when the outside air temperature is high and the evaporation temperature is low, the opening degree of the electronically controlled expansion valve 9 is large, and conversely, when the outside air temperature is low and the evaporation temperature is high, the opening degree of the electronically controlled expansion valve 9 may be small. . Therefore, the control means 24 stores the opening degree of the electronically controlled expansion valve 9 corresponding to the combination of the detected temperature of the evaporation temperature detecting means 23 and the detected temperature of the outside air temperature detecting means 31, and reads it at an appropriate sampling time. However, the output corresponding to both temperatures is output to the electronically controlled expansion valve 9. FIG. 9 shows the relationship between the evaporation temperature and the electronically controlled expansion valve opening with the outside air temperature To as a parameter. FIG.
Then, To is the outside temperature, and there is a relationship of To1 <To2 <To3.

【0035】上記構成によれば、暖房運転時には外気温
の変化に対応して、適正な弁開度が得られるため、高効
率のヒートポンプ運転が可能である。
According to the above construction, since the proper valve opening can be obtained in response to the change in the outside air temperature during the heating operation, a highly efficient heat pump operation can be performed.

【0036】(実施例7)図10において、実施例6と
異なるのは、制御手段24の構成である。目標値設定手
段25は外気温手段31で検出された外気温Toよりも
Taだけ低い温度Ts=Te−Taを蒸発温度の目標値とし
て設定する。出力設定手段26は蒸発温度検出手段23
の検出温度が目標値Tsに一致するように電子制御膨張
弁9の弁開度を設定する。すなわち、適当なサンプリン
グ時間毎に蒸発温度検出手段23の検出温度Tjと外気
温検出手段25の検出温度を読み込み、目標値設定手段
25で定めた目標値Tsとの温度偏差ΔT=Ts−To
にしたがって、PI制御、PID制御等によって出力を
設定する。例えば、PI制御を用いた場合には、実施例
2で述べた数式1と同様の形で制御式が表現される。
(Embodiment 7) In FIG. 10, what is different from Embodiment 6 is the configuration of the control means 24. The target value setting means 25 sets a temperature Ts = Te−Ta lower than the outside air temperature To detected by the outside air temperature means 31 by Ta as a target value of the evaporation temperature. The output setting means 26 is the evaporation temperature detecting means 23.
The valve opening degree of the electronically controlled expansion valve 9 is set so that the detected temperature of 1 becomes equal to the target value Ts. That is, the temperature deviation ΔT = Ts−To between the temperature Tj detected by the evaporation temperature detecting means 23 and the temperature detected by the outside air temperature detecting means 25 is read at every appropriate sampling time and the target value Ts determined by the target value setting means 25.
According to the above, the output is set by PI control, PID control, or the like. For example, when the PI control is used, the control formula is expressed in the same form as the formula 1 described in the second embodiment.

【0037】上記構成によれば、暖房運転時には外気温
の変化に対応して、適正な弁開度が得られるため、高効
率のヒートポンプ運転が可能である。
According to the above construction, since the proper valve opening can be obtained in response to the change in the outside air temperature during the heating operation, it is possible to operate the heat pump with high efficiency.

【0038】[0038]

【発明の効果】以上説明したように本発明の吸収式ヒー
トポンプは、蒸発温度検出手段の検出する温度に応じ
て、電子制御膨張弁の開度を制御しているので、きめの
細かい制御が実現できるという効果がある。
As described above, in the absorption heat pump of the present invention, the opening degree of the electronically controlled expansion valve is controlled according to the temperature detected by the evaporation temperature detecting means, so that fine control can be realized. The effect is that you can do it.

【0039】また、冷水温度に応じて、蒸発温度が変化
するので、負荷の変動時であっても安定した動作が実現
できる。
Since the evaporation temperature changes according to the cold water temperature, stable operation can be realized even when the load changes.

