JPH09145175A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH09145175A
JPH09145175A JP33106195A JP33106195A JPH09145175A JP H09145175 A JPH09145175 A JP H09145175A JP 33106195 A JP33106195 A JP 33106195A JP 33106195 A JP33106195 A JP 33106195A JP H09145175 A JPH09145175 A JP H09145175A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
temperature
compressor
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33106195A
Other languages
Japanese (ja)
Inventor
Takaharu Miya
隆治 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP33106195A priority Critical patent/JPH09145175A/en
Publication of JPH09145175A publication Critical patent/JPH09145175A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively use an evaporator and improve the efficiency of the evaporator by correcting the pressure loss value of the evaporator. SOLUTION: An air conditioner comprises a capacity variable compressor 16, and evaporators 18 and 20 so as to set a target degree of superheating SHtgt and control the degree of superheating of the evaporators 18 and 20. The air conditioner further comprises a control means 100 for changing the target degree of superheating SHtgt depending on the output (horse power) of the compressor 16.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、能力可変の圧縮機
と蒸発器とを有し、目標過熱度を設定して蒸発器の過熱
度を制御する空気調和機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner which has a compressor with variable capacity and an evaporator and which sets a target superheat degree to control the superheat degree of the evaporator.

【0002】[0002]

【従来の技術】従来において、空気調和機では、効率の
良い圧縮機の運転を行なうために、また、冷房運転時に
蒸発器として作用する室内熱交換器を効率よく利用する
ために、電動膨張弁の開度を制御することにより、蒸発
器として作用する室内熱交換器の過熱度制御(冷媒の流
量制御)を行なうようにしている。
2. Description of the Related Art Conventionally, in an air conditioner, an electric expansion valve is used to efficiently operate a compressor and to efficiently use an indoor heat exchanger that functions as an evaporator during cooling operation. The degree of superheat of the indoor heat exchanger that functions as an evaporator is controlled (the flow rate of the refrigerant is controlled) by controlling the opening degree of the.

【0003】[0003]

【発明が解決しようとする課題】以上の制御にあって
は、目標過熱度が設定されるが、圧縮機の運転馬力(冷
媒の循環量に相当)が大きくなれば蒸発器における冷媒
の圧損の増大は避けられず、冷媒回路における冷媒の循
環量の変化、即ち圧縮機の運転馬力の変化により、蒸発
器における冷媒の圧損値が変化するので、設定された目
標過熱度に従って制御すると、蒸発器を効率よく利用で
きなくなるという問題がある。
In the above control, the target degree of superheat is set, but if the operating horsepower of the compressor (corresponding to the circulation amount of the refrigerant) is large, the pressure loss of the refrigerant in the evaporator is reduced. The increase is inevitable, and the pressure loss value of the refrigerant in the evaporator changes due to a change in the refrigerant circulation amount in the refrigerant circuit, that is, a change in the operating horsepower of the compressor. There is a problem that can not be used efficiently.

【0004】そこで、本発明は上記の課題を解消し、蒸
発器の圧損値を補正することにより、蒸発器の有効な利
用を図って、蒸発器の効率を上げることができる空気調
和機を提供することを目的としている。
Therefore, the present invention solves the above problems and provides an air conditioner capable of improving the efficiency of the evaporator by correcting the pressure loss value of the evaporator to effectively use the evaporator. The purpose is to do.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の発明
は、能力可変の圧縮機と蒸発器とを有し、目標過熱度を
設定して蒸発器の過熱度を制御する空気調和機におい
て、前記圧縮機の出力に応じて前記目標過熱度を変化さ
せる制御手段を有するものである。
The invention according to claim 1 is an air conditioner having a compressor and an evaporator with variable capacity, and setting a target superheat degree to control the superheat degree of the evaporator. , And a control means for changing the target degree of superheat according to the output of the compressor.

【0006】これによれば、圧縮機の出力に応じて目標
過熱度を変化させる制御手段を有するので、制御手段
は、圧縮機の出力に応じて蒸発器における冷媒の圧損を
補正する形で、目標過熱度(蒸発器の出入口の温度差)
を変化させることで、蒸発器における冷媒の過熱を防い
で有効利用をして、効率の向上と冷媒の吐出温度の低減
等を図ることができる。
According to this, since it has the control means for changing the target degree of superheat according to the output of the compressor, the control means corrects the pressure loss of the refrigerant in the evaporator according to the output of the compressor. Target superheat (temperature difference between the inlet and outlet of the evaporator)
By changing the above, it is possible to prevent the refrigerant from overheating in the evaporator and effectively utilize it, thereby improving efficiency and reducing the discharge temperature of the refrigerant.

