JP3059601B2 - Cooling / heating mixed engine driven heat pump system - Google Patents

Cooling / heating mixed engine driven heat pump system

Info

Publication number
JP3059601B2
JP3059601B2 JP4359817A JP35981792A JP3059601B2 JP 3059601 B2 JP3059601 B2 JP 3059601B2 JP 4359817 A JP4359817 A JP 4359817A JP 35981792 A JP35981792 A JP 35981792A JP 3059601 B2 JP3059601 B2 JP 3059601B2
Authority
JP
Japan
Prior art keywords
cooling
heat exchanger
refrigerant
heating
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4359817A
Other languages
Japanese (ja)
Other versions
JPH06201220A (en
Inventor
二朗 福留
保博 金井
智樹 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP4359817A priority Critical patent/JP3059601B2/en
Publication of JPH06201220A publication Critical patent/JPH06201220A/en
Application granted granted Critical
Publication of JP3059601B2 publication Critical patent/JP3059601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、エンジンで駆動され
るヒートポンプにより複数の室内ユニットの一部を冷房
で、他を暖房で同時に運転できるようにした冷暖房混在
型システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mixed cooling / heating system in which a plurality of indoor units can be operated simultaneously for cooling and the others for heating simultaneously by a heat pump driven by an engine.

【0002】[0002]

【従来の技術】1台の室外機に複数の室内ユニットが接
続されている一系統のシステムによって、同時に複数の
部屋の一部を冷房し、他を暖房するようにしたいわゆる
冷暖房混在型マルチシステムは、部屋ごとに負荷が異な
り、これに合わせて室外機の空冷式熱交換器の凝縮器や
蒸発器としての能力を調整しなければならない。現在知
られているこの種のシステムはコンプレッサを電気モー
タで駆動する方式であって、コンプレッサやファンの回
転数を高度に制御してこれに対応しており、また、冷房
時に必要な凝縮器としての最大能力や暖房時に必要な蒸
発器としての最大能力と混在運転時の適正能力との差が
大きいので、上述のような制御に加えて、例えば空冷式
熱交換器を異なる容量に3分割し、電磁弁によってこれ
らの組合せを変更して要求される冷房/暖房能力のアン
バランスに対応することも試みられている。
2. Description of the Related Art A single system in which a plurality of indoor units are connected to one outdoor unit simultaneously cools a part of a plurality of rooms and heats the others simultaneously, so-called mixed cooling / heating multi-system. The load varies from room to room, and the capacity of the outdoor unit air-cooled heat exchanger as a condenser or evaporator must be adjusted accordingly. This type of system known at present is a system that drives the compressor with an electric motor, responds to this by controlling the rotation speed of the compressor and the fan at a high level, and as a condenser required for cooling. Since the difference between the maximum capacity of the evaporator required for heating and the maximum capacity of the evaporator at the time of heating and the appropriate capacity at the time of mixed operation is large, in addition to the above-described control, for example, the air-cooled heat exchanger is divided into three parts having different capacities. Attempts have also been made to change these combinations with solenoid valves to accommodate the required imbalance in cooling / heating capacity.

【0003】しかしながら、上記のような従来技術で
は、適正な能力調整を行うために制御が非常に複雑とな
るほかシステムの構成も複雑となる。更にファンの回転
数を極端に低下させて運転する場合には風や設置場所の
影響を受けやすくなるという問題もあり、広範囲の運転
に適切に対応することが困難であった。
[0003] However, in the above-mentioned conventional technology, the control becomes very complicated and the configuration of the system becomes complicated in order to perform the appropriate capacity adjustment. Furthermore, when the operation is performed with the rotation speed of the fan extremely reduced, there is a problem that the operation is easily affected by the wind and the installation location, and it has been difficult to appropriately cope with a wide range of operation.

【0004】[0004]

【発明が解決しようとする課題】この発明は、エンジン
駆動ヒートポンプシステムに特有な駆動用エンジンの冷
却水に着目し、その廃熱を活用することにより冷房/暖
房能力をバランスよく制御して上記のような問題を解決
することを課題としてなされたものである。
SUMMARY OF THE INVENTION The present invention focuses on the driving engine cooling water peculiar to an engine driving heat pump system, and utilizes the waste heat to control the cooling / heating capacity in a well-balanced manner. It was made to solve such a problem.

【0005】[0005]

【課題を解決するための手段】上記の課題を達成するた
めに、この出願の第1の発明では、冷暖房混在型エンジ
ン駆動ヒートポンプシステムの暖房主体の運転時におい
て、室内ユニットの熱交換器のうち、蒸発器として機能
している冷房側の各熱交換器と凝縮器として機能してい
る暖房側の各熱交換器との容量差を、駆動用エンジンの
廃熱回収手段から得る熱量によって該冷媒の蒸発温度が
一定になるように補うようにしている。この廃熱回収手
段としては、例えば冷媒と駆動用エンジン冷却水との間
で熱交換して冷媒を加熱する補助熱交換器を設け、この
補助熱交換器に流れるエンジン冷却水量を制御すること
により補助熱交換器における冷媒の加熱量を制御するこ
とができる。また、このような補助熱交換器を容量を異
ならせて複数個設け、各補助熱交換器のエンジン冷却水
流路あるいは冷媒流路を選択的に開閉して補助熱交換器
における冷媒の総加熱量を制御するようにしてもよい。
In order to achieve the above object, according to a first aspect of the present invention, when a heating / cooling operation of an air-conditioning / combination type engine-driven heat pump system is mainly performed, the heat exchanger of the indoor unit is used. The difference in capacity between each cooling-side heat exchanger functioning as an evaporator and each heating-side heat exchanger functioning as a condenser is determined by the amount of heat obtained from the waste heat recovery means of the driving engine. To make the evaporation temperature constant. As the waste heat recovery means, for example, an auxiliary heat exchanger that heats the refrigerant by exchanging heat between the refrigerant and the driving engine cooling water is provided, and by controlling an amount of the engine cooling water flowing through the auxiliary heat exchanger. The amount of heating of the refrigerant in the auxiliary heat exchanger can be controlled. Also, a plurality of such auxiliary heat exchangers are provided with different capacities, and the engine cooling water flow path or the refrigerant flow path of each auxiliary heat exchanger is selectively opened / closed, so that the total heat amount of the refrigerant in the auxiliary heat exchanger. May be controlled.