【0040】また、暖房運転時には、外気温の変化に応
じて、蒸発温度が変化するので、広範囲な温度変化に対
応して高効率なヒートポンプ運転が可能となる。
Further, during the heating operation, the evaporation temperature changes in accordance with the change in the outside air temperature, so that it is possible to operate the heat pump with high efficiency in response to a wide range of temperature changes.

【0041】また、電子制御膨張弁の筺体内部に蒸発温
度検出手段を設けているので、より正確な蒸発温度の制
御が可能となる。
Further, since the evaporation temperature detecting means is provided inside the housing of the electronically controlled expansion valve, the evaporation temperature can be controlled more accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1における吸収式ヒートポンプ
の構成図
FIG. 1 is a configuration diagram of an absorption heat pump according to a first embodiment of the present invention.

【図2】同実施例1における電子制御膨張弁の断面図FIG. 2 is a sectional view of an electronically controlled expansion valve according to the first embodiment.

【図3】本発明の実施例2における吸収式ヒートポンプ
の構成図
FIG. 3 is a configuration diagram of an absorption heat pump according to a second embodiment of the present invention.

【図4】本発明の実施例3における電子制御膨張弁の断
面図
FIG. 4 is a sectional view of an electronically controlled expansion valve according to a third embodiment of the present invention.

【図5】本発明の実施例4における吸収式ヒートポンプ
の構成図
FIG. 5 is a configuration diagram of an absorption heat pump according to a fourth embodiment of the present invention.

【図6】同実施例4における温度検出手段と電子制御膨
張弁の開度の関係図
FIG. 6 is a relational diagram of the temperature detection means and the opening degree of the electronically controlled expansion valve in the fourth embodiment.

【図7】本発明の実施例5における吸収式ヒートポンプ
の構成図
FIG. 7 is a configuration diagram of an absorption heat pump according to a fifth embodiment of the present invention.

【図8】本発明の実施例6における吸収式ヒートポンプ
の構成図
FIG. 8 is a configuration diagram of an absorption heat pump according to a sixth embodiment of the present invention.

【図9】同実施例6における温度検出手段と電子制御膨
張弁の開度の関係図
FIG. 9 is a relationship diagram between the temperature detection means and the opening degree of the electronically controlled expansion valve in the sixth embodiment.

【図10】本発明の実施例7における吸収式ヒートポン
プの構成図
FIG. 10 is a configuration diagram of an absorption heat pump according to a seventh embodiment of the present invention.

【図11】従来の吸収式ヒートポンプを示す構成図FIG. 11 is a configuration diagram showing a conventional absorption heat pump.

【図12】従来の膨張弁を示す断面図FIG. 12 is a sectional view showing a conventional expansion valve.

【符号の説明】[Explanation of symbols]