【0007】請求項2に記載の発明は、能力可変の圧縮
機と蒸発器とを有し、目標過熱度を設定して蒸発器の過
熱度を制御する空気調和機において、目標過熱度は蒸発
器への冷媒の入口の温度と蒸発器からの冷媒の出口の温
度の差から得て、圧縮機の出力に応じて目標過熱度を変
化させる制御手段を有するものである。
According to a second aspect of the present invention, in an air conditioner that has a compressor with variable capacity and an evaporator, and sets a target superheat degree to control the superheat degree of the evaporator, the target superheat degree evaporates. The control unit has a control unit that obtains the difference between the temperature of the refrigerant inlet to the compressor and the temperature of the refrigerant outlet from the evaporator, and changes the target superheat degree according to the output of the compressor.

【0008】これによれば、目標過熱度は蒸発器への冷
媒の入口の温度と蒸発器からの冷媒の出口の温度の差か
ら得て、圧縮機の出力に応じて目標過熱度を変化させる
制御手段を有するので、制御手段は、蒸発器への冷媒の
入口の温度と蒸発器からの冷媒の出口の温度の差の情報
に基づいて、圧縮機の出力に応じて蒸発器における冷媒
の圧損を補正する形で、目標過熱度(蒸発器の出入口の
温度差)を変化させることで、蒸発器における冷媒の過
熱を防いで有効利用をして、効率の向上と冷媒の吐出温
度の低減等を図ることができる。
According to this, the target superheat degree is obtained from the difference between the temperature of the refrigerant inlet to the evaporator and the temperature of the refrigerant outlet from the evaporator, and the target superheat degree is changed according to the output of the compressor. Since the control means has the control means, based on the information on the difference between the temperature of the refrigerant inlet to the evaporator and the temperature of the refrigerant outlet from the evaporator, the pressure loss of the refrigerant in the evaporator depends on the output of the compressor. By changing the target superheat degree (the temperature difference between the inlet and outlet of the evaporator) in a form that compensates for the above, the refrigerant is prevented from overheating in the evaporator and is effectively used to improve efficiency and reduce the discharge temperature of the refrigerant. Can be achieved.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を添付
図面に基づいて説明する。図1は本発明の実施の形態の
空気調和機の冷媒回路を示している。図1の冷媒回路
は、室外ユニット10と複数の室内ユニット12、14
を有しており、圧縮機16、並列に配置された室内熱交
換器18,20,室外熱交換器24、そして四方弁26
が、この順に配置されており、空気調和機の冷媒回路で
は、暖房運転時にはこの順序で冷媒が循環し、冷房運転
時には逆の順序で冷媒が循環する。室内熱交換器18,
20と室外熱交換器24は、それぞれファンを備えてお
り、室内空気又は室外空気と熱交換する。室外熱交換器
24は、冷房運転時には凝縮器として、暖房運転時には
蒸発器としてそれぞれ作用し、室内熱交換器18,20
は、冷房運転時には蒸発器として、暖房運転時には凝縮
器としてそれぞれ作用する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a refrigerant circuit of an air conditioner according to an embodiment of the present invention. The refrigerant circuit of FIG. 1 includes an outdoor unit 10 and a plurality of indoor units 12, 14
And a compressor 16, indoor heat exchangers 18, 20 arranged in parallel, an outdoor heat exchanger 24, and a four-way valve 26.
However, they are arranged in this order, and in the refrigerant circuit of the air conditioner, the refrigerant circulates in this order during the heating operation, and in the reverse order during the cooling operation. Indoor heat exchanger 18,
The 20 and the outdoor heat exchanger 24 each include a fan, and exchange heat with the indoor air or the outdoor air. The outdoor heat exchanger 24 functions as a condenser during the cooling operation and as an evaporator during the heating operation.
Acts as an evaporator during cooling operation and as a condenser during heating operation.