【0006】また第2の発明では、冷房主体の運転時に
おいて、室内ユニットの熱交換器のうち、蒸発器として
機能している冷房側の各熱交換器と凝縮器として機能し
ている暖房側の各熱交換器との容量差を、室外ユニット
の空冷熱交換器に駆動用エンジンの冷却水用ラジェータ
を近接配置して空冷熱交換器の放熱作用を抑制すること
によって補うようにしている。この放熱作用の抑制は、
例えば室外ユニットの空冷熱交換器を少なくとも二つに
分割すると共に駆動用エンジンの冷却水用ラジェータも
同数に分割して各空冷熱交換器にそれぞれラジェータを
近接配置し、各空冷熱交換器の冷媒流路を選択的に開閉
すること及びラジェータ側から空冷熱交換器側に向かう
冷却風を生じさせてその通風量を制御すること、のいず
れかあるいは両方の組合せによって制御することができ
る。
According to the second aspect of the present invention, when the cooling operation is mainly performed, of the heat exchangers of the indoor unit, each of the cooling-side heat exchanger functioning as an evaporator and the heating side functioning as a condenser. The capacity difference with each heat exchanger is compensated for by disposing the cooling water radiator of the driving engine close to the air cooling heat exchanger of the outdoor unit to suppress the heat radiation effect of the air cooling heat exchanger. The suppression of this heat dissipation effect
For example, the air-cooling heat exchanger of the outdoor unit is divided into at least two, and the radiators for the cooling water of the driving engine are also divided into the same number, and the radiators are arranged in proximity to the respective air-cooling heat exchangers, and the refrigerant of each air-cooling heat exchanger is provided. The flow can be controlled by selectively opening and closing the flow path, and by generating cooling air flowing from the radiator to the air-cooled heat exchanger to control the amount of air flow, or a combination of both.

【0007】[0007]

【作用】室内ユニットの冷房側の各熱交換器と暖房側の
各熱交換器の容量差は室外ユニットにおける熱交換で補
う必要があり、暖房主体の運転時においては室外ユニッ
トは蒸発器として機能し、上記容量差に相当する熱量を
与えられる必要があるのであるが、第1の発明ではこの
熱量を駆動用エンジンの廃熱回収手段から得ており、エ
ンジンの廃熱を有効に活用して熱量を補うことができ
る。特に、駆動用エンジンの冷却水により冷媒を加熱す
る補助熱交換器は能力の小さい蒸発器として作用するか
ら、この補助熱交換器に流れるエンジン冷却水量を制御
し、あるいはこのような補助熱交換器を容量を異ならせ
て複数個設け、各補助熱交換器のエンジン冷却水流路あ
るいは冷媒流路を選択的に開閉して補助熱交換器におけ
る冷媒の総加熱量を制御することにより、加熱量が適切
に制御される。
[Function] The capacity difference between each heat exchanger on the cooling side and each heat exchanger on the heating side of the indoor unit must be compensated for by heat exchange in the outdoor unit. When the heating mainly operates, the outdoor unit functions as an evaporator. However, it is necessary to provide a heat amount corresponding to the above-mentioned capacity difference. In the first invention, this heat amount is obtained from the waste heat recovery means of the driving engine, and the waste heat of the engine is effectively utilized. The amount of heat can be supplemented. In particular, since the auxiliary heat exchanger that heats the refrigerant with the cooling water of the driving engine acts as a small-capacity evaporator, it controls the amount of engine cooling water flowing through this auxiliary heat exchanger, or controls such an auxiliary heat exchanger. The heating amount is controlled by selectively opening and closing the engine cooling water passage or the refrigerant passage of each auxiliary heat exchanger to control the total heating amount of the refrigerant in the auxiliary heat exchanger. Appropriately controlled.

【0008】また、冷房主体の運転時においては室外ユ
ニットは凝縮器として機能しているが、全冷房時と比べ
て凝縮器機能は小さくてよく、これが大きいと特に外気
温度が低い時には暖房能力が不足気味となる。第2の発
明では室外ユニットの空冷熱交換器に駆動用エンジンの
冷却水用ラジェータを近接配置して空冷熱交換器の放熱
作用を抑制しており、エンジンの廃熱を有効に活用して
放熱作用を抑制することができる。特に室外ユニットの
熱交換器を分割してそれぞれに駆動用エンジンの冷却水
用ラジェータを近接配置し、各熱交換器の冷媒流路を選
択的に開閉し、あるいはラジェータ側から熱交換器側に
向かう冷却風を生じさせてその通風量を制御することに
より、上記放熱作用の抑制量を適切に制御することがで
きる。
[0008] Further, the outdoor unit functions as a condenser during the cooling mainly operation, but the condenser function may be smaller than that in the cooling only. If the outdoor unit is large, the heating capacity is increased especially when the outside air temperature is low. It will be short. In the second invention, the radiator for the cooling water of the driving engine is arranged close to the air-cooled heat exchanger of the outdoor unit to suppress the heat radiation effect of the air-cooled heat exchanger, and the heat is effectively utilized by utilizing the waste heat of the engine. The effect can be suppressed. In particular, the heat exchanger of the outdoor unit is divided and the radiators for the cooling water of the drive engine are arranged close to each other, and the refrigerant flow path of each heat exchanger is selectively opened and closed, or from the radiator side to the heat exchanger side. By controlling the amount of the cooling air to flow and controlling the amount of the flowing air, it is possible to appropriately control the amount of suppression of the heat radiation action.