4 冷媒回路 5 再生器 6 精溜器 7 凝縮器 9 電子制御膨張弁 10 蒸発器 11 吸収器 12 溶液ポンプ 15 冷水循環回路 19 温水循環回路 23 蒸発温度検出手段 24 制御手段 4 Refrigerant circuit 5 Regenerator 6 Rectifier 7 Condenser 9 Electronically controlled expansion valve 10 Evaporator 11 Absorber 12 Solution pump 15 Cold water circulation circuit 19 Hot water circulation circuit 23 Evaporation temperature detection means 24 Control means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 近藤 正満 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 澤田 敬 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Masamitsu Kondo 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Takashi Sawada 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】再生器と、精溜器と、凝縮器と、膨張弁
と、蒸発器の一次側と、吸収器と、溶液ポンプとを配管
接続してなる冷媒回路と、前記蒸発器の二次側に形成さ
れる冷水循環回路と、前記凝縮器の二次側に形成される
温水循環回路と、前記蒸発器入り口の冷媒温度を検出す
る蒸発温度検出手段と、前記蒸発温度検出手段の検出温
度に応じて前記電子制御膨張弁の開度を制御する制御手
段を有する吸収式ヒートポンプ。
1. A refrigerant circuit comprising a regenerator, a rectifier, a condenser, an expansion valve, a primary side of an evaporator, an absorber, and a solution pump connected by piping, and the evaporator. A cold water circulation circuit formed on the secondary side, a hot water circulation circuit formed on the secondary side of the condenser, an evaporation temperature detecting means for detecting the refrigerant temperature at the evaporator inlet, and an evaporation temperature detecting means. An absorption heat pump having control means for controlling the opening of the electronically controlled expansion valve according to the detected temperature.
【請求項2】制御手段は、蒸発温度の目標値を設定する
目標値設定手段と、蒸発温度検出手段の検出温度が前記
目標値設定手段の定める目標値と一致するように前記電
子制御膨張弁に電気信号を出力する出力設定手段を有す
る請求項1記載の吸収式ヒートポンプ。
2. The control means comprises a target value setting means for setting a target value of the evaporation temperature, and the electronically controlled expansion valve so that the temperature detected by the evaporation temperature detecting means coincides with the target value set by the target value setting means. The absorption heat pump according to claim 1, further comprising an output setting unit configured to output an electric signal.
【請求項3】再生器と、精溜器と、凝縮器と、膨張弁
と、蒸発器の一次側と、吸収器と、溶液ポンプとを配管
接続してなる冷媒回路と、前記蒸発器の二次側に形成さ
れる冷水循環回路と、前記凝縮器の二次側に形成される
温水循環回路と、前記蒸発器入り口の冷媒温度を検出す
る蒸発温度検出手段と、前記冷水循環回路の冷水温度を
検出する冷水温度検出手段と、前記蒸発温度検出手段お
よび前記冷水温度検出手段の検出温度に応じて前記電子
制御膨張弁の開度を制御する制御手段を有する吸収式ヒ
ートポンプ。
3. A refrigerant circuit comprising a regenerator, a rectifier, a condenser, an expansion valve, a primary side of an evaporator, an absorber, and a solution pump connected in a pipe, and the evaporator. Cold water circulation circuit formed on the secondary side, hot water circulation circuit formed on the secondary side of the condenser, evaporation temperature detection means for detecting the refrigerant temperature of the evaporator inlet, cold water of the cold water circulation circuit An absorption heat pump comprising: a chilled water temperature detecting means for detecting a temperature; and a control means for controlling an opening degree of the electronically controlled expansion valve according to detected temperatures of the evaporation temperature detecting means and the chilled water temperature detecting means.
【請求項4】制御手段は冷水温度検出手段の検出温度よ
り予め定められた値だけ低い温度を目標値として設定す
る目標値設定手段と、蒸発温度検出手段の検出温度が前
記目標値設定手段の定める目標値と一致するように電子
膨張弁に電気信号を出力する出力設定手段を有する請求
項3記載の吸収式ヒートポンプ。
4. The control means sets a target value setting means for setting a temperature lower than the detection temperature of the cold water temperature detection means by a predetermined value as a target value, and the detection temperature of the evaporation temperature detection means is set to the target value setting means. 4. The absorption heat pump according to claim 3, further comprising output setting means for outputting an electric signal to the electronic expansion valve so as to match the set target value.
【請求項5】再生器と、精溜器と、凝縮器と、膨張弁
と、蒸発器の一次側と、吸収器と、溶液ポンプとを配管
接続してなる冷媒回路と、前記蒸発器の二次側に形成さ
れる冷水循環回路と、前記凝縮器の二次側に形成される
温水循環回路と、前記蒸発器入り口の冷媒温度を検出す
る蒸発温度検出手段と、外気温を検出する外気温検出手
段と、暖房時には前記温水循環回路、冷房時には前記冷
水循環回路により室内空調を行うように切り替える切り
替え手段と、暖房時には前記蒸発温度検出手段および前
記外気温検出手段の検出温度に応じて前記電子制御膨張
弁の開度を制御する制御手段を有する吸収式ヒートポン
プ。
5. A refrigerant circuit in which a regenerator, a rectifier, a condenser, an expansion valve, a primary side of an evaporator, an absorber, and a solution pump are connected by piping, and the evaporator. A cold water circulation circuit formed on the secondary side, a hot water circulation circuit formed on the secondary side of the condenser, evaporation temperature detection means for detecting the refrigerant temperature at the evaporator inlet, and an outside for detecting the outside air temperature. An air temperature detecting means, a switching means for switching to perform indoor air conditioning by the hot water circulation circuit during heating, and a chilled water circulation circuit during cooling, and during heating, depending on the temperatures detected by the evaporation temperature detecting means and the outside air temperature detecting means. An absorption heat pump having a control means for controlling the opening degree of an electronically controlled expansion valve.
【請求項6】制御手段は外気温検出手段の検出温度より
予め定められた値だけ低い温度を目標値として設定する
目標値設定手段と、蒸発温度検出手段の検出温度が前記
目標値設定手段と一致するように電子膨張弁に電気信号
を出力する出力設定手段を有する請求項5記載の吸収式
ヒートポンプ。
6. The control means comprises a target value setting means for setting a temperature lower than the temperature detected by the outside air temperature detecting means by a predetermined value as a target value, and the temperature detected by the evaporation temperature detecting means is the target value setting means. The absorption heat pump according to claim 5, further comprising output setting means for outputting an electric signal to the electronic expansion valves so as to coincide with each other.
【請求項7】膨張弁は筺体内部に蒸発温度検出手段を組
みんだことを特徴とする請求項1、3または5記載の吸
収式ヒートポンプ。
7. The absorption heat pump according to claim 1, wherein the expansion valve has an evaporation temperature detecting means incorporated inside the housing.
JP8041601A 1996-02-28 1996-02-28 Absorption type heat pump Pending JPH09236354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8041601A JPH09236354A (en) 1996-02-28 1996-02-28 Absorption type heat pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8041601A JPH09236354A (en) 1996-02-28 1996-02-28 Absorption type heat pump