【0010】室外熱交換器24は、その内部のコイルの
温度を測定する温度センサS1と、室外熱交換器24の
冷房運転時の冷媒液出口側における冷媒液の温度を測定
する温度センサS2とを備える。
The outdoor heat exchanger 24 includes a temperature sensor S1 for measuring the temperature of the coil inside the outdoor heat exchanger 24, and a temperature sensor S2 for measuring the temperature of the refrigerant liquid at the refrigerant liquid outlet side during the cooling operation of the outdoor heat exchanger 24. Equipped with.

【0011】室内熱交換器18は、室内熱交換器18の
冷房運転時の冷媒出口側における冷媒の温度を測定する
温度センサE3と、その内部のコイルの温度を測定する
温度センサE2と、室内熱交換器18の冷房運転時の冷
媒入口側における冷媒の温度を測定する温度センサE1
とを備える。
The indoor heat exchanger 18 includes a temperature sensor E3 for measuring the temperature of the refrigerant on the refrigerant outlet side during the cooling operation of the indoor heat exchanger 18, a temperature sensor E2 for measuring the temperature of the coil inside the indoor heat exchanger 18, and Temperature sensor E1 for measuring the temperature of the refrigerant at the refrigerant inlet side during the cooling operation of the heat exchanger 18.
And

【0012】同様にして、室内熱交換器20は、室内熱
交換器20の冷房運転時の冷媒出口側における冷媒の温
度を測定する温度センサE3と、その内部のコイルの温
度を測定する温度センサE2と、室内熱交換器20の冷
房運転時の冷媒入口側における冷媒の温度を測定する温
度センサE1とを備える。
Similarly, the indoor heat exchanger 20 includes a temperature sensor E3 for measuring the temperature of the refrigerant at the refrigerant outlet side of the indoor heat exchanger 20 during the cooling operation of the indoor heat exchanger 20, and a temperature sensor for measuring the temperature of the coil therein. E2 and a temperature sensor E1 for measuring the temperature of the refrigerant at the refrigerant inlet side during the cooling operation of the indoor heat exchanger 20 are provided.

【0013】室内熱交換器18は、冷房運転時の冷媒入
口側に電動膨張弁30を備えており、この電動膨張弁3
0はモータ34によりその開閉度合いを調整できる。同
様にして、室内熱交換器20は、冷房運転時の冷媒入口
側に電動膨張弁32を備えており、この電動膨張弁32
はモータ36によりその開閉度合いを調整できる。
The indoor heat exchanger 18 is equipped with an electric expansion valve 30 on the refrigerant inlet side during the cooling operation.
0 can adjust the degree of opening and closing by the motor 34. Similarly, the indoor heat exchanger 20 includes an electric expansion valve 32 on the refrigerant inlet side during the cooling operation.
The degree of opening and closing can be adjusted by the motor 36.

【0014】制御手段100は、能力可変の圧縮機16
に接続されており、この圧縮機16における運転能力に
関する信号を得ることができる。制御手段100は、目
標過熱度を設定して蒸発器の過熱度を制御する際に、圧
縮機16の出力の大きさに応じて、目標過熱度を変化さ
せることができるように、室内膨張弁である電動膨張弁
30,32の開閉度合いをそれぞれ制御する。つまり、
制御手段100は、温度センサS1,S2,E1,E
2,E3からの各部の温度情報に基づいて、モータ3
4,36に指令を与えて、電動膨張弁30,32の開閉
度合いを制御可能である。
The control means 100 is a compressor 16 with variable capacity.
, And can obtain a signal relating to the operating capacity of the compressor 16. The control means 100 sets the target superheat degree and controls the superheat degree of the evaporator so that the target superheat degree can be changed according to the output of the compressor 16. The degree of opening and closing of the electric expansion valves 30 and 32, which are That is,
The control means 100 includes temperature sensors S1, S2, E1, E
2, based on the temperature information of each part from E3, the motor 3
It is possible to control the opening / closing degree of the electric expansion valves 30 and 32 by giving a command to the motors 4 and 36.

【0015】次に、上記実施の形態の動作を、冷房運転
時に着目して説明する。図1の冷媒回路において、冷房
運転時には、四方弁26が図1の破線で示すように切り
換わり、圧縮機16、、四方弁26、室外熱交換器2
4、電動膨張弁30,32、室内熱交換器18,20の
順序で冷媒が循環される。
Next, the operation of the above embodiment will be described focusing on the cooling operation. In the refrigerant circuit of FIG. 1, during cooling operation, the four-way valve 26 switches as shown by the broken line in FIG. 1, and the compressor 16, the four-way valve 26, and the outdoor heat exchanger 2
4, the refrigerant is circulated in the order of the electric expansion valves 30, 32 and the indoor heat exchangers 18, 20.