【0009】[0009]

【第1の発明の実施例】図1及び図2は第1の発明の実
施例における冷媒回路の概略を示したものである。1は
室内機、2は室外機であり、高圧ガス配管3、液配管4
及び低圧ガス配管5を介して複数の室内機1,1…が1
台の室外機2に接続されて、一系統のシステムを構成し
ている。室内機1は熱交換器1a、電子膨張弁1bを備
えたもので、冷媒分岐コントローラ6によって冷媒の流
れが冷房あるいは暖房に切り替えられる。図では室内機
1を3台例示してあり、図1は左側の1台が冷房、他の
2台が暖房となっていて全体としては暖房主体の運転状
態になっている場合、図2は中央の1台が暖房、他の2
台が冷房となっていて全体としては冷房主体の運転状態
になっている場合、をそれぞれ示している。
FIGS. 1 and 2 schematically show a refrigerant circuit according to an embodiment of the first invention. 1 is an indoor unit, 2 is an outdoor unit, a high-pressure gas pipe 3, a liquid pipe 4
And a plurality of indoor units 1, 1...
It is connected to one outdoor unit 2 to constitute one system. The indoor unit 1 includes a heat exchanger 1a and an electronic expansion valve 1b, and the refrigerant flow is switched by a refrigerant branch controller 6 between cooling and heating. In the figure, three indoor units 1 are illustrated, and FIG. 1 shows a case where one unit on the left side is for cooling and the other two units are for heating, and the entire unit is in a heating-main operation state. One in the middle is heated, the other two
The case where the stand is cooled and the whole is in an operation state mainly of cooling is shown.

【0010】室外機2はエンジン11でコンプレッサ1
2を駆動する方式のものであり、13は空冷式の第1の
熱交換器、14は空冷式の第2の熱交換器、15は補助
熱交換器、16は電子膨張弁、17はアキュムレータ、
18はレシーバ、19はエンジン11の排気熱交換器、
20はエンジン11のラジェータ、21は制御部、22
は冷却水ポンプである。その他、冷媒回路中には図示の
ように各所に電磁弁が挿入されている。補助熱交換器1
5はエンジン11の冷却水によって冷媒を加熱するサブ
エバポレータであり、図3に示すように、外側管15a
の中を同心状に内側管15bが貫通した二重管構造とな
っており、例えば80℃程度の冷却水が外側管15aに
供給され、内側管15bを通る冷媒との間で熱交換が行
われる。
The outdoor unit 2 includes an engine 11 and a compressor 1
2 is a system for driving the air conditioner, 13 is an air-cooled first heat exchanger, 14 is an air-cooled second heat exchanger, 15 is an auxiliary heat exchanger, 16 is an electronic expansion valve, and 17 is an accumulator. ,
18 is a receiver, 19 is an exhaust heat exchanger of the engine 11,
20 is a radiator of the engine 11, 21 is a control unit, 22
Is a cooling water pump. In addition, solenoid valves are inserted at various points in the refrigerant circuit as shown. Auxiliary heat exchanger 1
Reference numeral 5 denotes a sub-evaporator for heating the refrigerant by the cooling water of the engine 11, and as shown in FIG.
Has a double-pipe structure in which an inner pipe 15b penetrates concentrically, for example, cooling water of about 80 ° C. is supplied to the outer pipe 15a, and heat exchange is performed with a refrigerant passing through the inner pipe 15b. Will be

【0011】制御部21は各室内機1,1…のオンオフ
信号から求まる冷房/暖房能力需要と、冷媒の熱源であ
るエンジン冷却水温度に応じて各電磁弁を開閉し、熱交
換器13,14と補助熱交換器15に流れる冷媒の経路
を切り替えて熱交換容量を制御するのに最適な組合せに
すると共に、コンプレッサ12の吸入圧力と吐出圧力が
最適運転状態となるようにエンジン11、つまりコンプ
レッサ12の回転数を制御し、また各熱交換器のファン
13a,14aの周波数及び電子膨張弁16の開度を制
御するようになっている。図1,2の破線は信号線を例
示したもので、25はエンジン11の冷却水温度を検出
する温度センサ、26,27は補助熱交換器15の入口
と出口での冷媒温度を検出する温度センサ、また28,
29はそれぞれコンプレッサ12の吸入圧力と吐出圧力
を検出する圧力センサである。
The control unit 21 opens and closes each solenoid valve according to the cooling / heating capacity demand determined from the ON / OFF signals of the indoor units 1, 1... And the temperature of the engine cooling water as a heat source of the refrigerant. In addition to switching the path of the refrigerant flowing through the auxiliary heat exchanger 14 and the auxiliary heat exchanger 15 to make an optimal combination for controlling the heat exchange capacity, the engine 11, that is, the suction pressure and the discharge pressure of the compressor 12 are set to the optimal operation state. The number of rotations of the compressor 12 is controlled, and the frequency of the fans 13a and 14a of each heat exchanger and the opening of the electronic expansion valve 16 are controlled. The broken lines in FIGS. 1 and 2 illustrate signal lines, 25 is a temperature sensor for detecting the cooling water temperature of the engine 11, and 26 and 27 are the temperatures for detecting the refrigerant temperature at the inlet and the outlet of the auxiliary heat exchanger 15. Sensor, 28,
29 are pressure sensors for detecting the suction pressure and the discharge pressure of the compressor 12, respectively.

【0012】図1,2において太線は冷媒が流れている
回路を示しており、暖房主体の運転である図1では熱交
換器13,14は使用されず、補助熱交換器15のみに
冷媒が流れ、冷房主体の運転である図2では熱交換器1
3、補助熱交換器15、熱交換器14の経路で冷媒が流
れるようになっている。
In FIGS. 1 and 2, the bold line indicates a circuit in which the refrigerant is flowing. In FIG. 1, which is mainly a heating operation, the heat exchangers 13 and 14 are not used, and only the auxiliary heat exchanger 15 has the refrigerant. In FIG. 2 in which the flow and cooling are mainly performed, the heat exchanger 1 is used.
3. Refrigerant flows through the path of the auxiliary heat exchanger 15 and the heat exchanger 14.