Publications (1)

Publication Number Publication Date
JPH09236354A true JPH09236354A (en) 1997-09-09

Family

ID=12612914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8041601A Pending JPH09236354A (en) 1996-02-28 1996-02-28 Absorption type heat pump

Country Status (1)

Country Link
JP (1) JPH09236354A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024944A (en) * 2007-07-20 2009-02-05 Yazaki Corp Absorption type water cooling and heating apparatus
WO2023287368A1 (en) * 2021-07-16 2023-01-19 Muanchart Mankaew Equipment and processes for temperature stabilization

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024944A (en) * 2007-07-20 2009-02-05 Yazaki Corp Absorption type water cooling and heating apparatus
WO2023287368A1 (en) * 2021-07-16 2023-01-19 Muanchart Mankaew Equipment and processes for temperature stabilization

Similar Documents

Publication Publication Date Title
US6460358B1 (en) Flash gas and superheat eliminator for evaporators and method therefor
US4471630A (en) Cooling system having combination of compression and absorption type units
US4569207A (en) Heat pump heating and cooling system
JP2006283989A (en) Cooling/heating system
EP1329677B1 (en) Transcritical vapor compression system
JP2009236403A (en) Geothermal use heat pump device
US6631624B1 (en) Phase-change heat transfer coupling for aqua-ammonia absorption systems
JPH09236354A (en) Absorption type heat pump
JPS60219114A (en) Air conditioner for automobile
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JP2009281631A (en) Heat pump unit
JP3159038B2 (en) Absorption heat pump
JPH06272978A (en) Air conditioner
JPH04236062A (en) Air conditioner
JPH09243198A (en) Absorption type heat pump
JPH09145175A (en) Air conditioner
JP3429905B2 (en) Absorption refrigerator
JP3202157B2 (en) Air conditioner
JP2023064264A (en) air conditioner
JP3429904B2 (en) Absorption refrigerator
JP3281438B2 (en) Air conditioner
KR20050093645A (en) Heating cycle of a heat pump-type heating and cooling device
JPH05264123A (en) Cooling system
JPS58182069A (en) Heat pump type air-conditioning hot-water supply device
JPH07151425A (en) Refrigerator