【0016】圧縮機16からの冷媒は、凝縮器として作
用する室外熱交換器24により室外空気が熱交換され
て、そして冷媒は電動膨張弁30,32を通り、蒸発器
として作用する室内熱交換器18,20を通る冷媒は気
化されることから室内空気から熱をくみ上げて各室内を
冷房する。
The refrigerant from the compressor 16 is heat-exchanged with the outdoor air by the outdoor heat exchanger 24 acting as a condenser, and the refrigerant passes through the electric expansion valves 30 and 32, and the indoor heat exchange acting as an evaporator. Since the refrigerant passing through the containers 18 and 20 is vaporized, heat is drawn from room air to cool each room.

【0017】図2は、図1の冷媒回路におけるモリエル
線図を示している。
FIG. 2 shows a Mollier diagram in the refrigerant circuit of FIG.

【0018】図2のモリエル線図の圧縮工程は、圧縮機
16の冷媒の吸込口(図1の部分)と冷媒の吐出口
(部分)で示し、凝縮工程は、圧縮機16の冷媒の吐
出口(部分)と凝縮器(室外熱交換器24)(部分
)とこの凝縮器の出口(部分)である。そして、膨
張工程は、凝縮器の出口(部分)と蒸発器(室内熱交
換器18,20)の入口(部分)で示し、蒸発工程
は、蒸発器の入口(部分)とこの蒸発器(部分)と
圧縮機16の冷媒の吸込口(部分)である。図4の蒸
発工程における’は、蒸発器(室内熱交換器18,2
0)内の冷媒が過熱している状態であり、その過熱度を
SHで示している。
The compression process of the Mollier diagram of FIG. 2 is indicated by the refrigerant suction port (portion in FIG. 1) and the refrigerant discharge port (portion) of the compressor 16, and the condensation process is performed by the refrigerant discharge port of the compressor 16. An outlet (part), a condenser (outdoor heat exchanger 24) (part), and an outlet (part) of this condenser. The expansion step is indicated by the outlet (part) of the condenser and the inlet (part) of the evaporator (indoor heat exchanger 18, 20), and the evaporation step is indicated by the inlet (part) of the evaporator and this evaporator (part). ) And a suction port (portion) for the refrigerant of the compressor 16. In the evaporation process of FIG. 4, 'is an evaporator (indoor heat exchanger 18, 2
The refrigerant in 0) is overheated, and the degree of superheat is indicated by SH.

【0019】次に、図3に基づいて、図1の空気調和機
の冷媒回路の冷房運転時における蒸発器(室内熱交換器
18,20)の電動膨張弁30,32の過熱度制御動作
を説明する。冷房運転時には、制御手段100が電動膨
張弁30,32のモータ34,36を制御して、蒸発器
(室内熱交換器18,20)の過熱度制御を行うため
に、室内電動膨張弁30,32の開閉度合いを次のよう
にして調整する。
Next, based on FIG. 3, the superheat degree control operation of the electric expansion valves 30, 32 of the evaporator (indoor heat exchanger 18, 20) during the cooling operation of the refrigerant circuit of the air conditioner of FIG. 1 will be described. explain. During the cooling operation, the control unit 100 controls the motors 34 and 36 of the electric expansion valves 30 and 32 to control the superheat degree of the evaporator (the indoor heat exchangers 18 and 20). The opening / closing degree of 32 is adjusted as follows.

【0020】まず、制御手段100は、目標過熱度(S
Htgt)を、図4のテーブルに基づいて設定する(ス
テップSP1)。
First, the control means 100 controls the target superheat degree (S
Htgt) is set based on the table of FIG. 4 (step SP1).

【0021】このテーブルは、圧縮機16の能力(馬
力)と目標過熱度(SHtgt)の値の対応を示してい
る。つまり、制御手段100は、テーブルを参照して圧
縮機16の能力(馬力)の値に応じて、目標過熱度(S
Htgt)の値を設定することができる。例えば圧縮機
16が3乃至4馬力の時には、制御手段100はテーブ
ルに応じて目標過熱度を4°Cに設定する。
This table shows the correspondence between the capacity (horsepower) of the compressor 16 and the value of the target superheat degree (SHtgt). That is, the control means 100 refers to the table and determines the target superheat degree (S) according to the value of the capacity (horsepower) of the compressor 16.
Htgt) value can be set. For example, when the compressor 16 has 3 to 4 horsepower, the control means 100 sets the target superheat degree to 4 ° C according to the table.