【0013】上記のような構成においてシステムが運転
されると、冷房運転になっている室内機1の熱交換器1
aは蒸発器として機能し、また暖房運転の方の熱交換器
1aは凝縮器として機能するが、それぞれの容量は同一
ではないのでその差を何らかの手段で補う必要がある。
特に暖房主体の運転時には上記の容量差の熱量を冷媒に
与える必要があるが、この発明では駆動用エンジンの廃
熱を利用して上記の容量差に相当する熱量を室外機2で
冷媒に与えており、実施例では補助熱交換器15によっ
て冷媒と駆動用エンジン冷却水との間で熱交換して冷媒
を加熱するようにしているのである。
When the system is operated in the above configuration, the heat exchanger 1 of the indoor unit 1 in the cooling operation is operated.
a functions as an evaporator, and the heat exchanger 1a in the heating operation functions as a condenser. However, since their capacities are not the same, it is necessary to make up for the difference by some means.
In particular, when operating mainly in heating, it is necessary to provide the refrigerant with the heat amount having the above-described capacity difference. However, in the present invention, the outdoor unit 2 uses the waste heat of the driving engine to apply the heat amount corresponding to the above-described capacity difference to the refrigerant. In the embodiment, the auxiliary heat exchanger 15 exchanges heat between the refrigerant and the driving engine cooling water to heat the refrigerant.

【0014】すなわち、図1のように室内機1から液配
管4を経て室外機2に戻る液相の冷媒の蒸発用として、
空冷の熱交換器13,14を使用しないで図3に示すよ
うな補助熱交換器15のみを使用しており、液相のリタ
ーン冷媒は電子膨張弁16を経て補助熱交換器15に流
入し、蒸発して過熱蒸気となってコンプレッサ12に吸
入される。冷媒蒸発温度は補助熱交換器15の入口温度
として検出され、内側管15bを流れる冷媒の蒸発温度
が一定値となるように外側管15aに流れるエンジン冷
却水の量を制御することにより、冷/暖能力のバランス
の取れた最適温度に保つのである。
That is, as shown in FIG. 1, for evaporating the liquid-phase refrigerant returning from the indoor unit 1 to the outdoor unit 2 via the liquid pipe 4,
Only the auxiliary heat exchanger 15 as shown in FIG. 3 is used without using the air-cooled heat exchangers 13 and 14, and the liquid-phase return refrigerant flows into the auxiliary heat exchanger 15 via the electronic expansion valve 16. , And evaporates into superheated steam and is sucked into the compressor 12. The refrigerant evaporation temperature is detected as the inlet temperature of the auxiliary heat exchanger 15, and by controlling the amount of engine cooling water flowing through the outer pipe 15a so that the evaporation temperature of the refrigerant flowing through the inner pipe 15b becomes a constant value, the cooling / cooling is performed. Maintain the optimal temperature that balances the warming ability.

【0015】図4はその具体的な配管回路の例であり、
制御部21で冷却水ポンプ22の駆動用インバータ22
aを制御することにより補助熱交換器15に流入するエ
ンジン冷却水の量が制御され、補助熱交換器15での熱
交換容量が調整される。なお20aはラジェータ20と
補助熱交換器15の冷却水量を自動的に調整するサーモ
スタット弁である。
FIG. 4 shows an example of the specific piping circuit.
Inverter 22 for driving cooling water pump 22 by control unit 21
By controlling a, the amount of engine cooling water flowing into the auxiliary heat exchanger 15 is controlled, and the heat exchange capacity of the auxiliary heat exchanger 15 is adjusted. Reference numeral 20a denotes a thermostat valve for automatically adjusting the amount of cooling water in the radiator 20 and the auxiliary heat exchanger 15.

【0016】冷暖房混在型の運転の場合には、室外機の
空調負荷とエンジン冷却水の放熱レベルの関係が一定で
ないため、サーモスタット弁でラジェータに対するバイ
パス量を制御するだけの従来の方式では冷却水温度の急
変等が発生しやすいのであるが、上述のように補助熱交
換器15による方式と組合せた場合には冷却水温度が安
定し、その結果として冷媒温度の安定性も増加して良好
な制御が行われるようになる。図5の(a)〜(d)はその状
態を冷却水ポンプ回転数、冷媒過熱度、サーモスタット
弁の開度、冷却水温度について、従来方式を破線で、実
施例を実線でそれぞれ例示したものであり、実施例の場
合は冷却水ポンプ22の回転数の制御により冷媒温度な
どの変動が小さくなることが示されている。なお、(b)
図の冷媒過熱度においてAで示した期間は過熱度が不足
して液バックが生じている期間を示している。
In the mixed cooling / heating type operation, since the relationship between the air conditioning load of the outdoor unit and the heat radiation level of the engine cooling water is not constant, the cooling water in the conventional method in which the amount of bypass to the radiator is merely controlled by the thermostat valve is controlled. Although a sudden change in temperature or the like is likely to occur, when combined with the method using the auxiliary heat exchanger 15 as described above, the temperature of the cooling water is stabilized, and as a result, the stability of the refrigerant temperature is increased, and Control is performed. FIGS. 5 (a) to 5 (d) show the state of the cooling water pump rotation speed, the refrigerant superheat degree, the opening degree of the thermostat valve, and the cooling water temperature in the conventional system by broken lines and in the embodiment by solid lines. In the case of the embodiment, it is shown that the fluctuation of the refrigerant temperature or the like is reduced by controlling the rotation speed of the cooling water pump 22. (B)
In the superheat degree of the refrigerant in the drawing, the period indicated by A indicates the period in which the superheat degree is insufficient and the liquid back occurs.

【0017】以上は請求項2に対応した実施例である
が、図6及び図7は補助熱交換器を容量を異ならせて複
数個設けた請求項3に対応した実施例である。図6で
は、補助熱交換器を容量の異なる3個の補助熱交換器1
5−1,15−2,15−3に分割し、内側管を直列に
接続してこれに冷媒を流すと共に、外側管にそれぞれエ
ンジン冷却水を流すようにした例を示しており、例えば
同図(b)のように各補助熱交換器の冷却水路を並列に接
続すると共に更にバイパス路15−4を設け、各冷却水
路にそれぞれ挿入された電磁弁15−1a〜15−4a
を選択的に開閉することにより、補助熱交換器15−1
〜15−3による冷媒の総加熱量を制御するのである。
この場合、同図(c)のように冷媒側の水路を並列に接続
すると共に冷却水側の水路を直列に接続し、各冷媒水路
に電磁弁15−1a〜15−3aを挿入してこれを選択
的に開閉するような構成とすることもできる。
The above is an embodiment corresponding to claim 2. FIGS. 6 and 7 show an embodiment corresponding to claim 3 in which a plurality of auxiliary heat exchangers having different capacities are provided. In FIG. 6, three auxiliary heat exchangers 1 having different capacities are used.
5-1, 15-2, and 15-3, an inner pipe is connected in series, a coolant is supplied to the inner pipe, and an engine cooling water is supplied to the outer pipe. As shown in FIG. 2B, the cooling water passages of the auxiliary heat exchangers are connected in parallel and a bypass passage 15-4 is further provided, and the solenoid valves 15-1a to 15-4a inserted into the cooling water passages are provided.
By selectively opening and closing the auxiliary heat exchanger 15-1
15-3 to control the total heating amount of the refrigerant.
In this case, the coolant channels are connected in parallel and the coolant channels are connected in series, and solenoid valves 15-1a to 15-3a are inserted into each coolant channel as shown in FIG. Can be selectively opened and closed.

【0018】図7は外観的には1個の補助熱交換器15
であるが、外側管15aの内部に太さの異なる内側管1
5b,15cを設けた例である。この場合にはエンジン
冷却水と冷媒は外側管と内側管のいずれに流してもよい
が、例えば(c)図のように内側管15b,15cを並列
に接続すると共にバイパス路15dを設けてこれにエン
ジン冷却水を流し、各内側管15b,15cとバイパス
路15dにそれぞれ挿入された電磁弁15B,15C,
15Dを選択的に開閉するのである。また、エンジン冷
却水を外側管15aに流す場合には、例えば(d)図のよ
うに内側管15b,15cを並列に接続してこれに冷媒
を流し、各内側管にそれぞれ挿入された電磁弁15Bと
15Cを選択的に開閉するのである。
FIG. 7 shows one auxiliary heat exchanger 15 in appearance.
However, the inner pipe 1 having a different thickness is provided inside the outer pipe 15a.
This is an example in which 5b and 15c are provided. In this case, the engine cooling water and the refrigerant may flow through either the outer pipe or the inner pipe. For example, as shown in FIG. 3C, the inner pipes 15b and 15c are connected in parallel and a bypass path 15d is provided. The engine cooling water flows through the solenoid valves 15B, 15C, and the solenoid valves 15B, 15C, respectively inserted into the inner pipes 15b, 15c and the bypass path 15d.
15D is selectively opened and closed. When the engine cooling water flows through the outer pipe 15a, for example, as shown in FIG. 3 (d), the inner pipes 15b and 15c are connected in parallel, the refrigerant flows through the pipes, and the solenoid valves inserted into the respective inner pipes are used. 15B and 15C are selectively opened and closed.

【0019】以上述べたように第1の発明の実施例によ
れば、暖房主体の運転時における各室内機1の容量差に
相当する熱量がエンジンの廃熱から与えられるから、補
助熱交換器15での冷媒の総加熱量の制御と電子膨張弁
16の制御とを組み合わせることにより、室外機2の熱
交換量を広範囲にわたってきめ細かく制御することが可
能となるのである。
As described above, according to the first embodiment of the present invention, the amount of heat corresponding to the capacity difference of each indoor unit 1 during the operation mainly of heating is given from the waste heat of the engine, so that the auxiliary heat exchanger is used. By combining the control of the total heating amount of the refrigerant at 15 and the control of the electronic expansion valve 16, the heat exchange amount of the outdoor unit 2 can be finely controlled over a wide range.

【0020】[0020]

【第2の発明の実施例】図8及び図9は請求項5に対応
する第2の発明の実施例における冷媒回路の概略を示し
たものであり、図8は室内機1の一部が暖房となってい
て他の多くの室内機1が冷房となっている冷房主体の運
転状態の場合、図9はすべての室内機1が冷房となって
いる冷房運転状態の場合をそれぞれ示している。この発
明は冷房主体の運転時における制御に関するものであっ
て、基本的な構成は図1などと変わらないが、空冷式の
熱交換器13及び14の構成が異なり、補助熱交換器1
5は使用されていない。なお、図1などと同一の部分は
同じ符号で示してある。
FIGS. 8 and 9 schematically show a refrigerant circuit according to a second embodiment of the present invention corresponding to claim 5, and FIG. FIG. 9 shows a cooling operation state in which all the indoor units 1 are in the cooling operation state in which the heating is in the cooling main operation state in which many other indoor units 1 are in the cooling state. . The present invention relates to control during the operation mainly of cooling, and the basic configuration is the same as that of FIG. 1 and the like, but the configurations of the air-cooled heat exchangers 13 and 14 are different, and the auxiliary heat exchanger 1
5 is not used. The same parts as those in FIG. 1 and the like are denoted by the same reference numerals.

【0021】図10は室外機2の概略構造図であり、室
外機2の下部はエンジン11やコンプレッサ12などが
配置されているエンジン室2A、上部は熱交換室2Bと
なっている。熱交換室2Bの両側面には二つに分割して
設けられている熱交換器13,14が配置され、更に二
つに分割された冷却水用ラジェータ20a及び20bが
それぞれ熱交換器13及び14のすぐ内側に近接して平
行に配置されている。熱交換室2Bの上面にはファン1
3a,14aが設けられているが、このファン13a,
14aは両方向に回転できるものであり、冷房運転の場
合には上向きに送風して白矢印のような気流を発生し、
冷房主体運転時には下向きに送風して斜線矢印のような
気流を発生するようになっている。
FIG. 10 is a schematic structural view of the outdoor unit 2. The lower part of the outdoor unit 2 is an engine room 2A in which the engine 11 and the compressor 12 are arranged, and the upper part is a heat exchange room 2B. On both sides of the heat exchange chamber 2B, heat exchangers 13 and 14 which are provided in two parts are arranged, and the radiators 20a and 20b for cooling water which are further divided into two are respectively provided by the heat exchangers 13 and It is arranged in parallel immediately adjacent to the inside of 14. Fan 1 is provided on the upper surface of heat exchange chamber 2B.
3a and 14a are provided.
14a can rotate in both directions, and in the case of cooling operation, blows upward to generate an airflow like a white arrow,
During the cooling-main operation, air is blown downward to generate an airflow as indicated by a hatched arrow.