【0022】図1の冷媒回路が冷房運転時において、室
内熱交換器18,20の温度センサE3の測定温度と温
度センサE1の測定温度の温度差ΔTを得て、この温度
差ΔTが目標過熱度(SHtgt)の値よりも大きいか
どうかを比較する(図3のステップSP2)。温度差Δ
Tが目標過熱度(SHtgt)の値よりも大きい場合に
は(ステップSP2)、制御手段100が電動膨張弁3
0,32を開ける指令をする動作に移る(ステップSP
3)。
When the refrigerant circuit of FIG. 1 is in the cooling operation, the temperature difference ΔT between the temperature measured by the temperature sensor E3 of the indoor heat exchangers 18, 20 and the temperature measured by the temperature sensor E1 is obtained, and this temperature difference ΔT is the target overheat. It is compared whether the value is greater than the value of the degree (SHtgt) (step SP2 in FIG. 3). Temperature difference Δ
When T is larger than the value of the target superheat degree (SHtgt) (step SP2), the control means 100 causes the electric expansion valve 3 to operate.
Move on to an operation for instructing to open 0, 32 (step SP
3).

【0023】温度差ΔTが目標過熱度(SHtgt)の
値と同じか小さい場合にはステップSP4に移り、温度
差ΔTが目標過熱度(SHtgt)の値が同じであれ
ば、制御手段100が電動膨張弁30,32の開閉度合
いを現状維持する(ステップSP5)。そうでなく、温
度差ΔTが目標過熱度(SHtgt)の値と異なれば、
制御手段100が、電動膨張弁30,32を閉める指令
をする動作に移る(ステップSP6)。ステップSP
3,SP5あるいはステップSP6に至ると、ステップ
SP7で示すように制御手段100が電動膨張弁30,
32のモータ34,36に対して、電動膨張弁30,3
2の開閉度合いを設定するためのパルス増加分(減少
分)を設定する。
If the temperature difference ΔT is equal to or smaller than the target superheat degree (SHtgt), the process proceeds to step SP4. If the temperature difference ΔT has the same target superheat degree (SHtgt), the control means 100 is electrically operated. The opening / closing degree of the expansion valves 30 and 32 is currently maintained (step SP5). Otherwise, if the temperature difference ΔT is different from the value of the target superheat degree (SHtgt),
The control means 100 moves to an operation of issuing a command to close the electric expansion valves 30 and 32 (step SP6). Step SP
3, SP5 or step SP6, the control means 100, as shown in step SP7, the electric expansion valve 30,
For the motors 34, 36 of 32, the electric expansion valves 30, 3
The pulse increase amount (decrease amount) for setting the opening / closing degree of 2 is set.

【0024】このように、制御手段100は、圧縮機1
6の現状の能力(馬力)の大きさに応じて、温度センサ
E1,E3からの測定温度に基づいて、室内膨張弁3
0,32の開閉を制御することにより、蒸発器(18,
20)の過熱度制御を行うので、蒸発器の過熱を回避す
ることができる。つまり、制御手段100は、圧縮機1
6の現状の能力に応じて過渡の過熱運転を防止して、蒸
発器を効率良く運転することができ、しかも蒸発器から
吐出される冷媒の吐出温度の上昇を抑制することができ
る。
As described above, the control means 100 controls the compressor 1
The indoor expansion valve 3 based on the temperature measured by the temperature sensors E1 and E3 according to the current capacity (horsepower) of No. 6
By controlling the opening and closing of 0, 32, the evaporator (18,
Since the superheat degree control of 20) is performed, overheating of the evaporator can be avoided. In other words, the control means 100 is the compressor 1
According to the current capacity of No. 6, transient overheat operation can be prevented, the evaporator can be operated efficiently, and the rise of the discharge temperature of the refrigerant discharged from the evaporator can be suppressed.

【0025】次に、図5〜図8を参照し、目標過熱度S
Htgtと実際の過熱度SHとの差を実際の数値例を挙
げて説明する。
Next, referring to FIGS. 5 to 8, the target superheat S
The difference between Htgt and the actual superheat degree SH will be described with reference to actual numerical examples.

【0026】図5は、理論サイクルを有するモリエル線
図を示す。蒸発器の圧損がもし無ければ、圧縮機16の
能力(馬力、冷媒循環量に対応)が変化したとしても、
実際の過熱度SHと目標過熱度とは常に一定である。例
えば、図1の温度センサE3の測定温度と温度センサE
1の測定温度の温度差ΔT(目標過熱度SHtgt)が
1°Cで、実際の過熱度SH(スーパーヒート)も等温
線を参照すると1°Cとなり同じである。
FIG. 5 shows a Mollier diagram with a theoretical cycle. If there is no pressure drop in the evaporator, even if the capacity of the compressor 16 (corresponding to horsepower and refrigerant circulation amount) changes,
The actual superheat degree SH and the target superheat degree are always constant. For example, the measured temperature of the temperature sensor E3 of FIG.
The temperature difference ΔT (target superheat degree SHtgt) of the measured temperature of 1 is 1 ° C, and the actual superheat degree SH (superheat) is also 1 ° C with reference to the isotherm, which is the same.

【0027】しかしながら、実際には蒸発器の圧損が無
いことは有り得ない。蒸発器の圧損があったとしても、
例えば、図6に示すように、圧縮機16の能力が低い場
合には、蒸発器での圧損は小さいので、目標過熱度SH
tgt(温度差ΔT)を4°Cと設定したとしても、図
1の温度センサE3の測定温度は(5°C+4°C=9
°C)、温度センサE1の測定温度は5°Cとなり、実
際の過熱度SHは(9°C−5°C)で5°Cとなる。
この程度の差であれば、実際の過熱度SHと目標過熱度
とはほぼ等しいと見做すことができるので、実用上は差
支えない。
However, in reality, it is impossible that there is no pressure loss in the evaporator. Even if there is a pressure drop in the evaporator,
For example, as shown in FIG. 6, when the capacity of the compressor 16 is low, the pressure loss in the evaporator is small, so the target superheat degree SH
Even if tgt (temperature difference ΔT) is set to 4 ° C, the temperature measured by the temperature sensor E3 in FIG. 1 is (5 ° C + 4 ° C = 9).
° C), the temperature measured by the temperature sensor E1 is 5 ° C, and the actual superheat degree SH is 5 ° C at (9 ° C-5 ° C).
With such a difference, it can be considered that the actual superheat degree SH and the target superheat degree are substantially equal to each other, and therefore there is no practical problem.

【0028】しかしながら、図7のように圧縮機16の
能力が高い場合には蒸発器での圧損は大きくなり、目標
過熱度SHtgtを4°Cと設定したとしても、図1の
温度センサE3の測定温度は(5°C+4°C=9°
C)、温度センサE3の飽和温度は1°Cとなり、実際
の過熱度SHは(9°C−1°C)で8°Cとなってし
まう。これでは、蒸発器における過熱度が大きくなりす
ぎて、蒸発器における冷媒の吐出温度が図7のように例
えば120°Cまで上がってしまう。
However, when the capacity of the compressor 16 is high as shown in FIG. 7, the pressure loss in the evaporator becomes large, and even if the target superheat degree SHtgt is set to 4 ° C., the temperature sensor E3 of FIG. The measurement temperature is (5 ° C + 4 ° C = 9 °
C), the saturation temperature of the temperature sensor E3 is 1 ° C, and the actual degree of superheat SH is 8 ° C at (9 ° C-1 ° C). In this case, the superheat degree in the evaporator becomes too large, and the discharge temperature of the refrigerant in the evaporator rises to, for example, 120 ° C. as shown in FIG. 7.

【0029】このような場合に、この実施の形態によれ
ば、図8のように目標過熱度SHtgtを補正して、S
Htgt=1°Cと小さく設定する。これによれば、実
際の過熱度SHを(6°C−1°C)で5°Cに低下さ
せることができるので、蒸発器における過熱度が小さく
なり、蒸発器における冷媒の吐出温度を、図8のよう
に、例えば100°Cまで低下させることができ、蒸発
器を効率よく動作させることができる。
In such a case, according to this embodiment, the target superheat degree SHtgt is corrected as shown in FIG.
Set as small as Htgt = 1 ° C. According to this, since the actual superheat degree SH can be lowered to 5 ° C at (6 ° C-1 ° C), the superheat degree in the evaporator becomes small, and the discharge temperature of the refrigerant in the evaporator becomes As shown in FIG. 8, the temperature can be lowered to 100 ° C., for example, and the evaporator can be operated efficiently.

【0030】本発明は、特許請求の範囲を逸脱しない範
囲で種々の変形をすることができる。例えば、1つの室
外ユニットに2つの室内ユニットを接続しているが、1
つの室外ユニットに1つあるいは3つ以上の室内ユニッ
トを接続するか、あるいは複数の室外ユニットに複数の
室内ユニットを接続するようにしても、同様の効果を得
ることができる。
The present invention can be variously modified without departing from the scope of the claims. For example, if two indoor units are connected to one outdoor unit,
Similar effects can be obtained by connecting one or three or more indoor units to one outdoor unit or connecting a plurality of indoor units to a plurality of outdoor units.

【0031】[0031]

【発明の効果】以上説明したように、請求項1の発明で
は、制御手段は、圧縮機の出力に応じて蒸発器における
冷媒の圧損を補正する形で、目標過熱度(蒸発器の出入
口の温度差)を変化させる。これにより、蒸発器におけ
る冷媒の過熱を防いで有効利用をして、効率の向上と冷
媒の吐出温度の低減等を図ることができる。
As described above, according to the first aspect of the invention, the control means corrects the pressure loss of the refrigerant in the evaporator according to the output of the compressor so that the target superheat degree (at the inlet / outlet of the evaporator). Temperature difference). As a result, it is possible to prevent the refrigerant from overheating in the evaporator and effectively utilize it, thereby improving efficiency and reducing the discharge temperature of the refrigerant.

【0032】請求項2の発明では、制御手段は、蒸発器
への冷媒の入口の温度と蒸発器からの冷媒の出口の温度
の差の情報に基づいて、圧縮機の出力に応じて蒸発器に
おける冷媒の圧損を補正する形で、目標過熱度(蒸発器
の出入口の温度差)を変化させることができる。これに
より、蒸発器における冷媒の過熱を防いで有効利用をし
て、効率の向上と冷媒の吐出温度の低減等を図ることが
できる。
According to the second aspect of the invention, the control means is based on the information of the difference between the temperature of the refrigerant inlet to the evaporator and the temperature of the refrigerant outlet from the evaporator, and the evaporator is output according to the output of the compressor. The target degree of superheat (temperature difference between the inlet and outlet of the evaporator) can be changed by correcting the pressure loss of the refrigerant in the above. As a result, it is possible to prevent the refrigerant from overheating in the evaporator and effectively utilize it, thereby improving efficiency and reducing the discharge temperature of the refrigerant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の空気調和機の冷媒回路を示す図であ
る。
FIG. 1 is a diagram showing a refrigerant circuit of an air conditioner of the present invention.

【図2】モリエル線図を示す図である。FIG. 2 is a diagram showing a Mollier diagram.

【図3】図1の冷媒回路における冷房運転時の電動膨張
弁の制御例を示す図である。
FIG. 3 is a diagram showing a control example of an electric expansion valve during a cooling operation in the refrigerant circuit of FIG.

【図4】圧縮機の能力(馬力)と目標過熱度(SHtg
t)の対比図である。
Fig. 4 Compressor capacity (horsepower) and target superheat (SHtg
It is a contrast figure of t).

【図5】理論サイクルのモリエル線図を示す図である。FIG. 5 is a diagram showing a Mollier diagram of a theoretical cycle.

【図6】冷媒の圧損が小さい場合の低圧縮機能力例を示
す図である。
FIG. 6 is a diagram showing an example of a low compression functional force when the pressure loss of the refrigerant is small.

【図7】冷媒の圧損が大きい場合の高圧縮機能力例を示
す図である。
FIG. 7 is a diagram showing an example of a high compression function force when the pressure loss of the refrigerant is large.

【図8】冷媒の圧損が大きい場合の高圧縮機能力例を示
す図である。
FIG. 8 is a diagram showing an example of a high compression function force when the pressure loss of the refrigerant is large.

【符号の説明】[Explanation of symbols]

10 室外ユニット 12,14 室内ユニット 16 圧縮機 18,20 室内熱交換器(冷房運転時の蒸発器) E1,E2,E3,S1,S2 温度センサ 100 制御手段 SHtgt 目標過熱度 SH 実際の過熱度(実過熱度) 10 Outdoor unit 12,14 Indoor unit 16 Compressor 18,20 Indoor heat exchanger (evaporator during cooling operation) E1, E2, E3, S1, S2 Temperature sensor 100 Control means SHtgt Target superheat degree SH Actual superheat degree ( Actual superheat)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 能力可変の圧縮機と蒸発器とを有し、目
標過熱度を設定して蒸発器の過熱度を制御する空気調和
機において、前記圧縮機の出力に応じて前記目標過熱度
を変化させる制御手段を有することを特徴とする空気調
和機。
1. An air conditioner having a variable capacity compressor and an evaporator, wherein the target superheat is set to control the superheat of the evaporator, wherein the target superheat is determined according to the output of the compressor. An air conditioner having control means for changing the air conditioner.
【請求項2】 能力可変の圧縮機と蒸発器とを有し、目
標過熱度を設定して蒸発器の過熱度を制御する空気調和
機において、目標過熱度は蒸発器への冷媒の入口の温度
と蒸発器からの冷媒の出口の温度の差から得て、圧縮機
の出力に応じて目標過熱度を変化させる制御手段を有す
ることを特徴とする空気調和機。
2. An air conditioner having a variable capacity compressor and an evaporator, wherein a target superheat is set to control the superheat of the evaporator, the target superheat being the inlet of the refrigerant to the evaporator. An air conditioner having control means for obtaining a target superheat degree in accordance with an output of a compressor, which is obtained from a difference between a temperature and a temperature of a refrigerant outlet from an evaporator.
JP33106195A 1995-11-27 1995-11-27 Air conditioner Pending JPH09145175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33106195A JPH09145175A (en) 1995-11-27 1995-11-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33106195A JPH09145175A (en) 1995-11-27 1995-11-27 Air conditioner

Publications (1)

Publication Number Publication Date
JPH09145175A true JPH09145175A (en) 1997-06-06

Family

ID=18239425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33106195A Pending JPH09145175A (en) 1995-11-27 1995-11-27 Air conditioner

Country Status (1)

Country Link
JP (1) JPH09145175A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230598A (en) * 1998-02-16 1999-08-27 Mitsubishi Heavy Ind Ltd Air conditioner
JP2005069566A (en) * 2003-08-25 2005-03-17 Daikin Ind Ltd Freezer
JP2018132218A (en) * 2017-02-13 2018-08-23 株式会社富士通ゼネラル Air conditioning device
WO2019215812A1 (en) * 2018-05-08 2019-11-14 三菱電機株式会社 Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11230598A (en) * 1998-02-16 1999-08-27 Mitsubishi Heavy Ind Ltd Air conditioner
JP2005069566A (en) * 2003-08-25 2005-03-17 Daikin Ind Ltd Freezer
JP2018132218A (en) * 2017-02-13 2018-08-23 株式会社富士通ゼネラル Air conditioning device
WO2019215812A1 (en) * 2018-05-08 2019-11-14 三菱電機株式会社 Air conditioner
JPWO2019215812A1 (en) * 2018-05-08 2021-02-25 三菱電機株式会社 Air conditioner

Similar Documents

Publication Publication Date Title
US5385030A (en) Air conditioner
JPH0518630A (en) Air conditioner
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
WO2013157405A1 (en) Air conditioner
JP2001280669A (en) Refrigerating cycle device
JP3059601B2 (en) Cooling / heating mixed engine driven heat pump system
JP2004170023A (en) Control method for multicellular air-conditioner
JPH10166847A (en) Air conditioner for vehicle
JP3936345B2 (en) Air conditioner
JPH09145175A (en) Air conditioner
JP5310904B1 (en) Air conditioner
JP4074422B2 (en) Air conditioner and its control method
JP4252184B2 (en) Refrigerant flow control device for air conditioner
JPH07294021A (en) Heat pump type cooling dehumidifying equipment
JP3705251B2 (en) Refrigeration cycle equipment
JP3297105B2 (en) Air conditioner
JP3485700B2 (en) Air conditioner
JPH07294059A (en) Air conditioner
JPH04236062A (en) Air conditioner
JP2002106925A (en) Air conditioner
JP7473857B1 (en) Refrigeration Cycle System
JPH10160273A (en) Air conditioner
JP7284421B2 (en) air conditioner
WO2022249394A1 (en) Refrigeration cycle device
US20230131781A1 (en) Refrigeration cycle apparatus

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203