【0022】すなわち、冷房主体運転時には各熱交換器
13,14にはラジェータ20a,20bで加温された
空気流が当たることになり、加温前の外気が直接当たる
全冷房時と比べて放熱作用が抑制される。そしてこの時
の放熱量は、熱交換器13,14ごとに設けられている
電磁弁を選択的に開閉し、熱交換器13,14の両方を
使用したり片方のみを使用したりすることによって調整
することができ、更にファン13a,14aの回転数を
制御して図10の斜線矢印の方向に生じている気流を調
整することにより、きめ細かく且つ広範囲にわたって制
御することができるのである。なお、図8は熱交換器1
3のみに冷媒が流れている場合を示している。
That is, the air flow heated by the radiators 20a and 20b impinges on the heat exchangers 13 and 14 during the cooling main operation, and the heat is radiated as compared with the cooling only when the outside air before the heating directly hits the heat exchangers 13 and 14. The effect is suppressed. The amount of heat radiation at this time can be determined by selectively opening and closing solenoid valves provided for each of the heat exchangers 13 and 14, and by using both heat exchangers 13 and 14 or using only one of them. By controlling the rotation speeds of the fans 13a and 14a to adjust the airflow generated in the direction of the hatched arrow in FIG. 10, it is possible to control finely and over a wide range. FIG. 8 shows the heat exchanger 1
3 shows a case where the refrigerant is flowing only in 3.

【0023】このように、第2の発明の実施例によれ
ば、冷房主体の運転時における各室内機1の容量差が熱
交換器13,14に近接配置された冷却水用ラジェータ
20a,20bの放熱抑制作用によって補われるから、
ファンの回転数を極端に低下させるような制御を行わな
いでも室外機2の熱交換量を広範囲にわたってきめ細か
く制御することが可能となるのである。
As described above, according to the second embodiment of the present invention, the cooling water radiators 20a and 20b arranged close to the heat exchangers 13 and 14 reduce the capacity difference between the indoor units 1 during the operation mainly of cooling. Is compensated by the heat dissipation suppression effect of
The heat exchange amount of the outdoor unit 2 can be finely controlled over a wide range without performing control for extremely reducing the rotation speed of the fan.

【0024】[0024]

【発明の効果】以上の説明から明らかなように、第1の
発明は、暖房主体の運転時において暖房運転中の室内ユ
ニットと冷房運転中の室内ユニットの容量差を駆動用エ
ンジンの廃熱回収手段から得る熱量によって補うように
したものである。このため、室外機に設けられた空冷熱
交換器の熱交換量を電子膨張弁の開度とコンプレッサや
ファンの回転数の調整によって制御していた従来方式の
ように、システムの構成と制御が非常に複雑となり、あ
るいは風の影響を受けやすくなるなどの問題点がなくな
り、また、従来の方式では外気温が低い場合に室外機の
空冷熱交換器に生ずる着霜のために暖房性能が低下する
ことがあるが、この発明によれば廃熱回収手段を使用し
ているので着霜は無関係となる。
As is apparent from the above description, the first aspect of the present invention is to recover the waste heat of the driving engine by using the capacity difference between the indoor unit performing the heating operation and the indoor unit performing the cooling operation during the operation mainly performed by heating. This is supplemented by the amount of heat obtained from the means. For this reason, the system configuration and control are different from those of the conventional system, in which the heat exchange amount of the air-cooled heat exchanger provided in the outdoor unit is controlled by adjusting the opening of the electronic expansion valve and the rotation speed of the compressor and the fan. Problems such as becoming very complicated or becoming susceptible to wind are eliminated, and the heating performance deteriorates in the conventional method due to frost generated in the air-cooled heat exchanger of the outdoor unit when the outside temperature is low. However, according to the present invention, since the waste heat recovery means is used, frost formation is irrelevant.

【0025】従って、この発明によればエンジン駆動ヒ
ートポンプシステムに特有の廃熱を有効に活用して各室
内機の負荷に応じて広い制御範囲にわたって安定した運
転を行い、冷房側、暖房側双方の各室内機の能力を十分
に発揮させることが可能となる。特に、廃熱回収手段と
して冷媒と駆動用エンジン冷却水との間で熱交換して冷
媒を加熱する補助熱交換器を使用することにより、冷媒
に与えられる熱量を適正に制御して安定した運転を行う
ことが容易となる。
Therefore, according to the present invention, stable operation is performed over a wide control range according to the load of each indoor unit by effectively utilizing waste heat specific to the engine driven heat pump system, and both the cooling side and the heating side are used. It is possible to make full use of the capabilities of each indoor unit. In particular, by using an auxiliary heat exchanger that heats the refrigerant by exchanging heat between the refrigerant and the driving engine cooling water as waste heat recovery means, the amount of heat given to the refrigerant is appropriately controlled to achieve stable operation. Can be easily performed.

【0026】また第2の発明は、室外機の空冷熱交換器
に近接配置された駆動用エンジンの冷却水用ラジェータ
で熱交換器の放熱作用を抑制することにより、冷房主体
の運転時における暖房運転中の室内ユニットと冷房運転
中の室内ユニットの容量差を補うようにしたものであ
る。従って、従来方式における問題点、すなわちシステ
ムの構成と制御が非常に複雑で風の影響も受けやすくな
るという問題はなく、エンジン駆動ヒートポンプシステ
ムに特有の廃熱を有効に活用して室外機の空冷熱交換器
の能力を相殺し、広い制御範囲にわたって安定した運転
を行うことが可能となるのであり、低外気温時における
冷房主体の運転時に暖房能力が不足傾向になることも防
止されるのである。
According to a second aspect of the present invention, a cooling water radiator of a driving engine disposed in close proximity to an air-cooling heat exchanger of an outdoor unit suppresses a heat radiating effect of the heat exchanger, thereby providing heating during a cooling mainly operation. This is to compensate for the difference in capacity between the indoor unit during operation and the indoor unit during cooling operation. Therefore, there is no problem in the conventional method, that is, there is no problem that the system configuration and control are very complicated and easily affected by wind, and the waste heat peculiar to the engine driven heat pump system is effectively utilized to make the air conditioner of the outdoor unit effective. This cancels out the capacity of the heat exchanger and enables stable operation over a wide control range.This also prevents the heating capacity from becoming insufficient during cooling-based operation at low outside temperatures. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の発明の実施例における冷媒回路の概略図
である。
FIG. 1 is a schematic diagram of a refrigerant circuit according to an embodiment of the first invention.

【図2】同じく冷媒回路の概略図である。FIG. 2 is a schematic diagram of the same refrigerant circuit.

【図3】同実施例の補助熱交換器の構成を示す図であ
る。
FIG. 3 is a diagram showing a configuration of an auxiliary heat exchanger of the embodiment.

【図4】同実施例の配管回路の要部を示す図である。FIG. 4 is a diagram showing a main part of the piping circuit of the embodiment.

【図5】同実施例の制御状態を示すタイムチャートであ
る。
FIG. 5 is a time chart showing a control state of the embodiment.

【図6】補助熱交換器の他の構成を示す側面図及び配管
回路図である。
FIG. 6 is a side view and a piping circuit diagram showing another configuration of the auxiliary heat exchanger.

【図7】補助熱交換器の更に他の構成を示す側面図、断
面図及び配管回路図である。
FIG. 7 is a side view, a sectional view, and a piping circuit diagram showing still another configuration of the auxiliary heat exchanger.

【図8】第2の発明の実施例における冷媒回路の概略図
である。
FIG. 8 is a schematic diagram of a refrigerant circuit in an embodiment of the second invention.

【図9】同じく冷媒回路の概略図である。FIG. 9 is a schematic view of the refrigerant circuit.

【図10】同実施例の室外機の構成を示す概略側面図で
ある。
FIG. 10 is a schematic side view showing the configuration of the outdoor unit of the embodiment.

【符号の説明】[Explanation of symbols]

1 室内機 2 室外機 11 エンジン 12 コンプレッサ 13,14 空冷熱交換器 13a,14a ファン 15,15−1,15−2,15−3 補助熱交換器 20a,20b 冷却水用ラジェータ 21 制御部 DESCRIPTION OF SYMBOLS 1 Indoor unit 2 Outdoor unit 11 Engine 12 Compressor 13, 14 Air-cooling heat exchanger 13a, 14a Fan 15, 15-1, 15-2, 15-3 Auxiliary heat exchanger 20a, 20b Radiator 21 for cooling water 21 Control part

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25B 27/02 F25B 29/00 361 F25B 27/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) F25B 27/02 F25B 29/00 361 F25B 27/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の室内ユニットの一部を冷房で、そ
の残りを暖房で同時に運転することの可能なエンジン駆
動ヒートポンプシステムであって、暖房主体の運転時に
おいて、上記室内ユニットの熱交換器のうち、蒸発器と
して機能している冷房側の各熱交換器と凝縮器として機
能している暖房側の各熱交換器との容量差を、駆動用エ
ンジンの廃熱回収手段から冷媒に与えられる熱量によっ
て該冷媒の蒸発温度が一定になるように補うことを特徴
とする冷暖房混在型エンジン駆動ヒートポンプシステ
ム。
An engine-driven heat pump system capable of simultaneously operating a part of a plurality of indoor units for cooling and the rest for heating at the same time. The difference in capacity between each heat exchanger on the cooling side functioning as an evaporator and each heat exchanger on the heating side functioning as a condenser is given to the refrigerant from the waste heat recovery means of the driving engine. A cooling / heating mixed engine-driven heat pump system characterized in that the evaporation temperature of the refrigerant is compensated to be constant by the amount of heat applied.
【請求項2】 上記廃熱回収手段として冷媒と駆動用エ
ンジン冷却水との間で熱交換して冷媒を加熱する補助熱
交換器を設け、補助熱交換器のエンジン冷却水量を制御
することにより補助熱交換器における冷媒の加熱量を制
御するようにした請求項1記載の冷暖房混在型エンジン
駆動ヒートポンプシステム。
2. An auxiliary heat exchanger for heating the refrigerant by exchanging heat between the refrigerant and the driving engine cooling water as the waste heat recovery means, and controlling the amount of engine cooling water of the auxiliary heat exchanger. 2. The heat pump system according to claim 1, wherein the heating amount of the refrigerant in the auxiliary heat exchanger is controlled.
【請求項3】 上記廃熱回収手段として冷媒と駆動用エ
ンジン冷却水との間で熱交換して冷媒を加熱する補助熱
交換器を容量を異ならせて複数個設け、各補助熱交換器
のエンジン冷却水流路あるいは冷媒流路を選択的に開閉
して補助熱交換器における冷媒の総加熱量を制御するよ
うにした請求項1記載の冷暖房混在型エンジン駆動ヒー
トポンプシステム。
3. A plurality of auxiliary heat exchangers having different capacities for heating the refrigerant by exchanging heat between the refrigerant and the engine cooling water for driving as the waste heat recovery means. 2. The cooling / heating mixed engine drive heat pump system according to claim 1, wherein a total heating amount of the refrigerant in the auxiliary heat exchanger is controlled by selectively opening and closing the engine cooling water flow path or the refrigerant flow path.
【請求項4】 複数の室内ユニットの一部を冷房で、そ
の残りを暖房で同時に運転することの可能なエンジン駆
動ヒートポンプシステムであって、冷房主体の運転時に
おいて、上記室内ユニットの熱交換器のうち、蒸発器と
して機能している冷房側の各熱交換器と凝縮器として機
能している暖房側の各熱交換器との容量差を、室外ユニ
ットの空冷熱交換器に駆動用エンジンの冷却水用ラジェ
ータを近接配置して空冷熱交換器の放熱作用を抑制する
ことによって補うことを特徴とする冷暖房混在型エンジ
ン駆動ヒートポンプシステム。
4. An engine-driven heat pump system capable of simultaneously operating a part of a plurality of indoor units for cooling and the rest for heating at the same time, wherein the heat exchanger of the indoor unit is mainly operated during cooling. Of these, the capacity difference between each heat exchanger on the cooling side functioning as an evaporator and each heat exchanger on the heating side functioning as a condenser is transferred to the air-cooled heat exchanger of the outdoor unit by the drive engine. A cooling / heating mixed engine-driven heat pump system characterized in that a cooling water radiator is arranged close to the air-cooling heat exchanger to suppress the heat radiation effect of the cooling water exchanger.
【請求項5】 上記室外ユニットの空冷熱交換器を少な
くとも二つに分割すると共に駆動用エンジンの冷却水用
ラジェータも同数に分割して各空冷熱交換器にそれぞれ
ラジェータを近接配置し、各空冷熱交換器の冷媒流路を
選択的に開閉すること及びラジェータ側から空冷熱交換
器側に向かう冷却風を生じさせてその通風量を制御する
こと、の少なくともいずれかによって上記放熱作用の抑
制量を制御することを特徴とする請求項4記載の冷暖房
混在型エンジン駆動ヒートポンプシステム。
5. An air-cooling heat exchanger of the outdoor unit is divided into at least two, and a radiator for a cooling water of a driving engine is also divided into the same number, and a radiator is arranged close to each air-cooling heat exchanger. The amount of suppression of the heat radiation action by at least one of selectively opening and closing the refrigerant flow path of the cold heat exchanger and generating a cooling air flowing from the radiator side toward the air cooling heat exchanger and controlling the amount of the air flow. 5. The mixed cooling / heating type engine driven heat pump system according to claim 4, wherein:
JP4359817A 1992-12-29 1992-12-29 Cooling / heating mixed engine driven heat pump system Expired - Fee Related JP3059601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4359817A JP3059601B2 (en) 1992-12-29 1992-12-29 Cooling / heating mixed engine driven heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4359817A JP3059601B2 (en) 1992-12-29 1992-12-29 Cooling / heating mixed engine driven heat pump system

Publications (2)

Publication Number Publication Date
JPH06201220A JPH06201220A (en) 1994-07-19
JP3059601B2 true JP3059601B2 (en) 2000-07-04

Family

ID=18466447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4359817A Expired - Fee Related JP3059601B2 (en) 1992-12-29 1992-12-29 Cooling / heating mixed engine driven heat pump system

Country Status (1)

Country Link
JP (1) JP3059601B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3672109B2 (en) * 1994-08-02 2005-07-13 ヤマハ発動機株式会社 Engine-driven heat pump device
JP3410583B2 (en) * 1995-06-30 2003-05-26 東京瓦斯株式会社 Defrost prevention device for gas engine driven heat pump with engine waste heat recovery
JP2001221531A (en) 2000-02-04 2001-08-17 Mitsubishi Heavy Ind Ltd Air conditioner
JP2002081789A (en) * 2000-09-08 2002-03-22 Aisin Seiki Co Ltd Engine driven heat pump system
JP4773637B2 (en) * 2001-06-26 2011-09-14 三菱重工業株式会社 Multi-type gas heat pump type air conditioner
JP4898025B2 (en) * 2001-06-26 2012-03-14 三菱重工業株式会社 Multi-type gas heat pump type air conditioner
JP3973441B2 (en) * 2002-02-08 2007-09-12 三洋電機株式会社 Air conditioner
JP4565923B2 (en) * 2004-08-03 2010-10-20 三洋電機株式会社 Air conditioner
JP5398296B2 (en) * 2009-02-19 2014-01-29 三菱重工業株式会社 Engine driven air conditioner
WO2015122171A1 (en) * 2014-02-14 2015-08-20 パナソニックIpマネジメント株式会社 Air conditioning device
JP6637874B2 (en) * 2016-11-10 2020-01-29 関東精機株式会社 Temperature control device
JP6811605B2 (en) * 2016-12-28 2021-01-13 ヤンマーパワーテクノロジー株式会社 heat pump
KR20210096520A (en) 2020-01-28 2021-08-05 엘지전자 주식회사 An air conditioning apparatus
JP7231969B1 (en) * 2022-06-14 2023-03-02 ライズピットカンパニー株式会社 gas engine air conditioner
JP7469830B2 (en) * 2022-06-14 2024-04-17 ライズピットカンパニー株式会社 Gas engine heating and cooling unit

Also Published As

Publication number Publication date
JPH06201220A (en) 1994-07-19

Similar Documents

Publication Publication Date Title
US5231845A (en) Air conditioning apparatus with dehumidifying operation function
JP3059601B2 (en) Cooling / heating mixed engine driven heat pump system
JP3237187B2 (en) Air conditioner
JPH05264133A (en) Air conditioner
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JP3187558B2 (en) Cooling / heating mixed engine driven heat pump system
JP2698735B2 (en) Engine heat pump system
JP3140215B2 (en) Cooling / heating mixed engine driven heat pump system
JP2001246929A (en) Air conditioner for vehicle
JPH0989416A (en) Air conditioner
JP2002286309A (en) Refrigerator
WO2023139701A1 (en) Air conditioner
JP3195991B2 (en) Multi-room air conditioning system
JPH09145175A (en) Air conditioner
JPH07151359A (en) Refrigerant circulation type air conditioning system
JPH05240528A (en) Heat pump and air conditioner
JP4262901B2 (en) Refrigeration equipment
JPH0794936B2 (en) Air conditioner
JP2691423B2 (en) Engine driven heat pump air conditioner
JP2002286304A (en) Refrigerator
JPH07239157A (en) Operation controlling method for air-conditioner
JP2000073406A (en) Air conditioner for construction machine
JP2706068B2 (en) Exhaust heat recovery device for engine driven heat pump device
JPS6358070A (en) Engine drive type air conditioner
JPH0480313B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees